
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LONGHORN: STATE SPACE MODELS ARE AMORTIZED
ONLINE LEARNERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern large language models are built on sequence modeling via next-token
prediction. While the Transformer remains the dominant architecture for sequence
modeling, its quadratic decoding complexity in sequence length poses a major
limitation. State-space models (SSMs) present a competitive alternative, offering
linear decoding efficiency while maintaining parallelism during training. However,
most existing SSMs rely on linear recurrence designs that appear somewhat ad
hoc. In this work, we explore SSM design through the lens of online learning,
conceptualizing SSMs as meta-modules for specific online learning problems.
This approach links SSM design to formulating precise online learning objectives,
with state transition rules derived from solving these objectives. Based on this
insight, we introduce a novel deep SSM architecture, Longhorn, whose update
resembles the closed-form solution for solving the online associative recall problem.
Our experimental results show that Longhorn outperforms state-of-the-art SSMs,
including the Mamba model, on standard sequence modeling benchmarks, language
modeling, and vision tasks. Specifically, Longhorn achieves a 1.8x improvement
in sample efficiency compared to Mamba, and can extrapolate over contexts that
are up to 16x longer during inference.

1.8x speed up

Figure 1: (left) The average perplexity on eight downstream datasets for GLA,
Mamba, and Longhorn (1.3B model) over seen tokens on SlimPajama. Longhorn
leads to a 1.8x speed up in sampling efficiency. (right) Longhorn, pretrained with
2048 context length, extrapolates up to 16x longer context at inference.

1 INTRODUCTION

The Transformer model has become the go-to architecture for sequence modeling in deep learn-
ing (Vaswani et al., 2017). However, its utility is constrained by the quadratic growth in training and
decoding costs with increasing sequence length. Despite various optimizations such as efficient de-
coding (e.g., Chen et al., 2023; Kuperman & Dyke, 2011), KV-cache compression (e.g., DeepSeek-AI
& Dai, 2024), and memory efficient implementation (e.g., Dao et al., 2022), it remains challenging to
scale Transformers for autonomous and continual use with an infinite (or very long) context window.

Recent advances in linear attention models (Katharopoulos et al., 2020) and state-space models
(SSMs) (Gu et al., 2021) have demonstrated their potential. These models are specialized recurrent
neural networks capable of efficiently computing outputs in parallel when input tokens are provided
simultaneously during training, thus avoiding the inefficiencies of traditional backpropagation through
time. During inference, the recurrent form is employed, resulting in linear decoding efficiency.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Sequence	Mixing

Channel	Mixing

Online	Learning	Objective

Online	Update

<latexit sha1_base64="DmfWkB8nbNFv8hpRyP9Af5eiDBg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8dK7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GdzO//cS1EbF6xEnC/YgOlQgFo2ilRqOP/XLFrbpzkFXi5aQCOer98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6l1VvYfLSu02j6MIJ3AK5+DBNdTgHurQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPzrWjcQ=</latexit>

St

Longhorn	Objective

Longhorn	Update

<latexit sha1_base64="PMgDxXmEoaZPFs+BNpOVqXsK/jo=">AAACC3icbVC7SgNBFJ2Nrxhfq5Y2Q4KQoIZdEbURglpYWERiHpCEZXYySYbMPpi5K4QlvY2/YmOhiK0/YOffONmk0MQDFw7n3Mu997ih4Aos69tILSwuLa+kVzNr6xubW+b2Tk0FkaSsSgMRyIZLFBPcZ1XgIFgjlIx4rmB1d3A19usPTCoe+PcwDFnbIz2fdzkloCXHzN46kK8U8AW+zlcOccWJ4cgeFfABbjEhEs8xc1bRSoDniT0lOTRF2TG/Wp2ARh7zgQqiVNO2QmjHRAKngo0yrUixkNAB6bGmpj7xmGrHyS8jvK+VDu4GUpcPOFF/T8TEU2roubrTI9BXs95Y/M9rRtA9b8fcDyNgPp0s6kYCQ4DHweAOl4yCGGpCqOT6Vkz7RBIKOr6MDsGefXme1I6L9mnRvjvJlS6ncaTRHsqiPLLRGSqhG1RGVUTRI3pGr+jNeDJejHfjY9KaMqYzu+gPjM8fTyqXcA==</latexit>

Lt(S) = D(S, St�1) + `t(S)

<latexit sha1_base64="DoRCEpUs0o3ESR1z1BRU6hvbNMs=">AAACBHicbVC7SgNBFJ31GeNr1TLNYBBiE3ZF1EYI2lhYRGIekCzL7GSSDJmdXWbuimGJYOOv2FgoYutH2Pk3Th6FJh64cDjn3pl7TxALrsFxvq2FxaXlldXMWnZ9Y3Nr297ZrekoUZRVaSQi1QiIZoJLVgUOgjVixUgYCFYP+pcjv37HlOaRvIVBzLyQdCXvcErASL6dq/iAz3EL2D2kRHVDLof44dqHQuXQt/NO0RkDzxN3SvJoirJvf7XaEU1CJoEKonXTdWLwzLPAqWDDbCvRLCa0T7qsaagkIdNeOj5iiA+M0sadSJmSgMfq74mUhFoPwsB0hgR6etYbif95zQQ6Z17KZZwAk3TyUScRGCI8SgS3uWIUxMAQQhU3u2LaI4pQMLllTQju7MnzpHZUdE+K7s1xvnQxjSODcmgfFZCLTlEJXaEyqiKKHtEzekVv1pP1Yr1bH5PWBWs6s4f+wPr8AXshl1o=</latexit>

St = argmin Lt(S)

