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Abstract

Confronted with the challenge of identifying the most suitable metric to validate the merits
of newly proposed models, the decision-making process is anything but straightforward.
Given that comparing rankings introduces its own set of formidable challenges and the likely
absence of a universal metric applicable to all scenarios, the scenario does not get any better.
Furthermore, metrics designed for specific contexts, such as for Recommender Systems,
sometimes extend to other domains without a comprehensive grasp of their underlying
mechanisms, resulting in unforeseen outcomes and potential misuses. Complicating matters
further, distinct metrics may emphasize different aspects of rankings, frequently leading to
seemingly contradictory comparisons of model results and hindering the trustworthiness of
evaluations.
We unveil these aspects in the domain of ranking evaluation metrics. Firstly, we show
instances resulting in inconsistent evaluations, sources of potential mistrust in commonly
used metrics; by quantifying the frequency of such disagreements, we prove that these
are common in rankings. Afterward, we conceptualize rankings using the mathematical
formalism of symmetric groups detaching from possible domains where the metrics have
been created; through this approach, we can rigorously and formally establish essential
mathematical properties for ranking evaluation metrics, essential for a deeper comprehension
of the source of inconsistent evaluations. We conclude with a discussion, connecting our
theoretical analysis to the practical applications, highlighting which properties are important
in each domain where rankings are commonly evaluated. In conclusion, our analysis sheds
light on ranking evaluation metrics, highlighting that inconsistent evaluations should not be
seen as a source of mistrust but as the need to carefully choose how to evaluate our models
in the future.

1 Introduction

Evaluating methods is fundamental in any machine learning field, but it is not straightforward finding
an appropriate evaluation metric that accurately assesses a method’s strengths without unfairly biasing
comparisons to other approaches. Comparing rankings is particularly challenging: inconsistencies often
appear in the produced evaluations, and, notably, inconsistencies diminish users’ trust in the methods and
evaluations.

Rankings pop up in several domains, from Recommender Systems (RS) and Information Retrieval (IR)
techniques Adomavicius & Tuzhilin (2005); Schütze et al. (2008), to feature ranking and selection ap-
proaches Khaire & Dhanalakshmi (2022) as well as in (fair) rank aggregation methods Lin (2010). They
are looked at as “interpretable” and easy to understand by humans; as an example, let us think about a
scoring system that represents job applicants’ characteristics, where a high score is an indicator of a better fit
for the position. However, evaluating rankings is not at all that simple, and contradictory evaluations are
commonplace. Furthermore, several metrics are appropriately created to evaluate, for example, Recommender
Systems or rank aggregation approaches; however, the same metrics are often used in other contexts without
a sufficient understanding of their evaluation.
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First, we show the existence of inconsistencies among most pairs of metrics; given the frequency of inconsisten-
cies’ occurrences, evaluations of methods involving rankings are often not trustworthy. We then introduce a
list of desirable theoretical properties for ranking evaluation metrics and provide the mathematical framework
underpinning each of them; rankings metrics can be easily transferred to functions on mathematical groups,
specifically on symmetric groups, thus allowing us to detach from specific machine learning domains. The
choice is dictated by the fact that they represent the most general mathematical structure on which we
could represent rankings. Profiting from a strong mathematical theoretical interface, we look to answer
the question which mathematical properties are essential for evaluating rankings? Thus, while most of the
existing literature predominantly confines itself rather to narrow, highly specific contexts, our work provides
a theoretical framework beyond specific contexts of application. We further assert that almost none of the
metrics qualifies as a mathematical distance, as fundamental characteristics are not satisfied. Although
symmetric groups offer a broad generalization, we remain mindful of the specific contexts in which the metrics
were developed. We highlight the contexts where these properties are particularly valuable in a conclusive
discussion.

