
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LONGHORN: STATE SPACE MODELS ARE AMORTIZED
ONLINE LEARNERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern large language models are built on sequence modeling via next-token
prediction. While the Transformer remains the dominant architecture for sequence
modeling, its quadratic decoding complexity in sequence length poses a major
limitation. State-space models (SSMs) present a competitive alternative, offering
linear decoding efficiency while maintaining parallelism during training. However,
most existing SSMs rely on linear recurrence designs that appear somewhat ad
hoc. In this work, we explore SSM design through the lens of online learning,
conceptualizing SSMs as meta-modules for specific online learning problems.
This approach links SSM design to formulating precise online learning objectives,
with state transition rules derived from solving these objectives. Based on this
insight, we introduce a novel deep SSM architecture, Longhorn, whose update
resembles the closed-form solution for solving the online associative recall problem.
Our experimental results show that Longhorn outperforms state-of-the-art SSMs,
including the Mamba model, on standard sequence modeling benchmarks, language
modeling, and vision tasks. Specifically, Longhorn achieves a 1.8x improvement
in sample efficiency compared to Mamba, and can extrapolate over contexts that
are up to 16x longer during inference.

1.8x speed up

Figure 1: (left) The average perplexity on eight downstream datasets for GLA,
Mamba, and Longhorn (1.3B model) over seen tokens on SlimPajama. Longhorn
leads to a 1.8x speed up in sampling efficiency. (right) Longhorn, pretrained with
2048 context length, extrapolates up to 16x longer context at inference.

1 INTRODUCTION

The Transformer model has become the go-to architecture for sequence modeling in deep learn-
ing (Vaswani et al., 2017). However, its utility is constrained by the quadratic growth in training and
decoding costs with increasing sequence length. Despite various optimizations such as efficient de-
coding (e.g., Chen et al., 2023; Kuperman & Dyke, 2011), KV-cache compression (e.g., DeepSeek-AI
& Dai, 2024), and memory efficient implementation (e.g., Dao et al., 2022), it remains challenging to
scale Transformers for autonomous and continual use with an infinite (or very long) context window.

Recent advances in linear attention models (Katharopoulos et al., 2020) and state-space models
(SSMs) (Gu et al., 2021) have demonstrated their potential. These models are specialized recurrent
neural networks capable of efficiently computing outputs in parallel when input tokens are provided
simultaneously during training, thus avoiding the inefficiencies of traditional backpropagation through
time. During inference, the recurrent form is employed, resulting in linear decoding efficiency.
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St = At � St�1 + Bt

Figure 2: (left) Most existing sequence models consist of channel and sequence mixing layers. The sequence
mixing layers can be viewed as “meta-modules” that compress history into a state St, which is then passed to
later layers for sequence modeling. (middle) Sequence mixing can be seen as an online learning problem, where
the SSM state St optimizes an online objective. The recurrent update of St is derived either by solving this
objective in closed form or via a proximal update. (right) Longhorn’s update solves online associative recall,
where the goal is to recover x P Rd based on a hint k P Rm from a state matrix S P Rdˆm. Longhorn’s update
corresponds to the implicit online learning solution, where At “ 1dˆm ´ εt b kb2 and Bt “ pε d xtq b kt,
and εt “ βt{p1 ` βtk

J
t ktq. See the details in Section 3 and Algorithm 1.

Initially, these models underperformed compared to Transformers. However, recent SSMs (e.g., Gu
& Dao, 2023; Yang et al., 2023; Peng et al., 2024; De et al., 2024; Beck et al., 2024) have achieved
performance parity with Transformers in language modeling tasks. Despite extensive research into
various design aspects of SSMs, a guiding principle for designing SSMs remains elusive.

In this work, we propose one potential principle. We observe that one can view SSMs (or any
sequence mixing layers) as “meta modules” that compress the history online into a memory state
which is then used by later layers in the network for sequence modeling. From this perspective:

The recurrent form of SSMs can be viewed as solving an online learning problem.

As a result, we can draw inspiration from online learning and confine the design choices of
SSMs to reflect those learning dynamics that solve specific online prediction problems. The
aim is that, by optimizing for the right objective, the model can achieve superior performance with
fewer parameters or reduced computational costs. Furthermore, this online learning perspective may
offer deeper insights into the function of SSM layers in large models. In particular, the recurrent
update (i.e., state-transition dynamics) of an SSM can be interpreted as a proximal update step or a
closed-form solution to an online learning objective. We outline the corresponding objectives for
several existing SSMs in Table 4. One significant advantage of viewing SSMs through the lens of
online learning is their ability to adapt post-training during deployment, allowing them to process
arbitrarily long data sequences at inference time.

