
Revisiting Multi-Codebook Quantization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Multi-Codebook Quantization (MCQ) is a generalized version of existing codebook-1

based quantizations for Approximate Nearest Neighbor (ANN) search. Therefore,2

MCQ theoretically has the potential to achieve the best performance because so-3

lutions of other codebook-based quantization methods are all covered by MCQ’s4

solution space under the same codebook size setting. However, finding the opti-5

mal solution to MCQ is proved to be NP-hard due to its encoding process, i.e.,6

converting an input vector to a binary code. To tackle this, researchers apply7

constraints to it to find near-optimal solutions, or employ heuristic algorithms8

which are still time-consuming for encoding. Different from previous approaches,9

this paper takes the first attempt to find a deep solution to MCQ. The encoding10

network is designed to be as simple as possible, so the very complex encoding11

problem becomes simply a feed-forward. Compared with other methods on three12

datasets, our method shows state-of-the-art performance. Notably, our method13

is 11×-38× faster than heuristic algorithms for encoding, which makes it more14

practical for real scenery of large-scale retrieval. Our code is publicly available:15

https://github.com/DeepMCQ/DeepQ.16

1 Introduction17

Rapidly increasing multimedia contents in recent years raise an urgent request for retrieval in a18

short time. Unlike the exhaustive routine [31, 20], Approximate Nearest Neighbor (ANN) search19

significantly reduces retrieval time while preserving high recall. It has been widely applied to various20

scenarios, such as database indexing, fast image retrieval, and recommender systems.21

As a typical approach, vector quantization (VQ) [7] is at first developed as a compression technique,22

which uses a codebook to approximate vectors. People further find the power of VQ to preserve23

similarities between quantized features and enable VQ to perform ANN search. In order to achieve24

low quantization errors with limited codebook size, a multi-codebook structure is introduced. The25

proposal of the Multi-Codebook Quantization (MCQ) [2] describes the approach as a combination26

of one codeword for each sub-codebook, and previous methods [9, 6, 19, 30, 10, 3] are summarized27

as exceptional cases of MCQ or constrained MCQs. The quantization codes are designed to be28

compacted, which results in negligible storage cost and high-quality results.29

However, the optimization of MCQ without any constraints is formally NP-hard. [14] models30

it as the minimization on several fully-connected Markov Random Fields (MRFs). As a result,31

current researches aim at solving MCQ under acceptable computational costs. Other than applying32

constraints on it [34, 4, 15], another approach designs algorithms in a heuristic way [2, 14, 16]. The33

latter achieves better performance but suffers from slow encoding.34

There are chances to employ neural networks’ power to solve MCQ, where people expect to obtain35

higher performance and encoding efficiency than previous methods. [11, 5, 28, 33, 27] already give36

the way to treat codebook as network parameter and update it by gradient-descent, but they are37

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

https://github.com/DeepMCQ/DeepQ


all still under constraints that hinder performance. Morozov and Babenko [18] and Sablayrolles et38

al. [22] map datapoints to learned space, which are not flexible, especially when performing the39

reconstruction. Therefore in this paper, we give our first attempt to solve MCQ in a deep learning40

approach, without constraints and work-arounds. Our contributions can be summarized as three-folds:41

• Our novel approach, Deep Multi-Codebook Quantization (DeepQ), fully considers encoding42

difficulty and time complexity in MCQ. With the high efficient and parallelized encoding networks,43

our method significantly reduces encoding time.44

• To tackle the NP-hard encoding problem and non-differentiable gradient estimation, we employ and45

further revise a policy gradient method. Value-Corrected Proximal Policy Optimization (VC-PPO)46

is proposed to speed up convergence in the training phase.47

• Experiments conducted on a benchmark dataset validate our proposed method. Furthermore, to48

evaluate the scalability of the method, it is tested on million-scale datasets to show the effectiveness49

of our proposed algorithm.50

2 Related Works51

Vector quantization is a routine to approximate vectors by a codebook. Typical applications include52

clustering, compression, and Approximate Nearest Neighbor (ANN) search. The famous proposal53

k-means [7], also known as Lloyd’s algorithm [13], clusters the dataset into uniformly sized convex54

cells. When it is applied to ANN search, datapoints from the base set are quantized into their55

nearest centriods and represented by indices. The distance from a given query to any datapoint56

is approximated by the distance from the query to the datapoint’s centriod, which is effectively57

pre-computed and stored in a lookup table. To perform fine-grained clustering as well as reducing the58

space and time complexity, they [9, 6, 19, 10, 30] divide the feature space orthogonally by performing59

k-means in each subspace concurrently. Meanwhile, the introduced sub-codebook structure reveals60

the prototype of MCQ. Formally, [2] gives a well definition of MCQ, and previous works are all61

summarized into constrained MCQs. Specifically, subspace k-means must keep orthogonality among62

sub-codebooks. Zhang et al. [34] loosens the orthogonality constraint, but sub-codebooks are still63

weakly-orthogonal. Chen et al. [4] and Martinez et al. [15] propose hierarchical k-means, where64

vectors are quantized coarse-to-fine. If constraints are moved, MCQ is not easy to solve. Current65

state-of-the-art methods develop heuristic algorithms to help to encode. Specifically, Babenko and66

