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Abstract

Semantic parsing and text generation are re-001
versible processes when working with Dis-002
course Representation Structures (DRS). Obvi-003
ously, errors can arise in both the parsing (text-004
to-DRS) and generation (DRS-to-text). This005
paper presents an approach that exploits the re-006
versible nature of these tasks to automatically007
correct such errors without additional model008
training. We leverage pre-trained large lan-009
guage models (LLMs) in two pipeline setups:010
Pars-Gen-Pars and Gen-Pars-Gen, where the011
output of one model serves as the input to the012
next. In the Pars-Gen-Pars pipeline, input text013
is parsed into a DRS, then used to generate text,014
which is finally parsed again. Conversely, the015
Gen-Pars-Gen pipeline starts with a DRS, gen-016
erates text, parses it, and regenerates text from017
the parsed DRS. Interestingly, by propagating018
the data through these reversible pipelines, er-019
rors from the initial parse or generation step can020
be mitigated, instead of being amplified. Exper-021
iments on the Parallel Meaning Bank dataset022
demonstrate the efficacy of our approach, with023
improved performance over baseline models on024
semantic parsing (SMATCH) and text genera-025
tion (BLEU, METEOR, COMET, chrF, BERT-026
Score) metrics. Our error analysis also sheds027
light on the types of mistakes addressed by028
each pipeline setup. The proposed method029
offers a simple yet effective way to enhance030
DRS-based natural language processing with-031
out costly model retraining.032

1 Introduction033

Discourse Representation Structure (DRS) pro-034

vides a formal semantic representation of natural035

language that captures meaning beyond the literal036

text (Kamp and Reyle, 1993). DRS derived from037

Discourse Representation Theory (DRT) offers a038

comprehensive formal meaning representation that039

spans a wide range of linguistic phenomena (Kamp040

et al., 2010). These include anaphors, presuppo-041

sitions, temporal expressions, and multisentence042

discourses, as well as the nuanced semantics of 043

negation, modals, and quantification (Kamp and 044

Reyle, 2013; Jaszczolt and Jaszczolt, 2023). No- 045

tably, DRS enables a language-neutral meaning 046

representation, allowing a single representation to 047

be applied across texts in different languages (Bos, 048

2021). 049

DRS has found applications in various natural 050

language processing (NLP) tasks such as machine 051

translation (van Noord et al., 2018), semantic pars- 052

ing (mapping text to DRS) (Noord, 2019; van No- 053

ord et al., 2019), and text generation (mapping DRS 054

to text) (Wang et al., 2021a; Amin et al., 2022; 055

Liu et al., 2021; Amin et al., 2024). While dif- 056

ferent models have been proposed for these tasks, 057

an interesting property is that they are reversible 058

processes—the output of one can serve as the input 059

of the other. In literature, semantic parsing and gen- 060

eration approaches have been studied separately for 061

each language, focusing mainly on English. This 062

approach requires building distinct models from 063

scratch for each task and language, which is lim- 064

ited by the lack of available data. 065

In recent years, large pre-trained language mod- 066

els (LLMs) have significantly advanced NLP tasks. 067

However, semantic parsing and text generation 068

have been unable to fully leverage these advance- 069

ments, as the explicit representation of meaning is 070

not inherently integrated into the training of these 071

models (Amin et al., 2024). Indeed, despite re- 072

cent advances, both DRS semantic parsing and text 073

generation are challenging and error-prone (Wang 074

et al., 2023a). Parsing mistakes can lead to incor- 075

rect or incomplete meaning representations, while 076

generation errors result in disfluent or meaningless 077

text (Wang et al., 2021a). Traditionally, improving 078

performance on these tasks involves costly retrain- 079

ing of models on larger datasets or using more 080

complex architectures. 081

In this work, we propose a simple yet effective 082

approach leveraging the reversible nature of se- 083
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mantic parsing and text generation to automatically084

correct errors without additional model training.085

Our method utilizes LLMs in two pipeline setups:086

1) Pars-Gen-Pars, where input text is parsed, used087

to generate text, and then parsed again; and 2) Gen-088

Pars-Gen, where a DRS is used to generate text,089

which is parsed and then used to regenerate text.090

By propagating the data through these reversible091

pipelines, errors from the initial parsing or genera-092

tion step can be mitigated in the subsequent stages.093

We evaluate our approach on the Parallel Mean-094

ing Bank1 (PMB) dataset, a benchmark for DRS-095

based semantic processing (Abzianidze et al.,096

2017). Results show that the proposed Pars-Gen-097

Pars and Gen-Pars-Gen pipelines improve perfor-098

mance over baseline models on both semantic pars-099

ing (measured by SMATCH) and text generation100

(measured by BLEU, METEOR, COMET, CHRF,101

BERT-SCORE) metrics. Furthermore, our error102

analysis provides insights into the types of mis-103

takes each pipeline setup addresses.104

The research questions addressed in this paper105

are:106

• How can we leverage the reversible nature107

of semantic parsing and text generation with108

DRS to automatically correct errors?109

• Can LLMs be effectively utilized in a pipeline110

approach to mitigate errors without additional111

model training?112

• What are the performance improvements113

achieved by the proposed reversible pipelines114

compared to baseline models?115

• Which types of errors are more effectively116

addressed by the Pars-Gen-Pars and Gen-Pars-117

Gen pipeline?118

• What are the capabilities and limitations of the119

reversible pipeline approaches in correcting120

different error categories?121

The key contributions of this paper are: (1)122

proposing a novel method for error correction in123

DRS-based NLP tasks by exploiting reversibility,124

(2) demonstrating the effectiveness of this approach125

using LLMs without costly retraining, and (3) an-126

alyzing the capabilities and limitations of the pro-127

posed pipelines through rigorous error analysis2.128

1The PMB is developed at the University of Groningen as
part of the NWO-VICI project “Lost in Translation – Found
in Meaning” (Project number 277-89-003), led by Johan Bos.

