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Abstract
Graph neural networks (GNNs) have shown remarkable success in learning
representations for graph-structured data. However, GNNs still face challenges in
modeling complex phenomena that involve advection. In this paper, we propose
a novel GNN architecture based on Advection-Diffusion-Reaction systems, and
demonstrate its efficacy on real-world spatio-temporal datasets.

1 Introduction
Recently, GNNs have been linked to ordinary and partial differential equations (ODEs and PDEs)
in a series of works [1–7]. These works propose to view GNN layers as the time discretization of
ODEs and PDEs, and as such they offer both theoretical and practical advantages. For instance,
ODE and PDE based models allow to reason about the behavior of existing GNNs. Nonetheless,
the aforementioned architectures still rely on controlled diffusion or wave propagation, as well as
non-linear pointwise convolutions, which, as shown in [8], may lack expressiveness. We now provide
a simple example, known as the graph node feature transportation task [9], where diffusion, and
reaction networks may fail. In this task, the goal is to gather the node information (i.e., features)
from several nodes to a single node. Clearly, no diffusion process can express or model such a
phenomenon, because diffusion spreads and smooths, rather than transports information [10, 11].
An instance of this problem is illustrated in Figure 1, where we show the source and target node
features, and the learned advection weights that can achieve the desired target, while diffusion and
reaction terms fail to model the target configuration. Furthermore, the concept of advection appears
in many real-world problems and data, such as traffic-flow and-control [12], quantity transportation
in computational biology [13], and rainfall forecasting [14]. Motivated by the previously discussed
observations and examples, we propose, in addition to learning and combining diffusion and reaction
terms, to develop a learnable, neural advection term, also known as a transportation term [9–11],
that is suited to model feature transportation from the data in a task driven fashion. The resulting
architecture, called ADR-GNN, can therefore express various phenomena, from advection, diffusion,
to pointwise reactions, as well as their compositions.
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Figure 1: An example of node feature transportation on a graph. Applying the advection weights in
(a) to the source (b), yields the target (c). Darker edge colors in (a) indicate greater advection weights.
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2 Related Work
Advection-Diffusion-Reaction. An Advection Diffusion Reaction system is a mathematical model
that describes the simultaneous existence of three processes: (1) the advection (transport) of informa-
tion in a medium, (2) the diffusion (smoothing) of information within that medium, and (3) pointwise
(self) reactions. These systems are used to study and model a wide range of physical, chemical,
and biological phenomena. For example, ADR systems can be utilized to track and estimate the
location of fish swarms [15], modeling ecological trends [16], and the modeling of turbulent flames
in supernovae [17]. However, the aforementioned works rely on a low-dimensional, hand-crafted,
non-neural ADR system to be determined, typically by trial and error, often requiring a domain expert.
In contrast, in this paper we propose to learn the ADR system for various graph types and tasks.

Graph Neural Networks as Dynamical Systems. Adopting the interpretation of convolutional
neural networks (CNNs) as discretizations of ODEs and PDEs [18–20] to GNNs, works like GODE
[1], GRAND [2], PDE-GCND [3], GRAND++ [21] and others, propose to view GNN layers as time
steps in the integration of the non-linear heat equation, allowing to control the diffusion (smoothing)
in the network, to understand oversmoothing [22–24] in GNNs. Thus, works like [6, 25–27] propose
to utilize a learnable diffusion term, thereby alleviating oversmoothing. Other architectures like
PDE-GCNM [3] and GraphCON [4] propose to mix diffusion and oscillatory processes to avoid
oversmoothing. Nonetheless, as noted in [8], besides alleviating oversmoothing, it is also important
to design GNN architectures with improved expressiveness. Recent examples of such networks are
[7] that propose an anti-symmetric GNN to alleviate over-squashing [28], and [5, 29] that formulate a
reaction-diffusion GNN to enable non-trivial pattern growth.