Lempitsky [2] employs beam search, Martinez et al. [14, 16] give algorithm based on Iterated67

Conditional Modes (ICM). However, the above methods do not achieve satisfied time complexity in68

encoding yet.69

When neural networks and gradient descent become a fashion, a few attempts to integrate quantization70

into deep retrieval networks are proposed. Klein and Wolf [11] and Song et al. [5] propose Deep71

Product Quantization (DPQ) and Deep Progressive Quantization (DPgQ) which update codebook by72

soft relaxation, but they are still under the same constraints as [9, 15]. Sablayrolles et al. [22] and73

Morozov and Babenko [18] give pipelines to encode compact representations for compressed-domain74

search, but they do not strictly follow the paradigm of MCQ.75

3 Preliminaries76

Given a vector x ∈ RD, its quantized vector x̃ are composed by several codewords in a codebook77

C. More Specifically, C = (Cm) , Cm ∈ RK×D, 1 ≤ m ≤M contains M sub-codebooks and K78

codewords for each. Quantization codes are formed by b = (bm) , bm ∈ {1, 2, · · · ,K}, 1 ≤ m ≤79

M , which indicates the picked codeword in each sub-codebook. For the whole training setX = {x}80

with N datapoints, MCQ aims at finding the optimal quantization codesB = {b} and codebook C81

to minimize following objective:82

min
C,B

E
x∈X
b∈B

Q (x, b,C) = min
C,B

E
x∈X
b∈B

∥∥∥∥∥x−
M∑
m=1

Cmbm

∥∥∥∥∥
2

(1)

whereCmbm ∈ RD is the bm-th codeword of the m-th sub-codebook. The sum of picked codewords83 ∑
Cmbm

tries to approximate x. C and b are stored for further retrieval. Some of the previously84

mentioned methods [9, 6, 4, 15, 34] are treated as constrained MCQs, as they are all represented85

2



as special cases of (1). Specifically, when M = 1, (1) becomes VQ. Or if any two sub-codebooks86

Ci,Cj are orthogonal, it will be PQ or OPQ.87

The optimization of (1) without any constraints is proved to be NP-hard [14]. To tackle this, we88

propose a Expectation-Maximization style solution. Following sections will explain the deep neural89

network for encoding b (Section 4.1), the way to solve C (Section 4.2), and how to conduct retrieval90

(Section 4.3), respectively.91

4 Methodology92

4.1 Expectation: EncodingB with neural networks93

IndepBlock θm

x pm~bm

Layer-Group

FC LNReLU

C Concatenation

Linear layer

ReLU activation

Layer-norm

Skip-connection

Sample

C

IndepNet θ

…

M×IndepBlocks

x

p0~b0

p1~b1

pM~bM

…

bC

Figure 1: Our proposed IndepNet for
producing probabilities of choosing each
codeword. IndepBlock is duplicated for
M times without shared parameters, in
order to keep independence between dif-
ferent IndepBlocks. Categorical distribu-
tion is built upon output from the Indep-
Block. Then, quantization code bm as-
sociated with sub-codebook Cm is sam-
pled from distribution.

Our first step, is to find a potential code b by given x and94

a fixed C. A policy π parameterized by θ is employed to95

take possible solution of b by feeding x:96

π = (πm) = π (x | θm) , 1 ≤ m ≤M. (2)

More specifically, π produces M Categorical distribu-97

tions Categorical(K, pm1, · · · , pmK), where pmj is98

the probability to pick the j-th codeword in the m-th99

sub-codebook. A potential encoding bm is generated by100

drawing samples from πm, which then helps us to pick101

codeword Cmbm . Therefore:102

bm ∼ πm (x | θm) = Categorical(K, pm). (3)

Since the independence among different sub-codebooks103

is a prerequisite of MCQ, bm should be drawn from πm104

independently. Intuitively, the probability of b to be a105

specific b? is derived by conditional independence:106

Pr (b=b?) =

M∏
m=1

Pr (bm=b?m) =

M∏
m=1

pmb?
m
. (4)

We adopt the power of neural networks to model107

πm. Specifically, θm produces K unnormalized log-108

probabilities `m and pmj is obtained by Softmax. To109

keep the independence, θm will not share parameters with110

each other.111

Therefore, θ, or our proposed IndepNet is illustrated in112

Figure 1. We first build a basic structure called IndepBlock and duplicate this block for M times as113

θ1, θ2, · · · , θM . We try to keep the basic structure really simple to achieve high efficiency during114

training and encoding. As the figure shows, IndepBlock is an hourglass network contains 6 layer-115

groups (consists of a linear layer with ReLU activation and layer-normalization) with skip-connections.116

The last three outputs are concatenated and further fed into a final linear layer with K outputs as117

`m = (`m1, · · · , `mK), and therefore:118

pmj = Softmax (`m)j , where `m = θm (x) . (5)

4.1.1 Gradient estimation119

The objective of training θ is formed as:120

min
π

E
x∈X

b∼π(x|θ)

Q (x, b,C). (6)

However, the optimization faces two problems: 1) The encoding of b involves sampling from discrete121

distributions, which is non-differentiable, 2) All possible encoding of b is O
(
KM

)
. Exhaustive122

search becomes impracticable.123

3



Therefore, gradient estimation over discrete, stochastic computation graph is required to train θ.124