Based on this insight, we propose a simple yet effective architecture (Longhorn), derived from the
implicit closed-form update of an online associative recall problem. The closed-form update naturally
leads to a stable recurrent form without a manually designed gating mechanism, automatically
balancing forgetting and learning. Thus Longhorn does not need a separately parameterized forget
gate, which saves parameters when the state size is large. We demonstrate that Longhorn performs
comparably to or better than state-of-the-art SSMs like Mamba (Gu & Dao, 2023) on synthetic and
large-scale sequence modeling tasks. In particular, Longhorn outperforms Mamba at the size of
1.3B-parameter when trained on 100B tokens from the SlimPajama dataset (Soboleva et al., 2023).
To summarize, our contributions are:

1) Theoretical Framework: We propose a novel framework that views SSMs’ recurrent update as
solving online learning objectives. As a result, the design of SSMs reduces to the design of the online
learning objectives. In particular, we introduce a novel, simple, and effective SSM, named Longhorn,
that explicitly solves an online associative recall problem. Longhorn’s recurrent update is obtained by
the closed-form solution to the online learning objective. Consequently, Longhorn does not require a
separately parameterized forget gate that appears in most existing SSMs.

2) Empirical Results: Longhorn demonstrates better performance than existing SSMs including
Mamba, across both synthetic associative recall tasks and the large-scale language modeling task.
Moreover, it achieves 1.8x improvement in sample efficiency compared to Mamba (See Figure 1
(left)). Longhorn’s training speed is as fast as Mamba, as we only replace the SSM module in the
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Algorithm 1 Longhorn’s Single-layer SSM Recurrence (Inference Time)

1: Parameters: Wq P Rmˆd,Wk P Rmˆd,Wβ P Rdˆd, where Wβ can be low-rank, horizon T .
2: Initialize the memory state S0 Ð 0dˆm.
3: for t P t1, . . . , T u do
4: 1) Receive input xt P Rd.
5: 2) Compute the query qt, key kt and βt:

qt “ Wqxt P Rm, kt “ Wkxt P Rm, βt “ SigmoidpWβxtq P p0, 1qd.

6: 3) Update the memory state St P Rdˆm via

St “
`

1dˆm ´ εt b kd2
t

˘

d St´1 `
`

εt d xt

˘

b kt, εt “ βt{p1 ` βtk
J
t ktq P p0, 1qd.

7: 4) Compute the output ot “ Stqt P Rd.
8: end for
9: Note: d elementwise product and b is outer product. xt in practice is preprocessed through a

linear projection followed by a Conv1d operation as in Mamba (Gu & Dao, 2023).

Mamba architecture with Longhorn’s recurrence. So it serves as a drop-in replacement for Mamba.
Lastly, Longhorn, trained with 2048 context length can extrapolate to 32K context length at inference
time without much perplexity drop (See Figure 1 (right)).

Notation Throughout this work, we use d to denote the Hadamard (elementwise) product, and b

to denote the Kronecker (or outer) product between two tensors. Uppercase letters A,B, etc. denote
matrices, while lowercase k, v are in general vectors. ∥¨∥ by default refers to the ℓ2 norm for vectors.

2 BACKGROUND

In this section, we provide a brief introduction to contemporary deep state space models (deep SSMs).

Modern large language models are sequence-to-sequence models consisting of a stack of layers
y “ ΦL ˝ ¨ ¨ ¨ ˝ Φ1pxq that sequentially processes an input sequence x “ txtu

T
t“1, where T is

the context length. Specifically, transformers consist of alternative stacks of self-attention (SA)
and multi-layer perceptron (MLP) layers that conduct mixing (i.e., information aggregation) on the
sequence and channel dimensions, respectively.

Deep SSMs replace the SA layers with SSM layers. Some variants of SSM models leave the MLP
layers unchanged (Sun et al., 2023; Yang et al., 2023; De et al., 2024), while others fuse the SSM layer
and the MLP layer into a single unified module (Gu & Dao, 2023). But in both cases, the sequence
mixing is done by the SSM module, and the channel mixing is done by the channel-wise MLP. Taking
Mamba as an example (Gu & Dao, 2023), a Mamba model consists of a stack of homogeneous
modules named Mamba block (the Φipxq); we provide a visualization of a single Mamba block in
Figure 3 (Gu & Dao, 2023), which consists of an SSM block for sequence mixing (red), and an MLP
block for channel mixing (blue).

SSM: General Form The SSM block (in red) plays the crucial role of sequence mixing. It works
by iteratively updating a memory state matrix St P Rdˆm with a linear recurrence:

St “ Apxtq ˚ St´1 ` Bpxtq, @t P t1, . . . , T u, S0 “ 0, (1)

where xt is the input at time t, St is the model’s state, At, Bt : Rd Ñ Rdˆm are some functions of
the input and ˚ is a multiplication operation of choice, such as Hadamard product or matrix product.

Given the state St, SSMs often give the output token at the next layer via a gated linear unit
(GLU) (Dauphin et al., 2017):

yt “ ReadoutpSt, xtq “ W1

`

ot d σpW2xtq
˘

, ot “ CpxtqSt,

3
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where we first get ot via a state-dependent linear projection on St, which is then fed into a subsequent
channel mixing gated linear unit (blue in Figure 3), where σp¨q is a non-linear activation function.

A key feature of this design in Equation 1 is that St has a linear recurrence, i.e., St is linear in St´1.