2Code can be provided on acceptance.

The remaining paper is structured as follows: 129

Section 2 describes DRS and reviews related work 130

in semantic parsing and text generation; Section 3 131

describes our methodology, pipeline configura- 132

tions, and experimental results in detail; Section 4 133

presents a detailed error analysis with the discus- 134

sion regarding the mitigation of errors; finally Sec- 135

tion 5 concludes the paper, highlights limitations, 136

and suggests directions for future research. 137

2 Background and Related Work 138

This section provides an overview of DRS, the for- 139

mal meaning representation tool employed in our 140

approach, and reviews the pertinent background 141

and related research in the domains of semantic 142

parsing and text generation. In Section 2.1, we pro- 143

vide a basic background on DRS formalis, and in 144

Sections 2.2 and 2.3 we report the most important 145

reference for parsing to and generating from DRS 146

respectively. 147

2.1 Discourse Representation Structures 148

As a thorough formal meaning representation, DRS 149

captures the main idea of the text and deals with 150

a number of linguistic occurrences, such as tem- 151

poral expressions and anaphoras (Bos, 2023). Un- 152

like other formalisms used in large-scale semantic 153

annotation initiatives, like Abstract Meaning Rep- 154

resentation (AMR) (Banarescu et al., 2013), DRS 155

is distinguished by its capacity to handle logical 156

negation, quantification, and discourse relations, in 157

addition to offering complete word sense disam- 158

biguation and a language-neutral meaning repre- 159

sentation. 160

Figure 1 illustrates the different formats that can 161

be used to express DRS. Using boxes to hold dis- 162

course referents and conditions is one frequent nota- 163

tion. Discourse referents, like x1, serve as stand-ins 164

for newly presented entities. Using roles or compar- 165

ison operators, conditions describe these referents’ 166

attributes, including the concepts to which they be- 167

long and their relationships with other referents. 168

Concepts are based on WordNet synsets (Fellbaum, 169

1998), such as male.n.02. VerbNet (Bonial et al., 170

2011) is a resource used to generate thematic roles; 171

examples include Agent. Operators like <, >, ̸=, 172

and ¬ are used to create negations and comparisons 173

between entities. Furthermore, conditions might 174

be complex, representing rhetorical linkages be- 175

tween many sets of conditions or logical relations 176

(negation, ¬). 177
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ice.n.01

time.n.08

melt.v.01

∈

∈

∈

Patient

Time
=

(d) DRS (graph notation)

(c) DRS (sequence box notation):
     ice.n.01   % The ice [0-7] 
     time.n.08 EQU now  % is [8-10] 
     melt.v.01 Patient -2 Time -1 % melting. [11-19] 

(a)  DRS (box notation):
            x1   e1   t1
         ice (x1)
         time (t1)
            t1 = now
 melt (e1)
    Time (e1, t1)

    Patient (e1, x1)

(b) DRS (clause notation):
b1 REF x1   % The [0...3] 
b1 PRESUPPOSITION b2 % The [0...3] 
b1 ice "n.01" x1   % ice [4...7] 
b2 REF t1   % is [8...10] 
b2 EQU t1 "now"  % is [8...10] 
b2 Time e1 t1   % is [8...10] 
b2 time "n.08" t1  % is [8...10] 
b2 REF e1   % melting [11...18] 
b2 Patient e1 x1  % melting [11...18] 
b2 melt "v.01" e1  % melting [11...18] 
    % . [18...19]

now

Figure 1: Different graphical representations of DRS
for the text “The ice is melting.”.

