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ABSTRACT

We introduce missingness-MDPs (miss-MDPs); a subclass of partially observable
Markov decision processes (POMDPs) that incorporates the theory of missing data.
Miss-MDPs capture settings where, at each step, features of the current state may
go missing, that is, the state is not fully observed. Missingness of state features
occurs dynamically, governed by the missingness function, a restricted observation
function. In Miss-MDPs, we distinguish three types of missingness functions:
missing completely at random (MCAR), missing at random (MAR), and missing
not at random (MNAR). Our problem is to compute a policy for a miss-MDP with
an unknown missingness function from a dataset of observations and actions. We
propose probably approximately correct (PAC) algorithms that, from a dataset,
approximate the missingness function and, thereby, the true miss-MDP. We show
that, for specific missingness functions, the policy computed on the approximated
model is ε-optimal in the true miss-MDP. The empirical evaluation confirms
these findings and shows that our approach becomes more sample-efficient when
exploiting the type of the missingness function.

1 INTRODUCTION

Markov decision processes (MDPs; Puterman, 1994) capture sequential decision-making under
uncertainty. Classically, it is assumed that all state features can be precisely measured at all times.
However, such features can be missing, e.g. due to sensor failure, so decisions cannot be made based
on all features. Consider a medical doctor diagnosing a patient based on the state features of heart
rate and temperature: Such measurements might be incomplete.

Partially observable Markov decision processes (POMDPs; Åström, 1965) can capture the aspect
of missing state features. In POMDPs, an observation function explicitly models uncertainty in the
observations of state features, and policies are based on the resulting beliefs over features. A policy
thus describes how an agent (or doctor) should act given its current belief. Yet, solving POMDPs
is notoriously challenging: In particular, inferring the observation function from observations of
features alone is generally intractable as the probabilities depend on the past sequences of actions
and observations (Liu et al., 2022a; Lee et al., 2023).

Fortunately, specific problems often exhibit a simpler structure in the source of partial observability:
The missingness of state features may occur according to a stochastic missingness function. Such
problems are studied by the theory of missingness (Schafer & Graham, 2002; Buuren, 2018; Little
& Rubin, 2019). As practical reasons for missingness vary, Rubin (1976) classifies missingness
functions into three main types: missing completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR). MCAR missingness is independent of observed or unobserved
state features – e.g., the temperature feature is missing due to a loosely attached thermometer. MAR
missingness solely depends on observed state features – e.g., the observed temperature feature
influences the missingness of the heart rate feature. Missingness functions that are neither MCAR
nor MAR are considered MNAR – e.g., the temperature feature influences its own missingness.

Prior work on sequential decision-making with missing observations has focused mainly on reinforce-
ment learning, where missing data are treated as incidental rather than explicitly modeled (Lizotte
et al., 2008; Li et al., 2018; Wang et al., 2019; Böck et al., 2022). Planning approaches typically
overlook distinctions between MCAR, MAR, and MNAR (Liu et al., 2022b; Yamaguchi et al., 2020;
Futoma et al., 2020), or rely on implicit assumptions about the missingness mechanism, which can
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Figure 1: A doctor-treating-patient example (blue annotations) of an agent interacting with a miss-
MDP. The missingness function causes the heart rate feature of the state to go missing, indicated as ⊥
in the observation. The missingness indicator evaluates to 0 for missing features and to 1 otherwise.

lead to biased or inconsistent estimates (Futoma et al., 2020) and provide no guarantees on policy
performance (Yamaguchi et al., 2020). To our knowledge, no existing work bridges missingness and
POMDPs to (1) explicitly model and learn the missingness function up to statistical guarantees, and
(2) leverage the learned function to guarantee the optimality of the resulting policies.

To formalize missing state features in MDPs, we define missingness-MDPs (miss-MDPs) as a proper
subclass of POMDPs. In miss-MDPs, the observation function is a missingness function. This
function, categorized as MCAR, MAR, or MNAR, explicitly induces missing state features in the
observations. In Figure 1 we depict a doctor-treating-patient example with a miss-MDP. The problem
is as follows: given (1) a miss-MDP with an unknown missingness function and (2) a dataset of
observations sampled from the miss-MDP, the goal is to compute a belief-based policy that maximizes
the expected reward. To obtain guarantees on the result, our approach is to approximate a missingness
function from the dataset, and thereby approximate the original miss-MDP. For this approximate
miss-MDP, we compute a policy through off-the-shelf POMDP solvers such as SARSOP (Kurniawati
et al., 2008). Missingness functions are not learnable in general (Bhattacharya et al., 2020), yet we
identify and, subsequently, focus on missingness functions that are tractable to learn.

In summary, our contributions are:

1. We introduce miss-MDPs, which integrate and define the semantics of missingness in a specific
subclass of the more general POMDP framework (Section 3).

2. We identify that beliefs over state features do not always depend on the probabilities of the
missingness function (Remark 1), similar to ignorability of missing data (Little & Rubin, 2019).

3. We provide algorithms with probably approximately correct (PAC) guarantees for tractable
subsets of the three main types of missingness functions (Sections 4.1 and 4.2).