Conv

SSM
<latexit sha1_base64="N/EBWZoOVLkLENSRb/DG5XWv4dg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWjW4v6zUb/I4inACp3AOAVxBHe6gAU0g8AjP8ApvnvJevHfvY9Fa8PKZY/gD7/MHnlePKQ==</latexit>� <latexit sha1_base64="N/EBWZoOVLkLENSRb/DG5XWv4dg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWjW4v6zUb/I4inACp3AOAVxBHe6gAU0g8AjP8ApvnvJevHfvY9Fa8PKZY/gD7/MHnlePKQ==</latexit>�

Linear

Linear Linear

Channel	Mixing
Sequence	Mixing

Figure 3: Mamba Block

Crucially, this allows us to express all St in an explicit form that can be
calculated in parallel: when all x “ txtut are available as in the training
phase, tStut can be written into

St “
ÿ

t1ďt

pAt1ÑtqBpxt1 q, where At1Ñt “
ź

t1ăτďt

Apxτ q. (2)

Here
ś

denotes the product induced by multiplication operator ˚. The
resulting cumulative product At1Ñt can be implemented efficiently in par-
allel with the prefix scan algorithm (e.g., Harris et al., 2007), which only
requires Oplog T q (T is the sequence length) parallel operations. From
now on, we will abbreviate Apxtq and Bpxtq as At and Bt, respectively.

Designs of (At, Bt, ˚) Existing variants of SSMs mainly differ in the design choices of the networks
At, Bt, and the associated operator ˚ in the linear recurrence. A core issue here is that the memory
state St P Rdˆm, designed to be m times the input xt in size, must be as large as possible to maintain
sufficient information during recurrence. This makes the architecture design of At, Bt, both mapping
Rd to Rdˆm challenging. A naive linear mapping would result in d ˆ d ˆ m weights, which is
prohibitively large. This makes it necessary to impose certain low-dimensional structures in At, Bt,
which is the main difference from existing designs of SSMs. In Appendix A, we summarize some
existing deep SSM models in the form of Equation 1.

3 AN ONLINE LEARNING PERSPECTIVE FOR SEQUENCE MIXING

As demonstrated in the previous section, designing a state-space model (SSM) depends on the specific
selection of pAt, Bt, ˚q, which is intricate and somewhat artisanal. In this section, we propose to
streamline SSM design through an online learning perspective. The main idea is to treat the SSM
layers as learning modules that learn to compress information along the sequence dimension. From
this perspective, the SSM layers are learning to learn, such that during the inference time, these
layers are still learning (compressing) new information online.

We begin with an overview of online learning and subsequently demonstrate how SSM can be
framed as an online learning problem. Finally, we present a straightforward architecture based on the
closed-form solution of the implicit online learning algorithm.

3.1 SSM AS ONLINE LEARNING

We advocate viewing the recurrence of SSM as solving an online learning problem. In online learning,
the agent picks a state st at time t and then incurs a loss ℓtpstq. The goal is to minimize

min
tstu

ÿ

t

ℓtpstq. (3)

For instance, consider online linear prediction, where at each step the agent is given an input-label
pair pxt, ytq and ℓtpstq “ 1

2 ||sJ
t xt ´ yt||

2 is the ℓ2 regression loss, then the problem becomes an
online regression problem, and the goal is to successfully predict yt given xt at future time steps,
with the key feature that the prediction (st) can change with each new data point.

Online convex programming (OCP) (e.g., Zinkevich, 2003) yields a principled approach to solving
Equation 3 when ℓt are convex, by trading-off the “stability” and “plasticity” (e.g., Mermillod et al.,
2013). Formally, an online convex programming algorithm updates st by solving a regularized cost
function:

st “ argmin
s

Ltpsq, Ltpsq “ Dϕps, st´1q
looooomooooon

stability

`βtℓtpsq
loomoon

plasticity

, (4)

where βt P R` and Dϕ is a discrepancy measure, often a Bregman divergence induced by the convex
function ϕ (e.g., when ϕpxq “ 1

2 ∥x∥
2, Dϕps, st´1q “ 1

2 ||s ´ st´1||2). Here the first term ensures

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the updated s will be close to the previous st´1, so the agent suffers less from catastrophic forgetting,
while the second term ensures the agent is incorporating new knowledge from minimizing the new
loss ℓtpsq. Hence, βt controls the trade-off between stability and plasticity.

3.2 THE LONGHORN ARCHITECTURE

Under the online learning framework, the design of an SSM reduces to the design of Dϕ and ℓt
in Equation 4. This provides a unified framework for the existing SSM variants. We summarize in
Table 4 in Appendix B the online learning interpretation of several existing SSM architectures.

In this work, we explore a highly simplified and natural design called Longhorn guided by the online
principle (see the last row of Table 4). In particular, we consider tpkt, xtqut as the input stream,
where kt P Rm and xt P Rd are the key-value pairs, just as in the Transformer model (Vaswani et al.,
2017). In practice, as in Mamba (Gu & Dao, 2023), kt “ Wkxt P Rm, where Wk P Rmˆd, is a
linear mapping from xt.