<latexit sha1_base64="S/Wh5zJip9PgYtI8HHd+lk4YZX4=">AAACKXicbZDJSgNBEIZ73I1b1KOXxiAoYpgJoh6DgnhUYqKQxKGnU4lNeha6ayRhZl7Hi6/iRUFRr76IneXgVtDw839VVNfvRVJotO13a2Jyanpmdm4+t7C4tLySX12r6TBWHKo8lKG69pgGKQKookAJ15EC5nsSrrzuyYBf3YHSIgwusR9B02edQLQFZ2gsN19O0wrdoxU3wT0nS1O3gdDD5DS7KdFdamDX0F6a3pTcZIRagnWy7YYHyFzcydx8wS7aw6J/hTMWBTKuczf/3GiFPPYhQC6Z1nXHjrCZMIWCS8hyjVhDxHiXdaBuZMB80M1keGlGt4zTou1QmRcgHbrfJxLma933PdPpM7zVv9nA/I/VY2wfNRMRRDFCwEeL2rGkGNJBbLQlFHCUfSMYV8L8lfJbphhHE27OhOD8PvmvqJWKzkHRudgvlI/HccyRDbJJtolDDkmZnJFzUiWc3JNH8kJerQfryXqzPkatE9Z4Zp38KOvzC7djplo=</latexit>

||S � St�1||2F + ||Sk � x||2diag(�t)

<latexit sha1_base64="mT2RhesTEQsY9TAiiILWQbnicog=">AAACBnicbVDLSgMxFM3UV62vUZciBIsgiGVGRN0ItW5cVmof0JYhk6ZtaGYyJHeEMnTlxl9x40IRt36DO//GtJ2Fth64l8M595Lc40eCa3CcbyuzsLi0vJJdza2tb2xu2ds7NS1jRVmVSiFVwyeaCR6yKnAQrBEpRgJfsLo/uBn79QemNJfhPQwj1g5IL+RdTgkYybP3Kx7gK3xtekt2JOCKl8CJO8LHuOSBZ+edgjMBniduSvIoRdmzv1odSeOAhUAF0brpOhG0E6KAU8FGuVasWUTogPRY09CQBEy3k8kZI3xolA7uSmUqBDxRf28kJNB6GPhmMiDQ17PeWPzPa8bQvWwnPIxiYCGdPtSNBQaJx5ngDleMghgaQqji5q+Y9okiFExyOROCO3vyPKmdFtzzgnt3li+W0jiyaA8doCPkogtURLeojKqIokf0jF7Rm/VkvVjv1sd0NGOlO7voD6zPH+NPltg=</latexit>

St = At � St�1 + Bt

Figure 2: (left) Most existing sequence models consist of channel and sequence mixing layers. The sequence
mixing layers can be viewed as “meta-modules” that compress history into a state St, which is then passed to
later layers for sequence modeling. (middle) Sequence mixing can be seen as an online learning problem, where
the SSM state St optimizes an online objective. The recurrent update of St is derived either by solving this
objective in closed form or via a proximal update. (right) Longhorn’s update solves online associative recall,
where the goal is to recover x P Rd based on a hint k P Rm from a state matrix S P Rdˆm. Longhorn’s update
corresponds to the implicit online learning solution, where At “ 1dˆm ´ εt b kb2 and Bt “ pε d xtq b kt,
and εt “ βt{p1 ` βtk

J
t ktq. See the details in Section 3 and Algorithm 1.

Initially, these models underperformed compared to Transformers. However, recent SSMs (e.g., Gu
& Dao, 2023; Yang et al., 2023; Peng et al., 2024; De et al., 2024; Beck et al., 2024) have achieved
performance parity with Transformers in language modeling tasks. Despite extensive research into
various design aspects of SSMs, a guiding principle for designing SSMs remains elusive.

In this work, we propose one potential principle. We observe that one can view SSMs (or any
sequence mixing layers) as “meta modules” that compress the history online into a memory state
which is then used by later layers in the network for sequence modeling. From this perspective:

The recurrent form of SSMs can be viewed as solving an online learning problem.

As a result, we can draw inspiration from online learning and confine the design choices of
SSMs to reflect those learning dynamics that solve specific online prediction problems. The
aim is that, by optimizing for the right objective, the model can achieve superior performance with
fewer parameters or reduced computational costs. Furthermore, this online learning perspective may
offer deeper insights into the function of SSM layers in large models. In particular, the recurrent
update (i.e., state-transition dynamics) of an SSM can be interpreted as a proximal update step or a
closed-form solution to an online learning objective. We outline the corresponding objectives for
several existing SSMs in Table 4. One significant advantage of viewing SSMs through the lens of
online learning is their ability to adapt post-training during deployment, allowing them to process
arbitrarily long data sequences at inference time.

Based on this insight, we propose a simple yet effective architecture (Longhorn), derived from the
implicit closed-form update of an online associative recall problem. The closed-form update naturally
leads to a stable recurrent form without a manually designed gating mechanism, automatically
balancing forgetting and learning. Thus Longhorn does not need a separately parameterized forget
gate, which saves parameters when the state size is large. We demonstrate that Longhorn performs
comparably to or better than state-of-the-art SSMs like Mamba (Gu & Dao, 2023) on synthetic and
large-scale sequence modeling tasks. In particular, Longhorn outperforms Mamba at the size of
1.3B-parameter when trained on 100B tokens from the SlimPajama dataset (Soboleva et al., 2023).
To summarize, our contributions are:

1) Theoretical Framework: We propose a novel framework that views SSMs’ recurrent update as
solving online learning objectives. As a result, the design of SSMs reduces to the design of the online
learning objectives. In particular, we introduce a novel, simple, and effective SSM, named Longhorn,
that explicitly solves an online associative recall problem. Longhorn’s recurrent update is obtained by
the closed-form solution to the online learning objective. Consequently, Longhorn does not require a
separately parameterized forget gate that appears in most existing SSMs.

2) Empirical Results: Longhorn demonstrates better performance than existing SSMs including
Mamba, across both synthetic associative recall tasks and the large-scale language modeling task.
Moreover, it achieves 1.8x improvement in sample efficiency compared to Mamba (See Figure 1
(left)). Longhorn’s training speed is as fast as Mamba, as we only replace the SSM module in the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1 Longhorn’s Single-layer SSM Recurrence (Inference Time)

1: Parameters: Wq P Rmˆd,Wk P Rmˆd,Wβ P Rdˆd, where Wβ can be low-rank, horizon T .
2: Initialize the memory state S0 Ð 0dˆm.
3: for t P t1, . . . , T u do
4: 1) Receive input xt P Rd.
5: 2) Compute the query qt, key kt and βt:

qt “ Wqxt P Rm, kt “ Wkxt P Rm, βt “ SigmoidpWβxtq P p0, 1qd.