2 Related work

The literature on ranking evaluation metrics is mostly highly context-specific. Particularly developed for RS
and IR evaluation, we find several works exploring the relationships among the metrics Valcarce et al. (2018);
Gunawardana et al. (2012); Silveira et al. (2019). Herlocker et al. (2004) proposes a theoretical division of the
metrics for comparing collaborative filtering RS, while Liu et al. (2009) describes most of the metrics typically
used for RS and IR techniques. Järvelin & Kekäläinen (2002) presents various metrics based on cumulative
gain, highlighting their main advantages and drawbacks, Hoyt et al. (2022) introduces a theoretical foundation
for rank-based evaluation metrics, and Amigó et al. (2018) defines a set of properties for IR metrics and
shows that none of the existing ones satisfy all the properties proposed. Other works focus on metrics for
RS and their intrinsic properties or on ranking metrics for the top-n recommendations Buckley & Voorhees
(2004); Valcarce et al. (2020). Real-world applications such as the design of strategies based on customers’
feedback and allocation of priorities in R&D extended the interest in defining distances among rankings
where the focus of the problem statement is rank aggregation Dwork et al. (2001); Sculley (2007). Examples
of similarly scoped works are Cook et al. (1986); Fligner & Verducci (1986). An interesting generalization
work is presented by Diaconis (1988), that focuses on six metrics on symmetric groups; we find among them,
Kendall’s τ and Spearmann’s ρ while the other considered metrics are rather uncommon in machine learning.
The work studies them from a statistical and theoretical perspective and defines some properties, among
which the interpretability, tractability, sensitivity, i.e., the ability of one metric to range among the available
counter-domain, and theoretical availability. In detail, the interpretability defined in Diaconis (1988) discussed
whether the metrics measure something humanly tangible, the tractability studies the so-called computational
complexity in computer science, and the theoretical availability asks whether a metric is studied and used
enough in the state-of-the-art works. We will reintroduce one of the properties in Diaconis (1988), e.g., the
right-invariance, in our work into our Robustness property.

The interest in fair and trusted choices of evaluation metrics grows fast in computer science. Tamm
et al. (2021) is an example where some of the ranking evaluation metrics are harshly criticized for their
comparisons’ reliability. In other domains, the state-of-the-art literature started defining essential properties
for metrics Gösgens et al. (2021a;b); we aim to fill the gap for ranking evaluation metrics.

3 Metrics

In the state-of-the-art literature, we find various metrics meant to evaluate ranking in specific contexts. This
is the case for most offline Recommender Systems metrics, some evaluation metrics for prediction models, and
rank aggregation approaches. Some of these metrics started spreading to other domains following the need to
evaluate rankings. However, this is not always a good idea as the domain defines the evaluation’s exigencies.
In our work, we consider metrics evaluating full rankings that can be easily transferred to adjacent domains
and cut out from the analysis all those metrics that require context-specific information, e.g., diversity in
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Ranking aware
metrics

nDCG, DCG, meanRank, GMR, MRR

Metrics assigning equal
importance to each position

SMAPE, MAPE, MAE, RMSE, MSE, R2 score, NDPM, Spearmann ρ,
Kendall’s τ

Set based metrics
markedness, PT, recall, LR+, Jaccard index, F1 score, FDR, accuracy,
MCC, TNR, fallout, FNR, LR- informedness, NPV, FOR, BA, FM,
precision

Table 1: List of considered metrics; bold, italic, underlined, and plain text indicate CGB, EB, CMB, and
CB metrics. Other metrics are blue color-coded.
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Figure 1: On the left: Heatmap of the agreement ratios among pairs of ranking evaluation metrics. On the
right: The theoretical subdivision of the metrics; the

Recommender Systems. We refer to the group as ranking evaluation metrics; a complete list is summarized
in Table 1.

We categorize the ranking evaluation metrics under two different theoretical aspects. One subdivision derives
from their “awareness” of the position of single items in the rankings: Ranking aware metrics satisfy this
criterion while flat metrics do not. In this second group, we find the set-based metrics and the ones assigning
equal importance to each position. The subdivision is shown in Figure 1 on the right. From their theoretical
definition, we individuate four main groups: confusion matrix-based CMB metrics focus on the number of
correctly retrieved elements and are essentially set-based metrics; correlation-based CB metrics quantify
the ordinal association between the two rankings from a statistical perspective; error-based EB metrics are
often used to analyze the performance of predicting models and are flat metrics assigning equal importance
to each position; Finally, cumulative gain-based CGB metrics focus on the rankings of the single elements;
additional explanations on how the single metrics have been classified and the definition of the single metrics
are available in Appendix B.