4. Using these algorithms, we prove that we can approximate the ε-optimal policy for the miss-
MDP under the correct assumption on the missingness function (Section 4.3).

Our empirical evaluation (Section 5) confirms our theory and highlights the practical advantages of
our approach: Using datasets of reasonable size, the performance of policies computed using the
learned missingness function converges to that of the optimal policy.

RELATED WORK

Our work builds on a rich literature in missing data analysis, see e.g. (Tsiatis, 2006; Little & Rubin,
2019). Classical assumptions such as MCAR, MAR, and MNAR provide high-level categories. More
refined tools, such as missingness graphs, allow one to encode assumptions about the missingness in
a structured way (Mohan et al., 2013; Shpitser et al., 2015), leading to highly specific learnability
results (Bhattacharya et al., 2020; Nabi et al., 2020). Our setting departs from the standard missing
data paradigm in several important aspects. In particular, the concept of missingness is embedded
within the broader POMDP setting, which allows for a better and principled understanding of
missingness in the context of sequential decision-making under uncertainty.

As noted previously, most work on decision making with missing data focuses on RL, where either full
observations (Chen et al., 2023) or individual features may be missing (Shim et al., 2018; Yoon et al.,
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2019; Böck et al., 2022). Some approaches incorporate missingness into belief updates for RL agents
(Wang et al., 2019), while others adopt model-based methods, often restricted to simpler settings such
as MCAR (Futoma et al., 2020). Another line of work combines deep learning with POMDP solvers
by learning abstract state representations, but without explicitly modeling the missingness process
(Liu et al., 2022b). More principled imputation strategies—such as Bayesian multiple imputation
(Lizotte et al., 2008) and expectation-maximization (Yamaguchi et al., 2020)—estimate missing
values as an intermediate step in policy computation. In contrast to imputation, our approach directly
learns the missingness function and offers PAC guarantees on the resulting policy.

2 PRELIMINARIES

A function µ : X → [0, 1] is a probability distribution over a countable set X when
∑

x∈X µ(x) = 1.
The set of such distributions is ∆(X). The support of distribution µ ∈ ∆(X) is supp(µ) = {x ∈
X | µ(x) ̸= 0}. Writing µ = {x1 7→ p1, . . . , xk 7→ pk} indicates that µ(x1) = p1 and so on.
The random variable x sampled from µ is denoted by x ∼ µ. Given σ : X → ∆(Y ), we let
σ(y | x) := σ(x)(y). The indicator function 1φ returns 1 if predicate φ holds and 0 otherwise.

Definition 1 (POMDPs). A partially observable Markov decision process is a tuple P =
(S,A, T, b0, ϱ, Z,O, γ) with finite factored state space S = ×i=1,...,n Si and the set of feature
indices I = {1, . . . , n}), finite action space A, transition function T : S × A → ∆(S), initial
state distribution b0 ∈ ∆(S), reward function ϱ : S × A → R, finite factored observation space
Z = ×i=1,...mZi, observation function O : S → ∆(Z), and discount factor γ ∈ [0, 1).

Without loss of generality, we consider the observation function to be action-independent, as
the state space of a POMDP can be augmented to carry the information of the last performed
action (Chatterjee et al., 2016).

A trajectory in a POMDP P is a sequence of states, observations, and actions. A history h =(
z(0), a(0), z(1), a(1), . . .

)
∈ H ⊆ (Z × A)∗ is the observable fragment of a trajectory, i.e., a

sequence of observations and actions. A history can be summarized by a sufficient statistic known as
a belief b ∈ B ⊆ ∆(S); a probability distribution over underlying states induced by a history h ∈ H.
The belief update τ : B ×A× Z → B computes a successor belief b′ via Bayes’ rule (Spaan, 2012).

A policy π : B → ∆(A) ∈ Π maps beliefs to probability distributions over actions. The objective
is to find a policy π ∈ Π that maximizes the infinite-horizon expected cumulative discounted
reward: VP(π) = Eπ

[∑∞
t=0 γ

tϱ(s(t), a(t))
]
. As the problem of finding the optimal policy is

undecidable (Madani et al., 2003), we focus on computing ε-optimal policies (Hauskrecht, 2000).

3 MISSINGNESS IN MDPS

This section introduces missingness-MDPs and the different types of missingness functions.

Definition 2 (Miss-MDP). A missingness-MDP is a tuple (S,A, T, b0, ϱ, Z,M, γ), where S, A,
T , b0, ϱ, and γ are as in a POMDP, the finite observation space is Z = ×i∈I(Si ∪ {⊥}), with ⊥
denoting missing information, and function M : S → ∆(Z) is the missingness function such that
∀s ∈ S, ∀z ∈ supp(M(s)),∀i ∈ I either zi = si or zi = ⊥.

Miss-MDPs are a subclass of POMDPs where the state space S and observation space Z share the
feature indices I , and where Z ⊋ S because some features can go missing in Z, being replaced by
the symbol ⊥. This process of “poking holes” is governed by the stochastic missingness function M .
While M may take actions into account, we use an action-independent M w.l.o.g (see Section 2).