In order to make integration with machine learn-178

ing models easier, the box notation (Figure 1(a)) is179

converted into clause notation (Figure 1(b)) (van180

Noord et al., 2018). This conversion entails rear-181

ranging the structure so that the discourse referents182

and conditions are positioned before the label of183

the box.184

Sequence Box Notation (SBN) (Figure 1(c)) is a185

simplified version of DRS that emphasizes the se-186

quential arrangement of logical entities (Bos, 2023).187

Each word’s meaning is organized according to188

an entity-role-index format in SBN, where indices189

connect entities and roles and decorate the connec-190

tions. Discourse relations, like NEGATION and191

ELABORATION, are slightly modified to signal192

the beginning of a new context. Subsequent indices,193

marked with comparison symbols (<,>), establish194

links between the newly formed context and an-195

other context. SBN can be visually represented as196

a directed acyclic graph, as seen in Figure 1(d).197

2.2 Text-to-DRS Parsing198

Rule-based and neural network-based techniques199

are the two main categories into which traditional200

DRS parsing techniques can be divided. The Boxer201

system is a well-known paradigm among rule-202

based approaches that blend statistical methodolo-203

gies with rules (Bos, 2008). In order to achieve204

performance that is on par with or even better than205

BERT-based models, (Poelman et al., 2022a) has206

more recently built a multilingual DRS parser that 207

makes use of already-existing Universal Depen- 208

dency parsers. In this sector, neural models have 209

emerged as the main method because of their per- 210

sistent high performance (van Noord et al., 2018; 211

Wang et al., 2023a; Amin et al., 2024). In addition 212

to sequence-to-sequence models, two separate re- 213

search streams concentrate on tree-based (Liu et al., 214

2021) and graph-based (Fancellu et al., 2019; Fu 215

et al., 2020) techniques, with (Fu et al., 2020) rep- 216

resenting the initial attempt at multilingual DRS 217

parsing. 218

2.3 DRS-to-Text Generation 219

Unlike the well-established tenacity of DRS pars- 220

ing, NLP researchers have only recently turned 221

their attention to the task of generating text from 222

DRS (Basile and Bos, 2011; Wang et al., 2021a; 223

Amin et al., 2022; Wang et al., 2023a; Amin et al., 224

2024). Like DRS parsing, rule-based methods 225

(Basile and Bos, 2011) and neural network-based 226

methods (Wang et al., 2021a; Amin et al., 2022; 227

Wang et al., 2023a; Amin et al., 2024) are the two 228

main categories of past work on this generating 229

problem. Initial efforts in DRS-to-Text genera- 230

tion identified key challenges such as lexicaliza- 231

tion, aggregation, and generating referencing ex- 232

pressions (Basile and Bos, 2011). A recent prac- 233

tical implementation of text generation utilized 234

bidirectional LSTM (bi-LSTM) based sequence- 235

to-sequence models to produce English text from 236

DRS (Wang et al., 2021a; Amin et al., 2022). To ad- 237

dress the difficulties in generating text from DRS, 238

including condition ordering and variable name 239

issues, tree-LSTM-based techniques have gained 240

popularity (Liu et al., 2021). The development of 241

the mBART-based multilingual DRS-to-Text gen- 242

eration model coincided with the emergence of 243

state-of-the-art Transformer models (Wang et al., 244

2023a). 245

3 Method and Results 246

Our study departs from the standard rule-based and 247

neural network-based methods for DRS parsing 248

and text generation. We offer a novel perspective 249

that takes advantage of the DRS reversible capa- 250

bilities that do not require any explicit design of 251

rules or external tools, in contrast to rule-based 252

systems like Boxer or the more recent multilingual 253

DRS parser which rely on hand-crafted rules and 254

commercial dependency parsers (Bos, 2008; Poel- 255
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man et al., 2022a). Instead, our work presents a256

pipeline-based approach for semantic parsing and257

text generation that takes advantage of the comple-258

mentary benefits offered by LLMs. Our approach259

cascades these reversible processes into two differ-260

ent pipelines, Pars-Gen-Pars and Gen-Pars-Gen, so261

as to automatically fix problems that might occur in262

the generation or parsing phase, without requiring263

extra rule engineering or model training.264

The model architecture, which is based on byT5265

(Xue et al., 2022)—a fine-tuned model on an aug-266

mented version of the PMB dataset— is described267

in this section. It describes the pipeline configu-268

rations for Pars-Gen-Pars and Gen-Pars-Gen that269

are intended to reduce errors in processes related270

to semantic parsing and text generation, respec-271

tively. A discussion of the evaluation metrics used,272

such as SMATCH (Cai and Knight, 2013) for se-273

mantic parsing and BLEU (Papineni et al., 2002),274

METEOR (Banerjee and Lavie, 2005), COMET275

(Rei et al., 2020), chrF (Popović, 2015), and BERT-276

Score (Hanna and Bojar, 2021) for text generation.277

3.1 Basic Text-To-Text Transfer Transformer278

Model279

In our experimentation, we employed the standard280

transformer model belonging to the Text-To-Text281

Transfer Transformers (T5) family (Unanue et al.,282

2023), specifically the byT5 (Xue et al., 2022)283

variant, due to its superior performance compared284

to other T5 variants, including mT5 (Xue et al.,285

2021) and T5 (Unanue et al., 2023) itself. Our286

approach deviates from traditional experimental287

methods in the following key aspects: (1) Con-288

ventional methods can be computationally expen-289

sive and time consuming, as they frequently re-290

quire pre-training or fine-tuning a large language291

model (LLM) for task-specific applications. On the292

other hand, our implementation does not require293

any additional model pre-training or fine-tuning.294

(2) While the pre-training of byT5 was performed295

on the mC4 dataset, which implies no prior knowl-296

edge of DRS, we leveraged a fine-tuned version of297

the byT5 model obtained from the Hugging Face298

repository3. These two fine-tuned models (one for299

parsing and one for generation) are state-of-the-art300

models for semantic parsing and text generation301

tasks related to DRS.302

3We are not providing the link to this model to maintain
anonymity, which will be shared upon acceptance.

3.2 Pars-Gen-Pars Pipeline 303

The Pars-Gen-Pars pipeline is designed to mitigate 304

errors in the semantic parsing task by propagating 305

the input text through three stages: parsing, gener- 306

ation, and parsing again. The pipeline operates as 307

follows: (1) The input text is first processed by the 308

parser model, which generates a DRS. (2) The gen- 309

erated DRS is then passed to the generator model, 310

which produces a text output based on the DRS 311

representation. (3) Finally, the generated text is fed 312

into the same parser model, resulting in a new DRS 313

representation. Figure 2 displays the graphical rep- 314

resentation of the proposed Pars-Gen-Pars pipeline. 315

Text Generator

Text

Pars Gen Pars

Parser

DRS

input

output

input input

output

Parser DRS
output

Figure 2: Graphical representation of Pars-Gen-Pars
pipeline.