We want to recurrently update hidden states tStut, where St P Rdˆm is a matrix that summarizes the
information up to time t. We posit the following OCP objective for updating St:

St “ argmin
SPRdˆm

!

||S ´ St´1||2F ` ||Skt ´ xt||
2
diagpβtq

)

. (5)

Here, || ¨ ||F denotes the Frobenius norm of a matrix, βt P Rd is a vector controlling how much
new information about xt we want the model to incorporate for St. For instance, βt,i “ 0 implies
St,i “ St´1,i (i.e., the i-th row of S remains unchanged), while a large βt,i implies the model empties
some part of Si for incorporating xt,i.

From a high-level perspective, Equation 5 is solving an online prediction problem of learning a
weight matrix S to predict xt given kt with a linear model xt « SJkt. It is a supervised formulation
of the associative memory problem of memorize pkt, xtq pairs by learning a mapping from kt to xt,
such that given a key (input) kt the model can retrieve (predict) its corresponding value (label) xt.

The objective in Equation 5 is motivated by the observation that the self-attention layer of the
Transformer exhibits a form of online associative recall (often referred to as the induction head
property) (Olsson et al., 2022). This capability has been shown to underpin the model’s ability to
perform in-context learning (Brown, 2020). To explain the connection, in-context learning refers to
the model’s ability, during inference, to generalize from a set of provided pk, xq (question-answer)
pairs and apply this understanding to a new question. This closely parallels associative recall, where
the model retrieves relevant information from past interactions to address new inputs.

Fortunately, this simple objective gives a closed-form solution for St, which coincides with the
implicit online learning method (e.g., Kulis & Bartlett, 2010), according to Theorem 3.1 (We provide
the proof in Appendix C):
Theorem 3.1. The closed form solution for St for objective in Equation 5 is

St,i “ pI ´ εt,iktk
J
t qSt´1,i ` εt,iktxt,i, where εt,i “

βt,i

1 ` βt,ikJ
t kt

P r0,8q. (6)

Here, St,i refers to the i-th row of St, βt,i refers to the i-th element of βt. As ktkJ
t is a matrix, it is

hard to compute its cumulative product for conducting a parallel scan. As a result, in practice, we use
the diagonal approximation 1m ´ εt,ik

d2
t in place of I ´ εt,iktk

J
t , where ad2 “ a d a and 1m is

the m-dimensional all-one vector. Following Mamba (Gu & Dao, 2023) and Transformer (Vaswani
et al., 2017), we make kt “ Wkxt P Rm and βt “ σpWβxtq P Rd (both are functions of xt), where
the activation σ (the Sigmoid function) is to ensure that βt is positive and bounded. In summary, the
final Longhorn update of St becomes:

St “ At d St´1 ` Bt, where At “ p1dˆm ´ εt b kd2
t q, Bt “ pεt d xtq b kt. (7)

The final architecture of Longhorn follows Mamba strictly (Figure 3), except that we replace the
SSM block with Longhorn’s recurrence. We also provide an efficient CUDA kernel for it. The full
inference-time algorithm is provided in Algorithm 1. One can compare Equation 7 to Equation 8
and other SSMs in Appendix A. Longhorn does not introduce an extra “forgetting” gate (hence
it has fewer parameters), because the forgetting gate is naturally derived from the key vector, i.e.,
p1dˆm ´ εt b kd2

t q.
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Advantages of Longhorn

1. While we can derive the learning objective for some of the existing SSMs, Longhorn is the
first SSM designed for explicitly solving an online regression problem.

2. Longhorn does not require a specific forget gate (e.g., αt in GLA or A matrix in Mamba).
The forgetting is naturally linked to the key vector kt through the derivation. This saves
about Opd ˆ mq parameters per SSM module, where m is the dimension of kt, and d is
the dimension of xt. However, Longhorn demonstrates better performance even with fewer
parameters than Mamba (See Figure 1 (left), Table 1, Table 2).

3. The closed-form solution in Equation 6 does not need any specific initialization. In
contrast, Mamba requires a special careful initialization of the A and εt.

4. Unlike DeltaNet (Yang et al., 2024), which struggles to extrapolate beyond training contexts,
Longhorn successfully extrapolates to contexts 16x longer than it was trained for (Figure 1
(right)).

4 RELATED WORK

This section provides a summary of recent advances in linear attention and state space models.

Linear Attention Models Several methods reduce the quadratic complexity of Transformers by
making attention linear with respect to context length. Linformer projects keys and values into
a constant-size matrix, bypassing the scaling with sequence length (Wang et al., 2020). Linear
Transformer replaces the Softmax function with a decomposable similarity function, achieving linear
complexity (Katharopoulos et al., 2020). Performer approximates softmax attention using orthogonal
random features (Choromanski et al., 2020). RetNet adds constant forgetting and rotation (Sun
et al., 2023), while Gated Linear Attention introduces learnable forget gates (Yang et al., 2023).
Linear attention can also be seen as a fast weight network where a slow net adapts a fast network’s
parameters online using inputs (Schlag et al., 2021).