6: 3) Update the memory state St P Rdˆm via

St “
`

1dˆm ´ εt b kd2
t

˘

d St´1 `
`

εt d xt

˘

b kt, εt “ βt{p1 ` βtk
J
t ktq P p0, 1qd.

7: 4) Compute the output ot “ Stqt P Rd.
8: end for
9: Note: d elementwise product and b is outer product. xt in practice is preprocessed through a

linear projection followed by a Conv1d operation as in Mamba (Gu & Dao, 2023).

Mamba architecture with Longhorn’s recurrence. So it serves as a drop-in replacement for Mamba.
Lastly, Longhorn, trained with 2048 context length can extrapolate to 32K context length at inference
time without much perplexity drop (See Figure 1 (right)).

Notation Throughout this work, we use d to denote the Hadamard (elementwise) product, and b

to denote the Kronecker (or outer) product between two tensors. Uppercase letters A,B, etc. denote
matrices, while lowercase k, v are in general vectors. ∥¨∥ by default refers to the ℓ2 norm for vectors.

2 BACKGROUND

In this section, we provide a brief introduction to contemporary deep state space models (deep SSMs).

Modern large language models are sequence-to-sequence models consisting of a stack of layers
y “ ΦL ˝ ¨ ¨ ¨ ˝ Φ1pxq that sequentially processes an input sequence x “ txtu

T
t“1, where T is

the context length. Specifically, transformers consist of alternative stacks of self-attention (SA)
and multi-layer perceptron (MLP) layers that conduct mixing (i.e., information aggregation) on the
sequence and channel dimensions, respectively.

Deep SSMs replace the SA layers with SSM layers. Some variants of SSM models leave the MLP
layers unchanged (Sun et al., 2023; Yang et al., 2023; De et al., 2024), while others fuse the SSM layer
and the MLP layer into a single unified module (Gu & Dao, 2023). But in both cases, the sequence
mixing is done by the SSM module, and the channel mixing is done by the channel-wise MLP. Taking
Mamba as an example (Gu & Dao, 2023), a Mamba model consists of a stack of homogeneous
modules named Mamba block (the Φipxq); we provide a visualization of a single Mamba block in
Figure 3 (Gu & Dao, 2023), which consists of an SSM block for sequence mixing (red), and an MLP
block for channel mixing (blue).

SSM: General Form The SSM block (in red) plays the crucial role of sequence mixing. It works
by iteratively updating a memory state matrix St P Rdˆm with a linear recurrence:

St “ Apxtq ˚ St´1 ` Bpxtq, @t P t1, . . . , T u, S0 “ 0, (1)

where xt is the input at time t, St is the model’s state, At, Bt : Rd Ñ Rdˆm are some functions of
the input and ˚ is a multiplication operation of choice, such as Hadamard product or matrix product.

Given the state St, SSMs often give the output token at the next layer via a gated linear unit
(GLU) (Dauphin et al., 2017):

yt “ ReadoutpSt, xtq “ W1

`

ot d σpW2xtq
˘

, ot “ CpxtqSt,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where we first get ot via a state-dependent linear projection on St, which is then fed into a subsequent
channel mixing gated linear unit (blue in Figure 3), where σp¨q is a non-linear activation function.

A key feature of this design in Equation 1 is that St has a linear recurrence, i.e., St is linear in St´1.

Conv

SSM
<latexit sha1_base64="N/EBWZoOVLkLENSRb/DG5XWv4dg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWjW4v6zUb/I4inACp3AOAVxBHe6gAU0g8AjP8ApvnvJevHfvY9Fa8PKZY/gD7/MHnlePKQ==</latexit>� <latexit sha1_base64="N/EBWZoOVLkLENSRb/DG5XWv4dg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWjW4v6zUb/I4inACp3AOAVxBHe6gAU0g8AjP8ApvnvJevHfvY9Fa8PKZY/gD7/MHnlePKQ==</latexit>�

Linear

Linear Linear

Channel	Mixing
Sequence	Mixing

Figure 3: Mamba Block

Crucially, this allows us to express all St in an explicit form that can be
calculated in parallel: when all x “ txtut are available as in the training
phase, tStut can be written into

St “
ÿ

t1ďt

pAt1ÑtqBpxt1 q, where At1Ñt “
ź

t1ăτďt

Apxτ q. (2)

Here
ś

denotes the product induced by multiplication operator ˚. The
resulting cumulative product At1Ñt can be implemented efficiently in par-
allel with the prefix scan algorithm (e.g., Harris et al., 2007), which only
requires Oplog T q (T is the sequence length) parallel operations. From
now on, we will abbreviate Apxtq and Bpxtq as At and Bt, respectively.

Designs of (At, Bt, ˚) Existing variants of SSMs mainly differ in the design choices of the networks
At, Bt, and the associated operator ˚ in the linear recurrence. A core issue here is that the memory
state St P Rdˆm, designed to be m times the input xt in size, must be as large as possible to maintain
sufficient information during recurrence. This makes the architecture design of At, Bt, both mapping
Rd to Rdˆm challenging. A naive linear mapping would result in d ˆ d ˆ m weights, which is
prohibitively large. This makes it necessary to impose certain low-dimensional structures in At, Bt,
which is the main difference from existing designs of SSMs. In Appendix A, we summarize some
existing deep SSM models in the form of Equation 1.

3 AN ONLINE LEARNING PERSPECTIVE FOR SEQUENCE MIXING

As demonstrated in the previous section, designing a state-space model (SSM) depends on the specific
selection of pAt, Bt, ˚q, which is intricate and somewhat artisanal. In this section, we propose to
streamline SSM design through an online learning perspective. The main idea is to treat the SSM
layers as learning modules that learn to compress information along the sequence dimension. From
this perspective, the SSM layers are learning to learn, such that during the inference time, these
layers are still learning (compressing) new information online.

We begin with an overview of online learning and subsequently demonstrate how SSM can be
framed as an online learning problem. Finally, we present a straightforward architecture based on the
closed-form solution of the implicit online learning algorithm.