316

3.3 Gen-Pars-Gen Pipeline 317

Similarly, the Gen-Pars-Gen pipeline is designed to 318

address errors in the text generation task by propa- 319

gating the input DRS through three stages: gener- 320

ation, parsing, and generation again. The pipeline 321

operates as follows: (1) The input DRS is first pro- 322

cessed by the generator model, which produces a 323

text output. (2) The generated text is then passed 324

to the parser model, resulting in a new DRS repre- 325

sentation. (3) Finally, the parsed DRS is fed into 326

the same generator model, producing a new text 327

output. Graphically, the Gen-Pars-Gen pipeline is 328

shown in Figure 3. 329

DRS Parser

DRS

Gen Pars Gen

Generator

Text

input
output

input input

output

Generator Text
output

Figure 3: Graphical representation of Gen-Pars-Gen
pipeline.

By iteratively propagating the data through these 330

reversible pipelines, errors introduced in the initial 331

parsing (generation) stage can be potentially cor- 332

rected in the subsequent generation (parsing) and 333
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parsing (generation) stages, leveraging the comple-334

mentary strengths of the pre-trained models.335

3.4 Experimentation and Results336

For our experiments, we leveraged two state-of-337

the-art models—a generator (DRS-to-Text) based338

on byT5 and a parser (Text-to-DRS) based on339

byT5—that were fine-tuned on the augmented340

PMB dataset. These models were used straight out341

of the literature, without performing any additional342

pre-training or fine-tuning, and they performed bet-343

ter than earlier methods. We assessed two sug-344

gested pipelines using these pre-trained models,345

Pars-Gen-Pars and Gen-Pars-Gen.346

3.4.1 Pars-Gen-Pars Evaluation347

We used the method by (Poelman et al., 2022b) to348

convert the linearized DRS into the Penman for-349

mat (Kasper, 1989) for the Pars-Gen-Pars pipeline.350

Next, we computed the overlap between the sys-351

tem output and the gold standard by computing the352

F1-score of matched triples using SMATCH—a353

typical assessment tool used in Abstract Meaning354

Representation (AMR) parsing (Cai and Knight,355

2013). Our findings show that the Pars-Gen-Pars356

pipeline significantly enhances semantic parsing357

performance compared to the standalone parser.358

The Pars-Gen-Pars pipeline produced an improved359

F1-score of 94.05, indicating a considerable in-360

crease in accuracy, compared to the parser model’s361

93.56 SMATCH F1-score—see Table 1 for seman-362

tic parsing result comparing Pars-Gen-Pars pipeline363

with standalone parser and literature based imple-364

mentations.365

3.4.2 Gen-Pars-Gen Evaluation366

We evaluated the quality of the generated text for367

the Gen-Pars-Gen pipeline using three types of368

automatic assessment metrics: (1) Rule-based au-369

tomatic measures: BLEU (Papineni et al., 2002),370

METEOR (Banerjee and Lavie, 2005), and chrF371

(Popović, 2015), which are based on the word or372

character overlap between the generated text and373

the gold reference; (2) Neural model-based mea-374

sure: COMET (Rei et al., 2020), a neural evaluation375

metric trained on human ratings of machine transla-376

tion outputs; and (3) Pre-trained model-based mea-377

sure: BERT-Score (Hanna and Bojar, 2021), which378

leverages pre-trained BERT models to compute the379

semantic similarity between the generated and ref-380

erence texts. The outcomes clearly show that the381

Gen-Pars-Gen pipeline performed better than the382

standalone generation model in every evaluation 383

criteria. Notably, the BLEU score improved from 384

73.45 to 74.18, METEOR increased from 55.61 385

to 55.97, COMET rose from 95.81 to 95.89, chrF 386

increased from 84.96 to 85.30, and BERT-Score 387

improved from 98.54 to 98.58. Text generation 388

results comparing the Gen-Pars-Gen pipeline with 389

the standalone generator are shown in Table 1. 390

These improvements demonstrate how well our 391

method, which makes use of the reversible nature 392

of the processes and the complementary advantages 393

of pre-trained language models, mitigates errors in 394

semantic parsing and text generation tasks. 395

4 Analysis and Discussion 396

In this section, we delve into a detailed exploratory 397

analysis of the errors produced by the standalone 398

parser and generator models and examine the types 399

of corrections facilitated by the Pars-Gen-Pars (Sec- 400

tion 4.1) and Gen-Pars-Gen (Section 4.2) pipelines. 401

Additionally, in Section 4.3 we investigate when 402

and why the pipeline works to mitigate errors— 403

revealing its strength. 404

4.1 Parser Errors and Corrections with 405

Pars-Gen-Pars Pipeline 406

The standalone parser makes certain types of errors 407

when it generates DRS from input text (Wang et al., 408

2023a; Zhang et al., 2024). We categorize these 409

errors and show how our Pars-Gen-Pars pipeline 410

effectively reduces these errors. 411

Wrong WordNet Sense Assignment. The 412

parser frequently assigns the wrong WordNet sense 413

numbers to nouns, adjectives, adverbs, and verbs 414

in the generated DRS. In the sentence “Let’s fly a 415

kite.”, for instance, the parser wrongly assigns the 416

verb "fly" to fly.v.01 whereas the gold DRS links 417