Missingness indicators. Missingness functions can equivalently be described as a map to vectors
of missingness indicators (Mohan et al., 2013), i.e. M : S → ∆(R), where R = {0, 1}n. A vector
r ∈ R has ri = 0 if feature i is missing (zi = ⊥), and otherwise ri = 1. The function fR : Z → R
maps observations to their missingness indicators.

Example 1. Let P be a miss-MDP with S = {a, b}2, Z = {a, b,⊥}2, and missingness function
defined as: M((s1, s2)) = {(s1, s2) 7→ 0.5, (s1,⊥) 7→ 0.5}. Then, visiting state (b, a) yields either
(b, a) or (b,⊥), each with probability 0.5. We have fR((b, a)) = (1, 1) and fR((b,⊥)) = (1, 0).
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We aim to compute a near-optimal policy for a miss-MDP P with unknown missingness function
M . For this, we use a dataset D of histories (of length at least |S|), which are collected using a fair
policy (i.e. it has positive probability to visit all reachable states). The resulting policy is probably
approximately correct (PAC) if, with high probability, its value is close to the true optimum. Formally:

Problem statement. We are given a miss-MDP P with an unknown missingness function M , a
dataset D = (h1, . . . , hk) of k histories hi ∈ H collected from P under an unknown but fair
policy πb, and a precision ε > 0 and confidence threshold δ > 0. The goal is to approximate the
missingness function M̂ ≈ M for all reachable states and use it to compute a policy π∗ ∈ Π
such that with probability at least 1− δ, we have supπ(VP(π))− VP(π

∗) ≤ ε.

3.1 TYPES OF MISSINGNESS FUNCTIONS

We formally introduce the three types of missingness functions (MCAR, MAR, and MNAR) in the
context of miss-MDPs using missingness indicators r ∈ R (see Section 3). The simplest is MCAR,
where the probability of a feature going missing does not depend on any feature values of the state.
The miss-MDP in Example 1 is of type MCAR.
Definition 3 (MCAR). The missingness function M : S → ∆(Z) of a miss-MDP is MCAR iff
∀r ∈ R, ∃pr ∈ [0, 1], ∀s ∈ S, P (fR(z) = r | z ∼ M(s)) = pr.

Admittability and Ialways. We introduce a notion of admittability that indicates whether an observation
z could originate from a state s. We say that z is admittable by s, denoted z ⪯ s, if and only if ∀i ∈ I ,
zi = ⊥ or zi = si. In Example 1, we have (b,⊥) ⪯ (b, a) and (b, a) ⪯ (b, a) but (a,⊥) ⪯̸ (b, a).
Furthermore, Ialways = {i ∈ I | ∀s′ ∈ S : P(zi = ⊥ | z ∼ M(s′)) = 0} ⊆ I is the set of indices of
always observed features, and Imis = I \ Ialways is its complement.

We distinguish two MAR variants: a restricted one we call simple MAR (Mohan & Pearl, 2021), and
the general MAR definition (Rubin, 1976). For simple MAR, the missingness probability of a feature
is only influenced by the observable features that never go missing, i.e., by zi for i ∈ Ialways. For
MAR, a missingness probability is only influenced by the non-missing features of a given observation,
including features that may go missing. Any MCAR missingness function is also (simple) MAR.
Definition 4 ((Simple) MAR). The missingness function M : S → ∆(Z) of a miss-MDP is:

• Simple MAR iff for all s, s′ ∈S that agree on always-observed features (i.e. ∀i∈ Ialways,
si = s′i), the missingness probability is the same for all missingness indicators r∈R, formally:
P(fR(z)=r |z∼M(s))=P(fR(z′)=r |z′∼M(s′)).

• MAR iff for all s, s′ ∈ S and z ∈ Z, if z ⪯ s, s′, the probability of its missingness indicator
r := fR(z) is equal for both states: P(fR(z′)=r |z′∼M(s))=P(fR(z′′)=r |z′′∼M(s′)).

Example 2. We redefine M in the miss-MDP from Example 1 to be simple MAR: M((s1, a)) =
{(s1, a) 7→ 1}, and M((s1, b)) = {(s1, b) 7→ 0.5, (⊥, b) 7→ 0.5}. Here, the missingness probability
of feature 1 depends on the always observed value of feature 2. As an example of MAR which
is not simple MAR, consider: M((s1, a)) = {(s1, a) 7→ 0.5, (⊥,⊥) 7→ 0.5}, and M((s1, b)) =
{(s1, b) 7→ 0.25, (⊥, b) 7→ 0.25, (⊥,⊥) 7→ 0.5}. Here, feature 2 may go missing as well. The
missingness probability of feature 1 depends on the value of feature 2. But only when it is
observed!
Definition 5 (MNAR). The missingness function M of a miss-MDP is MNAR iff it is not MAR.

For MNAR, missingness probabilities may depend on the values of missing features. In particular, in
self-censoring missingness functions, a feature’s missingness probability depends on its own value.
Example 3. We adapt Example 1 to make M MNAR and self-censoring for feature 2:
M((s1, a))={(s1, a) 7→ 0.5, (s1,⊥) 7→ 0.5} and M((s1, b))={(s1, b) 7→ 0.1, (s1,⊥) 7→ 0.9}.