3.1 SSM AS ONLINE LEARNING

We advocate viewing the recurrence of SSM as solving an online learning problem. In online learning,
the agent picks a state st at time t and then incurs a loss ℓtpstq. The goal is to minimize

min
tstu

ÿ

t

ℓtpstq. (3)

For instance, consider online linear prediction, where at each step the agent is given an input-label
pair pxt, ytq and ℓtpstq “ 1

2 ||sJ
t xt ´ yt||

2 is the ℓ2 regression loss, then the problem becomes an
online regression problem, and the goal is to successfully predict yt given xt at future time steps,
with the key feature that the prediction (st) can change with each new data point.

Online convex programming (OCP) (e.g., Zinkevich, 2003) yields a principled approach to solving
Equation 3 when ℓt are convex, by trading-off the “stability” and “plasticity” (e.g., Mermillod et al.,
2013). Formally, an online convex programming algorithm updates st by solving a regularized cost
function:

st “ argmin
s

Ltpsq, Ltpsq “ Dϕps, st´1q
looooomooooon

stability

`βtℓtpsq
loomoon

plasticity

, (4)

where βt P R` and Dϕ is a discrepancy measure, often a Bregman divergence induced by the convex
function ϕ (e.g., when ϕpxq “ 1

2 ∥x∥
2, Dϕps, st´1q “ 1

2 ||s ´ st´1||2). Here the first term ensures

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the updated s will be close to the previous st´1, so the agent suffers less from catastrophic forgetting,
while the second term ensures the agent is incorporating new knowledge from minimizing the new
loss ℓtpsq. Hence, βt controls the trade-off between stability and plasticity.

3.2 THE LONGHORN ARCHITECTURE

Under the online learning framework, the design of an SSM reduces to the design of Dϕ and ℓt
in Equation 4. This provides a unified framework for the existing SSM variants. We summarize in
Table 4 in Appendix B the online learning interpretation of several existing SSM architectures.

In this work, we explore a highly simplified and natural design called Longhorn guided by the online
principle (see the last row of Table 4). In particular, we consider tpkt, xtqut as the input stream,
where kt P Rm and xt P Rd are the key-value pairs, just as in the Transformer model (Vaswani et al.,
2017). In practice, as in Mamba (Gu & Dao, 2023), kt “ Wkxt P Rm, where Wk P Rmˆd, is a
linear mapping from xt.

We want to recurrently update hidden states tStut, where St P Rdˆm is a matrix that summarizes the
information up to time t. We posit the following OCP objective for updating St:

St “ argmin
SPRdˆm

!

||S ´ St´1||2F ` ||Skt ´ xt||
2
diagpβtq

)

. (5)

Here, || ¨ ||F denotes the Frobenius norm of a matrix, βt P Rd is a vector controlling how much
new information about xt we want the model to incorporate for St. For instance, βt,i “ 0 implies
St,i “ St´1,i (i.e., the i-th row of S remains unchanged), while a large βt,i implies the model empties
some part of Si for incorporating xt,i.

From a high-level perspective, Equation 5 is solving an online prediction problem of learning a
weight matrix S to predict xt given kt with a linear model xt « SJkt. It is a supervised formulation
of the associative memory problem of memorize pkt, xtq pairs by learning a mapping from kt to xt,
such that given a key (input) kt the model can retrieve (predict) its corresponding value (label) xt.

The objective in Equation 5 is motivated by the observation that the self-attention layer of the
Transformer exhibits a form of online associative recall (often referred to as the induction head
property) (Olsson et al., 2022). This capability has been shown to underpin the model’s ability to
perform in-context learning (Brown, 2020). To explain the connection, in-context learning refers to
the model’s ability, during inference, to generalize from a set of provided pk, xq (question-answer)
pairs and apply this understanding to a new question. This closely parallels associative recall, where
the model retrieves relevant information from past interactions to address new inputs.

Fortunately, this simple objective gives a closed-form solution for St, which coincides with the
implicit online learning method (e.g., Kulis & Bartlett, 2010), according to Theorem 3.1 (We provide
the proof in Appendix C):
Theorem 3.1. The closed form solution for St for objective in Equation 5 is

St,i “ pI ´ εt,iktk
J
t qSt´1,i ` εt,iktxt,i, where εt,i “

βt,i

1 ` βt,ikJ
t kt

P r0,8q. (6)

Here, St,i refers to the i-th row of St, βt,i refers to the i-th element of βt. As ktkJ
t is a matrix, it is

hard to compute its cumulative product for conducting a parallel scan. As a result, in practice, we use
the diagonal approximation 1m ´ εt,ik

d2
t in place of I ´ εt,iktk

J
t , where ad2 “ a d a and 1m is

the m-dimensional all-one vector. Following Mamba (Gu & Dao, 2023) and Transformer (Vaswani
et al., 2017), we make kt “ Wkxt P Rm and βt “ σpWβxtq P Rd (both are functions of xt), where
the activation σ (the Sigmoid function) is to ensure that βt is positive and bounded. In summary, the
final Longhorn update of St becomes:

St “ At d St´1 ` Bt, where At “ p1dˆm ´ εt b kd2
t q, Bt “ pεt d xtq b kt. (7)

The final architecture of Longhorn follows Mamba strictly (Figure 3), except that we replace the
SSM block with Longhorn’s recurrence. We also provide an efficient CUDA kernel for it. The full
inference-time algorithm is provided in Algorithm 1. One can compare Equation 7 to Equation 8
and other SSMs in Appendix A. Longhorn does not introduce an extra “forgetting” gate (hence
it has fewer parameters), because the forgetting gate is naturally derived from the key vector, i.e.,
p1dˆm ´ εt b kd2

t q.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Advantages of Longhorn

1. While we can derive the learning objective for some of the existing SSMs, Longhorn is the
first SSM designed for explicitly solving an online regression problem.

2. Longhorn does not require a specific forget gate (e.g., αt in GLA or A matrix in Mamba).
The forgetting is naturally linked to the key vector kt through the derivation. This saves
about Opd ˆ mq parameters per SSM module, where m is the dimension of kt, and d is
the dimension of xt. However, Longhorn demonstrates better performance even with fewer
parameters than Mamba (See Figure 1 (left), Table 1, Table 2).

3. The closed-form solution in Equation 6 does not need any specific initialization. In
contrast, Mamba requires a special careful initialization of the A and εt.

