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Abstract
Concept Bottleneck Models (CBMs) have
emerged as a promising interpretable method
whose final prediction is based on intermediate,
human-understandable concepts rather than the
raw input. Through time-consuming manual inter-
ventions, a user can correct wrongly predicted
concept values to enhance the model’s down-
stream performance. We propose Stochastic Con-
cept Bottleneck Models (SCBMs), a novel ap-
proach that models concept dependencies. In
SCBMs, a single-concept intervention affects all
correlated concepts. Leveraging the parameteriza-
tion, we derive an effective intervention strategy
based on the confidence region. We show em-
pirically on synthetic tabular and natural image
datasets that our approach improves intervention
effectiveness significantly. Notably, we showcase
the versatility and usability of SCBMs by exam-
ining a setting with CLIP-inferred concepts, alle-
viating the need for manual concept annotations.

1. Introduction
In today’s world, machine learning plays a crucial role in
making important decisions, from healthcare to finance and
law. Recent studies have focused on Concept Bottleneck
Models (CBMs) (Koh et al., 2020; Havasi et al., 2022;
Shin et al., 2023), a class of models that predict human-
understandable concepts upon which the final target predic-
tion is based. If a user disagrees with a concept prediction,
they can intervene by adjusting it to the right value, which in
turn affects the target prediction. For example, consider the
yellow warbler in Figure 1 (a), where a user might notice
that the binary concept ‘yellow primary color’ is mispre-
dicted. Upon this realization, they can intervene on the
CBM by setting its value to 1, which increases the probabil-
ity of the class yellow warbler. In this work, we propose to
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extend the concept predictions with the modeling of their
dependencies, such that interventions also affect correlated
concepts, as depicted in Figure 1 (a,c).

The proposed approach captures the concept dependen-
cies by modeling the concept logits with a learnable non-
diagonal normal distribution, which enables efficient, scal-
able computing of the effect of interventions on other con-
cepts. By integrating concept correlations, we reduce the
time and effort of having to laboriously intervene on many
correlated variables and increase the efficacy of interven-
tions on the downstream prediction. Lastly, based on the
distributional concept parameterization, we propose a novel
approach for computing dependency-aware interventions
through the likelihood-based confidence region.

Contributions This work contributes to the line of re-
search on concept bottleneck models in several ways. (i) We
propose to capture and model concept dependencies with
a multivariate normal distribution. (ii) We derive a novel
intervention strategy based on the confidence region of the
normal distribution that incorporates concept correlations.
Using the learned concept dependencies during the interven-
tion procedure allows for stronger interventional effective-
ness. (iii) We provide a thorough empirical assessment of
the proposed method on synthetic tabular and natural image
data. Additionally, we combine our method with concept
discovery where we alleviate the need for annotations by
using CLIP-inferred concepts. In particular, we show the
proposed method (a) discovers meaningful, interpretable
patterns in the form of concept dependencies, (b) allows for
fast, scalable inference, and (c) outperforms related work
with respect to intervention effectiveness thanks to the pro-
posed concept modeling and intervention strategy.

2. Background
Concept bottleneck models (Koh et al., 2020; Lampert et al.,
2009; Kumar et al., 2009) are typically trained on data points
(x, c, y), comprising the covariates x ∈ X , target y ∈ Y ,
and C annotated binary concepts c ∈ C. Consider a neural
network fθ parameterized by θ and a slice ⟨gψ, hϕ⟩ (Leino
et al., 2018) s.t. ŷ ··= fθ (x) = gψ (hϕ (x)). CBMs enforce
a concept bottleneck ĉ ··= hϕ(x) such that the model’s
final output depends on the covariates x solely through the
predicted concepts ĉ.
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Figure 1. Overview of the proposed method for the CUB dataset (Wah et al., 2011). (a) A user intervenes on the concept of ‘primary color:
yellow’. Unlike CBMs, our method then uses this information to adjust the predicted probability of correlated concepts, thereby affecting
the target prediction. (b) Schematic overview of the intervention procedure. A user’s intervention c′S is used to infer the logits η\S of the
remaining concepts. (c) Visualization of the learned global dependency structure as a correlation matrix for the 112 concepts of CUB.
Characterization of concepts on the left. The anonymized code is available here: https://anonymous.4open.science/r/scbm-A1AA/.