State Space Models State space models (SSMs) focus on parallelizable linear recurrent networks.
Initially, a constant state transition matrix A allows recurrence to be computed via convolution (Li
et al., 2022; Gu et al., 2021). Key models include Diagonal State Space (DSS) (Gupta et al., 2022),
Gated State Space (GSS) (Mehta et al., 2022), S5 (Smith et al., 2022), Bidirectional Gated SSM
(BiGS) (Wang et al., 2022), H3 (Fu et al., 2022), and Mamba (Gu & Dao, 2023). Efficient recurrent
networks often resemble SSMs, such as Deep Linear Recurrent Units (LRUs) (Orvieto et al., 2023;
De et al., 2024), Hierarchically Gated Linear RNNs (HGRN) (Qin et al., 2024b;a), and RWKV (Peng
et al., 2023; 2024).

Fast Weight Programmer The idea of networks modifying their own weights in response to inputs
dates back to the Fast-weight Programmer (Schmidhuber, 1992; 1993; Schlag & Schmidhuber, 2017;
Schlag et al., 2021). These models update a weight matrix W P Rdˆm via the outer product of two
vectors: ∆W “ xt b kpxtq, a mechanism similar to Linear Attention. Our framework extends this
concept by adapting the weight update process to suit specific online learning objectives, enhancing
its use in dynamic learning environments.

Concurrent Work Two concurrent works share similar ideas with ours. Yang et al. (2024) propose
a chunk-wise parallel approach to scale DeltaNet (Schlag et al., 2021) for large-scale language
modeling. DeltaNet’s update rule, viewed as a gradient step for an online regression objective, results
in a state transition matrix Apxtq “ pI ´ βtktk

J
t q, which can have eigenvalues ą1, leading to

instability. To address this, Yang et al. (2024) normalize the key vector kt by its ℓ2 norm, which can
be restrictive. In contrast, Longhorn ensures stability with a closed-form update, using a diagonal
approximation (kd2

t ), allowing for both parallel scan (as in Mamba) and chunk-wise parallel training
(as in GLA), making it as fast as existing SSMs. Additionally, we provide a parallel scan CUDA
kernel, enabling Longhorn to serve as a drop-in replacement for Mamba. Sun et al. (2024) introduce
the Test-Time Training framework, where state updates are derived from a gradient step on an online
regression objective. To maintain parallelism, they assume each gradient step at xt uses the initial
state s0, enabling matrix multiplication. In contrast, Longhorn computes the closed-form solution for
every token, offering greater flexibility.

6
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5 EXPERIMENTS

We validate Longhorn’s performance through the following experiments:

1) We compare Longhorn against other SSMs on the multi-query associative recall benchmark (Arora
et al., 2023) and find that Longhorn is the only model to achieve near-perfect recall at sequence
lengths up to 512 with a hidden dimension of 64.

2) Using the OpenWebText dataset (Gokaslan & Cohen, 2019), we assess Longhorn’s performance
on language modeling with model sizes of 120M and 350M, and context lengths of 1024 or 4096,
showing it consistently outperforms other SSMs in validation perplexity.

3) We train a 1.3B language model on the SlimPajama dataset (Soboleva et al., 2023) with 100B
tokens and compare its performance across 8 benchmarks, where Longhorn achieves better final
performance and ą1.8x better sample efficiency than Mamba and GLA.

4) We additional apply Longhorn to vision domain and compare it against the Vision Mamba
(ViM) (Zhu et al., 2024) model (Appendix 5.5), where Longhorn achieves performance comparable
(slightly superior) to that of the ViM model.

5.1 MULTI-QUERY ASSOCIATIVE RECALL

We first consider the synthetic benchmark Multi-Query Associative Recall (MQAR) (Arora et al.,
2023). The agent observes a sequence of tokens tk1, v1, k2, v2, . . . , kT , vT u, where each consecutive
two-tokens become a key-value pair. At test time, the agent is provided with multiple k „ tk1, . . . kT u,
the goal is to “retrieve” the corresponding values. Following the original benchmark, we consider
the sequence length T P t64, 128, 256, 512u and model dimension (size of the latent embedding of
a token) d P t64, 128, 256, 512u. We compare against 1) Transformer model (Attention), 2) Based
architecture, which combines an SSM with local-attention, where the SSM is derived from the Taylor
approximation of the self-attention (Arora et al., 2024), 3) Hyena (Poli et al., 2023), which is a special
SSM that adopts long convolution via fast fourier transform, 4) RWKV (Peng et al., 2023), which
can be viewed as the division of two SSMs (i.e., y “ a{b, where a, b are outputs from two SSMs).
The state-transition matrix is a scalar, 5) BaseConv (Arora et al., 2023), an SSM that combines
linear projection with convolution, and 6) Mamba (Gu & Dao, 2023), the state-of-the-art SSM that
has data-dependent A and B (See equation 8). Each experiment individually searches for the best
learning rate from t10´4, 4.6 ˆ 10´4, 2.2 ˆ 10´3, 10´2u. Results are summarized in Figure 4.