3.2 MISSINGNESS GRAPHS

Missingness graphs (m-graphs) help visualize the dependencies of missingness functions. We adopt
and translate the definition of Mohan & Pearl (2021) to our framework of miss-MDPs. An m-graph
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Figure 2: Example of missingness graphs visualizing relations between the elements of a miss-
MDP for the three types of missingness functions.

is a causal diagram (Pearl, 1995) in the form of a directed acyclic graph. The vertices in the graph
correspond to variables, and the directed edges correspond to the relationships between the variables.

The vertices can be grouped into the following categories: S -nodes correspond to features of the
state space, Z -nodes correspond to the features of observations and R -nodes correspond to the
missingness indicators.1 For always observed features, we omit the respective R -node from the
m-graph. Arrows between nodes represent a direct causal relationship: The parent node is a direct
cause of the child node. The absence of an edge intuitively denotes that two variables do not directly
influence each other; formally, it means that they are conditionally independent, given other variables
in the graph according to the d-separation criteria (Pearl, 2009).

Visualizing types of missingness. Figure 2 uses m-graphs to illustrate the conditional independence
assumptions of different types of missingness functions. For MCAR, both R -nodes are purely
stochastic, having no incoming arrows and thus not depending on any feature value. For (simple)
MAR, there are two changes: Feature S2 is always observable (R2 is absent), and it affects missing-
ness indicator R1 (red arrow). For MNAR, S2 can go missing, so R1 depends on information that can
go missing. We remark that m-graphs cannot represent context-specific independence assumptions,
which are needed to, e.g., represent non-simple MAR functions such as the one in Example 2; but
the missingness functions we focus on may all be represented by m-graphs. Further, we provide the
corresponding m-graphs for all experiments in Appendix C.

4 APPROXIMATING MISSINGNESS-MDPS

Our goal is to compute ε-optimal policies for a miss-MDP. For this, we first compute an approximation
M̂ ≈ M of the unknown M from the given dataset D of histories. This yields an approximated, but
fully specified miss-MDP P̂, which can be solved using any off-the-shelf POMDP solution method.

Missingness types in focus. A necessary condition is that the missingness function can be approx-
imated solely from observations, a property that missing data literature calls identifiability (Bhat-
tacharya et al., 2020). Establishing identifiability is not the focus of this paper. Instead, we provide
PAC guarantees for two types that are known to be identifiable. Thus, we focus on: (1) simple MAR
(including MCAR), and (2) non-self-censoring MNAR with independent missingness indicators.
Additionally, in Section 5, we experiment on MNAR with dependencies between the indicators.

Outline. Remark 1 presents an interesting insight orthogonal to our problem: For maintaining a
belief during policy execution, certain types of missingness can in fact be ignored. Sections 4.1
and 4.2 describe our algorithms for approximating missingness functions. Both are structured as
follows: They state assumptions, define how to compute M̂ , prove that the approximation is probably
approximately correct, and explain how to utilize additional knowledge on the missingness function
to reduce sample complexity. Section 4.3 uses these algorithms to compute near-optimal policies.

Remark 1 (Ignorability). Missing data literature defines ignorability as cases where any quantity of
interest can be consistently estimated from observations alone and it is not necessary to model the

1We exclude the category of unobserved features U used in Mohan & Pearl (2021), as in our setting U = ∅
since M depends on states.
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missingness process (Little & Rubin, 2019). This holds under MCAR, and also under MAR whenever
the quantity depends only on the observed features. We identify a similar notion of ignorability for
miss-MDPs: If the missingness function M is MAR (including MCAR), then belief updates τ can be
computed without knowledge of the precise probabilities of M , since these cancel out in Bayes’ rule;
see Appendix A for a formal proof. Thus, MAR missingness is ignorable for maintaining a belief
when executing a policy in a miss-MDP. However, we stress that the missingness function is required
to compute belief-based policies, since the probabilities of successor beliefs depend on it.

Occurrence counts. Both algorithms extract the number of occurrences of every observation using
the dataset D = (h1, . . . , hk) of k histories hi ∈ H. For each hi =

(
z(0), a(0), . . . , z(l), a(l)

)
, we

denote the j-th observation z(j) by h
(j)
i . The number of occurrences of an observation z ∈ Z is:

#D(z) =
∑k

i=1

∑|hi|
j=0 1

h
(j)
i =z

. For a set Z ′ ⊆ Z, we define #D
(
Z ′) = ∑

z∈Z′ #D(z).

4.1 APPROXIMATING M FOR MCAR AND SIMPLE MAR

If a missingness function is of type simple MAR, we can approximate it using the approximation for
simple MAR algorithm, AsMAR. The modifications to obtain the algorithm for the more restricted
MCAR-type functions, AMCAR, are described at the end of the section.

Always-observable features. Based on the dataset D, we partition the feature indices I into those that
are always observed and those that can go missing: Îalways = {i ∈ I | #D({z ∈ Z | zi = ⊥}) = 0}
and Îmis = I \ Îalways, respectively. Note, this partitioning is based on empirical data (Îalways ≈ Ialways)
and we might misclassify a feature index to be in Îalways even though it can go missing.

