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Abstract

Semantic parsing and text generation are re-
versible processes when working with Dis-
course Representation Structures (DRS). Obvi-
ously, errors can arise in both the parsing (text-
to-DRS) and generation (DRS-to-text). This
paper presents an approach that exploits the re-
versible nature of these tasks to automatically
correct such errors without additional model
training. We leverage pre-trained large lan-
guage models (LLMs) in two pipeline setups:
Pars-Gen-Pars and Gen-Pars-Gen, where the
output of one model serves as the input to the
next. In the Pars-Gen-Pars pipeline, input text
is parsed into a DRS, then used to generate text,
which is finally parsed again. Conversely, the
Gen-Pars-Gen pipeline starts with a DRS, gen-
erates text, parses it, and regenerates text from
the parsed DRS. Interestingly, by propagating
the data through these reversible pipelines, er-
rors from the initial parse or generation step can
be mitigated, instead of being amplified. Exper-
iments on the Parallel Meaning Bank dataset
demonstrate the efficacy of our approach, with
improved performance over baseline models on
semantic parsing (SMATCH) and text genera-
tion (BLEU, METEOR, COMET, chrF, BERT-
Score) metrics. Our error analysis also sheds
light on the types of mistakes addressed by
each pipeline setup. The proposed method
offers a simple yet effective way to enhance
DRS-based natural language processing with-
out costly model retraining.

1 Introduction

Discourse Representation Structure (DRS) pro-
vides a formal semantic representation of natural
language that captures meaning beyond the literal
text (Kamp and Reyle, 1993). DRS derived from
Discourse Representation Theory (DRT) offers a
comprehensive formal meaning representation that
spans a wide range of linguistic phenomena (Kamp
et al., 2010). These include anaphors, presuppo-
sitions, temporal expressions, and multisentence

discourses, as well as the nuanced semantics of
negation, modals, and quantification (Kamp and
Reyle, 2013; Jaszczolt and Jaszczolt, 2023). No-
tably, DRS enables a language-neutral meaning
representation, allowing a single representation to
be applied across texts in different languages (Bos,
2021).

DRS has found applications in various natural
language processing (NLP) tasks such as machine
translation (van Noord et al., 2018), semantic pars-
ing (mapping text to DRS) (Noord, 2019; van No-
ord et al., 2019), and text generation (mapping DRS
to text) (Wang et al., 2021a; Amin et al., 2022;
Liu et al., 2021; Amin et al., 2024). While dif-
ferent models have been proposed for these tasks,
an interesting property is that they are reversible
processes—the output of one can serve as the input
of the other. In literature, semantic parsing and gen-
eration approaches have been studied separately for
each language, focusing mainly on English. This
approach requires building distinct models from
scratch for each task and language, which is lim-
ited by the lack of available data.

In recent years, large pre-trained language mod-
els (LLMs) have significantly advanced NLP tasks.
However, semantic parsing and text generation
have been unable to fully leverage these advance-
ments, as the explicit representation of meaning is
not inherently integrated into the training of these
models (Amin et al., 2024). Indeed, despite re-
cent advances, both DRS semantic parsing and text
generation are challenging and error-prone (Wang
et al., 2023a). Parsing mistakes can lead to incor-
rect or incomplete meaning representations, while
generation errors result in disfluent or meaningless
text (Wang et al., 2021a). Traditionally, improving
performance on these tasks involves costly retrain-
ing of models on larger datasets or using more
complex architectures.

In this work, we propose a simple yet effective
approach leveraging the reversible nature of se-



mantic parsing and text generation to automatically
correct errors without additional model training.
Our method utilizes LLMs in two pipeline setups:
1) Pars-Gen-Pars, where input text is parsed, used
to generate text, and then parsed again; and 2) Gen-
Pars-Gen, where a DRS is used to generate text,
which is parsed and then used to regenerate text.
By propagating the data through these reversible
pipelines, errors from the initial parsing or genera-
tion step can be mitigated in the subsequent stages.

We evaluate our approach on the Parallel Mean-
ing Bank! (PMB) dataset, a benchmark for DRS-
based semantic processing (Abzianidze et al.,
2017). Results show that the proposed Pars-Gen-
Pars and Gen-Pars-Gen pipelines improve perfor-
mance over baseline models on both semantic pars-
ing (measured by SMATCH) and text generation
(measured by BLEU, METEOR, COMET, CHREF,
BERT-SCORE) metrics. Furthermore, our error
analysis provides insights into the types of mis-
takes each pipeline setup addresses.

The research questions addressed in this paper
are:

* How can we leverage the reversible nature
of semantic parsing and text generation with
DRS to automatically correct errors?

e Can LLMs be effectively utilized in a pipeline
approach to mitigate errors without additional
model training?

* What are the performance improvements
achieved by the proposed reversible pipelines
compared to baseline models?

* Which types of errors are more effectively
addressed by the Pars-Gen-Pars and Gen-Pars-
Gen pipeline?

* What are the capabilities and limitations of the
reversible pipeline approaches in correcting
different error categories?