3. Methods
We propose Stochastic Concept Bottleneck Models (SCBM),
a novel concept-based method that relaxes the implicit CBM
assumption of independent concepts. SCBM captures the
concept dependencies by learning their multivariate distri-
bution. As a result, interventions become more effective
and scalable, as a single intervention can influence multiple
correlated concepts. A schematic overview of the proposed
method is depicted in Figure 1 (b).

3.1. Model Formulation

To capture the concept dependencies, we model the concept
logits η with a learned multivariate normal distribution.
A neural network is trained to predict the distribution’s
parameters η | x ∼ N (µ(x)),Σ(x)), where µ(x) ∈ RC ,
and Σ(x) ∈ RC×C . To learn the distribution, we minimize
the negative log-likelihood − log p(c | x) = − log

∫
p(c |

η)pϕ(η | x)dη. Due to its intractability, the integral is
approximated by M Monte-Carlo samples

− log

∫
p(c | η)pϕ(η | x)dη ≈ − log

1

M

M∑
m=1

p(c | η(m)),

where we employ the reparameterization trick η(m) | x =
µ(x) + L(x)ϵ(m),L(x)L(x)T = Σ(x), ϵ(m) ∼ N (0, I)
to compute gradients. Each concept ci then depends on
their corresponding sigmoid-transformed logit σ(ηi) such
that log p(c | η) =

∑C
i=1 log p(ci | ηi), where p(ci | ηi)

describes a Bernoulli distribution. Combining the above

considerations results in the following reformulation of the
negative log-likelihood:

Lc = − log

M∑
m=1

exp

C∑
i=1

[
−BCE(ci, σ(η

(m)
i ))

]
, (1)

where BCE stands for Binary Cross Entropy, and the log-
sumexp trick is used for numerical stability.

The distribution-based modeling procedure allows for effi-
cient sampling, thus, enabling SCBMs to train concept and
target predictors jointly, sequentially, or independently. To
prevent leakage, we follow Havasi et al. (2022) and train
the model with the hard {0, 1} concept values as bottleneck
rather than the logits used in the original CBM (Koh et al.,
2020). To retain differentiability, we employ the straight-
through Gumbel-Softmax trick (Jang et al., 2017; Maddison
et al., 2017). The target predictor gψ is then learned by
minimizing the negative log-likelihood

Ly = − log
1

M

M∑
m=1

pψ(y | c(m)), c(m) ∼ p(c | x). (2)

Lastly, the learned dependencies are regularized by follow-
ing Occam’s razor and to prevent overfitting. We take inspi-
ration from the Graphical Lasso (Friedman et al., 2008) and
penalize the off-diagonal elements of the precision matrix
LΣ =

∑
i̸=j Σ(x)−1

i,j .

By combining concept, target, and precision loss with
weighting factors λ1 and λ2, we arrive at the final loss
function

L = Lc + λ1Ly + λ2LΣ. (3)

2

https://anonymous.4open.science/r/scbm-A1AA/


Stochastic Concept Bottleneck Models

3.2. Covariance Learning

The introduced amortized covariance matrix Σ(x) provides
the flexibility to tailor its predicted concept dependencies to
each data point. However, an amortized covariance matrix
comes at the price of not being able to visualize and inter-
pret a unified concept structure on a dataset level. Thus, we
propose a variation of SCBM, where the covariance matrix
is not amortized (Σ(x)), but learned globally (Σ). An ex-
ample of the global concept structure learned on CUB is
shown in Figure 1 (c). We recommend using the more flexi-
ble, amortized version by default and only utilizing a global
covariance if the strong assumption of fixed dependencies is
reasonable. We will explore this empirically in more detail
in Section 5.

3.3. Interventions

A distinguishing property of CBM-like methods is the user’s
capacity to correct wrongly predicted concepts, which in
turn affects the target prediction (Marcinkevičs et al., 2024).
For a big concept set, this intervention procedure can be-
come quite laborious as a user has to inspect and manually
intervene on each concept separately. SCBMs are designed
to alleviate this need by utilizing the learned concept de-
pendencies such that a single intervention affects all related
concepts as modeled by the multivariate normal distribution.

The parameterization as a multivariate normal distribution
allows for a quick, scalable intervention procedure. Given a
set S ⊂ {1, . . . , C} of concept interventions, the effect on
the remaining concepts c\S is computed via their logits η\S
by conditioning on the intervention logits η′

S , utilizing the
known properties of the normal distribution

η\S | x,η′
S ∼ N

(
µ̄(x),Σ(x)

)
,

µ̄ = µ\S +Σ\S,SΣ
−1
S,S(η

′
S − µS),

Σ = Σ\S,\S −Σ\S,SΣ
−1
S,SΣS,\S .