it with the meaning fly.v.05. Such sense defects 418

are successfully corrected by the Pars-Gen-Pars 419

pipeline, yielding in this instance the accurate sense 420

fly.v.05 (see Table 2, example 1). 421

Missing Logical Concepts. Sometimes the 422

parser is unable to produce all of the logical con- 423

cepts needed to correctly represent the input text in 424

the DRS. The concepts “time.n.08 EQU now” and 425

“Time -1” for the text “Is your father Spanish?” are 426

included in the gold DRS but are left out by the 427

parser. Nevertheless, the Pars-Gen-Pars pipeline 428

incorporates these absent concepts accurately, im- 429

proving the correctness of DRS (see Table 2, ex. 430

2). 431
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Table 1: Experimental results of parsing and generation with and without pipeline approach. Bold represents the best
scores in all experiments of semantic parsing and text generation. †shows that the pipeline results are statistically
significant (using the Wilcoxon Signed Ranked Test) compared to the results without the pipeline. Note: S-Par.
= Semantic Parsing; G = Gold; S = Silver; and B = Bronze version(s) of Parallel Meaning Bank (PMB). S-F1 =
SMATCH F1-Score; MET. = METEOR; CMT. = COMET; B_Scr. = BERT_Score.

Experimentation Model PMB S-Par. Generation Results
Type Type Type S-F1 BLEU MET. CMT. chrF B_Scr.

(Amin et al., 2022) bi-LSTM G – 52.30 41.53 – – –
(Amin et al., 2024) byT5 G – 57.15 45.90 – – 97.02
(Wang et al., 2021a) bi-LSTM G+S – 69.30 51.80 – – –

(van Noord et al., 2019) NeuDRS G+S 84.50 – – – – –
(Amin et al., 2022) bi-LSTM G+S – 72.38 53.18 – – –

(Wang et al., 2023b) bi-LSTM G+S 91.00 – – – – –
(Wang et al., 2021b) bi-LSTM G+S 88.10 – – – – –
(Zhang et al., 2024) DRS-MLM G+S 91.50 71.90 54.90 93.00 – –

without pipeline byT5 G+S 93.56 73.45 55.61 95.81 84.96 98.54
with pipeline byT5 G+S 94.05† 74.18† 55.97† 95.89† 85.30† 98.58†

Hallucinating Incorrect Thematic Roles. The432

generation of false or delusional logical notions433

that are inconsistent with the input text is another434

kind of error that the parser reports. The gold DRS,435

for instance, designates the thematic role “Agent436

-1” to represent the subject “I” in the text “I caught437

a fish!” However, the parser mistakenly produces438

“Recipient” in its place. By successfully avoiding439

these hallucinations, the Pars-Gen-Pars pipeline440

produces the accurate thematic role with the correct441

index “Agent -1” (see Table 2, ex. 3).442

Wrong Index Assignment. In DRS, indices are443

essential for referring to and connecting various444

logical concepts. Occasionally, the parser assigns445

erroneous indices, resulting in logical ambiguities.446

In the case of the text, “Mayuko designed a dress447

for herself.” for example, the gold DRS refers to448

the concept “female.n.02 ANA -4” (indicating “her-449

self”) using the thematic role index “Beneficiary450

+3”. But the parser produces the incorrect thematic451

role index “Beneficiary +1” pointing erroneously to452

“time.n.08 TPR now”. The Pars-Gen-Pars pipeline453

ensures logical coherence inside the DRS by appro-454

priately assigning the correct thematic role indexes455

in each case e.g., “Beneficiary +3” for the example456

under discussion (see Table 2, ex. 4).457

By propagating the data through the Pars-Gen-458

Pars pipeline, errors made by the initial parser are459

effectively corrected in the subsequent generation460

and parsing stages. The complementary strengths461

of the LLMs in the pipeline, combined with the462

reversible nature of the tasks, enable the mitigation463

of these diverse error types. The examination of464

errors shows the shortcomings of the standalone 465

parser and emphasizes the benefits of the Pars-Gen- 466

Pars pipeline in terms of improving the quality and 467

comprehensiveness of the DRS representations that 468

are produced. 469

4.2 Generation Errors and Corrections with 470

Gen-Pars-Gen Pipeline 471

Our investigation identifies certain primary cate- 472

gories of problems that the standalone generator 473

model produces when it generates text from DRS 474

representations (Wang et al., 2023b; Amin et al., 475

2024). We classify and explain these mistakes, 476

showing how the suggested Gen-Pars-Gen pipeline 477

fixes them. 478

Grammatical Errors. The generator model 479

sometimes produces grammatically incorrect text, 480

as exemplified by the DRS “high.a.02 Value ? At- 481

tributeOf +1 mountain.n.01 Name “Mount Kina- 482

balu”” and the incorrect generation “How high of 483

Mount Kinabalu?” instead of the grammatically 484

correct “How high is Mount Kinabalu?”. Such 485

grammatical faults are successfully mitigated by 486

the Gen-Pars-Gen pipeline (see Table 3, example 487

1). 488

Word Position Swapping. Sometimes the 489

generator model produces inaccurate outputs be- 490

cause it rearranges the words in the generated 491

text. Considering the DRS “person.n.01 Name ? 492

found.v.02 Agent -1 Time +1 Theme +3 time.n.08 493

TPR now striptease.n.02 club.n.07 Name “Chippen- 494

dale” Theme -1”, the generator yields the incorrect 495

answer “Who founded the striptease club Chippen- 496
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Gold Text Pars (DRS) Pars-Gen
(Text)