Figure 4: Comparison of Longhorn to state-of-the-art SSMs on the MQAR benchmark. y-axis is the recall rate.

Observation: From the figure, we can see that Longhorn, which is designed to perform the
associative recall task by solving the online prediction objective, outperforms existing SSM variants
even at the sequence length of 512 and a small model dimension of 64.

5.2 SCALING LAW ON OPENWEBTEXT

In this section, we consider language modeling tasks on models with 120M or 350M parameters with
1024 or 4096 context length. We choose the OpenWebText dataset as it is small and serves as an
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Figure 5: Scaling law with 1024 and 4096 context length on OpenWebText with various SSM models and the
LLaMA (strong Transformer) baseline.

easily accessible benchmark for quick benchmarks.1 The details about the architecture is provided in
Appendix D. We consider the following baseline models: LLaMA (Touvron et al., 2023), RetNet (Sun
et al., 2023), Mamba (Gu & Dao, 2023), RWKV (Peng et al., 2023), and GLA (Yang et al., 2023).
Then we experiment with 1024 or 4096 context length T and model sizes around 120M or 350M.
Results are summarized in Table 1 and Figure 5.

Model # Param. (M) Val. Loss (Ó) # Param. (M) Val. Loss (Ó)

T “ 1024 T “ 4096 T “ 1024 T “ 4096

RetNet 129.1 3.569 3.492 373.2 3.362 3.227
GLA 123.8 3.381 3.364 361.1 3.018 3.001
RWKV 124.4 3.291 3.276 354.8 2.983 2.931
Mamba 129.2 3.238 3.231 371.5 2.902 2.868
LLaMA 124.4 3.247 3.273 357.7 2.891 2.883

Longhorn 128.6 3.225 3.192 369.8 2.888 2.859

Table 1: Language modeling scaling law against LLaMA (Touvron et al., 2023), RetNet (Sun et al., 2023),
RWKV (Peng et al., 2023), and Mamba (Gu & Dao, 2023). All models are trained on the OpenWebText
dataset (Gokaslan & Cohen, 2019). Models vary from 120-350M parameters and 1024-4096 context length.

Observation: From the figure and table, we can see that Longhorn consistently outperforms baseline
SSMs up to 350M and 4096 context length.

5.3 LARGE-SCALE LANGUAGE MODELING

For the large-scale language modeling task, we followed the GLA (Yang et al., 2023) setup, training
a 1.3B parameter model on the SlimPajama (Soboleva et al., 2023) dataset with 100B tokens and
a batch size of 2M. We used the AdamW optimizer (Loshchilov & Hutter, 2017) with a weight
decay of 0.01, cosine learning rate decay (peak: 3e ´ 4, final: 3e ´ 5), and gradient clipping of
1.0. Comparisons were made against LLaMA, Mamba, and GLA models (context size: 2048).
We evaluated on eight standard downstream tasks, including PIQA (Bisk et al., 2020), HellaSwag
(Hella) (Zellers et al., 2019), WinoGrande (Wino) (Sakaguchi et al., 2021), ARC-easy (ARC-e) and
ARC-challenge (ARC-c) (Clark et al., 2018), OpenBookQA (OBQA) (Mihaylov et al., 2018), Social
Interaction QA (SIQA) (Sap et al., 2019), and Boolean questions (BoolQ) (Clark et al., 2019). We
report the average perplexity across the above eight datasets throughout training in Figure 1 (left).
Then we summarize the downstream evaluation results in Table 2.

Observation: From Figure 1 (left), it is evident that Longhorn not only achieves a lower average
perplexity but also improves sampling efficiency by 1.8x compared to Mamba. In other words,
Longhorn reaches the same average perplexity with nearly half the training data required by Mamba.
From the Table 2, we can see that up to a 1.3B model, Longhorn remains strong among all baseline
models and achieves slightly better result than Mamba, even though it has a bit fewer parameters.

1We adapted code from the nanoGPT repository https://github.com/karpathy/nanoGPT, which
is a minimal reproduction of GPT-2 model using PyTorch.
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Model State Size PIQA Hella Wino. ARC-e ARC-c OBQA SIQA BoolQ Avg.
acc Ò acc norm Ò acc Ò acc Ò acc norm Ò acc Ò acc norm Ò acc Ò

LLaMA 8M 55.08 55.36 71.73 59.26 32.19 43.35 45.16 62.13 53.03

GLA 512K 55.55 49.10 71.12 58.86 28.11 41.67 44.91 59.21 51.07
Mamba 64K 54.21 53.61 71.67 61.05 30.15 43.94 44.18 59.22 52.25

Longhorn 64K 55.78 52.30 71.00 60.63 29.53 43.55 44.68 61.29 52.35

Table 2: Language modeling results against LLaMA (Touvron et al., 2023), RetNet (Sun et al., 2023), and
Mamba (Gu & Dao, 2023). All models are trained on the same subset of the SlimPajama dataset with the Mistral
tokenizer. The 340M/1.3B models are trained for 15B/100B tokens respectively. State Size is the effective state
size of an SSM per layer. For instance, GLA’s state size (1024K) is computed by md{h, where the key and value
dimensions are m “ 1024 and d “ 2048, and there are 4 heads h “ 4. The individual task performance is via
zero-shot. The last column shows the average value over the results on all benchmarks.