Advection on Graphs. Advection is a term used in Physics to describe the transport of a substance
in a medium. In the context of graphs, advection is used to express the transport of information
(features) on the graph nodes. The underlying process of advection is described by a continuous PDE,
and several graph discretization techniques [30, 31] are available. The advection operator has shown
its effectiveness in classical (i.e., non-neural) graph methods, from blood-vessel simulations [32], to
traffic flow prediction [33]. In this paper, we develop a neural advection operator that is combined
with neural diffusion and reaction operators, called ADR-GNN.

3 Method
In this section, we first describe the general outline of a continuous ADR system in Section 3.1, and
present its graph discrete analog, named ADR-GNN in Section 3.2

Notations. We define a graph by G = (V, E), where V is a set of n nodes and E ⊆ V × V is a set
of m edges. We denote the 1-hop neighborhood of the i-th node by Ni, and the node features by
U ∈ Rn×c, where c is the number of features. The symmetric graph Laplacian reads L = D−A,
and the symmetric normalized Laplacian is given by L̂ = D− 1

2LD− 1
2 , where D is the degree matrix.

3.1 Continuous Advection-Diffusion-Reaction Systems

The continuous PDE that describes an ADR system is given by:
∂U

∂t
= ∇ · (V U)︸ ︷︷ ︸

Advection

+ K∆U︸ ︷︷ ︸
Diffusion

+ f(U,X, θr)︸ ︷︷ ︸
Reaction

, (1)

where X ∈ Ω, t ∈ [0, T ], accompanied by initial conditions U(X, t = 0) and boundary conditions.
Here, U(X, t) = [u1(X, t), . . . , uc(X, t)] : RΩ×[0,T ] → Rc is a density function, written as a vector
of scalar functions us(X, t), s = 1, . . . , c, that depend on the initial location X and time t. The
spatial domain Ω can be Rd or a manifold M ⊆ Rd. From a neural network perspective, us is
referred to as a channel. The left-hand side of Equation (1) is a time derivative that represents the
change in features in time, as discussed in Section 2. The right-hand side includes three terms:

• Advection. Here, V denotes a velocity function that transports the density U in space.
• Diffusion. We denote the continuous Laplacian operator by ∆. The Laplacian is scaled with a

diagonal matrix K = diag(κ1, . . . , κc) ∈ Rc×c, κi ≥ 0 of non-negative diffusion coefficients,
each independently applied to its corresponding channel in U .

• Reaction. Here, f(U,X, θr) is a non-linear pointwise function parameterized by θr.
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3.2 Advection-Diffusion-Reaction on Graphs

Space Discretization of the ADR-PDE. Equation (1) is defined in the continuum. We now use a
graph G = (V, E) to discretize Ω. The nodes V are a discretization of X , and the edges E represent
the topology of Ω. Then, the spatial, graph discretization of Equation (1) is:

dU(t)

dt
= DIV (V (U(t), t;θa(t))U(t))− L̂U(t)K(t;θd(t)) + f(U(t),X, t;θr(t)). (2)

Here, U(t) ∈ Rn×c are the node features at time t. The advection term depends on the velocity
V parameterized by learnable weights θa(t), discussed in Section 3.2. The diffusion is discretized
using the Laplacian L̂ that is scaled with a diagonal matrix with non-negative learnable diffusion
coefficients on its diagonal K(t;θd(t)) = diag(hardtanh(θd(t), 0, 1)) ≥ 0. The reaction term f is
a pointwise non-linear function realized by a multilayer-perceptron (MLP) with weights θr(t).

Time Discretization of the ADR-ODE. Equation (2) spatially discretizes the PDE in Equation (1),
yielding an ODE defined on the graph. The time discretization of the ODE yields a sequential process
that can be thought of as layers of neural networks [34–36]. That is, upon discrete time integration
of Equation (2), we replace the notion of time t with l layers, and a step size h, that is a positive
scalar hyperparameter. Here we use the common operator splitting discretization technique [11] for
Equation (2), that yields a graph neural ADR layer, summarized in Algorithm 1. We defer the details
of diffusion and reactions terms to Appendix A, as those are well-known in the GNN literature.