Computing M̂ . We use the fact that M can be seen as a mapping S → ∆(R) (see paragraph
“Missingness indicators”, Section 3). Consequently, for every state, we want to approximate the
probability of a certain vector of missingness indicators. The simple MAR assumption tells us
that the probabilities can only depend on the features in Îalways. Thus, for every combination of the
always-observable features of a state s ∈ S and missingness indicator vector r ∈ R, we can compute
the occurrence count #D(s, r) = #D (Zr

s ) , where Zr
s is defined as:

Zr
s =

{
z ∈ Z

∣∣ ∀i ∈ I : (i ∈ Îalways =⇒ zi = si) ∧ (ri = 0 =⇒ zi = ⊥)
}
.

Using this, we obtain M̂(z | s) as the fraction of observing (s, fR(z)) and the sum of counts for s
and all possible missingness indicators values:

M̂(z | s) = #D(s, fR(z))∑
r∈R #D(s, r)

. (1)

Probably approximately correct. With enough data, our approach yields an arbitrarily precise
approximation of the true missingness function. We formalize this in Theorem 1 as a PAC guarantee,
not only proving that it becomes ε-precise for every ε > 0, but that we can also bound the probability
of an error (through unlucky sampling). Additionally, we can adapt the claim to bound the imprecision
of the resulting M̂ for a given dataset. The proof is provided in Appendix B.2.
Theorem 1 (PAC guarantee for AsMAR). Let P be a missingness-MDP where the missingness
function is simple MAR. For every given precision ε and confidence threshold δ, there exists a
number n∗ of histories, such that a dataset D of n∗ histories has the following property: With
probability at least δ, M̂ computed on D according to Equation (1) satisfies that for all reachable
states s ∈ S and observations z ∈ Z, we have |M̂(z | s)−M(z | s)| ≤ ε. Dually, given a dataset D
and confidence threshold δ, we can compute an ε such that with probability at least δ, for all reachable
states s ∈ S and observations z ∈ Z, we have the same inequality, i.e. |M̂(z | s)−M(z | s)| ≤ ε.

Using additional assumptions on the missingness function. Beyond the necessary simple MAR
assumption, we can exploit additional assumptions to improve the approximation of M for the
same D. Consider a feature i that is always observable, but does not affect the missingness probability
of other features. We can exclude such i from Îalways, effectively merging the occurrence counts
of states that differ only in this feature. Therefore, if we assume M to be MCAR, Îalways can be
reduced to an empty set. Consequently, we get that #D(s, r) does not depend on s anymore, and we
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effectively only count occurrences of missingness indicators, resulting in the algorithm AMCAR. We
prove the correctness of these improvements in Appendix B.2. In Section 5, we empirically show
that using such knowledge can significantly improve the precision of M̂ estimated from the same D.

4.2 APPROXIMATING M WITH INDEPENDENT MISSINGNESS INDICATORS

This section presents the approximation for independent missingness indicators algorithm, AIMI. Its
assumptions on M correspond to a subset of identifiable MNAR missingness functions and are
as follows:

1. Independence of missingness indicators: The fact that one feature is missing must not
influence the missingness-probability of any other feature. Formally, for s ∈ S and z ∈ Z,
P(z | z ∼ M(s)) = Πi∈IP(zi | z ∼ M(s)).

2. No self-censoring: Intuitively, a feature may not influence its own missingness probabilities.
Formally, for all i ∈ I and every pair of states s, s′ ∈ S that differ only in the i-th feature (si ̸= s′i,
but for all j ̸= i we have sj = s′j) we have P(zi = ⊥ | z ∼ M(s)) = P(zi = ⊥ | z ∼ M(s′)).

3. Positivity: Intuitively, if a feature affects the missingness probabilities of other features, we
need to observe its value to learn the missingness probabilities. However, this is impossible if it
always misses. Therefore, we require a positivity assumption (Hernán & Robins, 2020): For all
i ∈ I and s ∈ S, we have P(zi ̸= ⊥ | z ∼ M(s)) > 0.

Computing M̂ . We compute the occurrence count for every state s ∈ S, feature i ∈ I and value of
a corresponding i-th missingness indicator ri ∈ {0, 1} as #D(s, i, ri) = #D(Z

i,ri
s ), where Zi,ri

s is
the following set of observations:

Zi,ri
s = {z ∈ Z | ∀j ∈ I \ {i} : (zj = sj) ∧ (ri = 0 ⇐⇒ zi = ⊥)} .

By positivity, a large enough dataset almost surely contains observations to make the counters non-
zero (i.e. for all s and i, we have #(s, i, 0) +#(s, i, 1) > 0). The probability of a non self-censoring
feature i depends only on the other features j ∈ I \ {i}. Finally, using the independence assumption,
we can infer M̂ by taking the product of the individual missingness probabilities of all features (again
viewing M as a mapping S → ∆(R), see Section 3):

M̂(z | s) =
∏
i∈I

#D(s, i, fR(z)i)

#D(s, i, 0) + #D(s, i, 1)
. (2)

Probably approximately correct. In Appendix B.3, we prove Theorem 2 that provides the same kind
of guarantee as in Theorem 1; the only difference are the assumptions on the missingness function
and the approach for calculating M̂ .
Theorem 2 (PAC guarantee for AIMI). Let P be a missingness-MDP where the missingness function
satisfies independence, non-self-censoring, and positivity. Then, M̂ computed using Equation (2)
offers the same PAC guarantees as specified in Theorem 1.