5.4 ABLATION ON LENGTH EXTRAPOLATION

We evaluate how Longhorn extrapolates to a context length longer than 2048 (training context length)
at inference time. In particular, we pick a disjoint validation set from SlimPajama dataset, rearrange
it into batches of sequences of length T P t2048, 4096, 8192, 16384, 32768u, and then evaluate the
pretrained model’s perplexity on those sequences. The results are summarized in Figure 1 (right).

Observation: From the figure, we observe that Longhorn successfully extrapolates to contexts up to
16x longer than those used during training, this contrasts with DeltaNet (Yang et al., 2024), which
highlights a limitation in that the model cannot extrapolate to longer contexts. In contrast, LLaMA,
as a Transformer-based model, fails to extrapolate beyond its training context length.

5.5 VISION STATE SPACE MODELS

In addition to language tasks, recent works have also applied state space models to the vision domain,
leveraging their superior training efficiency. In particular, following the Vision Mamba (ViM) (Zhu
et al., 2024), we conduct experiments on the ImageNet (Deng et al., 2009) classification task. Similar
to ViM, We apply a bi-directional scan with Longhorn SSM (ViL) and compare the results with ViM
on both the TINY and SMALL configurations described in the ViM paper.

Model # Param Top-1 Accuracy

ViM-Tiny 7M 76.1
ViL-Tiny (ours) 7M 76.4
ViM-Small 26M 80.5
ViL-Small (ours) 26M 80.7

Table 3: Top-1 Accuracy on ImageNet classification for Vision Mamba (ViM) and Vision Longhorn (ViL).

Observation: The results from Table 3 demonstrate that the Vision Longhorn model (ViL) achieves
comparable (slightly better) performance to the original ViM. Note that we use the best hyperparame-
ters for ViM without additional tuning, and ViL does not require two additional parameters for the
forward and backward A matrices, as they are computed directly based on the key k vector.

6 CONCLUSION AND FUTURE WORK

This work introduces a novel approach to designing deep state-space models (SSMs) by conceptualiz-
ing the recurrence update as solving an online objective. Based on this, we propose Longhorn, a novel
SSM model that explicitly solves online associative recall in closed form. Longhorn is parallelizable
and achieves state-of-the-art performance among SSMs on MQAR, language modeling, and image
classification tasks. One future direction is to explore other online learning objectives. Additionally,
recent studies (Ren et al., 2024) suggest that incorporating sliding-window attention with Mamba
improves performance. We anticipate similar benefits for Longhorn.
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A PRIOR DEEP STATE SPACE MODELS

Example A.1 (Linear Attention Variants). Linear Attention (LA) (Katharopoulos et al., 2020),
Retention Network (RetNet) (Sun et al., 2023), and Gated Linear Attention (GLA) (Yang et al., 2023)
all assume At, Bt yield rank-1 (or even constant) outputs:

St “ At d St´1 ` vpxtq b kpxtq, with

$

&

%

At “ 1 (LA)
At “ c P r0, 1s (RetNet)
At “ 1 b αpxtq (GLA)

,

where St P Rdˆm, vpxtq P Rd, kpxtq P Rm are linear mappings of xt, and b denote the outer
product. In practice, one can use h heads as in the multi-head attention to save some computation,
where the m and d dimensions are divided into h groups and each group performs its own LA variant.
The outer product complexity reduces to Oph ˚ m{h ˚ d{h “ md{hq. But then the effective size of St

also shrinks to md{h.
Example A.2 (Mamba (Gu & Dao, 2023)). The Mamba architecture is derived by discretizing a
continuous linear dynamics. Its discretized update is:

St “ At d St´1 ` Bt, where
At “ exppA d pεpxtq b 1qq, Bt “ pεpxtq d xtq b kpxtq.

(8)

where St P Rdˆm with m “ 16 by default, εpxtq P Rd, kpxtq P Rm linear mappings of xt, and
A P Rdˆm is a data independent (not depending on xt trainable weight matrix.

In Mamba, both At and Bt depend on εpxtq, which represents the step size for the SSM update.