Algorithm 1 Graph Neural Advection Diffusion Reaction Layer.

Input: Node features U(l) ∈ Rn×c , Output: Updated node features U(l+1) ∈ Rn×c.
1: Advection: U(l+1/3) = U(l) + hDIV(V(U(l), t;θ

(l)
a )U(l)).

2: Diffusion: U(l+2/3) = mat
(
(I+ hK(t;θ

(l)
d )⊗ L̂)−1vec(U(l+1/3))

)
.

3: Reaction: U(l+1) = U(l+2/3) + hf(U(l+2/3),U(0), t;θ
(l)
r ).

Neural Graph Advection Operator. We extend the non-learnable advection operator from [30],
into a learnable, neural advection operator. Our advection operator transports node features based on
learned directed edge weights (velocities) {(Vi→j ,Vj→i)}(i,j)∈E , where each Vi→j ,Vj→i ∈ Rc,
such that 0 ≤ Vi→j ≤ 1. The notation i→ j implies that the weight transfers features from the i-th
to j-th node. We further demand that the outbound edge weights associated with every node, per
channel, sum to 1, i.e.,

∑
j∈Ni

Vi→j = 1. This constraint suggests that a node can at most transfer
the total of its features to other nodes. First, we define the discretized divergence from Equation (2),
that operates on the learned edge weights V:

DIVi(VU) =
∑

j∈Ni
Vj→i ⊙Uj −Ui ⊙

∑
j∈Ni

Vi→j =
∑

j∈Ni
Vj→i ⊙Uj −Ui, (3)

where ⊙ is the elementwise Hadamard product. Then, the graph advection operator in Algorithm 1 is:

U
(l+1/3)
i = U

(l)
i + hDIVi(V

(l)U(l)) = U
(l)
i + h

(∑
j∈Ni

V
(l)
j→i ⊙U

(l)
j −U

(l)
i

)
. (4)

The updated node features are obtained by adding the Vj→i weighted inbound features, while
removing the Vi→j weighted outbound features.To learn a consistent advection operator that mimics
the directional behavior of the advection in Equation (1), we craft an edge weight V mechanism,
parametrized by fully connected layers θ

(l)
a = {A(l)

1 ,A
(l)
2 ,A

(l)
3 ,A

(l)
4 } , as shown in Algorithm 2. This

mechanism yields direction-oriented weights, i.e., Vi→j ̸= Vj→i, unless they are zeros.

Algorithm 2 Learning Directional Edge Weights.

Input: Node features U(l) ∈ Rn×c , Output: Edge weights V(l)
i→j ,V

(l)
j→i ∈ Rc.

1: Compute edge features:
Z

(l)
ij = ReLU(U

(l)
i A

(l)
1 +U

(l)
j A

(l)
2 )A

(l)
3 , Z(l)

ji = ReLU(U
(l)
j A

(l)
1 +U

(l)
i A

(l)
2 )A

(l)
3 .

V
(l)
i→j = ReLU(Z

(l)
ij − Z

(l)
ji )A

(l)
4 , V(l)

j→i = ReLU(−Z(l)
ij + Z

(l)
ji )A

(l)
4 .

2: Normalize to obtain edge weights: V(l)
i→j ←

exp(V
(l)
i→j)∑

k∈Ni
exp(V

(l)
i→k

)
, V

(l)
j→i ←

exp(V
(l)
j→i)∑

k∈Nj
exp(V

(l)
j→k

)
.
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Dataset Method Horizon 3 Horizon 6 Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.09% 4.37 8.69 14.00%
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%

METR Graph WaveNet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%
-LA ASTGCN 4.86 9.27 9.21% 5.43 10.61 10.13% 6.51 12.52 11.64%