(4)

For a standard CBM (Koh et al., 2020), η′i are set to the 5th
(if ci = 0) or 95th (if ci = 1) percentile of the training dis-
tribution. Although this strategy is effective for SCBMs, see
Appendix E.3, the explicit parameterization of our method
enables us to take concept dependencies into account. To
this end, we utilize the likelihood-based confidence region1

that provides a natural way of capturing the area of possible
η′
S while taking into account concept dependencies. To

determine the specific point within this region, we search
for the values η′

S , which maximize the log-likelihood of the
known, intervened-on concepts cS , implicitly focusing on
concepts that the model predicts poorly. We provide the
explicit optimization problem in Appendix D.

1A confidence region is the multivariate generalization of a
confidence interval.

4. Experimental Setup
Inspired by Marcinkevičs et al. (2024), we introduce a syn-
thetic tabular dataset with a generating mechanism that con-
tains fixed concept dependencies we can regulate. As natural
image benchmark, we evaluate the Caltech-UCSD Birds-
200-2011 dataset (Wah et al., 2011), with 200 bird classes
and 112 concepts, as proposed in (Koh et al., 2020). Ad-
ditionally, we explore CIFAR-10 (Krizhevsky et al., 2009)
to mitigate the concept annotations requirement. 143 con-
cepts classes are generated via GPT-3 (Brown et al., 2020)
adopted from prior work (Oikarinen et al., 2023), and we
obtain their binary labels using CLIP (Radford et al., 2021).
Appendix B contains further details about all datasets.

To compare methods, we evaluate the concept and target ac-
curacy before and after intervening on an increasing number
of concepts. The order of intervened concepts is deter-
mined by an uncertainty-based policy (Shin et al., 2023).
We also show results for a random policy in Appendix E.1.
Additionally, we evaluate the calibration of the concept un-
certainties with the Brier score (Brier, 1950) and Expected
Calibration Error (Naeini et al., 2015; Kumar et al., 2019) in
Appendix E.6. We compare our method with state-of-the-art
models, detailed in Appendices A and C. Namely, we fo-
cus on the vanilla concept bottleneck model (CBM) by Koh
et al. (2020) in its hard version (Havasi et al., 2022), the con-
cept embedding model (CEM) by Espinosa Zarlenga et al.
(2022), and the autoregressive CBM (AR CBM) (Havasi
et al., 2022), with concept dependencies modelled in an
autoregressive structure.

5. Results
Test performance In Table 1, we report the results of the
concept and target accuracy prior to interventions. Overall,
SCBM performs on par with the baseline methods, with no
clear outperforming or underperforming technique through-
out the datasets. This shows that the additional overhead of
learning the concept dependencies does not negatively affect
the predictive performance. We note that the amortized co-
variance consistently surpasses the globally learned variant
due to its ability to adjust the predicted concept dependency
structure and uncertainty on an instance level. On the other
hand, the global variant offers a unified understanding of the
concept correlations, as the example presented in Figure 1
(c). In Appendices E.5 and E.6, we further discuss time
complexity and performance of proposed baselines.

Interventions In Figure 2, we show the intervention per-
formances across ten seeds based on the concept and target
accuracy. The first row shows that SCBMs are superior in
modeling the concept dependencies, as evidenced by their
steeper intervention curves, and the second row that the
strong concept modeling translates to an improvement in
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Figure 2. Performance after intervening on concepts in the order of highest predicted uncertainty. Concept and target accuracy (%) are
shown in the first and second rows, respectively. Results are reported as averages and standard deviations across ten seeds.

Table 1. Test-set concept (c) and target (y) accuracy (%) prior
to interventions reported as averages and standard deviations of
performance across ten seeds. For each dataset and metric, the
best-performing method is bolded and the runner-up is underlined.