4 Ranking evaluation metrics on symmetric groups

To generalize the metrics over an abstract structure, we introduce symmetric groups Sn. Given a finite set
N = {1, . . . , n}, the symmetric group Sn is the set of bijective functions from N to N , i.e., the rankings
or permutations of elements in N ; Sn has size n!. Permutations are designed with lowercase Greek letters,
i.e., σ ∈ Sn. Exceptionally, id indicates the group identity or identity function; the identity function defines
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mathematically the supposition that the identical ordering assigns to each ’item’ i its position i, i.e., that
the items’ names correspond to their positioning. σ(i) indicates the position in which item i is sent by σ
and, given σ, ν ∈ Sn, σ ◦ ν ∈ Sn is a new ranking defined by σ ◦ ν(i) = σ(ν(i)), ∀i ∈ {1, . . . , n}; ◦ is the group
operation and it is not commutative, i.e., generally σ ◦ ν ̸= ν ◦ σ. σ|k = (σ(1), . . . , σ(k)) indicates the
ranking of the first k elements; metrics@k consider exclusively the first k ranked elements. Finally, a (single)
swap is a permutation σ = (j k) ∈ Sn, swapping only the two elements j, k in N ; Hassanzadeh & Milenkovic
(2014) refers to them as transpositions.

4.1 Clustering by agreement

Our work is mainly justified by the lack of “consistent” evaluation of rankings when using different metrics. A
ranking evaluation metric is a function m : Sn × Sn → R+, taking two permutations as input and returning a
real number. In some cases, metrics take only one ranking as input; we refer to them as single input metrics.
All the given definitions work correspondingly for one-input metrics.
Definition 1. Two metrics m1, m2 are non-consistent if there exists σ, µ, ν ∈ Sn such that the following two
conditions hold:

m1(id, σ) ≤ m1(id, µ) ∧ m2(id, σ) ≤ m2(id, µ)
m1(id, σ) ≤ m1(id, ν) ∧ m2(id, σ) > m2(id, ν)

(1)

Otherwise, we say that m1, m2 are consistent.

The first line of equation 1 guarantees that the reversed metric m̃2 = −m2 is still non-consistent with
m1. Proving consistency between two metrics is much trickier than finding three rankings satisfying the
inconsistency condition; therefore, rather than classify them, we estimate the degree of inconsistency among
pairs of metrics by introducing the agreement ratio. The coefficient provides an estimate of the extent to
which two metrics disagree in the evaluation of rankings over symmetric groups.
Definition 2. For any σ ∈ Sn fixed, the σ agreement ratio among two ranking evaluation metrics, m1 and
m2 is

ARσ
m1,m2

= 1
|P(Sn)|(|P(Sn)| − 1)

∑
µ,ν∈P(Sn),µ̸=ν

fm1,m2
σ (ν, µ)

where fm1,m2
σ (ν, µ) = 1{m1, m2 are consistent w.r.t. σ on the rankings µ, ν} (or equivalently fm1,m2

σ (ν, µ) =
1{equation 1 is not satisfied}), 1 is the indicator function and P(Sn) is the power set over Sn.

As the size of P(Sn) grows exponentially, we randomly sample a subset T of P(Sn) thus obtaining an estimate
of the number of inconsistencies existing among two metrics. The agreement ratio equals 1 if m1 and m2
are consistent and goes to zero with increasing inconsistencies found; furthermore, the agreement ratio is a
symmetric metric.

The color-code heatmap in Figure 1 highlights, respectively, in green and pink, the existence of a high agreement
and disagreement; a partial agreement is represented in white. It is visible that similarly theoretically defined
metrics as grouped Table 1 tend to have an agreement ratio closer to 1.The agreement ratio represents an
estimate of the number of inconsistencies among metrics; Figure 1 refers to rankings in S100, where T contains
10000 random rankings. For CMB metrics, we fixed to 30 the number of retrieved and relevant elements. We
use as reference ranking σ the identity function previously defined; however, we would get similar colored
heatmaps using other reference rankings.