In practice, Mamba does not use multiple heads as in linear attention variants. Perhaps the main
reason is that given a fixed m and d, the largest memory state will be with h “ 1 (as the effective size
of St is md{h). In addition, Mamba’s output is ot “ CpxtqSt ` Dt d xt, which has an additional
residual part Dt d xt.
Example A.3 (Griffin (De et al., 2024)). In Mamba and the linear attention variants, the outer
product serves as a critical role in lifting vectors to matrices. The recent Griffin architecture abandons
the outer product and performs pure elementwise product:

st “ apxtq d st´1 `
a

1 ´ apxtq d ipxtq d xt,

where st, apxtq, ipxtq are all Rd. This yields smaller memory states, but in practice, Griffin is
combined with local attention (i.e., the sliding-window self-attention) to strengthen its capability.
Example A.4 (RWKV (Peng et al., 2023)). The original RWKV also performs elementwise recurrence.
It maintains a state of ratio form st “ ut{zt, where ut, zt are updated separately by two SSMs:

st “ ut{zt

ut “ expp´wq ¨ ut´1 ` exppkpxtqq d vpxtq, zt “ expp´wq ¨ zt´1 ` exppkpxtqq,

where all the vectors are of size Rd, and w ą 0 is a trainable weight for controlling the forgetting. In
the most recent RWKV version (Peng et al., 2024), the denominator zt is removed, and the elementwise
product is replaced with the outer product, which makes it more similar to an LA variant.
Example A.5 (HGRN2 (Qin et al., 2024a)). The Gated Linear RNNs with State Expansion (HGRN2)
model is represented with the following recurrence:

St “ p1 b fpxtqq d St´1 ` ipxtq b p1 ´ fpxtqq.

Here, fpxtq P r0, 1s is the forget gate, p1 ´ fpxtqq is the input gate, and ipxtq is the input vector.
HGRN2 thus resembles an RNN.
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Method Online Learning Objective Ltpsq (assume xt P R) Online Update

LA ∥S ´ St´1∥2F ´ 2xSkt, xty St “ St´1 ` xt b kt

RetNet γ ∥S ´ St´1∥2 ` p1 ´ γq ∥S∥2F ´ 2xSkt, xty St “ γSt´1 ` xt b kt

GLA ∥S ´ St´1diagpαtq∥2F ` 2xSkt, xty St “ St´1diagpαtq ` xt b kt

Griffin
∥∥?

αt d ps ´ st´1q
∥∥2 `

∥∥?
1 ´ αt d s

∥∥2 ´ 2
?
1 ´ αt d s d it d xt st “ αt d st´1 `

a

p1 ´ αtq d it d xt

Longhorn ∥S ´ St´1∥2F ` ∥Skt ´ xt∥2diagpβtq

St “ p1mˆn ´ εt b kd2
t q d St´1`

pεt d xtq b kt, εt “ βt{p1 ` βtk
J
t ktq

Table 4: Some of the existing SSMs and their corresponding online learning objectives/updates.

B EXISTING STATE SPACE MODELS’ ONLINE OBJECTIVES

We reverse-engineer some existing deep SSMs’ online learning objectives in Table 4.

C PROOF

This section provides the proof for Theorem 3.1. Given the Longhorn’s objective St “

argminSPRdˆm

!

||S ´ St´1||2F ` ||Skt ´ xt||
2
diagpβtq

)

, we have the following theorem:

Theorem C.1. The closed form solution for St for objective in Equation 5 is

St,i “ pI ´ εt,iktk
J
t qSt´1,i ` εt,iktxt,i, where εt,i “

βt,i

1 ` βt,ikJ
t kt

P r0,8q. (9)

Proof. As the objective in equation 5 is in a quadratic form with respect to s, there is a unique
minimum. Observe that each row of S (e.g., Si) optimizes the objective independently, therefore we
can solve the solution row-wise. By setting the derivative of ∇Si

Lt “ 0, we have:

∇Si
Lt “ 0 ðñ pSi ´ St´1,iq ` βt,ipS

J
i kt ´ xt,iqkt “ 0

ðñ pI ` βt,iktk
J
t qSi “ St´1,i ` βt,iktxt,i

ðñ
loomoon

p3q

Si “

ˆ

I ´
βt,i

1 ` βt,ikJ
t kt

ktk
J
t

˙

St´1,i `

ˆ

I ´
βt,i

I ` βt,ikJ
t kt

ktk
J
t

˙

βt,iktxt,i

ðñ

ˆ

I ´
βt,i

I ` βt,ikJ
t kt

ktk
J
t

˙

St´1,i `
pI ` βt,ik

J
t kt ´ βt,iktk

J
t qβt,iktxt,i

I ` βt,ikJ
t kt

ðñ
loomoon

p5q

ˆ

I ´
βt,i

I ` βt,ikJ
t kt

ktk
J
t

˙

St´1,i `
βt,iktxt,i

I ` βt,ikJ
t kt

(3) is derived from the fact that pI ` βt,iktk
J
t q´1 “ pI ´

βt,iktk
J
t

1`βt,ikJ
t kt

q by the Sherman–Morrison

formula. (5) is derived by noticing that kJ
t ktktxt,i ´ ktk

J
t ktxt,i “ 0.

D ADDITIONAL EXPERIMENT DETAILS

We provide the architecture detail for conducting the scaling law experiments on OpenWebText in
Table 5. The architecture configs follow exactly from the Mamba paper (Gu & Dao, 2023).

Params n layers d model n heads / d head Training steps Learning Rate Batch Size Tokens

125M 12 768 12 / 64 4800 6e-4 0.5M tokens 2.5B
350M 24 1024 16 / 64 13500 3e-4 0.5M tokens 7B

Table 5: Training details on OpenWebText.
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