Mainstream methods [23, 32, 17] include score function gradient estimator, pathwise gradient125

estimator, etc. Meanwhile, minimizing (6) is also faced with the high-variance problem during126

gradient estimation. To tackle this, the advantage function is introduced [12, 25]. Specifically in127

our work, a value network called QENet parameterized by τ is proposed to model a value function128

v = V (· | τ). It performs a regression task to minimize the following objectives:129

min
τ

E
x∈X

b∼π(x|θ)

‖Q (x, b,C)−V (x, b,C | τ)‖2. (7)

QENet τ

…

M×IndepBlocks

…

…

…

M×Sub-Codebooks

…

x

v

IndepBlock

ι1

ι2

ιM

ιx

Codebook

Reduce-sum

Figure 2: Our proposed QENet for ad-
vantage estimation. First M Indep-
Blocks are fed byM selected codewords
and the last one is fed by x. Outputs are
summed up to get scalar value v.

Advantages Â is then estimated by130

Â = Q (x, b,C)−V (x, b,C | τ). (8)

The detailed architecture of QENet is shown in Figure 2.131

We reuse the IndepBlock to generate v by M + 1 blocks:132

τ = (τ1, · · · , τM , τx). Specifically, latent representation133

for each selected-codeword Cmbm
is obtained by:134

ιm = τm(Cmbm). (9)

The last IndepBlock τx is introduced to transform x. Then,135

all the outputs from IndepBlocks are summed up to get136

scalar value v (denoted as “reduce-sum”):137

v = sum(ι1, · · · , ιM , ιx). (10)

Value-corrected proximal policy optimization We138

propose a variant of score function gradient estimator139

called Value Corrected Proximal Policy Optimization (VC-140

PPO) based on PPO to get simple but efficient Trust Re-141

gion updates [26, 24]. In the real scenario of large-scale142

ANN search, the training size N is usually larger than 10k. Conventional PPO still does not satisfy143

us due to the speed of convergence. Therefore, we revise and propose the Value-Corrected PPO144

(VC-PPO) to achieve fast training. Firstly in the sampling stage, bo and vo is produced from datapoint145

x over whole training setX by freezing current policy network and value network as θo, τo:146

bo ∼ π (x | θo) ,
vo = V (x, bo,C | τo) .

(11)

The probability of producing the sampled bo is denoted as po = Pr (bo | x, θo), calculated by147

equation (4). Finally, our surrogate objectives of VC-PPO is defined as [8]:148

Lθ = min

(
Pr (bo | x, θ)
Pr (bo | x, θo)

Â,

clip1+ε
1−ε

(
Pr (bo | x, θ)
Pr (bo | x, θo)

)
Â

)
,

(12)

149

Lτ = max
(

(Q (x, bo,C)−V (x, bo,C | τ))
2
,(

Q (x, bo,C)− vo − clip+ε
−ε (V (x, bo,C | τ)− vo)

)2)
.

(13)

Here, The clip (·) forces the policy and value to be not too far from old ones and ε is the clip-range.150

In both equations, it prevents a large update ratio leading to an unstable policy. The key difference151

between the original PPO and our VC-PPO is, we use V (x, bo,C | τ) other than the recorded old152

value vo from sampling stage to estimate advantage. This modification is treated as a value-correction153

process. Correcting value leads to a precise estimation on advantage, which is based on two reasons:154

a) Biases are introduced into advantage estimation if we use vo, since the policy is getting better and155

better during training but τo is froze, and 2) The calculation of V (x, bo,C | τ) can be done instantly156

4



without introducing significant computational overhead. To further encourage the network choose157

codewords uniformly, a regularization is applied to θ to maximize the entropy of π:158

eθ = −
M∑
m=1

K∑
j=1

pmj log pmj (14)

which forces network to try more codeword combinations.159

4.2 Maximization: Solve C by least-squares160

To give the closed-form derivation of solving C by givenX andB, We will firstly rewrite Equation161

(1) to a matrix formulation. Since b = (b1, b2, · · · , bM ) and bm ∈ {1, 2, · · ·K} is the index of162

selected codeword in the i-th sub-codebook, a one-hot encoding and a concatenation on each bm:163

b′m = one-hot(bm), b′ = (b′1, · · · , b
′
m) will convert the quantization code to a M -hot vector i.e. a164

vector that contains M segments, and each segment contains exactly one 1 and remaining 0, where165

1 is the entry of picked codeword. Correspondingly, a reshape is applied to C: C ′ =


C1

C2

...
CM

 ∈166

R(M×K)×D. (1) will become:167

min
C′

∥∥X −B′C ′∥∥2
2
. (15)

This equation is formally a linear least-squares regression, where B′ ∈ {0, 1}N×(M×K) is known168

and X is target. Although there is a bunch of algorithms to solve it, we finally choose gelsy [1],169

which in our experiments shows the best results. The solution is to first apply a QR factorization with170

column permutation onB′ :171

B′ = Q

(
R11 R12

0 R22

)
P ᵀ (16)

where Q and R =

(
R11 R12

0 R22

)
is the factorization matrix and P is an orthogonal matrix that172

permutes columns ofB′ untilR11 is well-conditioned (its estimated condition number approaches173