5 Properties for ranking evaluation metrics

Most pairs of metrics are affected by frequent inconsistent evaluations (cf. Section 4.1). We list essential
mathematical properties to highlight the peculiarity of each metric and give the chance to properly select one
or another based on them for a context-dependent evaluation. The properties in question are: (1) identity of
indiscernibles (IoI); (2) symmetry (or independence from a ground truth); (3) robustness (Type-I and Type-II);
(4) stability with respect to k; (5) sensitivity and width-swap-dependency; (6) (induced) distance. Some of
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10 5 id (1 2) id ◦ • • • • • • • • • • • • • •
10 5 id (1 2) (3 4) ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦
10 5 id (1 2) (2 4) ◦ • • • ◦ ◦ • • • • • ◦ ◦ • ◦

Table 2: Examples of rankings that metrics cannot distinguish. We compare for each evaluation metric m the
values m(id, σ) and m(id, τ). If the metric fails in distinguishing the two rankings, we impute a ◦; else, a •.

them have been defined in other domains, wee.g., Gösgens et al. (2021b;a) define the symmetry property
for cluster similarity indices and metrics for classification models, Hassanzadeh & Milenkovic (2014) defines
the “resistance to relabeling” in the context of rank aggregation, Cook et al. (1986); Fligner & Verducci
(1986) define the importance of constructing distances for partial orderings; will refer to each of them in the
respective sections.

For each property, we will highlight in which context and why it is important. Table 3 and Table 4 help the
reader to keep trace of the mentioned results. The code will be on GitHub upon acceptance 1.

5.1 Identity of indiscernibles

Ideally, a metric m quantifies how “close” or “similar” two rankings σ and τ are. However, situations may
arise where σ and τ are “so” similar to be practically indistinguishable by some metrics. This effect might
be undesired in some fields, such as (fair) rank aggregation, where even small differences, especially in the
presence of protected groups, make the difference between fair and unfair rankings.
Definition 3. A metric m satisfies the identity of indiscernible (IoI) property if, ∀σ ∈ Sn fixed, the following
holds

m(σ, τ) = m(σ, ν) ⇔ τ = ν, ∀τ, ν ∈ Sn. (2)

Up to renaming the elements, we can rewrite Equation equation 2 as m(id, τ) = m(id, ν) ⇔ ν = τ where id is
the usual identity of Sn.

Almost all metrics do not satisfy the IoI property; examples are set-based metrics and metrics@k, i.e., where
a metric m@k evaluates only the top k elements of the rankings . Clear examples not satisfying equation 2
are rankings σ that can be written as a disjoint composition of cycles of permutations of elements before
and after k Hall (2018). Table 2 illustrates examples for each metric where the IoI is not satisfied. It can be
proven that
Proposition 5.1. DCG and nDCG satisfy the IoI property.

The proof finds place in Appendix A.

5.2 Symmetry property

Often, guarantees that the evaluation is symmetric with respect to input items are desirable Gösgens et al.
(2021a;b), particularly when the interest is in having a sort of mathematical distance, e.g., for rank aggregation.
However, as usual, the context rules the need for a symmetric evaluation. The symmetry property studies
whether the metric’s evaluation is independent of the order in which the rankings are compared. In RS and
IR, the common presence of a “ground truth order” makes the symmetric property impossible.

1https://anonymous.4open.science/r/rankingsmetrics/README.md
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id. indisc. ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

symmetry ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

rob I ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗

rob II ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

WSD ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

sensitivity ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

stability ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

distance ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗

Table 3: Summary table of the property satisfied by the metrics.