4. Unlike DeltaNet (Yang et al., 2024), which struggles to extrapolate beyond training contexts,
Longhorn successfully extrapolates to contexts 16x longer than it was trained for (Figure 1
(right)).

4 RELATED WORK

This section provides a summary of recent advances in linear attention and state space models.

Linear Attention Models Several methods reduce the quadratic complexity of Transformers by
making attention linear with respect to context length. Linformer projects keys and values into
a constant-size matrix, bypassing the scaling with sequence length (Wang et al., 2020). Linear
Transformer replaces the Softmax function with a decomposable similarity function, achieving linear
complexity (Katharopoulos et al., 2020). Performer approximates softmax attention using orthogonal
random features (Choromanski et al., 2020). RetNet adds constant forgetting and rotation (Sun
et al., 2023), while Gated Linear Attention introduces learnable forget gates (Yang et al., 2023).
Linear attention can also be seen as a fast weight network where a slow net adapts a fast network’s
parameters online using inputs (Schlag et al., 2021).

State Space Models State space models (SSMs) focus on parallelizable linear recurrent networks.
Initially, a constant state transition matrix A allows recurrence to be computed via convolution (Li
et al., 2022; Gu et al., 2021). Key models include Diagonal State Space (DSS) (Gupta et al., 2022),
Gated State Space (GSS) (Mehta et al., 2022), S5 (Smith et al., 2022), Bidirectional Gated SSM
(BiGS) (Wang et al., 2022), H3 (Fu et al., 2022), and Mamba (Gu & Dao, 2023). Efficient recurrent
networks often resemble SSMs, such as Deep Linear Recurrent Units (LRUs) (Orvieto et al., 2023;
De et al., 2024), Hierarchically Gated Linear RNNs (HGRN) (Qin et al., 2024b;a), and RWKV (Peng
et al., 2023; 2024).

Fast Weight Programmer The idea of networks modifying their own weights in response to inputs
dates back to the Fast-weight Programmer (Schmidhuber, 1992; 1993; Schlag & Schmidhuber, 2017;
Schlag et al., 2021). These models update a weight matrix W P Rdˆm via the outer product of two
vectors: ∆W “ xt b kpxtq, a mechanism similar to Linear Attention. Our framework extends this
concept by adapting the weight update process to suit specific online learning objectives, enhancing
its use in dynamic learning environments.

Concurrent Work Two concurrent works share similar ideas with ours. Yang et al. (2024) propose
a chunk-wise parallel approach to scale DeltaNet (Schlag et al., 2021) for large-scale language
modeling. DeltaNet’s update rule, viewed as a gradient step for an online regression objective, results
in a state transition matrix Apxtq “ pI ´ βtktk

J
t q, which can have eigenvalues ą1, leading to

instability. To address this, Yang et al. (2024) normalize the key vector kt by its ℓ2 norm, which can
be restrictive. In contrast, Longhorn ensures stability with a closed-form update, using a diagonal
approximation (kd2

t ), allowing for both parallel scan (as in Mamba) and chunk-wise parallel training
(as in GLA), making it as fast as existing SSMs. Additionally, we provide a parallel scan CUDA
kernel, enabling Longhorn to serve as a drop-in replacement for Mamba. Sun et al. (2024) introduce
the Test-Time Training framework, where state updates are derived from a gradient step on an online
regression objective. To maintain parallelism, they assume each gradient step at xt uses the initial
state s0, enabling matrix multiplication. In contrast, Longhorn computes the closed-form solution for
every token, offering greater flexibility.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

We validate Longhorn’s performance through the following experiments:

1) We compare Longhorn against other SSMs on the multi-query associative recall benchmark (Arora
et al., 2023) and find that Longhorn is the only model to achieve near-perfect recall at sequence
lengths up to 512 with a hidden dimension of 64.

2) Using the OpenWebText dataset (Gokaslan & Cohen, 2019), we assess Longhorn’s performance
on language modeling with model sizes of 120M and 350M, and context lengths of 1024 or 4096,
showing it consistently outperforms other SSMs in validation perplexity.

3) We train a 1.3B language model on the SlimPajama dataset (Soboleva et al., 2023) with 100B
tokens and compare its performance across 8 benchmarks, where Longhorn achieves better final
performance and ą1.8x better sample efficiency than Mamba and GLA.

4) We additional apply Longhorn to vision domain and compare it against the Vision Mamba
(ViM) (Zhu et al., 2024) model (Appendix 5.5), where Longhorn achieves performance comparable
(slightly superior) to that of the ViM model.

5.1 MULTI-QUERY ASSOCIATIVE RECALL

We first consider the synthetic benchmark Multi-Query Associative Recall (MQAR) (Arora et al.,
2023). The agent observes a sequence of tokens tk1, v1, k2, v2, . . . , kT , vT u, where each consecutive
two-tokens become a key-value pair. At test time, the agent is provided with multiple k „ tk1, . . . kT u,
the goal is to “retrieve” the corresponding values. Following the original benchmark, we consider
the sequence length T P t64, 128, 256, 512u and model dimension (size of the latent embedding of
a token) d P t64, 128, 256, 512u. We compare against 1) Transformer model (Attention), 2) Based
architecture, which combines an SSM with local-attention, where the SSM is derived from the Taylor
approximation of the self-attention (Arora et al., 2024), 3) Hyena (Poli et al., 2023), which is a special
SSM that adopts long convolution via fast fourier transform, 4) RWKV (Peng et al., 2023), which
can be viewed as the division of two SSMs (i.e., y “ a{b, where a, b are outputs from two SSMs).
The state-transition matrix is a scalar, 5) BaseConv (Arora et al., 2023), an SSM that combines
linear projection with convolution, and 6) Mamba (Gu & Dao, 2023), the state-of-the-art SSM that
has data-dependent A and B (See equation 8). Each experiment individually searches for the best
learning rate from t10´4, 4.6 ˆ 10´4, 2.2 ˆ 10´3, 10´2u. Results are summarized in Figure 4.

Figure 4: Comparison of Longhorn to state-of-the-art SSMs on the MQAR benchmark. y-axis is the recall rate.