The key contributions of this paper are: (1)
proposing a novel method for error correction in
DRS-based NLP tasks by exploiting reversibility,
(2) demonstrating the effectiveness of this approach
using LLMs without costly retraining, and (3) an-
alyzing the capabilities and limitations of the pro-
posed pipelines through rigorous error analysis?.

'The PMB is developed at the University of Groningen as
part of the NWO-VICI project “Lost in Translation — Found

in Meaning” (Project number 277-89-003), led by Johan Bos.
2Code can be provided on acceptance.

The remaining paper is structured as follows:
Section 2 describes DRS and reviews related work
in semantic parsing and text generation; Section 3
describes our methodology, pipeline configura-
tions, and experimental results in detail; Section 4
presents a detailed error analysis with the discus-
sion regarding the mitigation of errors; finally Sec-
tion 5 concludes the paper, highlights limitations,
and suggests directions for future research.

2 Background and Related Work

This section provides an overview of DRS, the for-
mal meaning representation tool employed in our
approach, and reviews the pertinent background
and related research in the domains of semantic
parsing and text generation. In Section 2.1, we pro-
vide a basic background on DRS formalis, and in
Sections 2.2 and 2.3 we report the most important
reference for parsing to and generating from DRS
respectively.

2.1 Discourse Representation Structures

As a thorough formal meaning representation, DRS
captures the main idea of the text and deals with
a number of linguistic occurrences, such as tem-
poral expressions and anaphoras (Bos, 2023). Un-
like other formalisms used in large-scale semantic
annotation initiatives, like Abstract Meaning Rep-
resentation (AMR) (Banarescu et al., 2013), DRS
is distinguished by its capacity to handle logical
negation, quantification, and discourse relations, in
addition to offering complete word sense disam-
biguation and a language-neutral meaning repre-
sentation.

Figure 1 illustrates the different formats that can
be used to express DRS. Using boxes to hold dis-
course referents and conditions is one frequent nota-
tion. Discourse referents, like x1, serve as stand-ins
for newly presented entities. Using roles or compar-
ison operators, conditions describe these referents’
attributes, including the concepts to which they be-
long and their relationships with other referents.
Concepts are based on WordNet synsets (Fellbaum,
1998), such as male.n.02. VerbNet (Bonial et al.,
2011) is a resource used to generate thematic roles;
examples include Agent. Operators like <, >, #,
and — are used to create negations and comparisons
between entities. Furthermore, conditions might
be complex, representing rhetorical linkages be-
tween many sets of conditions or logical relations
(negation, —).
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(a) DRS (box notation): (b) DRS (clause notation):

1

1

X1 el t1 b1 REF x1 % The [0...3] I
ice (xT) b1 PRESUPPOSITIONb2 % The [0...3] !
time (t1) b1 ice "n.01" x1 % ice [4...7] X
t1 = now b2 REF t1 % is [8...10] i
melt (e1) b2 EQU t1 "now" % is [8...10] 1
Time (e, t1) b2 Time e t1 % is [8...10] !
Patient (e1, x1) b2 time "n.08" t1 % is [8...10] '

b2 REF e1
b2 Patient e1 x1
b2 melt "v.01" e1

% melting [11...18]
% melting [11...18] 1
% melting [11...18] !
% . [18...19]

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

: (c) DRS (sequence box notation):
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melt.v.01 Patient -2 Time -1 % melting. [11-19]

Figure 1: Different graphical representations of DRS
for the text “The ice is melting.”.

In order to make integration with machine learn-
ing models easier, the box notation (Figure 1(a)) is
converted into clause notation (Figure 1(b)) (van
Noord et al., 2018). This conversion entails rear-
ranging the structure so that the discourse referents
and conditions are positioned before the label of
the box.

Sequence Box Notation (SBN) (Figure 1(c)) is a
simplified version of DRS that emphasizes the se-
quential arrangement of logical entities (Bos, 2023).
Each word’s meaning is organized according to
an entity-role-index format in SBN, where indices
connect entities and roles and decorate the connec-
tions. Discourse relations, like NEGATION and
ELABORATION, are slightly modified to signal
the beginning of a new context. Subsequent indices,
marked with comparison symbols (<,>), establish
links between the newly formed context and an-
other context. SBN can be visually represented as
a directed acyclic graph, as seen in Figure 1(d).

2.2 Text-to-DRS Parsing

Rule-based and neural network-based techniques
are the two main categories into which traditional
DRS parsing techniques can be divided. The Boxer
system is a well-known paradigm among rule-
based approaches that blend statistical methodolo-
gies with rules (Bos, 2008). In order to achieve
performance that is on par with or even better than
BERT-based models, (Poelman et al., 2022a) has

more recently built a multilingual DRS parser that
makes use of already-existing Universal Depen-
dency parsers. In this sector, neural models have
emerged as the main method because of their per-
sistent high performance (van Noord et al., 2018;
Wang et al., 2023a; Amin et al., 2024). In addition
to sequence-to-sequence models, two separate re-
search streams concentrate on tree-based (Liu et al.,
2021) and graph-based (Fancellu et al., 2019; Fu
et al., 2020) techniques, with (Fu et al., 2020) rep-
resenting the initial attempt at multilingual DRS
parsing.