Definition 4. A metric m : Sn × Sn → R is symmetric if

m(σ, ν) = m(ν, σ), ∀σ, ν ∈ Sn. (3)

5.3 Robustness

The IoI property studies whether metrics can distinguish rankings, regardless of their similarity. On the other
side, the similarities among rankings should be projected on the evaluations: Small differences in rankings
should result in small differences in the evaluation scores. Under the assumption that a single swap represents
a small difference between two rankings, the Type I robustness property assesses how sensitive a ranking
evaluation metric is to single swaps in the compared rankings.
Definition 5. A metric m is Type I Robust if a single swap in one of the rankings implies small changes in
its evaluation, i.e.,

|m(σ, ν) − m(σ, ν ◦ (i j)| < ϵ, ∀σ, ν ∈ Sn. (4)

We compute the average of the results of equation 4 evaluated on a set I ⊆ Sn ×Sn of 1000 different randomly
drawn pairs of rankings in S100, i.e.,

∑
(σ,ν)∈I,(i,j)∈{1,··· ,n}2 |m(σ, ν) − m(σ, ν ◦ (i j)| and round it to two

decimal numbers. We state that the metric satisfies the Type I Robustness if the resulting average is 0.

For completeness, we define a second type of robustness that studies the effect of renaming the items in the
rankings. Diaconis (1988) mentions Type II Robustness as “right-invariance” and Hassanzadeh & Milenkovic
(2014) as “resistance to item relabeling”.
Definition 6. A metric is Type II Robust if it is an invariant w.r.t. the composition of permutations, i.e.,
it holds

m(µ, σ) = m(µ ◦ ν, σ ◦ ν), ∀µ, σ, ν ∈ Sn.

Type II Robustness property investigates whether applying the same change in both rankings affects the
evaluation. The property is essential in contexts where the numbers appearing in the rankings have to
be considered as proper “items” or “items’ names”; this is often the case in rank aggregation approaches,
Recommender Systems, and Information Retrieval techniques. However, it does not apply when dealing with
importance scores. We claim that
Proposition 5.2. MSE, RMSE, MAE, MAPE, R2 score, Kendall’s τ score and Spearmann’s ρ are the only
considered metrics satisfying the Type II Robustness.

The proof derives directly from their definitions (see Appendix A).
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5.4 Sensitivity

The sensitivity property is valuable for a metric, particularly in the case of Recommender Systems and
Information Retrieval, where high dimensional rankings may not be fully explored. Under the assumption
that a full exploration of the rankings is not possible, sensitive metrics assign more weight to the first part of
the rankings, considering whether the first k items are “correctly” ranked. Mathematically, we define the
width of a swap (i j) ∈ Sn being the quantity |i − j|.
Definition 7. Given i < j < k < l ∈ {1, . . . , n} and (i j), (l k) having the same width. A ranking evaluation
metric m is sensitive if ∃σ ∈ Sn such that it holds m((i j) ◦ σ) ̸= m((k l) ◦ σ).

As the evaluation of the property is far from easy, we introduce the width swap dependency, formalizing a
property that prevents the metrics from being sensitive.
Definition 8. Given a swap (i j) ∈ Sn and |i − j| its width, m is width swap dependent (WSD) if it
evaluates swaps with the same width equally, i.e., m((i j)) = m((k l)) if |i − j| = |k − l| holds; otherwise, it is
called non-width swap dependent.

The WSD property cuts out some of the metrics from being sensitive. From their definitions, it can be proven
that
Lemma 5.3. Kendall’s τ , Spearmann ρ, NDPM are width swap independent.

The proof finds place in Appendix A. For the other metrics,it is trivial to find pairs of disjoint swaps had
different effects in the final evaluation when happening at various positions within the rankings.

5.5 Stability

We introduce the stability property for those metrics that can be applied on “rankings @k”. We recall that a
ranking at k is the ranking of the items in the first k positions. To evaluate rankings @k, it is essential that
the difference between evaluations “@k” and “@k + 1” is not significant, i.e., that the choice of k does not
highly impact the result; this guarantees a trustworthy evaluation.
Definition 9. A ranking evaluation metric m is stable if, for any two rankings σ, ν ∈ Sn, it holds

|m@k−1(σ, ν) − m@k(σ, ν)| < ϵk (5)

with ϵk small. Moreover, the sequence {ϵk}k satisfies limk→n ϵk = 0.