Using additional assumptions on the missingness function. In its general form, AIMI maintains a
counter for every combination of the feature valuations of other features j ∈ I \ {i}. If we know
that a certain feature j does not affect the missingness probability of i – there is no edge between the
j-th S -node and the i-th R -node – we merge the counters for all values of the j-th feature. This
knowledge comes from (a) an m-graph, (b) assuming simple MAR while observing feature j goes
missing in D, or (c) assuming MCAR, in which case we drop the dependency on s in the counters.
We prove in Appendix B.3 that all these modifications retain the PAC guarantees.

4.3 COMPUTING A POLICY WITH THE APPROXIMATIONS

We show in Appendix B.4 that after finitely many samples, M̂ is accurate enough to yield an ε-optimal
policy. We highlight that learning M̂ to precision ε is insufficient, as the errors in M̂ aggregate when
solving the miss-MDP.
Theorem 3 (Computing ε-optimal Policies). Let P be a miss-MDP with a missingness function
that is simple MAR or that satisfies independence, no self-censoring, and positivity. Assume we can

7
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sample histories collected under a fair policy, and we know a lower bound on the smallest missingness
probability p ≤ mins∈S,z∈Z M(z | s). Then, for every given precision ε and confidence threshold
δ, we can in finite time compute a policy π∗ such that with probability at least δ it is ε-optimal, i.e.
(supπ VP(π))− VP(π

∗) ≤ ε.

Note that we use the notion of PAC guarantee that is common in statistical model checking
(Brázdil et al., 2025; Ashok et al., 2019). This is inspired by, but slightly different from the
original definition of Valiant (1984), as we return in finite time a policy that performs close to
optimal with high probability.

Practical considerations. The guarantees of Theorem 3 concern asymptotic convergence to an
ε-optimal policy. Thus, they provide the theoretical foundation of our approach. Still, in practice,
the required number of samples is very large, and we work with datasets that are not necessarily
sufficient to provide the ε-optimality guarantees. Still, we can infer M̂ from any given dataset and
then solve the approximated miss-MDP using an off-the-shelf POMDP solver. For datasets of limited
size, we encounter a practical problem: For an observation z with #D(s, fR(z)) = 0, for any s ∈ S

we obtain M̂(z | s) = 0, leading to a division by zero for s when performing the belief update τ . We
circumvent this case by setting #D,κ(s, r) = #D(s, r) + κ, i.e. we add a small κ > 0 to every count.
The influence of κ diminishes with an increasing dataset size |D|.

5 EXPERIMENTS

Our empirical study addresses the following questions:

Q1. Do the proposed methods provide adequate approximations of the missingness function?
Q2. How do (in)correct assumptions on the missingness function affect the approximation?
Q3. As the amount of data increases, does the value of the policy computed on the approximated

miss-MDP converge to the optimal value of the true miss-MDP?
Q4. How does the value computed from the approximated miss-MDP compare against baselines that

do not estimate the missingness function?

Benchmarks. We consider two environments with varying types of missingness: (1) ICU, a
benchmark that models a doctor treating a patient, whose vital measurements are not always avail-
able (Johnson et al., 2022), and (2) Predator, a variant of the Tag benchmark (Pineau et al., 2003),
where a predator is chasing a partially hidden prey. To answer Q2, we consider for our benchmarks a
selection of the following four missingness functions: (1) MCAR, (2) sMAR, a simple MAR function,
(3) MNAR (id.), an identifiable MNAR function without self-censoring that satisfies the positivity
assumption, and (4) MNAR (unid.), an unidentifiable MNAR function with self-censoring. In the
Predator benchmark, for all missingness functions, the (x, y)-coordinates of the prey can only go
missing jointly, i.e. the missingness indicators are dependent; in the ICU benchmark, the missingness
indicators are always independent. For details on the benchmarks, see Appendix C.

Protocol, algorithms, and baselines. For a range of dataset sizes |D|, we collect data using
the uniform random policy πrnd where ∀a ∈ A, πrnd(a | ·) = 1/|A|, and compute the estimate M̂ ≈
M using our proposed algorithms: AMCAR (○), AsMAR (▲), and AIMI (□) (Section 4). Each
M̂ yields an approximated miss-MDP P̂, for which we compute a policy π̂ using the POMDP
solver SARSOP (Kurniawati et al., 2008). To assess the efficacy of our approach, we consider the
following baselines: (1) optimal: the SARSOP policy π∗ computed for the true M (the upper bound);
(2) uniform M : the SARSOP policy πMu computed for Mu, a guess of M that is uniform, where
every feature independently goes missing with probability 0.5.