Dataset Method c Accuracy y Accuracy

Sy
nt

he
tic

Hard CBM 61.42 ± 0.07 58.38 ± 0.39
CEM 61.42 ± 0.12 58.01 ± 0.49
AR CBM 62.17 ± 0.11 59.60 ± 0.62
Global SCBM 61.57 ± 0.05 58.39 ± 0.53
Amortized SCBM 62.41 ± 0.20 58.96 ± 0.38

C
U

B

Hard CBM 94.97 ± 0.07 67.72 ± 0.57
CEM 95.12 ± 0.07 69.60 ± 0.30
AR CBM 95.33 ± 0.07 69.24 ± 0.44
Global SCBM 94.99 ± 0.09 68.19 ± 0.63
Amortized SCBM 95.22 ± 0.09 69.87 ± 0.56

C
IF

A
R

-1
0 Hard CBM 85.51 ± 0.04 69.73 ± 0.29

CEM 85.12 ± 0.14 72.24 ± 0.33
AR CBM 85.31 ± 0.06 68.88 ± 0.47
Global SCBM 85.86 ± 0.04 70.74 ± 0.29
Amortized SCBM 86.00 ± 0.03 71.66 ± 0.25

downstream performance, partly thanks to the intervention
strategy introduced in Section 3.3. We note that especially
for the most practical scenario of only a small number of
interventions, SCBMs outperform their counterparts. The
success of SCBMs on CIFAR-10, with CLIP-based con-
cepts, shows it can work without human-annotated concepts.

Analyzing the AR CBM, which also captures concept depen-
dencies, but not to a full extent, we observe a better interven-
tion performance than the hard vanilla CBM, which does not
take correlations into account but still lower than SCBMs.

This shows in the target accuracy, where they only match
or outperform SCBMs towards the full set of intervened
concepts. We attribute this improvement to the independent
training procedure utilized by AR CBMs, which comes at
the cost of lower test performance in CIFAR-10. Finally,
the CEM shows reduced intervention performance as the ex-
pressive concept embeddings, prone to information leakage,
suboptimally adapt to the injected concept information.

6. Conclusion
In this paper, we introduced SCBMs, a new concept-based
method that models concept dependencies with a multivari-
ate normal distribution. We proposed a novel, effective inter-
vention strategy that takes concept correlations into account
and is based on the confidence region inferred from the dis-
tributional parameterization. We showed that our modeling
approach retains CBMs’ training and inference speed, thus,
being able to harness the benefits of end-to-end concept and
target training. Additionally, the explicit parameterization
offers the user a clearer understanding of the learned concept
dependencies. Empirically, we demonstrated that SCBMs
offer a substantial improvement in intervention effectiveness
while retaining test performance prior to interventions. We
showed that our method excels when iteratively intervening
on the most uncertain concept predictions, sparing users
from having to manually search through the concept set to
identify necessary interventions. Finally, the versatility of
SCBMs is highlighted through their success on CIFAR-10,
with CLIP-based rather than human annotations. Limita-
tions and future work are discussed in Appendix F.
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A. Related Work
We review relevant research on concept bottleneck models to highlight current approaches and improve understanding of
the associated challenges and opportunities. While Koh et al. (2020) propose the soft vanilla CBM, where the concept
logits parameterize the bottleneck, Havasi et al. (2022) argue that such a representation leads to leakage, where additional
unwanted information in the concept representation is used to predict the target (Margeloiu et al., 2021; Mahinpei et al.,
2021). Thus, they parameterize the bottleneck by binarized concept predictions and call it the hard CBM. Then, Havasi et al.
(2022) equip the hard CBM with an autoregressive structure of the form ci|x, c<i, which is supposed to learn the concept
dependencies. As such, the implicit autoregressive modeling of concept dependencies by Havasi et al. (2022) is the most
related to the current work. Complementary to our work, Heidemann et al. (2023) analyze how a CBM’s performance is
affected by concept correlations. Unlike approaches that restrict the bottleneck to prevent leakage, Concept Embedding
Models (CEM) (Espinosa Zarlenga et al., 2022) represent each concept with a predicted embedding vector from which
the concept probabilities can be inferred, treating the problem akin to a multi-task setting. Kim et al. (2023) model the
embedding with a normal distribution, assuming a diagonal covariance matrix, which prevents them from capturing concept
dependencies. Recent works explored how a CBM-like structure can be enforced even without a concept-annotated training
set. Yuksekgonul et al. (2023) transform a pre-trained model into a CBM via a concept bank from concept activation vectors
and multimodal models (Kim et al., 2018), while Oikarinen et al. (2023) query GPT-3 (Brown et al., 2020) for the concept
set C and assign the values of the concept activations to each datapoint x with CLIP (Radford et al., 2021) similarities.
Marcinkevičs et al. (2024) instead relax the need for a concept labeled training set to a smaller validation set by fine-tuning a
pre-trained model.