Observation: From the figure, we can see that Longhorn, which is designed to perform the
associative recall task by solving the online prediction objective, outperforms existing SSM variants
even at the sequence length of 512 and a small model dimension of 64.

5.2 SCALING LAW ON OPENWEBTEXT

In this section, we consider language modeling tasks on models with 120M or 350M parameters with
1024 or 4096 context length. We choose the OpenWebText dataset as it is small and serves as an

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

V
al
.	
L
os
s

Parameters	(M) Parameters	(M)

Context	Length	1024 Context	Length	4096

V
al
.	
L
os
s

Figure 5: Scaling law with 1024 and 4096 context length on OpenWebText with various SSM models and the
LLaMA (strong Transformer) baseline.

easily accessible benchmark for quick benchmarks.1 The details about the architecture is provided in
Appendix D. We consider the following baseline models: LLaMA (Touvron et al., 2023), RetNet (Sun
et al., 2023), Mamba (Gu & Dao, 2023), RWKV (Peng et al., 2023), and GLA (Yang et al., 2023).
Then we experiment with 1024 or 4096 context length T and model sizes around 120M or 350M.
Results are summarized in Table 1 and Figure 5.

Model # Param. (M) Val. Loss (Ó) # Param. (M) Val. Loss (Ó)

T “ 1024 T “ 4096 T “ 1024 T “ 4096

RetNet 129.1 3.569 3.492 373.2 3.362 3.227
GLA 123.8 3.381 3.364 361.1 3.018 3.001
RWKV 124.4 3.291 3.276 354.8 2.983 2.931
Mamba 129.2 3.238 3.231 371.5 2.902 2.868
LLaMA 124.4 3.247 3.273 357.7 2.891 2.883

Longhorn 128.6 3.225 3.192 369.8 2.888 2.859

Table 1: Language modeling scaling law against LLaMA (Touvron et al., 2023), RetNet (Sun et al., 2023),
RWKV (Peng et al., 2023), and Mamba (Gu & Dao, 2023). All models are trained on the OpenWebText
dataset (Gokaslan & Cohen, 2019). Models vary from 120-350M parameters and 1024-4096 context length.

Observation: From the figure and table, we can see that Longhorn consistently outperforms baseline
SSMs up to 350M and 4096 context length.

5.3 LARGE-SCALE LANGUAGE MODELING

For the large-scale language modeling task, we followed the GLA (Yang et al., 2023) setup, training
a 1.3B parameter model on the SlimPajama (Soboleva et al., 2023) dataset with 100B tokens and
a batch size of 2M. We used the AdamW optimizer (Loshchilov & Hutter, 2017) with a weight
decay of 0.01, cosine learning rate decay (peak: 3e ´ 4, final: 3e ´ 5), and gradient clipping of
1.0. Comparisons were made against LLaMA, Mamba, and GLA models (context size: 2048).
We evaluated on eight standard downstream tasks, including PIQA (Bisk et al., 2020), HellaSwag
(Hella) (Zellers et al., 2019), WinoGrande (Wino) (Sakaguchi et al., 2021), ARC-easy (ARC-e) and
ARC-challenge (ARC-c) (Clark et al., 2018), OpenBookQA (OBQA) (Mihaylov et al., 2018), Social
Interaction QA (SIQA) (Sap et al., 2019), and Boolean questions (BoolQ) (Clark et al., 2019). We
report the average perplexity across the above eight datasets throughout training in Figure 1 (left).
Then we summarize the downstream evaluation results in Table 2.

Observation: From Figure 1 (left), it is evident that Longhorn not only achieves a lower average
perplexity but also improves sampling efficiency by 1.8x compared to Mamba. In other words,
Longhorn reaches the same average perplexity with nearly half the training data required by Mamba.
From the Table 2, we can see that up to a 1.3B model, Longhorn remains strong among all baseline
models and achieves slightly better result than Mamba, even though it has a bit fewer parameters.

1We adapted code from the nanoGPT repository https://github.com/karpathy/nanoGPT, which
is a minimal reproduction of GPT-2 model using PyTorch.

8

https://github.com/karpathy/nanoGPT


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model State Size PIQA Hella Wino. ARC-e ARC-c OBQA SIQA BoolQ Avg.
acc Ò acc norm Ò acc Ò acc Ò acc norm Ò acc Ò acc norm Ò acc Ò

LLaMA 8M 55.08 55.36 71.73 59.26 32.19 43.35 45.16 62.13 53.03

GLA 512K 55.55 49.10 71.12 58.86 28.11 41.67 44.91 59.21 51.07
Mamba 64K 54.21 53.61 71.67 61.05 30.15 43.94 44.18 59.22 52.25

Longhorn 64K 55.78 52.30 71.00 60.63 29.53 43.55 44.68 61.29 52.35

Table 2: Language modeling results against LLaMA (Touvron et al., 2023), RetNet (Sun et al., 2023), and
Mamba (Gu & Dao, 2023). All models are trained on the same subset of the SlimPajama dataset with the Mistral
tokenizer. The 340M/1.3B models are trained for 15B/100B tokens respectively. State Size is the effective state
size of an SSM per layer. For instance, GLA’s state size (1024K) is computed by md{h, where the key and value
dimensions are m “ 1024 and d “ 2048, and there are 4 heads h “ 4. The individual task performance is via
zero-shot. The last column shows the average value over the results on all benchmarks.

5.4 ABLATION ON LENGTH EXTRAPOLATION

We evaluate how Longhorn extrapolates to a context length longer than 2048 (training context length)
at inference time. In particular, we pick a disjoint validation set from SlimPajama dataset, rearrange
it into batches of sequences of length T P t2048, 4096, 8192, 16384, 32768u, and then evaluate the
pretrained model’s perplexity on those sequences. The results are summarized in Figure 1 (right).

Observation: From the figure, we observe that Longhorn successfully extrapolates to contexts up to
16x longer than those used during training, this contrasts with DeltaNet (Yang et al., 2024), which
highlights a limitation in that the model cannot extrapolate to longer contexts. In contrast, LLaMA,
as a Transformer-based model, fails to extrapolate beyond its training context length.