2.3 DRS-to-Text Generation

Unlike the well-established tenacity of DRS pars-
ing, NLP researchers have only recently turned
their attention to the task of generating text from
DRS (Basile and Bos, 2011; Wang et al., 2021a;
Amin et al., 2022; Wang et al., 2023a; Amin et al.,
2024). Like DRS parsing, rule-based methods
(Basile and Bos, 2011) and neural network-based
methods (Wang et al., 2021a; Amin et al., 2022;
Wang et al., 2023a; Amin et al., 2024) are the two
main categories of past work on this generating
problem. Initial efforts in DRS-to-Text genera-
tion identified key challenges such as lexicaliza-
tion, aggregation, and generating referencing ex-
pressions (Basile and Bos, 2011). A recent prac-
tical implementation of text generation utilized
bidirectional LSTM (bi-LSTM) based sequence-
to-sequence models to produce English text from
DRS (Wang et al., 2021a; Amin et al., 2022). To ad-
dress the difficulties in generating text from DRS,
including condition ordering and variable name
issues, tree-LSTM-based techniques have gained
popularity (Liu et al., 2021). The development of
the mBART-based multilingual DRS-to-Text gen-
eration model coincided with the emergence of
state-of-the-art Transformer models (Wang et al.,
2023a).

3 Method and Results

Our study departs from the standard rule-based and
neural network-based methods for DRS parsing
and text generation. We offer a novel perspective
that takes advantage of the DRS reversible capa-
bilities that do not require any explicit design of
rules or external tools, in contrast to rule-based
systems like Boxer or the more recent multilingual
DRS parser which rely on hand-crafted rules and
commercial dependency parsers (Bos, 2008; Poel-



man et al., 2022a). Instead, our work presents a
pipeline-based approach for semantic parsing and
text generation that takes advantage of the comple-
mentary benefits offered by LLMs. Our approach
cascades these reversible processes into two differ-
ent pipelines, Pars-Gen-Pars and Gen-Pars-Gen, so
as to automatically fix problems that might occur in
the generation or parsing phase, without requiring
extra rule engineering or model training.

The model architecture, which is based on byT5
(Xue et al., 2022)—a fine-tuned model on an aug-
mented version of the PMB dataset— is described
in this section. It describes the pipeline configu-
rations for Pars-Gen-Pars and Gen-Pars-Gen that
are intended to reduce errors in processes related
to semantic parsing and text generation, respec-
tively. A discussion of the evaluation metrics used,
such as SMATCH (Cai and Knight, 2013) for se-
mantic parsing and BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), COMET
(Rei et al., 2020), chrF (Popovié, 2015), and BERT-
Score (Hanna and Bojar, 2021) for text generation.

3.1 Basic Text-To-Text Transfer Transformer
Model

In our experimentation, we employed the standard
transformer model belonging to the Text-To-Text
Transfer Transformers (T5) family (Unanue et al.,
2023), specifically the byT5 (Xue et al., 2022)
variant, due to its superior performance compared
to other T5 variants, including mT5 (Xue et al.,
2021) and T5 (Unanue et al., 2023) itself. Our
approach deviates from traditional experimental
methods in the following key aspects: (1) Con-
ventional methods can be computationally expen-
sive and time consuming, as they frequently re-
quire pre-training or fine-tuning a large language
model (LLM) for task-specific applications. On the
other hand, our implementation does not require
any additional model pre-training or fine-tuning.
(2) While the pre-training of byT5 was performed
on the mC4 dataset, which implies no prior knowl-
edge of DRS, we leveraged a fine-tuned version of
the byT5 model obtained from the Hugging Face
repository>. These two fine-tuned models (one for
parsing and one for generation) are state-of-the-art
models for semantic parsing and text generation
tasks related to DRS.

3We are not providing the link to this model to maintain
anonymity, which will be shared upon acceptance.

3.2 Pars-Gen-Pars Pipeline

The Pars-Gen-Pars pipeline is designed to mitigate
errors in the semantic parsing task by propagating
the input text through three stages: parsing, gener-
ation, and parsing again. The pipeline operates as
follows: (1) The input text is first processed by the
parser model, which generates a DRS. (2) The gen-
erated DRS is then passed to the generator model,
which produces a text output based on the DRS
representation. (3) Finally, the generated text is fed
into the same parser model, resulting in a new DRS
representation. Figure 2 displays the graphical rep-
resentation of the proposed Pars-Gen-Pars pipeline.
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Figure 2: Graphical representation of Pars-Gen-Pars
pipeline.