Pars-Gen-Pars (DRS) Gold DRS

Let’s fly a kite. time.n.08 TSU now person.n.01 EQU speaker
fly.v.01 Time -2 Agent -1 Theme +1 kite.n.03

Let’s fly kites. time.n.08 TSU now person.n.01 EQU speaker
fly.v.05 Time -2 Agent -1 Theme +1 kite.n.03

time.n.08 TSU now person.n.01 EQU speaker
fly.v.05 Time -2 Agent -1 Theme +1 kite.n.03

Is your father
Spanish?

person.n.01 EQU hearer person.n.01 Role +1
father.n.01 Of -2 be.v.03 Theme -2 Source +1
country.n.02 Name “spain”

Your father is
Spanish.

person.n.01 EQU hearer person.n.01 Role +1
father.n.01 Of -2 time.n.08 EQU now be.v.03
Theme -3 Time -1 Source +1 country.n.02
Name “spain”

time.n.08 EQU now person.n.01 EQU hearer
person.n.01 Role +1 father.n.01 Of -2 be.v.03
Time -4 Theme -2 Source +1 country.n.02
Name “spain”

I caught a fish! person.n.01 EQU speaker catch.v.08 Recipi-
ent -1 Time +1 Theme +2 time.n.08 TPR now
fish.n.01

I caught a fish. person.n.01 EQU speaker catch.v.08 Agent
-1 Time +1 Theme +2 time.n.08 TPR now
fish.n.01

person.n.01 EQU speaker catch.v.08 Agent
-1 Time +1 Theme +2 time.n.08 TPR now
fish.n.01

Mayuko de-
signed a dress
for herself.

female.n.02 Name “Mayuko” design.v.03
Agent -1 Time +1 Result +2 dress.n.01 Ben-
eficiary +1 time.n.08 TPR now female.n.02
ANA -4

Mayuko de-
signed this
dress for her-
self.

female.n.02 Name "Mayuko" design.v.03
Agent -1 Time +1 Result +2 Beneficiary +3
time.n.08 TPR now dress.n.01 female.n.02
ANA -4

female.n.02 Name “Mayuko” design.v.03
Agent -1 Time +1 Result +2 Beneficiary +3
time.n.08 TPR now dress.n.01 female.n.02
ANA -4

Table 2: Analyzing parser errors and mitigating these errors through the Pars-Gen-Pars pipeline with the visualization
of in-between transition states. The errors are highlighted in red and mitigations are in blue.

dale?” rather than the correct text “Who founded497

the Chippendale striptease club?”. Such word order498

problems are effectively fixed by the Gen-Pars-Gen499

pipeline (see Table 3, ex. 2).500

Singular Plural Inconsistencies. The generator501

model occasionally has trouble producing words in502

their correct singular or plural forms, as illustrated503

by the DRS “male.n.02 Name “Jack” book.n.01504

Creator -1 time.n.08 EQU now interesting.a.01 At-505

tributeOf -2 Time -1” for the gold text “Jack’s506

book is interesting.”. Nevertheless, the generator507

produces “Jack’s books are interesting.” inaccu-508

rately. Even though these singular plural incon-509

sistencies are linguistically and contextually accu-510

rate, they are penalized by automatic evaluation511

measures. The proper singular or plural form is512

accurately identified and generated by the Gen-513

Pars-Gen pipeline (see Table 3, ex. 3).514

Altered Textual Representations. Sometimes515

the generator model changes how some concepts516

are expressed textually, but the text that is produced517

is still accurate in terms of semantics and context.518

For instance, the generator generates “What is the519

square root of a hundred?” by substituting “a hun-520

dred” for “100” given the DRS “entity.n.01 EQU ?521

be.v.06 Theme -1 Co-Theme +1 square_root.n.01522

Of +1 number.n.02 EQU 100”, whereas the gold523

text is “What’s the square root of 100?”. Evalua-524

tion measures that emphasize on the precise textual525

overlaps, such as BLEU, METEOR, and chrF, pun-526

ish these modifications even when they are accurate.527

Such representation modifications are mitigated by528

the Gen-Pars-Gen pipeline (see Table 3, ex. 4).529

4.3 Revealing the Pipeline Approach530

In this Section, we first consider the impact of the531

sentence length on the performance of the pipeline,532

and second, we speculate on the mechanism of the533

pipeline that corrects some errors.534

Considering the question “When does the535
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Figure 4: Sentence by sentence SMATCH F1-Scores
along with sentence length for standalone Parser and
Pars-Gen-Pars pipeline approaches.