5.5 VISION STATE SPACE MODELS

In addition to language tasks, recent works have also applied state space models to the vision domain,
leveraging their superior training efficiency. In particular, following the Vision Mamba (ViM) (Zhu
et al., 2024), we conduct experiments on the ImageNet (Deng et al., 2009) classification task. Similar
to ViM, We apply a bi-directional scan with Longhorn SSM (ViL) and compare the results with ViM
on both the TINY and SMALL configurations described in the ViM paper.

Model # Param Top-1 Accuracy

ViM-Tiny 7M 76.1
ViL-Tiny (ours) 7M 76.4
ViM-Small 26M 80.5
ViL-Small (ours) 26M 80.7

Table 3: Top-1 Accuracy on ImageNet classification for Vision Mamba (ViM) and Vision Longhorn (ViL).

Observation: The results from Table 3 demonstrate that the Vision Longhorn model (ViL) achieves
comparable (slightly better) performance to the original ViM. Note that we use the best hyperparame-
ters for ViM without additional tuning, and ViL does not require two additional parameters for the
forward and backward A matrices, as they are computed directly based on the key k vector.

6 CONCLUSION AND FUTURE WORK

This work introduces a novel approach to designing deep state-space models (SSMs) by conceptualiz-
ing the recurrence update as solving an online objective. Based on this, we propose Longhorn, a novel
SSM model that explicitly solves online associative recall in closed form. Longhorn is parallelizable
and achieves state-of-the-art performance among SSMs on MQAR, language modeling, and image
classification tasks. One future direction is to explore other online learning objectives. Additionally,
recent studies (Ren et al., 2024) suggest that incorporating sliding-window attention with Mamba
improves performance. We anticipate similar benefits for Longhorn.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. arXiv
preprint arXiv:2312.04927, 2023.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024.

Maximilian Beck, Korbinian Poppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael K Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Ex-
tended long short-term memory. 2024. URL https://api.semanticscholar.org/
CorpusID:269614336.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher R’e. Flashattention: Fast
and memory-efficient exact attention with io-awareness. ArXiv, abs/2205.14135, 2022. URL
https://api.semanticscholar.org/CorpusID:249151871.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

DeepSeek-AI and Damai Dai. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. 2024. URL https://api.semanticscholar.org/CorpusID:
269613809.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

10

https://api.semanticscholar.org/CorpusID:269614336
https://api.semanticscholar.org/CorpusID:269614336
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:269613809
https://api.semanticscholar.org/CorpusID:269613809
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Mark Harris, Shubhabrata Sengupta, and John D Owens. Parallel prefix sum (scan) with cuda. GPU
gems, 3(39):851–876, 2007.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive transformers with linear attention. In International Conference on
Machine Learning, pp. 5156–5165. PMLR, 2020.

Brian Kulis and Peter L Bartlett. Implicit online learning. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pp. 575–582, 2010.

Victor Kuperman and Julie A. Van Dyke. Individual differences in visual comprehension of morpho-
logical complexity. Cognitive Science, 33, 2011. URL https://api.semanticscholar.
org/CorpusID:5555496.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. What makes convolutional
models great on long sequence modeling? arXiv preprint arXiv:2210.09298, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling
via gated state spaces. arXiv preprint arXiv:2206.13947, 2022.

Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: Investi-
gating the continuum from catastrophic forgetting to age-limited learning effects, 2013.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the
transformer era. arXiv preprint arXiv:2305.13048, 2023.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, et al. Eagle and finch: Rwkv with
matrix-valued states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 2024.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
Hgrn2: Gated linear rnns with state expansion. arXiv preprint arXiv:2404.07904, 2024a.

Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neural network for
sequence modeling. Advances in Neural Information Processing Systems, 36, 2024b.

11

https://api.semanticscholar.org/CorpusID:5555496
https://api.semanticscholar.org/CorpusID:5555496


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Simple
hybrid state space models for efficient unlimited context language modeling. arXiv preprint
arXiv:2406.07522, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Imanol Schlag and Jürgen Schmidhuber. Gated fast weights for on-the-fly neural program generation.
In NIPS Metalearning Workshop, 2017.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Jürgen Schmidhuber. Reducing the ratio between learning complexity and number of time varying
variables in fully recurrent nets. In ICANN’93: Proceedings of the International Conference on
Artificial Neural Networks Amsterdam, The Netherlands 13–16 September 1993 3, pp. 460–463.
Springer, 1993.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei Chen,
Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to (learn at test
time): Rnns with expressive hidden states. 2024. URL https://api.semanticscholar.
org/CorpusID:271039606.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M Rush. Pretraining without attention.
arXiv preprint arXiv:2212.10544, 2022.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

12

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://api.semanticscholar.org/CorpusID:271039606
https://api.semanticscholar.org/CorpusID:271039606


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936,
2003.

A PRIOR DEEP STATE SPACE MODELS

Example A.1 (Linear Attention Variants). Linear Attention (LA) (Katharopoulos et al., 2020),
Retention Network (RetNet) (Sun et al., 2023), and Gated Linear Attention (GLA) (Yang et al., 2023)
all assume At, Bt yield rank-1 (or even constant) outputs:

St “ At d St´1 ` vpxtq b kpxtq, with

$

&

%

At “ 1 (LA)
At “ c P r0, 1s (RetNet)
At “ 1 b αpxtq (GLA)

,

where St P Rdˆm, vpxtq P Rd, kpxtq P Rm are linear mappings of xt, and b denote the outer
product. In practice, one can use h heads as in the multi-head attention to save some computation,
where the m and d dimensions are divided into h groups and each group performs its own LA variant.
The outer product complexity reduces to Oph ˚ m{h ˚ d{h “ md{hq. But then the effective size of St

also shrinks to md{h.
Example A.2 (Mamba (Gu & Dao, 2023)). The Mamba architecture is derived by discretizing a
continuous linear dynamics. Its discretized update is:

St “ At d St´1 ` Bt, where
At “ exppA d pεpxtq b 1qq, Bt “ pεpxtq d xtq b kpxtq.

(8)

where St P Rdˆm with m “ 16 by default, εpxtq P Rd, kpxtq P Rm linear mappings of xt, and
A P Rdˆm is a data independent (not depending on xt trainable weight matrix.

In Mamba, both At and Bt depend on εpxtq, which represents the step size for the SSM update.