3.3 Gen-Pars-Gen Pipeline

Similarly, the Gen-Pars-Gen pipeline is designed to
address errors in the text generation task by propa-
gating the input DRS through three stages: gener-
ation, parsing, and generation again. The pipeline
operates as follows: (1) The input DRS is first pro-
cessed by the generator model, which produces a
text output. (2) The generated text is then passed
to the parser model, resulting in a new DRS repre-
sentation. (3) Finally, the parsed DRS is fed into
the same generator model, producing a new text
output. Graphically, the Gen-Pars-Gen pipeline is
shown in Figure 3.

input input output
F = r}
input
P output

Figure 3: Graphical representation of Gen-Pars-Gen
pipeline.

By iteratively propagating the data through these
reversible pipelines, errors introduced in the initial
parsing (generation) stage can be potentially cor-
rected in the subsequent generation (parsing) and



parsing (generation) stages, leveraging the comple-
mentary strengths of the pre-trained models.

3.4 Experimentation and Results

For our experiments, we leveraged two state-of-
the-art models—a generator (DRS-to-Text) based
on byT5 and a parser (Text-to-DRS) based on
byT5—that were fine-tuned on the augmented
PMB dataset. These models were used straight out
of the literature, without performing any additional
pre-training or fine-tuning, and they performed bet-
ter than earlier methods. We assessed two sug-
gested pipelines using these pre-trained models,
Pars-Gen-Pars and Gen-Pars-Gen.

3.4.1 Pars-Gen-Pars Evaluation

We used the method by (Poelman et al., 2022b) to
convert the linearized DRS into the Penman for-
mat (Kasper, 1989) for the Pars-Gen-Pars pipeline.
Next, we computed the overlap between the sys-
tem output and the gold standard by computing the
F1-score of matched triples using SMATCH—a
typical assessment tool used in Abstract Meaning
Representation (AMR) parsing (Cai and Knight,
2013). Our findings show that the Pars-Gen-Pars
pipeline significantly enhances semantic parsing
performance compared to the standalone parser.
The Pars-Gen-Pars pipeline produced an improved
Fl1-score of 94.05, indicating a considerable in-
crease in accuracy, compared to the parser model’s
93.56 SMATCH F1-score—see Table 1 for seman-
tic parsing result comparing Pars-Gen-Pars pipeline
with standalone parser and literature based imple-
mentations.

3.4.2 Gen-Pars-Gen Evaluation

We evaluated the quality of the generated text for
the Gen-Pars-Gen pipeline using three types of
automatic assessment metrics: (1) Rule-based au-
tomatic measures: BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), and chrF
(Popovi¢, 2015), which are based on the word or
character overlap between the generated text and
the gold reference; (2) Neural model-based mea-
sure: COMET (Rei et al., 2020), a neural evaluation
metric trained on human ratings of machine transla-
tion outputs; and (3) Pre-trained model-based mea-
sure: BERT-Score (Hanna and Bojar, 2021), which
leverages pre-trained BERT models to compute the
semantic similarity between the generated and ref-
erence texts. The outcomes clearly show that the
Gen-Pars-Gen pipeline performed better than the

standalone generation model in every evaluation
criteria. Notably, the BLEU score improved from
73.45 to 74.18, METEOR increased from 55.61
to 55.97, COMET rose from 95.81 to 95.89, chrF
increased from 84.96 to 85.30, and BERT-Score
improved from 98.54 to 98.58. Text generation
results comparing the Gen-Pars-Gen pipeline with
the standalone generator are shown in Table 1.
These improvements demonstrate how well our
method, which makes use of the reversible nature
of the processes and the complementary advantages
of pre-trained language models, mitigates errors in
semantic parsing and text generation tasks.

4 Analysis and Discussion

In this section, we delve into a detailed exploratory
analysis of the errors produced by the standalone
parser and generator models and examine the types
of corrections facilitated by the Pars-Gen-Pars (Sec-
tion 4.1) and Gen-Pars-Gen (Section 4.2) pipelines.
Additionally, in Section 4.3 we investigate when
and why the pipeline works to mitigate errors—
revealing its strength.

4.1 Parser Errors and Corrections with
Pars-Gen-Pars Pipeline

The standalone parser makes certain types of errors
when it generates DRS from input text (Wang et al.,
2023a; Zhang et al., 2024). We categorize these
errors and show how our Pars-Gen-Pars pipeline
effectively reduces these errors.

Wrong WordNet Sense Assignment. The
parser frequently assigns the wrong WordNet sense
numbers to nouns, adjectives, adverbs, and verbs
in the generated DRS. In the sentence “Let’s fly a
kite.”, for instance, the parser wrongly assigns the
verb "fly" to fly.v.01 whereas the gold DRS links
it with the meaning fly.v.05. Such sense defects
are successfully corrected by the Pars-Gen-Pars
pipeline, yielding in this instance the accurate sense
fly.v.05 (see Table 2, example 1).

Missing Logical Concepts. Sometimes the
parser is unable to produce all of the logical con-
cepts needed to correctly represent the input text in
the DRS. The concepts “time.n.08 EQU now” and
“Time -1” for the text “Is your father Spanish?” are
included in the gold DRS but are left out by the
parser. Nevertheless, the Pars-Gen-Pars pipeline
incorporates these absent concepts accurately, im-
proving the correctness of DRS (see Table 2, ex.
2).