pipeline work?” we need to consider the length 536

of input. In order to answer this question, we de- 537

cide to analyze the performances of both parsing 538

and generation pipelines for the sentences of the 539

test set. The analysis (see Figure 4 for parsing, 540

and Figures 6, 7, 5, 8, 9 for generation) reveals 541

that both the parser and generator models exhibit 542

performance variations across different sentence 543

length ranges. For the semantic parsing task, the 544

parser model struggles more with longer sentences, 545

particularly in the token length range of 45 to 70 546

tokens. This performance degradation can be at- 547

tributed to the increased complexity of capturing 548

long-range dependencies and generating accurate 549

logical concepts for longer sentences. Interestingly, 550

the parser also exhibits a drop in performance for 551

very short sentences, ranging from 10 to 15 tokens. 552

This behavior suggests that the model may hallu- 553

cinate or struggle to capture the exact semantic in- 554

formation for extremely short inputs. However, the 555

parser performs relatively better for sentences with 556

intermediate lengths, ranging from 20 to 45 tokens, 557

indicating a more balanced performance in this 558

range. Similar trends are seen in text generation4, 559

4Here we explain the behavior of COMET only as it corre-
lates more with human evaluation (Wang et al., 2023a). Graph-
ical representations for other generation measures like chrF
are described in the appendix.
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Gold DRS Gen (Text) Gen-Pars (DRS) Gen-Pars-Gen (Text) Gold Text
high.a.02 Value ? AttributeOf +1 moun-
tain.n.01 Name “Mount Kinabalu”

How high of Mount Kin-
abalu?

high.a.02 Time +1 AttributeOf +2 time.n.08
EQU now mountain.n.01 Name “Mount Kina-
balu”

How high is Mount Kin-
abalu?

How high is Mount Kin-
abalu?

person.n.01 Name ? found.v.02 Agent -
1 Time +1 Theme +3 time.n.08 TPR now
striptease.n.02 club.n.07 Name “Chippendale”
Theme -1

Who founded the
striptease club Chippen-
dale?

person.n.01 Name ? found.v.01 Agent -
1 Time +1 Theme +3 time.n.08 TPR now
striptease.n.01 club.n.06 Name “Chippendale”
Theme -1 club.n.06 EQU -1

Who founded the Chip-
pendale striptease club?

Who founded the Chip-
pendale striptease club?

male.n.02 Name “Jack” book.n.01 Creator -1
time.n.08 EQU now interesting.a.01 Attribu-
teOf -2 Time -1

Jack’s books are interest-
ing.

male.n.02 Name “Jack” book.n.01 User -1
time.n.08 EQU now interesting.a.01 Attribu-
teOf -2 Time -1

Jack’s book is interest-
ing.

Jack’s book is interest-
ing.

entity.n.01 EQU ? be.v.06 Theme -1 Co-
Theme +1 square_root.n.01 Of +1 num-
ber.n.02 EQU 100

What is the square root
of a hundred?

entity.n.01 EQU ? be.v.02 Co-Theme -1
Time +1 Theme +2 time.n.08 EQU now
square_root.n.01 PartOf +1 entity.n.01 Quan-
tity +1 quantity.n.01 EQU 100

What’s the square root
of 100?

What’s the square root
of 100?

Table 3: Analyzing generation errors and mitigating these errors through the Gen-Pars-Gen pipeline with the
visualization of in-between transition states. The errors are highlighted in red and mitigations are in blue.

albeit with varying ranges of sentence length. For560

sentences that are between 12 and 17 tokens long561

i.e., short sentences, the generator model performs562

badly and hallucinates. The performance rapidly563

deteriorates with sentence length, indicating the564

difficulty faced by the model with longer and more565

intricate linguistic formulations. Surprisingly, the566

model shows comparably bad performance even567

for the token ranges from 28 and 31. Our analy-568

sis states that, for unseen tokens, the generation569

model also faces difficulties in capturing the exact570

semantic information.571
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Figure 5: Sentence by sentence COMET score compari-
son of standalone Generator and Gen-Pars-Gen pipeline
approaches.

Considering the question “Why does the pipeline572

work?”, we provide here some speculations related573

to example 3 of Table 3. We note that the singu-574

lar/plural feature is not explicitly denoted in the575

DRS, but it is only implicitly represented by the576

name “Jack”. Moreover, we note that the only dif-577

ference between the original input and the Gen-Pars578

output is the presence of the thematic role USER579

in contrast to CREATOR. Searching in the training580

set we found that the USER role has 729 instances581

while CREATOR has 220 instances. We can spec-582

ulate that the standalone generator is not able to583

account for the standard singular form related to584

“Jack” since its original role, that is CREATOR, is585

not frequent in the training set. In contrast, the Gen-586

Pars-Gen system is able to realize the singular form587

of the verb since it has a more frequent semantic 588

role, that is USER. In other words, we speculate 589

that the role of the pipeline is to “correct” the input 590

toward a more standard form, that is to transform 591

the original input into a form closer to the instances 592

that are in the training set. 593

5 Conclusion 594

In this study, we propose a novel approach that 595

leverages LLMs in two different pipeline setups, 596

Pars-Gen-Pars and Gen-Pars-Gen, to take advan- 597

tage of the reversible nature of semantic parsing 598

and text generation tasks for DRS. Firstly, we 599

demonstrate how the reversible nature of these 600

tasks can be effectively utilized to automatically 601

correct errors in both semantic parsing and text gen- 602

eration, without the need for additional model train- 603

ing (RQ1, RQ2). Our Pars-Gen-Pars pipeline iter- 604

atively propagates the input text through parsing, 605

generation, and parsing stages, while the Gen-Pars- 606

Gen pipeline follows a similar process, starting 607

with a DRS representation. Through comprehen- 608

sive experiments on the PMB dataset, we show that 609

our proposed pipelines consistently outperform the 610

standalone parser and generator models across var- 611

ious evaluation metrics, including SMATCH for 612

semantic parsing and BLEU, METEOR, COMET, 613

chrF, and BERT-Score for text generation (RQ3). 614

Our detailed error analysis categorizes the major 615

types of errors made by the standalone models and 616

demonstrates how the Pars-Gen-Pars pipeline ef- 617

fectively mitigates errors such as wrong WordNet 618

sense assignments, missing logical concepts, hallu- 619

cinated concepts, and incorrect index assignments 620

in the parsing task (RQ4, RQ5). Similarly, the 621

Gen-Pars-Gen pipeline addresses errors like gram- 622

matical mistakes, word position swapping, singu- 623

lar/plural inconsistencies, and altered textual repre- 624

sentations in the text generation task (RQ4, RQ5). 625
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Limitations: While our approach shows promis-626