STSGCN 3.31 7.62 8.06% 4.13 9.77 10.29% 5.06 11.66 12.91%
GMAN 2.80 5.55 7.41% 3.12 6.49 8.73% 3.44 7.35 10.07%

MTGNN 2.69 5.18 6.88% 3.05 6.17 8.19% 3.49 7.23 9.87%
GTS 2.67 5.27 7.21% 3.04 6.25 8.41% 3.46 7.31 9.98%
STEP 2.61 4.98 6.60% 2.96 5.97 7.96% 3.37 6.99 9.61%

ADR-GNN 2.53 4.85 6.51% 2.81 5.82 7.39% 3.19 6.89 9.10%

FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%

PEMS Graph WaveNet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
-BAY ASTGCN 1.52 3.13 3.22% 2.01 4.27 4.48% 2.61 5.42 6.00%

STSGCN 1.44 3.01 3.04% 1.83 4.18 4.17% 2.26 5.21 5.40%
GMAN 1.34 2.91 2.86% 1.63 3.76 3.68% 1.86 4.32 4.37%

MTGNN 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%
GTS 1.34 2.83 2.82% 1.66 3.78 3.77% 1.95 4.43 4.58%
STEP 1.26 2.73 2.59% 1.55 3.58 3.43% 1.79 4.20 4.18%

ADR-GNN 1.13 2.36 2.30% 1.39 3.13 3.01% 1.68 3.81 3.82%

Table 1: Multivariate time series forecasting on METR-LA and PEMS-BAY.

4 Experimental Results
We demonstrate our ADR-GNN on two spatio-temporal node forecasting datasets. Architecture
and training details are provided in Appendix B. We use a grid search to select hyperparameters,
discussed in Appendix C. Datasets details and statistics are reported in Appendix D.

Classical ADR models are widely utilized to predict and model spatio-temporal phenomena [15, 37].
We therefore evaluate our ADR-GNN on two popular spatio-temporal node forecasting datasets,
namely, the traffic speed prediction datasets METR-LA [38] and PEMS-BAY [39]. We consider the
mean-absolute-error (MAE) loss as in [40]. We report the MAE, root mean squared error (RMSE),
and mean absolute percentage error (MAPE). To demonstrate the effectiveness of ADR-GNN for
varying time frame predictions, we report the results on 3, 6, and 12 future frame traffic speed
prediction, where each time frame equates to 5 minutes. We compare ADR-GNN with various
methods like FC-LSTM [41], DCRNN [40], Graph WaveNet [42], ASTGCN [43], STSGCN [44],
GMAN [45], MTGNN [46], GTS [47], and STEP [48]. We find that our ADR-GNN offers lower
(better) metrics than the considered methods. For instance, on METR-LA, ADR-GNN reduces the
MAE achieved by the recent STEP method from 3.37 to 3.19. We summarize the results in Table 1.

A D R METR-LA PEMS-BAY

✓ ✗ ✗ 1.84 3.39
✗ ✓ ✗ 1.93 3.67
✗ ✗ ✓ 2.19 4.24
✓ ✓ ✗ 1.79 3.30
✗ ✓ ✓ 1.82 3.46
✓ ✗ ✓ 1.71 3.21
✓ ✓ ✓ 1.68 3.19

Table 2: Impact of Advection (A), Diffusion (D),
and Reaction (R) on the MAE on METR-LA and
PEMS-BAY.

The Impact of Advection, Diffusion, and Re-
action. We study the influence of each of the
proposed terms in Equation (2) on real-world
datasets, independently and jointly. The results,
reported in Table 2 further show the significance
of the advection term due to its offering of in-
creased performance.

5 Summary
We presented a novel GNN architecture that is based on the ADR PDE. The main advantage of the
graph advection operator is its ability to transport information over the graph edges through the layers
- a behavior that is hard to model using the diffusion and reaction terms that have been used in the
literature. We show the significance of ADR-GNN using two spatio-temporal forecasting datasets.
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A Diffusion and Reaction Terms
We now discuss the diffusion and reaction terms in our ADR-GNN.