Table 1: Experimental results of parsing and generation with and without pipeline approach. Bold represents the best
scores in all experiments of semantic parsing and text generation. fshows that the pipeline results are statistically
significant (using the Wilcoxon Signed Ranked Test) compared to the results without the pipeline. Note: S-Par.
= Semantic Parsing; G = Gold; S = Silver; and B = Bronze version(s) of Parallel Meaning Bank (PMB). S-F1 =
SMATCH F1-Score; MET. = METEOR; CMT. = COMET; B_Scr. = BERT_Score.

Experimentation Model PMB | S-Par. Generation Results
Type Type Type | S-F1 | BLEU MET. CMT. chrF B_Scr.
(Amin et al., 2022) bi-LSTM G - 5230 41.53 - - -
(Amin et al., 2024) byT5 G - 57.15 4590 - - 97.02
(Wang et al., 2021a) bi-LSTM G+S - 69.30 51.80 - - -
(van Noord et al., 2019) NeuDRS G+S 84.50 - - - - -
(Amin et al., 2022) bi-LSTM G+S - 72.38  53.18 - - -
(Wang et al., 2023b) bi-LSTM G+S 91.00 - - - - -
(Wang et al., 2021b) bi-LSTM G+S | 88.10 - - - - -
(Zhang et al., 2024) DRS-MLM G+S | 91.50 | 71.90 5490 93.00 - -
without pipeline byT5 G+S | 9356 | 73.45 55.61 9581 8496 98.54
with pipeline byT5 G+S | 94.05F | 74.18F 55.971 95.891 85.301 98.587

Hallucinating Incorrect Thematic Roles. The
generation of false or delusional logical notions
that are inconsistent with the input text is another
kind of error that the parser reports. The gold DRS,
for instance, designates the thematic role “Agent
-1” to represent the subject “I” in the text “I caught
a fish!” However, the parser mistakenly produces
“Recipient” in its place. By successfully avoiding
these hallucinations, the Pars-Gen-Pars pipeline
produces the accurate thematic role with the correct
index “Agent -1” (see Table 2, ex. 3).

Wrong Index Assignment. In DRS, indices are
essential for referring to and connecting various
logical concepts. Occasionally, the parser assigns
erroneous indices, resulting in logical ambiguities.
In the case of the text, “Mayuko designed a dress
for herself.” for example, the gold DRS refers to
the concept “female.n.02 ANA -4” (indicating “her-
self”’) using the thematic role index “Beneficiary
+3”. But the parser produces the incorrect thematic
role index “Beneficiary +1” pointing erroneously to
“time.n.08 TPR now”. The Pars-Gen-Pars pipeline
ensures logical coherence inside the DRS by appro-
priately assigning the correct thematic role indexes
in each case e.g., “Beneficiary +3” for the example
under discussion (see Table 2, ex. 4).

By propagating the data through the Pars-Gen-
Pars pipeline, errors made by the initial parser are
effectively corrected in the subsequent generation
and parsing stages. The complementary strengths
of the LLMs in the pipeline, combined with the
reversible nature of the tasks, enable the mitigation
of these diverse error types. The examination of

errors shows the shortcomings of the standalone
parser and emphasizes the benefits of the Pars-Gen-
Pars pipeline in terms of improving the quality and
comprehensiveness of the DRS representations that
are produced.

4.2 Generation Errors and Corrections with
Gen-Pars-Gen Pipeline

Our investigation identifies certain primary cate-
gories of problems that the standalone generator
model produces when it generates text from DRS
representations (Wang et al., 2023b; Amin et al.,
2024). We classify and explain these mistakes,
showing how the suggested Gen-Pars-Gen pipeline
fixes them.

Grammatical Errors. The generator model
sometimes produces grammatically incorrect text,
as exemplified by the DRS “high.a.02 Value ? At-
tributeOf +1 mountain.n.01 Name “Mount Kina-
balu”” and the incorrect generation “How high of
Mount Kinabalu?” instead of the grammatically
correct “How high is Mount Kinabalu?”. Such
grammatical faults are successfully mitigated by
the Gen-Pars-Gen pipeline (see Table 3, example
1).