0). With the permutation,R22 becomes negligible. Moreover,R12 is erased by another orthogonal174

transformation:175 (
R11 R12

0 R22

)
→
(
R11 R12

0 0

)
=

(
T 11 0

0 0

)
Z (17)

where T and Z are from the orthogonal transformation ofR. Then, C ′ is derived by:176

B′ = Q

(
T 11 0

0 0

)
ZP ᵀ,

C ← C ′ ← PZᵀ
(
T−111 Q

ᵀ
1X

0

) (18)

whereQ1 is the top rank(B′) columns ofQ.177

In brief, our overall training approach is summarized into algorithm 1.178

4.3 Fast retrieval179

After training, we are able to encode the base set for retrieval. Other than sampling from π, codewords180

are simply rolled out by greedy assignments:181

bgm = arg max θm(x). (19)

We firstly use the greedy roll-out strategy to obtain B in the training set in order to solve the final182

codebook. Then, we employ the same strategy to encode the base set.183

5



To further refine assignments, we add an extra step that randomly selects and alters bi while fixing184

others:185

bgi ← arg min
bg
i

Q (x, bg ,C) ,

i ∼ U [1,M ].
(20)

Since this refinement only causes negligible overhead referred to the implementation by [14], in186

practice, we benefit from it not only to get lower quantization error but also to obtain acceptable187

performance from a fast training, i.e., training within a very few steps before the network is converged.188

The encoded and refined base set, combined with the codebook, is finally employed for retrieval. The189

LSQ-style lookup table [14] is utilized to speed up similarity search.190

4.4 Discussion191 Algorithm 1: VC-PPO for Training
Inputs: Training setX , max step T ,

hyper-
parameters α, ε, learning rates η1, η2.
Outputs: Policy π.
Initialize codebook C, parameters θ and τ ;
i← 0;
while i < T do

/* Training loop */
for x inX do

/* Sampling stage */
Sample bo ∼ π (x | θo) intoB;
Compute vo, po into V , Pr;

end
for x, bo, vo, po inX,B,V ,Pr do

/* Updating stage */
τ ← τ − η1∇τLτ ;
Compute Â by (8);
θ ← θ + η2∇θ(Lθ + α · eθ);

end
C ← Solved by (15) ∼ (18);
i← i+ 1;

end
return π (· | θ)

Our work aims at solving Multi-Codebook Quanti-192

zation via neural networks. Similar works include193

Unsupervised Neural Quantization (UNQ) [18] and194

Spreading Vectors [22]. But ours has several key195

advantages compared to previous works: 1) Unlike196

UNQ, which reconstructs features by an encoder-197

decoder structure, we follow the paradigm of MCQ198

to directly give binary codes and codebooks for the199

benefit of speed and storage, for UNQ needs an200

extra decoding stage during retrieval. 2) UNQ and201

Spreading Vectors both project original features202

into a learned space. Although similarities between203

features are preserved, they still have biases in quan-204

tized results. This causes several issues, especially205

when we want to perform a reconstruction to ap-206

proximate original features, e.g. data compression.207

Compared to LSQ [14], the state-of-the-art heuris-208

tic algorithm, our work is the first to tackle MCQ in209

a deep learning fashion. The policy network is de-210

signed to be very simple to get fast encoding speed211

and comparable retrieval performance.212

5 Experiments213

Our proposed Deep Multi-Codebook Quantization (DeepQ) is compared against the state-of-the-arts214

on a visual-feature dataset (LabelMe22K) to evaluate retrieval performance and encoding speed.215

Then, we scale up to make comparisons on commonly used large-scale datasets (SIFT1M and216

DEEP1M), whose base sets include 1 million vectors for retrieval. Furthermore, ablation study on217

SIFT1M investigates the effectiveness of each component in our proposed pipeline.218

5.1 Datasets and evaluation metrics219

LabelMe22K [29]: This dataset collects images by the LabelMe annotation tool1 and uses Convolu-220

tional Neural Network (CNN) to extract them into 512-d features. It has 22, 019 vectors for training221

and 2, 000 vectors for test.222

SIFT1M2 and DEEP1M3: Both datasets contain 104, 105, 106 vectors in query, training and base223

set, respectively. Vectors from SIFT1M is extracted by Scale-Invariant Feature Transform (128-d)224

while DEEP1M contains 96-d vectors from outputs of a CNN.225

1https://github.com/CSAILVision/LabelMeAnnotationTool
2http://corpus-texmex.irisa.fr/
3http://sites.skoltech.ru/compvision/noimi/

6

https://github.com/CSAILVision/LabelMeAnnotationTool
http://corpus-texmex.irisa.fr/
http://sites.skoltech.ru/compvision/noimi/


Recall@{1, 10, 100} and quantization error are adopted as evaluation metrics. These two metrics226

indicate not only the retrieval performance but also the reconstruction accuracy. Because LabelMe22K227

does not have a base set, its training set is adopted as a base set. We train on the training set, and then228

encode the base set for evaluations with queries. When calculating recall, groundtruth is defined as229

the nearest neighbor of each query in the base set (sorted by l2 distance). As for quantization error,230

the average value of Q (x, b,C) is reported over all x in the base set.231

We compare our proposal with both shallow and deep methods, including three classic quantiza-232

tion: OPQ [6], SQ [15] and LSQ++ [14, 16] (denoted as LSQ for simplicity. Also, these two in233

our experiments have similar performance), as well as three graident-based methods: DPQ [11],234