Diffusion. To discretize the diffusion term from Equation (2), both explicit and implicit time
discretizations can be used [11]. An explicit forward Euler discretization yields the following layer:

U(l+2/3) = U(l+1/3) − h
(
L̂U(l+1/3)K(l)

)
. (5)

However, an explicit scheme requires using a small step size h > 0, as it is marginally stable [11].
We therefore harness an implicit scheme, which guarantees the stability of the diffusion 1, and reads:

U(l+2/3) = mat
(
(I+ hK(l) ⊗ L̂)−1vec(U(l+1/3))

)
. (6)

Here, ⊗ is the Kronecker product, vec() is a flattening operator, and mat() reshapes a vector to a
matrix. The computation of U(l+2/3) requires the solution of a linear system, solved by conjugate
gradients2 [11, 51]. In our experiments we found 5 iterations to be sufficient.

Reaction. Our reaction term is realized using MLPs. Recent works showed that utilizing both
additive and multiplicative MLPs yields improved performance [29, 52, 53]. Hence, we define

f(U(l+2/3),U(0);θ(l)
r ) = σ(U(l+2/3)R

(l)
1 + tanh(U(l+2/3)R

(l)
2 )⊙U(l+2/3) +U(0)R

(l)
3 ), (7)

as our reaction term in Equation (2). Here, θ(l)
r = {R(l)

1 ,R
(l)
2 ,R

(l)
3 } are trainable fully-connected

layers, and σ is non-linear activation function (ReLU in our experiments), that can also be coupled
with batch-normalization. This term is integrated via forward Euler as in Algorithm 1.

B Architecture and Training Details
The typical task in spatio-temporal datasets is to predict future quantities (e.g., driving speed)
given several previous time steps (also called frames). Formally, one is given an input tensor
Xtemporal ∈ Rn×τincin , where τin is the number of input (observed) time frames, and the goal is to
predict τout time frames ahead, i.e., Ytemporal ∈ Rn×τoutcout .

In our spatio-temporal ADR-GNN, we update the hidden state feature matrix U
(l)
state based on the

hidden historical feature matrix U
(l)
hist, as shown in Lines 6-9 in Algorithm 3.

Similarly to Attention models [54], we incorporate time embedding based on the concatenation of
sine and cosine function evaluations with varying frequencies multiplied by the time of the input
frames, as input to our ADR-GNN, denoted by Temb ∈ Rn×τinct , where we choose the number of
frequencies to be 10, and by the concatenation of both sine and cosine lead to ct = 20. We note
that the time embedding is computed in a pre-processing fashion. To initialize the hidden feature
matrices U(0)

state, U
(0)
hist, we embed the input data Xtemporal, concatenated with Temb, using two fully

connected layers, as described in Lines 3-4 in Algorithm 3. 3

We minimize the mean absolute error (MAE), similar to [40], where we also follow the standard 12
previous time frames as inputs, and consider 3,6, and 12 future time frames node quantity prediction
as output.

C Hyperparameters
All hyperparameters were determined by grid search, and the ranges and sampling mechanism
distributions are provided in Table 3. Note, that as discussed after Equation (7), we may add a
BatchNorm layer before applying the non-linear activation σ to the reaction term, we therefore treat
the use of batchnorm as a hyperparameter in Table 3.

1See [2, 49, 50] for details on implicit vs. explicit schemes for diffusion processes and in neural networks.
2We note that the matrix I + hKl ⊗ L̂ is positive definite and invertible, because the identity matrix is

positive definite, h is positive, Kl is non-negative, and the graph Laplacian L̂ is positive semi-definite.
3In Python notations, Xtemporal[:,−cin] extracts the last cin entries of the second dimension of Xtemporal,

which returns the features of the last time frame.
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Algorithm 3 ADR-GNN Architecture Flow
Input: Node features Xtemporal ∈ Rn×τincin , time embedding Temb ∈ Rn×τinct

Output: Predicted future node quantities Ỹ ∈ Rn×τoutcout

1: procedure ADR-GNN
2: Xtemporal ← Dropout(Xtemporal, p)
3: Temb ← gtime−embed(Temb)