Intervenability (Marcinkevičs et al., 2024) is a crucial element of CBMs as it allows the user to correct wrongly predicted
concepts ĉ to c′, which in turn affects the target prediction of the model ŷ′. If multiple concepts are intervened on, then
the order of interventions is important. To this end, Sheth et al. (2022) and Shin et al. (2023) explore multiple policies
according to which the order of concepts is determined. Chauhan et al. (2023) propose to combine predefined policies with
learnable weighting parameters, while Espinosa Zarlenga et al. (2024) learn the policy itself. Steinmann et al. (2023) argue
that instance-specific interventions are costly and store previous interventions in a memory to automatically reapply them for
similar data points. Lastly, Collins et al. (2023) explore the advantages of including uncertainty rather than treating humans
as oracles.

Our work models concept dependencies by parameterizing the bottleneck with a distribution. In a similar vein, Variational
Autoencoders (Kingma & Welling, 2014) parameterize the bottleneck with a normal distribution to model and generate
new data. Stochastic Segmentation Networks (Monteiro et al., 2020) parameterize the logits of a segmentation map
with a non-diagonal normal distribution to capture the spatial correlations of pixels and model the aleatoric uncertainty.
The modeling of uncertainty with a distribution is also explored by Bayesian Neural Networks (Neal, 1995) that learn a
probability distribution over the neurons of a neural network.

B. Dataset Details
In this section, we provide additional details on the datasets that are being used in the experiments.

B.1. Synthetic Data-Generating Mechanism

Here, we describe the data-generating mechanism of the synthetic dataset in more detail. In particular, the concept logits η
are sampled from a randomly initialized positive definite covariance matrix and generate x. Binary concept values c are
inferred from η and generate the target y. Let N , p, and C denote the number of independent data points {(xn, cn, yn)}Nn=1,
covariates, and concepts, respectively. We set N = 50,000, p = 1,500, and C = 100, with a 60%-20%-20% train-validation-
test split. The generative process is as follows:

1. Randomly sample W ∈ RC×10 s.t. wi,j ∼ N (0, 1) for 1 ≤ i ≤ C and 1 ≤ j ≤ 10.

2. Generate a positive definite matrix Σ ∈ RC×C s.t. Σ = WW T +D. Let D ∈ RC×C s.t. D = δI , where δi ∼ U[0,1]

for 1 ≤ i ≤ C.

3. Randomly sample logits H ∈ RN×C s.t. ηn ∼ N (0,Σ) for 1 ≤ n ≤ N .

4. Let cn,i = 1{ηn,i≥0} for 1 ≤ n ≤ N and 1 ≤ i ≤ C.
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5. Let h : RC → Rp be a randomly initialised multilayer perceptron with ReLU nonlinearities.

6. Let xn = h (ηn) + ϵn s.t. ϵn ∼ N (0, I) for 1 ≤ n ≤ N .

7. Let g : RC → R be a randomly initialized linear perceptron.

8. Let yn = 1{(g(cn)≥ymed)} for 1 ≤ n ≤ N , where ymed denotes the median of g (cn).

B.2. Natural Image Datasets

Caltech-UCSD Birds-200-2011 We evaluate on the Caltech-UCSD Birds-200-2011 (CUB)2 dataset (Wah et al., 2011). It
comprises 11,788 photographs from 200 distinct bird species annotated with 312 concepts, such as belly color and pattern.
In this manuscript, we follow the original train-test split and revised the proposed dataset in the initial CBM work (Koh
et al., 2020). Here, only the 112 most widespread binary attributes are included in the final dataset, and concepts are shared
across samples in identical classes. The images were resized to a resolution of 224 × 224 pixels. Finally, following the
original proposed augmentations, we applied random horizontal flips, modified the brightness and saturation, and applied
normalization during training.

CIFAR-10 CIFAR-103 (Krizhevsky et al., 2009) is a natural image benchmark with 60,000 32x32 colour images and 10
classes. We kept the original train-test split, with 50,000 samples in the train set and a balanced total of 6,000 images per
class. We generated 143 concept labels as described in Section 4 using large language and vision models. In particular,
we compute the similarity between each instance of an image with the concept text embedding and compare it to the
similarity of its negative counterpart, i.e. not the concept. At training time, as for CUB, we applied augmentations including
modifications to brightness and saturation, random horizontal flips and normalisation. Images were rescaled to a size of 224
× 224 pixels.