DPgQ [5] and DRQ [28]. DPQ and PQNet [33] have basically the same architecture that extend235

PQ with gradient-descent, so we only report the performance of DPQ. Additionally, UNQ [18] is236

also included, although they introduce an extra decoder and re-ranking trick for retrieval.237

5.2 Implementation details238

Method
LabelMe22K

32 bits 64 bits
R@1 R@10 R@100 R@1 R@10 R@100

OPQ 18.70 57.25 90.10 32.30 80.40 98.00
SQ 18.45 57.60 90.85 32.65 82.05 99.05

LSQ 21.20 60.85 94.35 36.45 86.25 99.15

DPQ 8.60 32.80 77.50 15.35 48.75 90.75
DPgQ 19.85 57.80 90.70 35.05 84.10 98.90
DRQ 9.65 34.15 80.15 30.75 77.35 97.10
UNQ 22.25 61.20 89.30 37.10 85.55 98.80

Ours 24.45 69.05 97.65 39.60 87.60 99.80

Table 1: Recall(R)@{1, 10, 100} on LabelMe22K dataset
(%). Ours outperforms state-of-the-arts by at least 2.20%,
7.85%, 3.30% (32 bits), and 2.70%, 1.45%, 0.65% (64 bits),
respectively.

Our method is implemented with Py-239

Torch,4 the popular deep learning240

package in Python. Codebook C is241

solved by Intel MKL that has been242

fully optimized for speed. As for net-243

work training, we adopt Adam opti-244

mizer with AMSGrad [21] and hyper-245

parameters are tuned by grid search.246

Specifically, learning rates η1 = η2 =247

2× 10−4, with an exponetial learning248

rate decay γ = 0.9999. Batch-size249

in updating stage is 2000, while other250

hyper-parameters ε = 0.2, α = 0.05.251

Additionally, during training, we in-252

sert dropout layers after every layer-253

normalization in all layer-groups to254

tackle overfitting. More detailed set-255

tings as well as specifications of In-256

depNet θ and QENet τ on each dataset257

(LabelMe22K, SIFT1M, DEEP1M) can be found in supplementary material.258

As for quantization code-lengths, K = 256 codewords for each sub-codebook and M = {4, 8}259

sub-codebooks are employed in total. We follow [2] to report “effective” code-lengths (additional260

code-length for storing ‖x‖ for lookup table is ignored). Therefore code-lengths become {32, 64}261

bits, respectively.262

For a fair comparison, experiments are conducted on a single machine, equipped with Intel Xeon263

E5-2678v3 CPU, 256 GiB RAM, and NVIDIA RTX 3090 GPU. For other methods, we re-run on all264

datasets under unified settings with implementations provided by the authors.265

5.3 Comparisons with state-of-the-arts266

Under the small training set and base set settings on LabelMe22K, we get the results placed in267

Table 1. Our method takes the highest recall on this dataset, outperforming the state-of-the-art268

by 2.20%, 7.85%, 3.30% on 32 bits for R@1, R@10 and R@100. It also outperforms the best269

competitor by 2.70%, 1.45%, 0.65% on 64 bits. In brief, All methods except for UNQ are generally270

split into three styles: 1) PQ-like: OPQ and DPQ. 2) SQ-like: SQ, DPgQ and DRQ. 3) MCQ: LSQ271

and ours. Generally, DPQ, DPgQ, and DRQ achieve similar results compared to their shallow272

versions. However, since they are still constrained MCQs, they show worse performances than 3).273

The performance of LSQ is worse than ours, shows the effectiveness of neural networks for modeling274

the MCQ encoding problem. As for UNQ, it takes several extra tricks i.e., another network for275

decoding and re-ranking in retrieval. Although it beats LSQ, our network still shows the power of276

MCQ to win the competition.277

4https://pytorch.org/

7

https://pytorch.org/


Method
SIFT1M DEEP1M

32 bits 64 bits 32 bits 64 bits
R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100

OPQ 5.34 22.03 56.72 22.84 60.27 92.19 3.07 15.39 48.40 15.34 50.06 87.96
SQ 9.45 34.88 70.07 24.41 65.48 93.17 6.41 26.79 70.25 19.95 56.31 91.27

LSQ 11.43 40.48 80.52 33.23 78.37 98.72 7.29 28.96 72.93 21.12 61.47 93.98

DPQ 5.41 22.97 58.57 21.87 59.39 91.66 1.59 8.96 33.09 9.53 33.45 72.80
DPgQ 9.71 35.03 74.19 27.96 69.98 96.04 6.36 26.16 70.02 18.98 55.80 90.95
DRQ 1.40 8.87 35.27 18.56 53.06 88.45 4.48 22.46 62.57 16.10 52.76 89.31
UNQ 10.01 33.92 73.39 28.37 69.15 95.99 5.19 23.55 65.09 16.12 52.06 90.10

Ours 11.02 37.73 76.79 28.02 70.22 96.43 7.43 30.03 72.48 20.87 62.06 94.07

Table 2: Quantitative comparisons with state-of-the-arts on SIFT1M and DEEP1M datasets.
Recall(R)@{1, 10, 100} are reported (%). Ours shows comparable performance with staet-of-the-arts
on SIFT1M, while achieving the highest recall in most cases on DEEP1M.