4: U
(0)
state = gstatein (Xtemporal[:,−cin]⊕Temb)

5: U
(0)
hist = ghistin (Xtemporal ⊕Temb)

6: for l = 0 . . . L− 1 do
7: U

(l)
state ← Dropout(U

(l)
state, p)

8: Advection: U(l+1/3)
state = U

(l)
state + hDIV(V(U

(l)
hist;θ

(l)
a )U(l)),θa)U

(l)
state

9: Diffusion: U(l+2/3)
state = mat

(
(I+ hK(l) ⊗ L̂)−1vec(U

(l+1/3)
state )

)
10: Reaction: U(l+1)

state = U
(l+2/3)
state + hf(U

(l+2/3)
hist ,U

(0)
hist;θr)

11: U
(l+1)
hist = ghistl (U

(l)
hist ⊕U

(l+1)
state ⊕Temb)

12: end for
13: U

(L)
state ← Dropout(U

(L)
state, p)

14: Ỹ = gstateout (U
(L)
state)

15: Return Ỹ
16: end procedure

Table 3: Hyperparameter ranges

Hyperparameter Range Uniform Distribution

input/output embedding learning rate [1e-4, 1e-1] log uniform
advection learning rate [1e-4, 1e-1] log uniform
diffusion learning rate [1e-4, 1e-1] log uniform
reaction learning rate [1e-4, 1e-1] log uniform

input/output embedding weight decay [0, 1e-2] uniform
advection weight decay [0, 1e-2] uniform
diffusion weight decay [0, 1e-2] uniform
reaction weight decay [0, 1e-2] uniform
input/output dropout [0, 0.9] uniform
hidden layer dropout [0, 0.9] uniform

use BatchNorm { yes / no } discrete uniform
step size h [1e-3, 1] uniform

layers { 2,4,8,16,32,64 } discrete uniform
channels { 8,16,32,64,128,256 } discrete uniform

D Datasets
We report the statistics of the datasets used in our experiments in Table 4.

E Discussion
Advection as ’net transfer’ mechanism. The advection term describes the information (feature)
transfer from one node to another. It considers both the incoming and outgoing information and
therefore it is possible to interpret it as the ’net’ feature transfer.

On the composition of the Advection, Diffusion, and Reaction terms in Algorithm 1. In this
work we utilize the operator splitting approach to discretize the temporal part of the ODE (i.e., the
its right-hand-side). The basic idea of operator splitting is to integrate each part of the differential
equation (advection, diffusion, and reaction) one after the other. This is a common scheme when
integrating ODEs [11]. From this perspective, it would be fair to say that the diffusion term is
influenced by the advection term and similarly for the reaction term. Therefore, this approach may
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Table 4: Attributes of the spatio-temporal datasets in our experiments, and information about the
number of time periods (T ) and spatial units (|V|).

Dataset Frequency T |V|
METR-LA 5-Minutes 34,272 207
PEMS-BAY 5-Minutes 52,116 325

lead to improved results as it uses more updated features. Also, from a machine learning perspective,
the prescribed composition of the ADR terms essentially leads to a deeper network, which can also
be beneficial.

On Advection vs. Transformers. The use of a weighted fully connected graph (by a transformer)
does not necessarily prevent feature smoothing or can replicate the behavior of the advection operator.
The crucial detail in modelling an advection operator is the characteristics of the edge weights
(V from Equation 1). To generate a proper advective behaviour, the edge weights need to be
directionally oriented, as shown in Figure 1. Therefore, while a fully connected graph allows the
direct communication between all pairs of nodes, it is not straight forward to generate advective
behaviour, and a careful construction of the transformer needs to be done, similarly to the edge
weights mechanism proposed in our ADR-GNN.

In addition, changing the graph connectivity by rewiring or full connectivity (by a transformer) adds
more complexity. Furthermore, in some cases may not be possible or straight forward to use. For
instance, considering the spatiotemporal datasets for traffic prediction, it may not be possible to
change the graph, as it represents a physical road network.
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