Word Position Swapping. Sometimes the
generator model produces inaccurate outputs be-
cause it rearranges the words in the generated
text. Considering the DRS “person.n.01 Name ?
found.v.02 Agent -1 Time +1 Theme +3 time.n.08
TPR now striptease.n.02 club.n.07 Name “Chippen-
dale” Theme -1, the generator yields the incorrect
answer “Who founded the striptease club Chippen-



Gold Text

Pars (DRS)

Pars-Gen
(Text)

Pars-Gen-Pars (DRS)

Gold DRS

Let’s fly a kite.

time.n.08 TSU now person.n.01 EQU speaker
fly.v.01 Time -2 Agent -1 Theme +1 kite.n.03

Let’s fly kites.

time.n.08 TSU now person.n.01 EQU speaker
fly.v.05 Time -2 Agent -1 Theme +1 kite.n.03

time.n.08 TSU now person.n.01 EQU speaker
fly.v.05 Time -2 Agent -1 Theme +1 kite.n.03

Is your father
Spanish?

person.n.01 EQU hearer person.n.01 Role +1
father.n.01 Of -2 be.v.03 Theme -2 Source +1
country.n.02 Name “spain”

Your father is
Spanish.

person.n.01 EQU hearer person.n.01 Role +1
father.n.01 Of -2 time.n.08 EQU now be.v.03
Theme -3 Time -1 Source +1 country.n.02
Name “spain”

time.n.08 EQU now person.n.01 EQU hearer
person.n.01 Role +1 father.n.01 Of -2 be.v.03
Time -4 Theme -2 Source +1 country.n.02
Name “spain”

I caught a fish!

person.n.01 EQU speaker catch.v.08 Recipi-

ent -1 Time +1 Theme +2 time.n.08 TPR now
fish.n.01

I caught a fish.

person.n.01 EQU speaker catch.v.08 Agent
-1 Time +1 Theme +2 time.n.08 TPR now
fish.n.01

person.n.01 EQU speaker catch.v.08 Agent
-1 Time +1 Theme +2 time.n.08 TPR now
fish.n.01

Mayuko  de-

signed a dress
for herself.

female.n.02 Name “Mayuko” design.v.03

Agent -1 Time +1 Result +2 dress.n.01 Ben-

eficiary +1 time.n.08 TPR now female.n.02
ANA -4

Mayuko  de-
signed this
dress for her-
self.

female.n.02 Name "Mayuko" design.v.03
Agent -1 Time +1 Result +2 Beneficiary +3
time.n.08 TPR now dress.n.01 female.n.02
ANA -4

female.n.02 Name “Mayuko” design.v.03
Agent -1 Time +1 Result +2 Beneficiary +3
time.n.08 TPR now dress.n.01 female.n.02
ANA -4

Table 2: Analyzing parser errors and mitigating these errors through the Pars-Gen-Pars pipeline with the visualization
of in-between transition states. The errors are highlighted in red and mitigations are in blue.

dale?” rather than the correct text “Who founded
the Chippendale striptease club?”’. Such word order
problems are effectively fixed by the Gen-Pars-Gen
pipeline (see Table 3, ex. 2).

Singular Plural Inconsistencies. The generator
model occasionally has trouble producing words in
their correct singular or plural forms, as illustrated
by the DRS “male.n.02 Name “Jack” book.n.01
Creator -1 time.n.08 EQU now interesting.a.01 At-
tributeOf -2 Time -1 for the gold text “Jack’s
book is interesting.”. Nevertheless, the generator
produces “Jack’s books are interesting.” inaccu-
rately. Even though these singular plural incon-
sistencies are linguistically and contextually accu-
rate, they are penalized by automatic evaluation
measures. The proper singular or plural form is
accurately identified and generated by the Gen-
Pars-Gen pipeline (see Table 3, ex. 3).

Altered Textual Representations. Sometimes
the generator model changes how some concepts
are expressed textually, but the text that is produced
is still accurate in terms of semantics and context.
For instance, the generator generates “What is the
square root of a hundred?” by substituting “a hun-
dred” for “100” given the DRS “entity.n.01 EQU ?
be.v.06 Theme -1 Co-Theme +1 square_root.n.01
Of +1 number.n.02 EQU 100", whereas the gold
text is “What’s the square root of 100?”. Evalua-
tion measures that emphasize on the precise textual
overlaps, such as BLEU, METEOR, and chrF, pun-
ish these modifications even when they are accurate.
Such representation modifications are mitigated by
the Gen-Pars-Gen pipeline (see Table 3, ex. 4).

4.3 Revealing the Pipeline Approach

In this Section, we first consider the impact of the
sentence length on the performance of the pipeline,
and second, we speculate on the mechanism of the
pipeline that corrects some errors.

Considering the question “When does the

] 200 0 00 00 1000
Number

Figure 4: Sentence by sentence SMATCH F1-Scores
along with sentence length for standalone Parser and
Pars-Gen-Pars pipeline approaches.

pipeline work?” we need to consider the length
of input. In order to answer this question, we de-
cide to analyze the performances of both parsing
and generation pipelines for the sentences of the
test set. The analysis (see Figure 4 for parsing,
and Figures 6, 7, 5, 8, 9 for generation) reveals
that both the parser and generator models exhibit
performance variations across different sentence
length ranges. For the semantic parsing task, the
parser model struggles more with longer sentences,
particularly in the token length range of 45 to 70
tokens. This performance degradation can be at-
tributed to the increased complexity of capturing
long-range dependencies and generating accurate
logical concepts for longer sentences. Interestingly,
the parser also exhibits a drop in performance for
very short sentences, ranging from 10 to 15 tokens.
This behavior suggests that the model may hallu-
cinate or struggle to capture the exact semantic in-
formation for extremely short inputs. However, the
parser performs relatively better for sentences with
intermediate lengths, ranging from 20 to 45 tokens,
indicating a more balanced performance in this
range. Similar trends are seen in text generation®,

*Here we explain the behavior of COMET only as it corre-
lates more with human evaluation (Wang et al., 2023a). Graph-
ical representations for other generation measures like chrF
are described in the appendix.