5.3.1 Large-scale retrieval performance278

Our evaluations on SIFT1M and DEEP1M datasets is presented in Table 2. The training set and279

base set are scaled up, and retrievals on these datasets become more difficult. We observe expected280

results on two datasets. Compared to our main competitor, LSQ, our method achieves comparable281

performance on SIFT1M, and outperforms LSQ on DEEP1M in most cases. Our method achieves282

higher recall on DEEP1M than SIFT1M. A potential reason is that DEEP1M is under a nearly normal283

distribution that, in practice, is easier to converge than SIFT1M, which has a larger variance between284

datapoints. The performance of UNQ in our experiments is lower than expected, possibly due to285

different dataset settings.286

Another key advantage of our method is that, different from shallow methods, which are hand-crafted287

algorithms that find possible solutions manually or with constraints, our DeepQ encodes vectors by288

only a feed-forward.289

5.3.2 Encoding efficiency290

16 32 64 128
Code-length (bit)

2

5

10

20

50

100

200

To
ta

l t
im

e 
(lo

ga
rit

hm
, s

ec
)

OPQ
DRQ

SQ
UNQ

LSQ
Ours*

DPQ
Ours

DPgQ

Figure 3: Total encoding time w.r.t. code-length
on SIFT1M dataset. For 128 bits, we illustrate the
simulated results. The variant Ours* removes ex-
tra refinement step to show its overhead. Our two
variants are significantly faster than LSQ while
achieving similar performance. Furthermore, our
method is slightly faster than most of the con-
strained MCQs. Our method achieves high per-
formance as well as superior encoding efficiency.
UNQ has the shortest time to encode the whole set,
however during retrieval, they still need to decode
and re-rank that slow down the speed.

In order to verify the encoding efficiency of291

our method, evaluations of encoding time on292

SIFT1M with the 106 base set are conducted293

by checking the total time spent. All of them294

are run under GPU-acceleration. Additionally,295

we evaluate the time with and without the extra296

codewords refinement that introduced in section297

4.3 (128 bits results are simulated). As Figure298

3 shows, our network is significantly faster than299

LSQ since it needs to perform local search it-300

eratively for 25 or even 100 rounds. Specifi-301

cally, to encode SIFT1M base set, LSQ takes302

52.84s, 96.99s, 256.86s and 639.18s for 16, 32,303

64 and 128 bits respectively. By contrast, our304

method takes 4.46s, 5.46s, 8.26s and 16.64s,305

which is 11.8×, 17.8×, 31.1× and 38.4× faster306

than LSQ. Moreover, our method is even faster307

than most of the constrained MCQs. We also308

notice that the refinement takes negligible over-309

head. Although UNQ takes the fastest encoding310

speed, it still needs to decode and re-rank during311

retrieval, which slows down its retrieval speed.312

5.3.3 Reconstruction accuracy313

The comparisons of quantization error on three314

datasets are stated in Table 3. Basically, when the quantization error gets lower, recall will be higher.315

8



Method SIFT1M DEEP1M LabelMe22K
32 bits 64 bits 32 bits 64 bits 32 bits 64 bits

OPQ 4.03× 104 2.51× 104 4.25× 10−1 2.70× 10−1 1.25× 10−1 9.25× 10−2

SQ 3.42× 104 2.13× 104 3.24× 10−1 2.10× 10−1 1.25× 10−1 9.10× 10−2

LSQ 2.90× 104 1.12× 104 3.04× 10−1 1.99× 10−1 1.21× 10−1 8.57× 10−2

DPQ 4.01× 104 2.48× 104 4.58× 10−1 3.54× 10−1 1.77× 10−1 1.60× 10−1

DPgQ 3.30× 104 2.10× 104 3.29× 10−1 2.12× 10−1 1.31× 10−1 8.74× 10−2

DRQ 4.75× 104 2.88× 104 3.52× 10−1 2.54× 10−1 1.61× 10−1 1.01× 10−1

UNQ 4.14× 104 2.33× 104 3.52× 10−1 2.39× 10−1 1.48× 10−1 1.08× 10−1

Ours 2.92× 104 1.91× 104 2.92× 10−1 1.93× 10−1 1.02× 10−1 6.72× 10−2

Table 3: Comparisons of quantization error with state-of-the-arts on three datasets (lower is better).
Ours achieves the lowest quantization error in most cases. This gives us benefits of feature recon-
struction. Observe that UNQ performs poorly, we believe it focuses more on ranking and similarity
preservation, other than reconstruction.

Ours get the 2nd place on SIFT1M, and the lowest on remaining datasets in most cases. Quantization316

error indicates reconstruction accuracy and further shows the quality of codebook generation and317

quantization codes selection. Notably, ours significantly outperforms UNQ, which has a strong bias318

on the reconstruction task. This is because they focus more on ranking, not the quantization error.319

The result shows that our method can be applied to other areas, e.g. vector compression.320

5.4 Ablation study321
Method SIFT1M@32 bits

QE R@1 R@10 R@100

w/o regularization 3.38× 104 7.60 29.96 68.73
w/o return-norm 3.06× 104 10.57 36.44 76.04
w/o correction 3.10× 104 10.09 35.30 75.16
w/o refinement 3.17× 104 9.91 30.39 68.28

DeepQ 2.92× 104 11.02 37.73 76.79

Table 4: Ablation study conducted on SIFT1M with 32
bits code-length. Entropy regularization forces network
to try more codeword combinations, which help to jump
out of local-optima. Return normalization and value
correction help for fast convergence. The extra refine-
ment leads to low quantization error and high recall
with negligible costs.