Metrics. For every dataset size and method, we perform 20 independent runs and report the average
together with the interquartile range (shaded area) of the following metrics:

1. To assess the quality of the approximation M̂ compared to M for a miss-MDP P , we
compute the total variation (TV) of the distributions at a state s ∈ S as TV (s) =
1
2

∑
z⪯s

∣∣M̂(z | s)−M(z | s)
∣∣. We aggregate the TV across states by the average TV (ATV):

1/|S|
∑

s TV (s), and the worst TV (WTV): maxs TV (s).

8
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2. We asses how the various π̂ from the algorithms perform on the true miss-MDP P by comparing
their value VP(π̂) to VP(π

Mu) and the optimum VP(π
∗). All policy values are normalized s.t. 1

and 0 correspond to the values of the optimum and uniform baselines, respectively.
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Figure 3: Empirical results for the ICU (top) and Predator (bottom) benchmarks, including average/-
worst total variation (ATV/WTV) and normalized policy values. Values are normalized such that 1
and 0 correspond to the optimal policy (using true M ) and the uniform baseline, respectively.

Results. Figure 3 presents the experimental evaluation. It shows how the TV of M̂ and the value of
the associated π̂ evolve with dataset size |D|. Next, we discuss the questions based on these results.

Q1: With a sufficient amount of data and the correct assumptions, the algorithms adequately
approximate the missingness function. We observe that under the appropriate assumptions, each
algorithm can learn the corresponding missingness function (bringing the TV to zero): AMCAR learns
the exact missingness function in PredatorMCAR within 100 observations. We observe similar results
for AsMAR (in ICUsMAR and PredatorsMAR), as well as for AIMI (in ICUMNAR (id.)).

Q2: The assumptions on the missingness function significantly affect the quality of the ap-
proximation. On the one hand, relaxing the assumptions on the missingness function ensures
it can be learned, though this comes at the cost of reduced sample efficiency. For example, in
PredatorMCAR, we observe that AsMAR and AIMI require orders of magnitude more data to learn
the missingness function than AMCAR. On the other hand, making stronger assumptions can lead
to failures: for example, AMCAR converges to an incorrect missingness function in all benchmarks
except PredatorMCAR. The results also show that in some cases, the algorithms might approximate
the missingness function even if it does not satisfy the assumptions required for PAC guarantees, as
demonstrated from the results of AIMI on ICUMNAR (unid.).

Q3: The convergence to the optimal policy follows the quality of the approximation, and,
therefore, the convergence of the resulting policy to the optimum. With a sufficiently accurate
approximation, the value of the policy found by using our methods converges to the optimal value.

Q4: The values of the policies computed by the baseline are not competitive with the values
resulting from our methods. In all cases, the baseline algorithm fails to approximate the true
M . The produced polices πMu are significantly worse than the ones resulting from our algorithms
under correct type assumptions. The baseline is only competitive on PredatorMNAR (unid.), where our
algorithms also fail due to the fundamental challenge of having an unidentifiable missingness process.
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6 CONCLUSION

We introduce miss-MDPs to integrate the theory of missing data into decision-making under uncer-
tainty. Given a dataset of observations and actions generated from a miss-MDP, we approximate the
unknown missingness function, which – under certain assumptions about the missingness function –
enables the computation of an ε-optimal policy. We demonstrate that incorrect assumptions about the
missingness mechanism can result in misspecified models and suboptimal policies. Interestingly, we
show that for certain missingness functions, belief updates can be computed without knowledge of
the missingness function, mirroring the notion of ignorability from the missing data literature. Our
experiments support the theoretical results and demonstrate the practical benefits of our contribu-
tions. Future work will explore lifting the assumption of a known transition function and extending
miss-MDPs to the more general setting of miss-POMDPs.

Reproducibility Statement. To ensure the reproducibility of our theoretical results, we provide
proofs for all formal claims in the appendix, always referring to the corresponding subsection
of the appendix after every claim. For the reproducibility of our practical results, we detail the
experimental setup – including experiment parameters as well as hardware specifications – in
Section 5 and Appendix C. Further, the repository at https://anonymous.4open.science/
r/missingness-pomdps provides our implementations of our algorithms and the baselines as
used in the experiments, all benchmarks, scripts to rerun the experiments, as well as a README file
explaining the technical setup, installation process and creation of datasets.
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A PROOFS FOR SECTION 3: IGNORABILITY

Lemma 1. If a missingness function M is MAR, then

∀z ∈ Z,∃p ∈ [0, 1],∀s ∈ S,M(z | s) = 1z⪯s · p.

Proof. Suppose that M is MAR. The lemma states that ∀z ∈ Z, ∃p ∈ [0, 1], ∀s ∈ S, M(z | s) = p
if z ⪯ s and otherwise M(z | s) = 0. Since z ̸⪯ s implies that M(z | s) = 0, we only need to
show that ∀z ∈ Z,∃p ∈ [0, 1],∀s ∈ S, z ⪯ s ⇒ M(z|s) = p, which directly follows from the MAR
assumption.