Gold DRS

Gen (Text)

Gen-Pars (DRS)

Gen-Pars-Gen (Text)

Gold Text

high.a.02 Value ? AttributeOf +1 moun-

tain.n.01 Name “Mount Kinabalu”

How high of Mount Kin-

abalu?

high.a.02 Time +1 AttributeOf +2 time.n.08

EQU now mountain.n.01 Name “Mount Kina-

balu”

How high is Mount Kin-

abalu?

How high is Mount Kin-
abalu?

person.n.0l Name ?
I Time +1 Theme +3 time.n.08 TPR now

striptease.n.02 club.n.07 Name “Chippendale”

Theme -1

found.v.02 Agent -

Who  founded  the

striptease club Chippen-

dale?

person.n.0l Name ?
1 Time +1 Theme +3 time.n.08 TPR now

striptease.n.01 club.n.06 Name “Chippendale”

Theme -1 club.n.06 EQU -1

found.v.01 Agent -

‘Who founded the Chip-

pendale striptease club?

‘Who founded the Chip-
pendale striptease club?

male.n.02 Name “Jack” book.n.01 Creator -1

time.n.08 EQU now interesting.a.01 Attribu-

teOf -2 Time -1

Jack’s books are interest-

ing.

male.n.02 Name “Jack™ book.n.01 User -1

time.n.08 EQU now interesting.a.01 Attribu-

teOf -2 Time -1

Jack’s book is interest-

ing.

Jack’s book is interest-
ing.

entity.n.01 EQU ? be.v.06 Theme -1 Co-
Theme +1 square_root.n.01 Of +1 num-

ber.n.02 EQU 100

What is the square root
of a hundred?

entity.n.01 EQU ? be.v.02 Co-Theme -1
Time +1 Theme +2 time.n.08 EQU now

square_root.n.01 PartOf +1 entity.n.01 Quan-

tity +1 quantity.n.01 EQU 100

‘What’s the square root
of 100?

What’s the square root
of 100?

Table 3: Analyzing generation errors and mitigating these errors through the Gen-Pars-Gen pipeline with the
visualization of in-between transition states. The errors are highlighted in red and mitigations are in blue.

albeit with varying ranges of sentence length. For
sentences that are between 12 and 17 tokens long
i.e., short sentences, the generator model performs
badly and hallucinates. The performance rapidly
deteriorates with sentence length, indicating the
difficulty faced by the model with longer and more
intricate linguistic formulations. Surprisingly, the
model shows comparably bad performance even
for the token ranges from 28 and 31. Our analy-
sis states that, for unseen tokens, the generation
model also faces difficulties in capturing the exact
semantic information.

Figure 5: Sentence by sentence COMET score compari-
son of standalone Generator and Gen-Pars-Gen pipeline
approaches.

Considering the question “Why does the pipeline
work?”, we provide here some speculations related
to example 3 of Table 3. We note that the singu-
lar/plural feature is not explicitly denoted in the
DRS, but it is only implicitly represented by the
name “Jack”. Moreover, we note that the only dif-
ference between the original input and the Gen-Pars
output is the presence of the thematic role USER
in contrast to CREATOR. Searching in the training
set we found that the USER role has 729 instances
while CREATOR has 220 instances. We can spec-
ulate that the standalone generator is not able to
account for the standard singular form related to
“Jack” since its original role, that is CREATOR, is
not frequent in the training set. In contrast, the Gen-
Pars-Gen system is able to realize the singular form

of the verb since it has a more frequent semantic
role, that is USER. In other words, we speculate
that the role of the pipeline is to “correct” the input
toward a more standard form, that is to transform
the original input into a form closer to the instances
that are in the training set.

5 Conclusion

In this study, we propose a novel approach that
leverages LLMs in two different pipeline setups,
Pars-Gen-Pars and Gen-Pars-Gen, to take advan-
tage of the reversible nature of semantic parsing
and text generation tasks for DRS. Firstly, we
demonstrate how the reversible nature of these
tasks can be effectively utilized to automatically
correct errors in both semantic parsing and text gen-
eration, without the need for additional model train-
ing (RQ1, RQ2). Our Pars-Gen-Pars pipeline iter-
atively propagates the input text through parsing,
generation, and parsing stages, while the Gen-Pars-
Gen pipeline follows a similar process, starting
with a DRS representation. Through comprehen-
sive experiments on the PMB dataset, we show that
our proposed pipelines consistently outperform the
standalone parser and generator models across var-
ious evaluation metrics, including SMATCH for
semantic parsing and BLEU, METEOR, COMET,
chrF, and BERT-Score for text generation (RQ3).
Our detailed error analysis categorizes the major
types of errors made by the standalone models and
demonstrates how the Pars-Gen-Pars pipeline ef-
fectively mitigates errors such as wrong WordNet
sense assignments, missing logical concepts, hallu-
cinated concepts, and incorrect index assignments
in the parsing task (RQ4, RQ5). Similarly, the
Gen-Pars-Gen pipeline addresses errors like gram-
matical mistakes, word position swapping, singu-
lar/plural inconsistencies, and altered textual repre-
sentations in the text generation task (RQ4, RQ5).