Our ablation study is conducted on the322

SIFT1M dataset, with the code-length of323

32 bits, which in our experiments is suf-324

ficient to show how does each component325

affects our model. We choose the following326

variants to perform ablation:327

w/o regularization: which removes eθ in328

the losses, and the output distributions will329

not be forced to be uniform.330

w/o return-norm: which does not normal-331

ize R, and therefor advantage is computed332

by R other than R̄.333

w/o correction: which removes value cor-334

rection. So our VC-PPO falls back to the original PPO.335

w/o refinement: which directly encode the base set without extra refinement.336

Quantization error and recall are evaluated and placed in Table 4. We report the best value they337

ever met during the training procedure. Specifically, when regularization is removed, it seems that338

the network is trapped in local-optima and the performance drops. Meanwhile, although return339

normalization and value correction give us only subtle improvements, we find they help the network340

to converge quickly. The extra refinement gives us lower quantization error and higher recall, specially341

when we want to perform fast training before the network is converged.342

6 Conclusion and Future Work343

In this paper, we first review previous works of constrained MCQs, and investigate solutions to344

unconstrained ones. Since finding the global-optima of MCQ is NP-hard, researchers apply constraints345

to find near-optimal solutions or employ heuristic algorithms that are still time-consuming. This346

paper takes the first attempt to find a deep solution to MCQ. The proposed IndepNet is designed to be347

simple enough to encode vectors extremely fast. Furthermore, our network shows state-of-the-art348

performance in retrieval and reconstruction tasks. Our method is slow to converge in a large dataset,349

which hinders our performance. So, our future work will focus on training speedup.350

9



References351

[1] Anderson, E., Bai, Z., Dongarra, J. J., Greenbaum, A., McKenney, A., Croz, J. D., Hammarling, S.,352

Demmel, J., Bischof, C. H., and Sorensen, D. C. (1990). LAPACK: a portable linear algebra library for353

high-performance computers. In SC, pages 2–11.354

[2] Babenko, A. and Lempitsky, V. (2014). Additive quantization for extreme vector compression. In CVPR,355

pages 931–938.356

[3] Babenko, A. and Lempitsky, V. (2015). Tree quantization for large-scale similarity search and classification.357

In CVPR, pages 4240–4248.358

[4] Chen, Y., Guan, T., and Wang, C. (2010). Approximate nearest neighbor search by residual vector359

quantization. Sensors, 10(12):11259–11273.360

[5] Gao, L., Zhu, X., Song, J., Zhao, Z., and Shen, H. T. (2019). Beyond product quantization: Deep progressive361

quantization for image retrieval. In IJCAI, pages 723–729.362

[6] Ge, T., He, K., Ke, Q., and Sun, J. (2013). Optimized product quantization for approximate nearest neighbor363

search. In CVPR, pages 2946–2953.364

[7] Gray, R. (1984). Vector quantization. IEEE Assp Magazine, 1(2):4–29.365

[8] Ilyas, A., Engstrom, L., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., and Madry, A. (2020). A closer366

look at deep policy gradients. In ICLR.367

[9] Jégou, H., Douze, M., and Schmid, C. (2010). Product quantization for nearest neighbor search. IEEE Trans.368

Pattern Anal. Mach. Intell., 33(1):117–128.369

[10] Kalantidis, Y. and Avrithis, Y. (2014). Locally optimized product quantization for approximate nearest370

neighbor search. In CVPR, pages 2329–2336.371

[11] Klein, B. and Wolf, L. (2019). End-to-end supervised product quantization for image search and retrieval.372

In CVPR, pages 5041–5050.373

[12] Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In NeurIPS, pages 1008–1014.374

[13] Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–375

137.376

[14] Martinez, J., Clement, J., Hoos, H. H., and Little, J. J. (2016). Revisiting additive quantization. In ECCV,377

pages 137–153. Springer.378

[15] Martinez, J., Hoos, H. H., and Little, J. J. (2014). Stacked quantizers for compositional vector compression.379

arXiv preprint arXiv:1411.2173.380

[16] Martinez, J., Zakhmi, S., Hoos, H. H., and Little, J. J. (2018). Lsq++: Lower running time and higher381

recall in multi-codebook quantization. In ECCV, pages 491–506.382

[17] Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020). Monte carlo gradient estimation in machine383

learning. J. Mach. Learn. Res., 21:132:1–132:62.384

[18] Morozov, S. and Babenko, A. (2019). Unsupervised neural quantization for compressed-domain similarity385

search. In ICCV, pages 3036–3045.386

[19] Norouzi, M. and Fleet, D. J. (2013). Cartesian k-means. In CVPR, pages 3017–3024.387

[20] Radenovic, F., Iscen, A., Tolias, G., Avrithis, Y., and Chum, O. (2018). Revisiting oxford and paris:388