C. Experimental Details
C.1. Baselines

We evaluate the performance of our method in comparison with state-of-the-art models. Namely, we focus on the vanilla
concept bottleneck model (CBM) by Koh et al. (2020) in its hard version (Havasi et al., 2022), trained jointly using the
straight-through Gumbel-Softmax trick (Jang et al., 2017; Maddison et al., 2017), as a sensical baseline to our binary
modeling of concepts. Additionally, we explore the concept embedding model (CEM) by Espinosa Zarlenga et al. (2022)
that learns two concept embeddings, ĉ+i and ĉ−i . These representations are used to predict the final concept probability
with a learnable scoring function p̂i = s(ĉ+i , ĉ

−
i ) = σ(Ws[ĉ

+
i , ĉ

−
i ]

T + bs) and are then combined on a final concept
embedding ĉi = (p̂iĉ

+
i + (1 − p̂i)ĉ

−
i ) that is passed to the target predictor. Interventions are modeled by altering the

concept probabilities p̂i. Finally, we evaluate the autoregressive CBM structure proposed by Havasi et al. (2022), where
concept dependencies are learned with an autoregressive structure. Here, each concept ci is predicted with a separate MLP
that takes as input a shared latent representation of the input fθ(x) and all previous concepts c1, ..., ci−1. To obtain a
good initialization of the autoregressive structure, it is pretrained for 50 epochs. As the Monte-Carlo sampling from the
autoregressive structure is time-consuming, the target predictor gψ is trained independently using the ground-truth concepts
as input. At intervention time, a normalized importance sampling algorithm is used to estimate the concept distribution.

C.2. Implementation Details

This section provides the implementation details of SCBM and the evaluated baselines. All methods were implemented
using PyTorch (v 2.1.1) (Ansel et al., 2024). All models are trained for 150 epochs for the synthetic and 300 epochs for
the natural image datasets with the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 10−4 and a batch size of
64. For the independently trained autoregressive model, we split the training epochs into 2/3 for the concept predictor and
1/3 for the target predictor. For the methods requiring sampling, the number of Monte-Carlo samples is set to M = 100.
The model architectures are comprised of a backbone for concept prediction followed by a linear layer as head for an
interpretable target prediction. For the synthetic tabular data, we use a fully connected neural network as backbone, with 3
non-linear layers, batch normalization, and dropout. For the CUB dataset, we use a pretrained ResNet-18 (He et al., 2016),

2https://www.vision.caltech.edu/datasets/cub_200_2011/, no license available
3https://www.cs.toronto.edu/~kriz/cifar.html, no license available
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and for the lower-resolution CIFAR-10 a simple convolutional neural network with 2 convolutional layers followed by
ReLU, Dropout, and a fully connected layer. For fairness in the comparisons, all baselines have the same model architecture
choices and all experiments are performed over 10 random seeds.

To ensure the positive definiteness of the concept covariance matrix Σ, we parameterize it via its Cholesky decomposition
Σ = LL⊤. Thus, we solely predict the lower triangular Cholesky matrix L. We will evaluate two options for SCBMs:
using a global (Σ) or an amortized covariance matrix (Σ(x)). For the amortized version, we set the weighting terms λ1 and
λ2 of Equation 3 to 1. For the global version, we initialize it with the estimated empirical covariance matrix and set λ2 = 0,
as we did not observe big differences when varying λ2. In Appendix E.2, we provide an ablation study, demonstrating that
SCBMs are not very sensitive to the choice of λ2. At intervention time, we solve the optimization problem based on the
99%-confidence region with the SLSQP algorithm (Kraft, 1988). In Appendix E.4, we provide an ablation with different
confidence levels.

Resource Usage For the experiments of the main paper, we used a cluster of mostly GeForce RTX 2080’s with 2 CPU
workers. Over all methods, we estimate an average runtime of 8h per experiment. This amounts to 5 methods × 3 datasets
× 10 seeds × 8 hours = 1200 hours. Adding to that, the Ablation Figures required another 40 runs, amounting to a full total
of 1520 hours of compute. Please note that we only report the numbers to generate the final results but not the development
time, which we roughly estimate to be around 10 times bigger.