Limitations: While our approach shows promis-
ing results, we acknowledge and analyze limita-
tions related to the impact of sentence length, hal-
lucination behavior, and out-of-vocabulary issues.
These limitations highlight the need for contin-
ued research and advancements in LLMs, as well
as the development of more sophisticated tech-
niques to handle linguistic complexities effectively.
Moreover, our experiments and evaluations were
conducted solely on English data from the PMB
dataset. We truly believe that the proposed pipeline
approach holds potential for applicability to other
languages, including low-resource languages, as
well as multilingual settings.

While many errors are successfully reduced
by our pipeline approaches, issues with sentence
length, hallucinations, and unseen tokens remain.
These highlight the need for more research and
improvements in pre-trained language models, as
well as the emergence of more advanced methods
to deal with linguistic complexities.
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Appendix

In the appendix, we report the sentence-by-
sentence scores of the text generation task using
DRS to analyze the overall performance gain (see
Appendix A.1).

A.1 Sentence-by-Sentence Evaluation of
Parsing and Generation with and without
Pipeline

Figure 6 depicts the relationship between sentence
length and BLEU scores for the standalone genera-
tor model and the Gen-Pars-Gen pipeline approach.
The x-axis represents the sentence length (in to-
kens), while the y-axis shows the BLEU scores. As
observed in the figure, both the generator and Gen-
Pars-Gen models exhibit a similar trend, where the
BLEU scores vary with the sentence length. This
trend can be attributed to the increased complex-
ity and linguistic variations present in sentences,
making it challenging for the models to generate
accurate and fluent text. However, it is evident
that the Gen-Pars-Gen pipeline consistently outper-
forms the standalone generator. This improvement
in BLEU scores highlights the effectiveness of the
proposed pipeline approach in mitigating errors
and improving the quality of generated text, even
for longer and more complex sentences.

Example Number

Figure 6: Sentence by sentence BLEU score compari-
son of standalone Generator and Gen-Pars-Gen pipeline
approaches.

Figure 7 illustrates the relationship between sen-
tence length and METEOR scores for the genera-
tor and Gen-Pars-Gen models. The x-axis repre-
sents the sentence length in tokens, while the y-
axis shows the METEOR scores. Notably, the Gen-
Pars-Gen pipeline consistently achieves higher ME-
TEOR scores compared to the standalone generator
across various sentence length ranges. This im-
provement in METEOR scores suggests that the
pipeline approach effectively mitigates errors and
enhances the semantic similarity between the gen-
erated text and the reference, even for longer and

12

more complex sentences. For very short sentences
(less number of tokens in the text), the model hal-
lucinates which can be seen from the lowest spike
in the graph.

Figure 7: Sentence by sentence METEOR score compar-
ison of standalone Generator and Gen-Pars-Gen pipeline
approaches.

The chrF (character n-gram F-score) metric eval-
uates the quality of generated text by compar-
ing character-level n-gram overlap between the
generated text and the reference. In Figure 8§,
the Gen-Pars-Gen pipeline consistently achieves
higher chrF scores compared to the standalone gen-
erator across various sentence variants. This im-
provement in chrF scores suggests that the pipeline
approach effectively mitigates errors and enhances
the character-level overlap between the generated
text and the reference, even for longer and more
complex sentences.

Figure 8: Sentence by sentence chrF score comparison
of standalone Generator and Gen-Pars-Gen pipeline ap-
proaches.

Figure 9 depicts the relationship between sen-
tence length and BERT-Score for the generator
and Gen-Pars-Gen models. The x-axis represents
the sentence length in tokens, while the y-axis
shows the BERT-Score. As observed in the fig-
ure, both models exhibit a similar trend, where
the BERT-Score shows variations as the sentence
length changes. This trend can be attributed to
the increased complexity and linguistic variations
present in different sentences, making it challeng-
ing for the models to generate text that aligns well



with the reference in terms of semantic similarity,
as measured by the BERT-Score metric. However,
the Gen-Pars-Gen pipeline consistently achieves
higher BERT-Scores compared to the standalone
generator across various sentence length ranges.
This improvement in BERT-Score suggests that the
pipeline approach effectively mitigates errors and
enhances the semantic similarity between the gen-
erated text and the reference, even for longer and
more complex sentences.

G 200 a0
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Figure 9: Sentence by sentence Bert Score comparison
of standalone Generator and Gen-Pars-Gen pipeline ap-
proaches.
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