Large-scale image retrieval benchmarking. In CVPR, pages 5706–5715.389

[21] Reddi, S. J., Kale, S., and Kumar, S. (2018). On the convergence of adam and beyond. In ICLR.390

[22] Sablayrolles, A., Douze, M., Schmid, C., and Jégou, H. (2019). Spreading vectors for similarity search. In391

ICLR.392

[23] Schulman, J., Heess, N., Weber, T., and Abbeel, P. (2015a). Gradient estimation using stochastic computa-393

tion graphs. In NeurIPS, pages 3528–3536.394

[24] Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and Moritz, P. (2015b). Trust region policy optimization.395

In ICML, pages 1889–1897.396

[25] Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P. (2016). High-dimensional continuous397

control using generalized advantage estimation. In ICLR.398

[26] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy optimization399

algorithms. arXiv preprint arXiv:1707.06347.400

[27] Song, J., Lang, R., Zhu, X., Xu, X., Gao, L., and Shen, H. T. (2020). 3d self-attention for unsupervised401

video quantization. In ACM SIGIR, pages 1061–1070.402

[28] Song, J., Zhu, X., Gao, L., Xu, X.-S., Liu, W., and Shen, H. T. (2019). Deep recurrent quantization for403

generating sequential binary codes. In IJCAI, pages 912–918.404

10



[29] Torralba, A., Fergus, R., and Weiss, Y. (2008). Small codes and large image databases for recognition. In405

CVPR, pages 1–8. IEEE.406

[30] Wang, J., Wang, J., Song, J., Xu, X., Shen, H. T., and Li, S. (2015). Optimized cartesian k-means. IEEE407

Transactions on Knowledge and Data Engineering, 27(1):180–192.408

[31] Weyand, T., Araujo, A., Cao, B., and Sim, J. (2020). Google landmarks dataset v2 - A large-scale409

benchmark for instance-level recognition and retrieval. In CVPR, pages 2572–2581.410

[32] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement411

learning. Machine learning, 8(3-4):229–256.412

[33] Yu, T., Yuan, J., Fang, C., and Jin, H. (2018). Product quantization network for fast image retrieval. In413

ECCV, pages 186–201.414

[34] Zhang, T., Du, C., and Wang, J. (2014). Composite quantization for approximate nearest neighbor search.415

In ICML, volume 2, page 3.416

Checklist417

The checklist follows the references. Please read the checklist guidelines carefully for information on418

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or419

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing420

the appropriate section of your paper or providing a brief inline description. For example:421

• Did you include the license to the code and datasets? [Yes] See Section ??.422

• Did you include the license to the code and datasets? [No] The code and the data are proprietary.423

• Did you include the license to the code and datasets? [N/A]424

Please do not modify the questions and only use the provided macros for your answers. Note that the425

Checklist section does not count towards the page limit. In your paper, please delete this instructions426

block and only keep the Checklist section heading above along with the questions/answers below.427

1. For all authors...428

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s429

contributions and scope? [Yes]430

(b) Did you describe the limitations of your work? [Yes] See Section 6.431

(c) Did you discuss any potential negative societal impacts of your work? [N/A]432

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?433

[Yes]434

2. If you are including theoretical results...435

(a) Did you state the full set of assumptions of all theoretical results? [N/A]436

(b) Did you include complete proofs of all theoretical results? [N/A]437

3. If you ran experiments...438

(a) Did you include the code, data, and instructions needed to reproduce the main experimental439

results (either in the supplemental material or as a URL)? [Yes] See https://github.com/440

DeepMCQ/DeepQ.441

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were442

chosen)? [Yes] See Section 5 and supplementary materials.443

(c) Did you report error bars (e.g., with respect to the random seed after running experiments444

multiple times)? [No]445

(d) Did you include the total amount of compute and the type of resources used (e.g., type of446

GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.447

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...448

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.449

(b) Did you mention the license of the assets? [N/A]450

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] See451

https://github.com/DeepMCQ/DeepQ.452

(d) Did you discuss whether and how consent was obtained from people whose data you’re453

using/curating? [N/A]454

11

https://github.com/DeepMCQ/DeepQ
https://github.com/DeepMCQ/DeepQ
https://github.com/DeepMCQ/DeepQ
https://github.com/DeepMCQ/DeepQ


(e) Did you discuss whether the data you are using/curating contains personally identifiable455

information or offensive content? [N/A]456

5. If you used crowdsourcing or conducted research with human subjects...457

(a) Did you include the full text of instructions given to participants and screenshots, if applica-458

ble? [N/A]459

(b) Did you describe any potential participant risks, with links to Institutional Review Board460

(IRB) approvals, if applicable? [N/A]461

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on462

participant compensation? [N/A]463

12


	Introduction
	Related Works
	Preliminaries
	Methodology
	Expectation: Encoding bold0mu mumu BBfalseBBBB with neural networks
	Gradient estimation

	Maximization: Solve bold0mu mumu CCfalseCCCC by least-squares
	Fast retrieval
	Discussion

	Experiments
	Datasets and evaluation metrics
	Implementation details
	Comparisons with state-of-the-arts
	Large-scale retrieval performance
	Encoding efficiency
	Reconstruction accuracy

	Ablation study

	Conclusion and Future Work