In practice, Mamba does not use multiple heads as in linear attention variants. Perhaps the main
reason is that given a fixed m and d, the largest memory state will be with h “ 1 (as the effective size
of St is md{h). In addition, Mamba’s output is ot “ CpxtqSt ` Dt d xt, which has an additional
residual part Dt d xt.
Example A.3 (Griffin (De et al., 2024)). In Mamba and the linear attention variants, the outer
product serves as a critical role in lifting vectors to matrices. The recent Griffin architecture abandons
the outer product and performs pure elementwise product:

st “ apxtq d st´1 `
a

1 ´ apxtq d ipxtq d xt,

where st, apxtq, ipxtq are all Rd. This yields smaller memory states, but in practice, Griffin is
combined with local attention (i.e., the sliding-window self-attention) to strengthen its capability.
Example A.4 (RWKV (Peng et al., 2023)). The original RWKV also performs elementwise recurrence.
It maintains a state of ratio form st “ ut{zt, where ut, zt are updated separately by two SSMs:

st “ ut{zt

ut “ expp´wq ¨ ut´1 ` exppkpxtqq d vpxtq, zt “ expp´wq ¨ zt´1 ` exppkpxtqq,

where all the vectors are of size Rd, and w ą 0 is a trainable weight for controlling the forgetting. In
the most recent RWKV version (Peng et al., 2024), the denominator zt is removed, and the elementwise
product is replaced with the outer product, which makes it more similar to an LA variant.
Example A.5 (HGRN2 (Qin et al., 2024a)). The Gated Linear RNNs with State Expansion (HGRN2)
model is represented with the following recurrence:

St “ p1 b fpxtqq d St´1 ` ipxtq b p1 ´ fpxtqq.

Here, fpxtq P r0, 1s is the forget gate, p1 ´ fpxtqq is the input gate, and ipxtq is the input vector.
HGRN2 thus resembles an RNN.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Method Online Learning Objective Ltpsq (assume xt P R) Online Update

LA ∥S ´ St´1∥2F ´ 2xSkt, xty St “ St´1 ` xt b kt

RetNet γ ∥S ´ St´1∥2 ` p1 ´ γq ∥S∥2F ´ 2xSkt, xty St “ γSt´1 ` xt b kt

GLA ∥S ´ St´1diagpαtq∥2F ` 2xSkt, xty St “ St´1diagpαtq ` xt b kt

Griffin
∥∥?

αt d ps ´ st´1q
∥∥2 `

∥∥?
1 ´ αt d s

∥∥2 ´ 2
?
1 ´ αt d s d it d xt st “ αt d st´1 `

a

p1 ´ αtq d it d xt

Longhorn ∥S ´ St´1∥2F ` ∥Skt ´ xt∥2diagpβtq

St “ p1mˆn ´ εt b kd2
t q d St´1`

pεt d xtq b kt, εt “ βt{p1 ` βtk
J
t ktq

Table 4: Some of the existing SSMs and their corresponding online learning objectives/updates.

B EXISTING STATE SPACE MODELS’ ONLINE OBJECTIVES

We reverse-engineer some existing deep SSMs’ online learning objectives in Table 4.

C PROOF

This section provides the proof for Theorem 3.1. Given the Longhorn’s objective St “

argminSPRdˆm

!

||S ´ St´1||2F ` ||Skt ´ xt||
2
diagpβtq

)

, we have the following theorem:

Theorem C.1. The closed form solution for St for objective in Equation 5 is

St,i “ pI ´ εt,iktk
J
t qSt´1,i ` εt,iktxt,i, where εt,i “

βt,i

1 ` βt,ikJ
t kt

P r0,8q. (9)

Proof. As the objective in equation 5 is in a quadratic form with respect to s, there is a unique
minimum. Observe that each row of S (e.g., Si) optimizes the objective independently, therefore we
can solve the solution row-wise. By setting the derivative of ∇Si

Lt “ 0, we have:

∇Si
Lt “ 0 ðñ pSi ´ St´1,iq ` βt,ipS

J
i kt ´ xt,iqkt “ 0

ðñ pI ` βt,iktk
J
t qSi “ St´1,i ` βt,iktxt,i

ðñ
loomoon

p3q

Si “

ˆ

I ´
βt,i

1 ` βt,ikJ
t kt

ktk
J
t

˙

St´1,i `

ˆ

I ´
βt,i

I ` βt,ikJ
t kt

ktk
J
t

˙

βt,iktxt,i

ðñ

ˆ

I ´
βt,i

I ` βt,ikJ
t kt

ktk
J
t

˙

St´1,i `
pI ` βt,ik

J
t kt ´ βt,iktk

J
t qβt,iktxt,i

I ` βt,ikJ
t kt

ðñ
loomoon

p5q

ˆ

I ´
βt,i

I ` βt,ikJ
t kt

ktk
J
t

˙

St´1,i `
βt,iktxt,i

I ` βt,ikJ
t kt

(3) is derived from the fact that pI ` βt,iktk
J
t q´1 “ pI ´

βt,iktk
J
t

1`βt,ikJ
t kt

q by the Sherman–Morrison

formula. (5) is derived by noticing that kJ
t ktktxt,i ´ ktk

J
t ktxt,i “ 0.

D ADDITIONAL EXPERIMENT DETAILS

We provide the architecture detail for conducting the scaling law experiments on OpenWebText in
Table 5. The architecture configs follow exactly from the Mamba paper (Gu & Dao, 2023).

Params n layers d model n heads / d head Training steps Learning Rate Batch Size Tokens

125M 12 768 12 / 64 4800 6e-4 0.5M tokens 2.5B
350M 24 1024 16 / 64 13500 3e-4 0.5M tokens 7B

Table 5: Training details on OpenWebText.

14


	Introduction
	Background
	An Online Learning Perspective For Sequence Mixing
	SSM as Online Learning
	The Longhorn Architecture

	Related Work
	Experiments
	Multi-Query Associative Recall
	Scaling Law on OpenWebText
	Large-scale Language Modeling
	Ablation on Length Extrapolation
	Vision State Space Models

	Conclusion and Future Work
	Prior Deep State Space Models
	Existing State Space Models' Online Objectives
	Proof
	Additional Experiment Details