The property is again essential for extremely long rankings and for contexts where rankings are not fully
explored. We evaluate the stability by randomly drawing 1000 pairs of rankings in S100, computing the
absolute differences of equation 5, and counting the number of times that equation 5 holds with ϵk = 1

k . We
state that a metric is stable if the criterion is satisfied in at least 97.5% of the cases.

5.6 Distance

In mathematics, the terms metric and distance are synonyms. However, when it comes to evaluation metrics,
most of them are not “distances” on Sn in the mathematical sense. Whether a metric is a mathematical
distance or not is often insignificant for the final evaluations; however, being aware of this fundamental
mathematical difference can avoid incomprehension and misuses.
Definition 10. A distance on a set X is a function fm : X × X → [0, ∞) : (x, y) 7→ fm(x, y) ∈ R+ that, for
all x, y, z ∈ X, satisfies:

1. fm(x, y) = 0 ⇔ x = y,

2. the positive definiteness, i.e., fm(σ, ν) ≥ 0, ∀σ, ν ∈ X,

3. the symmetry property and
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4. the triangle inequality, i.e., fm(x, y) ≤ fm(x, z) + fm(z, y).

Some ranking evaluation metrics are distances; In Hassanzadeh & Milenkovic (2014); Diaconis (1988), it is
proven that Kendall’s τ is a distance. However, a ranking evaluation metric that does not satisfy some of the
properties mentioned in Definition 10 is not a distance.

We investigate if we can induce distances from single input metrics. Given a metric m : Sn → R, we consider
two options as potential induced distances, i.e., fm(σ, ν) = m(σ) − m(ν) or f̃m(σ, ν) = |m(σ) − m(ν)|. DCG
and nDCG are the only two metrics satisfying the IoI property that, for metrics with one unique argument,
is equivalent to Property (1) for fm. We can easily prove that
Proposition 5.4. fm is not a distance while f̃m is a distance with the IoI property, where m is either DCG
or nDCG.

The formal proof can be found in Appendix A.

6 Are the metrics interpretable? Thoughts over maximal and minimal agreement
properties

Given the importance of trust, fairness, and explainability for machine learning methods, one could then ask
how “interpretable” the scores assigned by the metrics are. We first need some definitions.
Definition 11. A ranking evaluation metric m is said to satisfy the maximal agreement property if (a)
m(σ, σ) = mmax, ∀σ ∈ Sn and (b) m(σ, ν) ≤ mmax, ∀ν, σ ∈ Sn. We say that m is lower-bounded if it exists a
real number mmin such that m(σ, ν) ≥ mmin, ∀ν, σ ∈ Sn. An evaluation metric that admits a lower bound is
said to satisfy the minimal agreement property.

For a metric to be “interpretable” we expect that

1. each ranking is maximally similar to itself and, given n ∈ N, this value is constant, i.e., m(σ, σ) =
mmax, ∀σ ∈ Sn and ∀n;

2. m satisfies the maximal agreement property;

3. there exists a lower bound mmin for any possible pair of rankings, i.e., m(σ, µ) ≥ mmin, ∀σ, µ ∈ Sn.

Exemplary is the Kendall’s τ metric which satisfies m(σ, σ) = 1 and m(σ, µ) ∈ [−1, 1] for all σ, µ ∈ Sn. The
maximal agreement property says that each ranking is maximally similar to itself, and no other ranking can
achieve a higher score than mmax; furthermore, ideally, mmax is independent of the length of the rankings.
Properties (1) and (2) imply that a ranking evaluation metric is a monotone increasing function of the
similarity of two rankings: the more similar two rankings are, the higher the score they get when evaluated
using an “interpretable” metric. Having that mmax is independent of n is a necessary condition for having
an evaluation of rankings independent of n. However, this is hardly satisfied by any metrics, and only after
introducing a normalization score do the metrics satisfy the requirement. Furthermore, the lowest scores are
assigned by some metrics to maximally similar pairs of rankings, e.g., error-based metrics. The only metrics,
among the ones considered in this paper, automatically satisfying this property are Kendall’s τ score and
Spearmann ρ.