D. Intervention Strategy
For a standard CBM (Koh et al., 2020), intervention logits η′i are set to the 5th (if ci = 0) or 95th (if ci = 1) percentile
of the training distribution. This strategy presents certain limitations that result in a suboptimal intervention performance
when interventions affect other concepts. For example, if the initially predicted µi was more extreme than the selected
training percentile, the interventional shift guided by η′i − µi would point in the wrong direction. This, in turn, would cause
η\S to shift incorrectly. Thus, we pose the desideratum that an appropriate intervention strategy should determine η′i such
that η′i − µi ≥ 0 if ci = 1, and η′i − µi ≤ 0 if ci = 0. Additionally, η′i − µi should not be “too large” as to avoid that the
intervention completely disregards the predicted µ\S .

Here manifests an additional benefit of the explicit distributional representation: the likelihood-based confidence region
provides a natural way of capturing the region of possible η′

S that fulfill our desiderata. Note that the confidence region
takes concept dependencies into account when describing the area of possible η′

S . To pinpoint the specific location within
this region, we search for the values η′

S that maximize the log-likelihood of the known intervened concepts cS , thereby
focusing on poorly predicted concepts.

η′
S = argmax

ηS

log p(cS | ηS)

s.t.− 2 (log p(ηS | µS ,ΣS,S)− log p(µS | µS ,ΣS,S)) ≤ χ2
d,1−α

η′i − µi ≥ 0 if ci = 1, ∀i ∈ S
η′i − µi ≤ 0 if ci = 0, ∀i ∈ S,

(5)

where d = |S|. The first inequality describes the confidence region. It is based on the logarithm of the likelihood ratio,
which, after multiplying with −2, asymptotically follows a χ2 distribution (Silvey, 1975). The last two inequalities restrict
the region to the desired direction. Note that η′

S is computed to determine the conditional effect of the interventions on η\S
using Equation 4. When predicting ŷ′ under interventions, the logits η\S are then used for sampling the binary concept
values c\S while the intervened-on concepts c′S are directly set to their known, binary value.

E. Further Experiments
In this section, we show additional experiments to provide a more in-depth understanding of SCBM’s effectiveness. We
ablate multiple hyperparameters to provide an understanding of how they influence the model performance.

E.1. Random Intervention Policy

In Figure 3, we present the intervention performance of SCBM and baseline methods. Compared to the uncertainty-based
intervention policy of Figure 2, the intervention curves of all methods are less steep, confirming the usefulness of Shin
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Figure 3. Performance after intervening on concepts in random order. Concept and target accuracy (%) are shown in the first and second
rows, respectively. Results are reported as averages and standard deviations of model performance across ten seeds.

et al. (2023)’s proposed policy. Following the previous statements, SCBMs still outperform baseline methods with the
amortized beating the global variant for real-world datasets. We observe that in CIFAR-10 for the first interventions, an
improvement in concept accuracy is not directly reflected in improved target prediction for SCBMs, which is likely due to
the low signal-to-noise ratio of the CLIP-inferred concepts.

E.2. Regularization Strength
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Figure 4. Performance on CUB after intervening on concepts in the order of highest predicted uncertainty with differing regularization
strengths. Concept and target accuracy (%) are shown in the first and second columns, respectively. Results are reported as averages
and standard deviations of model performance across five seeds. For each SCBM variant, we choose a darker color, the higher the
regularization strength of λ2.

In Figure 4, we analyze the impact of the strength of λ2 from Equation 3. Due to environmental considerations, we conducted
experiments using only 5 seeds and limited the number of interventions to 20. Our findings indicate that SCBMs are not
sensitive to the choice of λ2, except that the unregularized amortized variant exhibits slight patterns of overfitting.
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E.3. Intervention Strategy

In Figure 5, we analyze the effect of the intervention strategy. Our findings indicate that while SCBMs are still effective
with the proposed strategy from Koh et al. (2020), that sets the logits to the 5th (if ci = 0) or 95th (if ci = 1) percentile of
the training distribution, our proposed strategy based on the confidence region results in stronger intervenability.
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Figure 5. Performance on CUB after intervening on concepts in the order of highest predicted uncertainty, comparing the proposed
intervention strategy to Koh et al. (2020)’s intervention of setting the logits to the 5th or 95th empirical percentile of the training
distribution. Concept and target accuracy (%) are shown in the first and second columns, respectively. Results are reported as averages
and standard deviations of model performance across five seeds.

E.4. Confidence Region Level
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Figure 6. Performance on CUB after intervening on concepts in the order of highest predicted uncertainty with differing levels 1− α of
the confidence region. Concept and target accuracy (%) are shown in the first and second columns, respectively. Results are reported as
averages and standard deviations of model performance across three seeds.