ing results, we acknowledge and analyze limita-627

tions related to the impact of sentence length, hal-628

lucination behavior, and out-of-vocabulary issues.629

These limitations highlight the need for contin-630

ued research and advancements in LLMs, as well631

as the development of more sophisticated tech-632

niques to handle linguistic complexities effectively.633

Moreover, our experiments and evaluations were634

conducted solely on English data from the PMB635

dataset. We truly believe that the proposed pipeline636

approach holds potential for applicability to other637

languages, including low-resource languages, as638

well as multilingual settings.639

While many errors are successfully reduced640

by our pipeline approaches, issues with sentence641

length, hallucinations, and unseen tokens remain.642

These highlight the need for more research and643

improvements in pre-trained language models, as644

well as the emergence of more advanced methods645

to deal with linguistic complexities.646
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Appendix856

In the appendix, we report the sentence-by-857

sentence scores of the text generation task using858

DRS to analyze the overall performance gain (see859

Appendix A.1).860

A.1 Sentence-by-Sentence Evaluation of861

Parsing and Generation with and without862

Pipeline863

Figure 6 depicts the relationship between sentence864

length and BLEU scores for the standalone genera-865

tor model and the Gen-Pars-Gen pipeline approach.866

The x-axis represents the sentence length (in to-867

kens), while the y-axis shows the BLEU scores. As868

observed in the figure, both the generator and Gen-869

Pars-Gen models exhibit a similar trend, where the870

BLEU scores vary with the sentence length. This871

trend can be attributed to the increased complex-872

ity and linguistic variations present in sentences,873

making it challenging for the models to generate874

accurate and fluent text. However, it is evident875

that the Gen-Pars-Gen pipeline consistently outper-876

forms the standalone generator. This improvement877

in BLEU scores highlights the effectiveness of the878

proposed pipeline approach in mitigating errors879

and improving the quality of generated text, even880

for longer and more complex sentences.881
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Figure 6: Sentence by sentence BLEU score compari-
son of standalone Generator and Gen-Pars-Gen pipeline
approaches.

Figure 7 illustrates the relationship between sen-882

tence length and METEOR scores for the genera-883

tor and Gen-Pars-Gen models. The x-axis repre-884

sents the sentence length in tokens, while the y-885

axis shows the METEOR scores. Notably, the Gen-886

Pars-Gen pipeline consistently achieves higher ME-887

TEOR scores compared to the standalone generator888

across various sentence length ranges. This im-889

provement in METEOR scores suggests that the890

pipeline approach effectively mitigates errors and891

enhances the semantic similarity between the gen-892

erated text and the reference, even for longer and893

more complex sentences. For very short sentences 894

(less number of tokens in the text), the model hal- 895

lucinates which can be seen from the lowest spike 896

in the graph. 897
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Figure 7: Sentence by sentence METEOR score compar-
ison of standalone Generator and Gen-Pars-Gen pipeline
approaches.

The chrF (character n-gram F-score) metric eval- 898

uates the quality of generated text by compar- 899

ing character-level n-gram overlap between the 900

generated text and the reference. In Figure 8, 901

the Gen-Pars-Gen pipeline consistently achieves 902

higher chrF scores compared to the standalone gen- 903

erator across various sentence variants. This im- 904

provement in chrF scores suggests that the pipeline 905

approach effectively mitigates errors and enhances 906

the character-level overlap between the generated 907

text and the reference, even for longer and more 908

complex sentences. 909
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Figure 8: Sentence by sentence chrF score comparison
of standalone Generator and Gen-Pars-Gen pipeline ap-
proaches.

Figure 9 depicts the relationship between sen- 910

tence length and BERT-Score for the generator 911

and Gen-Pars-Gen models. The x-axis represents 912

the sentence length in tokens, while the y-axis 913

shows the BERT-Score. As observed in the fig- 914

ure, both models exhibit a similar trend, where 915

the BERT-Score shows variations as the sentence 916

length changes. This trend can be attributed to 917

the increased complexity and linguistic variations 918

present in different sentences, making it challeng- 919

ing for the models to generate text that aligns well 920
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with the reference in terms of semantic similarity,921

as measured by the BERT-Score metric. However,922

the Gen-Pars-Gen pipeline consistently achieves923

higher BERT-Scores compared to the standalone924

generator across various sentence length ranges.925

This improvement in BERT-Score suggests that the926

pipeline approach effectively mitigates errors and927

enhances the semantic similarity between the gen-928

erated text and the reference, even for longer and929

more complex sentences.930
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Figure 9: Sentence by sentence Bert Score comparison
of standalone Generator and Gen-Pars-Gen pipeline ap-
proaches.
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