A ranking evaluation metric satisfying the maximal agreement property is also upper-bounded. For the sake
of interpretability, we could check whether a metric m satisfies m(ρ−1, ρ) = mmin where ρ−1 indicates the
inverse ranking. How do we define the inverse of a ranking? Kendall’s τ satisfies this property, given that the
inverse of one ranking σ is the ranking τ assigning the highest position to the last element of the ranking σ;
however, this does not correspond with the inverse of the ranking in the symmetric group. Assessing whether
metrics for permutations are humanly interpretable is not new and has already been discussed in Diaconis
(1988). However, then, as well as now, the concept of interpretability lacks a unified definition. Thus, we
leave this section open and do not argue further on the interpretability of the considered metrics.
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description domain

identity of
indiscernibles

in highly sensitive evaluations,
where detecting tiny differences
among rankings is essential

(Fair) rank aggregation
Recommender Systems
Feature ranking/selection

symmetry ensures that the input rankings
have an equal role in the evaluations

Rank aggregation
Contexts independent from ground truths

robustness I
ensures that small changes
influence proportionately
the evaluations

Information Retrieval
Rank aggregation

robustness II ensures independence from
items renaming

Information Retrieval
Rank aggregation
Feature ranking
Rank aggregation

sensitivity
for not fully explored rankings,
when the interest is on
to the top part of the rankings

Information Retrieval
Recommender Systems

stability ensures trustworthiness
in evaluations @k

Information Retrieval
Recommender Systems

distance
ensures that the metric in questions
respect the definition
of distance on Sn

(Fair) rank aggregation

Table 4: Summary of the properties

7 Discussion

We explored metrics for comparing and evaluating rankings and analyzed their theoretical properties. All
the mentioned metrics are widely used in the literature to evaluate Recommender Systems, Information
Retrieval, feature ranking, rank aggregation methods, and items’ score assignments. Each property is highly
desirable in some contexts and less in others. The IoI property is desirable in highly sensitive evaluations,
where detecting tiny differences among rankings is essential; fair ranking aggregation is an example, where
swapping items can make the difference between fair and unfair rankings. Conversely, robustness ensures
that small changes influence the evaluations proportionately in a one-to-one fashion. A metric that satisfies
both the IoI and the robustness properties ensures contemporaneously that small changes are not overlooked
but do not significantly impact the evaluations. The symmetry property ensures that the input rankings have
an equal role in the evaluations. This is essential in most domains unless ground truth ranking is available.
Note that non-symmetric metrics are also not distances. Rank aggregation is again an example of use for the
symmetry property, where the consensus ranking is directly compared with the original rankings provided.
Sensitivity is crucial when rankings are not fully explored. This is often the case for Recommender Systems
and Information Retrieval techniques’ evaluations. With the same applicability, the stability property ensures
trustworthiness in evaluations @k, which is again highly relevant for Recommender Systems and Information
Retrieval techniques. To assure stable evaluations, we recommend considering evaluating the impact @k and
@(k + i) with i arbitrarily chosen, in particular when k << n. Finally, the distance property is defined to
complete the proposed analysis and highlights the chance that mathematical terms are misused in machine
learning contexts. Table 4 summarizes the properties’ descriptions and application domains.

8 Conclusion

Throughout the paper, we explored metrics widely used in the literature to evaluate Recommender Systems,
Information Retrieval, feature selection, and rank aggregation methods; rankings are the common output
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of all these methods. We observed a common presence of non-consistent evaluations of rankings, deriving
from the different definitions of the ranking evaluation metrics. Focusing on a mathematical perspective and
viewing rankings as elements of symmetric groups and the metrics as functions defined over mathematical
groups, we list a set of well-founded mathematical properties for ranking evaluation metrics. The differences
among metrics are highlighted by the differences in the satisfiability of the properties, thus grounding the
reasons for the inconsistencies in the evaluations. As each property is highly desirable in some contexts
and less in others, we summarize the obtained insights that can be of immediate use when looking for an
appropriate metric for a specific domain.
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