In Figure 6, we analyze the effect of the level 1− α of the likelihood-based confidence region. Our findings indicate that the
SCBMs are not sensitive to the choice of 1− α, with higher levels being slightly better in performance.

E.5. Comparative performance

In this section, we further discuss the comparison between baseline methods without interventions, as introduced in Section
5 and introduce the time it takes for training and testing of the methods. Notably, from Table 1 in CIFAR-10, even though
the concept performance of CEM is the worst of all methods, it has the best target performance. This might suggest the
presence of leakage in CEM’s embeddings, as in CIFAR-10, the concept set alone is not sufficient to predict the target, and
learning additional information might be useful. In Table 2, it is evident that the autoregressive CBM of Havasi et al. (2022)
suffers from a slow sampling process due to its autoregressive structure, while SCBMs retain the efficiency of CBMs and
CEMs.

12



Stochastic Concept Bottleneck Models

Table 2. Relative time it takes for one epoch in the CUB dataset when training on the training set, or evaluating on the test set, respectively.

Method Training Inference

Hard CBM 5x 1x
CEM 5x 1x
Autoregressive CBM 5x 14x
Global SCBM 5x 1x
Amortized SCBM 5x 1x

E.6. Modeling the concept distribution

A cornerstone of SCBMs is the explicit, distributional parameterization of concepts. This helps in understanding the data
correlations and allows for visualization, as the example seen in Figure 1 (c). The explicit probabilistic modeling results in
improved concept uncertainty estimates compared to the baseline CBM counterparts, as shown in Table 3, where lower
metrics imply better estimates. This proves useful for interventions, where the uncertainty estimates can be leveraged
for the choice of concept to intervene on, improving the target prediction more effectively and reducing the need for
manual user inspection. In Figure 7, we compare the performance of randomly intervening versus intervening based on the
predicted uncertainty. We observe that there is a big gap between the two policies, indicating the usefulness of the estimated
probabilities. Nevertheless, note that intervening at random remains successful and supports the observations made in the
previous paragraph, as shown in Appendix E.1.

Table 3. Test-set calibration (%) of concept predictions. Results are reported as averages
and standard deviations of model performance across ten seeds. For each dataset and
metric, the best-performing method is bolded and the runner-up is underlined. Lower is
better.

Dataset Method Brier ECE

Hard CBM 28.79 ± 0.09 22.38 ± 0.15
CEM 29.32 ± 0.08 23.55 ± 0.09

Synthetic Autoregressive CBM 24.84 ± 0.32 13.54 ± 0.49
Global SCBM 27.73 ± 0.09 20.10 ± 0.14
Amortized SCBM 25.58 ± 0.20 15.57 ± 0.55

Hard CBM 3.93 ± 0.05 2.44 ± 0.06
CEM 4.04 ± 0.05 3.25 ± 0.07

CUB Autoregressive CBM 3.75 ± 0.05 2.73 ± 0.05
Global SCBM 3.87 ± 0.06 2.33 ± 0.09
Amortized SCBM 3.64 ± 0.07 1.85 ± 0.08

Hard CBM 10.42 ± 0.05 4.93 ± 0.17
CEM 11.06 ± 0.16 7.11 ± 0.39

CIFAR-10 Autoregressive CBM 10.70 ± 0.05 6.07 ± 0.10
Global SCBM 9.95 ± 0.02 2.88 ± 0.11
Amortized SCBM 9.84 ± 0.02 2.22 ± 0.12

Figure 7. Intervention performance of
SCBMs measured in concept and target
accuracy (%) on CUB for random and
uncertainty-based policy.
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F. Limitations & Future Work
In this section, we discuss the limitations that our proposed method poses together with the multiple new research avenues
that it opens. A natural extension is to go beyond binary concepts, such as continuous domains with their corresponding
adaptations of modeling the concept distribution. Additionally, addressing the quadratic memory complexity of the
covariance matrix is essential for scaling to larger concept sets. Current interventions focus on editing the concept values.
However, this work allows the editing of the learned dependency structure by adjusting the entries of the predicted covariance
matrix, which could be explored. Lastly, to model additional information and reduce leakage, Koh et al. (2020); Havasi et al.
(2022) propose the adoption of a side channel. The complementary effectiveness of incorporating the side channel in the
covariance structure could be explored in the context of SCBMs.

13