Remark 2. Lemma 1 implies that the missingness function can be omitted in the belief update. Let
b ∈ B be a belief, and let s′ ∈ S. Then, for any a ∈ A and z ∈ Z, it holds that

b′(s′) = τ(b, a, z)(s′)

:=
M(z | s′)

∑
s∈S T (s′ | s, a)b(s)∑

s′′∈S M(z | s′′)
∑

s∈S T (s′′ | s, a)b(s)
(By definition of belief update)

=
1z⪯s′ · p

∑
s∈S T (s′ | s, a)b(s)∑

s′′∈S 1z⪯s′′ · p
∑

s∈S T (s′′ | s, a)b(s)
(By Lemma 1)

=
1z⪯s′

∑
s∈S T (s′ | s, a)b(s)∑

s′′∈S 1z⪯s′′
∑

s∈S T (s′′ | s, a)b(s)
. (p cancels out)

Therefore, the probabilities of M do not affect the resulting probabilities of the belief update.
In particular, this means that maintaining a belief while executing a miss-MDP does not require
knowledge of M .

Still, we stress again that one needs M to compute an optimal policy because this requires constructing
and solving the belief MDP (see (Russell & Norvig, 2022, Chapter 16.4.1)), which in turn requires
knowing the probability P(b′ | b, a) of going to a successor belief b′ from a current belief b ∈ B upon
playing action a ∈ A. Concretely, the probability of a successor belief b′ = τ(b, a, z) depends on the
probability of z ∈ Z given b and a, which in turn depends on M ,

P(b′ | b, a) =
∑
z∈Z

P(z | b, a)1b′=τ(b,a,z),

P(z | b, a) =
∑
s∈S

b(s)
∑
s′∈S

T (s′ | s, a)M(z | s′).

Here, no normalization occurs, and the probabilities of M do not cancel out.

B PROOFS FOR SECTION 4: PROBABLY APPROXIMATELY CORRECT

This appendix is about proving that given enough data, we can approximate the missingness function
to arbitrary precision ε, or the other way round: we can prove a certain precision ε for any given
dataset D. In both directions, we provide a probabilistic guarantee, i.e. that the result is correct with
probability at least δ. The reason the guarantee has to be probabilistic is that our knowledge relies on
a sampled dataset, and, intuitively, there always is a chance that we were “unlucky” and received a
very unlikely sequence of samples from which we infer a wrong approximation.

Outline. First, in Appendix B.1 we recall standard notions from statistics literature: Bernoulli
processes and the fact that building on Okamoto’s inequality, we can obtain a size for our dataset D
given precision ε and confidence δ (or, analogously, obtain a precision ε given D and δ). Afterwards,
Appendix B.2 and Appendix B.3 provide the proofs of Theorems 1 and 2, respectively, i.e. the
guarantees for our algorithms. Moreover, they prove the guarantees for the modified algorithms when
using more information about the missingness function. Finally, Appendix B.4 proves Theorem 3,
our main result that ε-policies can be computed.
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B.1 BERNOULLI PROCESSES

Definition 6 (Bernoulli process Bernoulli (1713), (Dekking et al., 2005, Chapter 4.3)). A Bernoulli
process is a sequence of binary random variables that are independent and identically distributed. All
random variables have probability p to yield a 1, and probability 1− p to yield a 0.

Throughout this appendix, we write n for the length of the sequence of a Bernoulli process, and k for
the number of successes, i.e. the number of times it yielded a 1. Moreover, we denote by p̂ = k

n the
empirical success probability. Okamoto’s seminal work proves the following property of estimating p
through observing a Bernoulli process:
Theorem 4 (Okamoto’s inequality (Okamoto, 1959, Theorem 1)). For a Bernoulli process with n
repetitions and k successes and a given precision ε, we have

Pr(p̂− p ≥ ε) ≤ e−2·n·ε2 and Pr(p− p̂ ≥ ε) ≤ e−2·n·ε2 .

Combining these, we get that Pr(|p̂ − p| ≥ ε) ≤ 2 · e−2·n·ε2 , in words: The probability of the
estimate p̂ being more than ε away from the true probability p is less than 2 · e−2·n·ε2 . For our
guarantees, we want to be ε-precise with probability at least δ, so the probability of error should be
upper bounded by 1− δ.2 Thus, we require 2 · e−2·n·ε2 ≤ 1− δ. Then, we can solve the inequality
for ε or n:

2 · e−2·n·ε2 ≤ 1− δ ⇔ ε ≥

√
ln( 2

1−δ )

2 · n
⇔ n ≥

ln( 2
1−δ )

2 · ε2
. (3)

In other words, given two of precision ε, confidence δ, and number of repetitions n, we can infer the
third. We remark that there exist other inequalities similar to Okamoto’s that yield the same result,
but with tighter bounds; we refer to (Budde et al., 2025, Section 3) for a discussion. However, as our
goal is only to prove the existence of a bound, we choose the conservative Okamoto bound for its
easier accessibility.

B.2 PAC GUARANTEES FOR ASMAR

Theorem 1 (PAC guarantee for AsMAR). Let P be a missingness-MDP where the missingness
function is simple MAR. For every given precision ε and confidence threshold δ, there exists a
number n∗ of histories, such that a dataset D of n∗ histories has the following property: With
probability at least δ, M̂ computed on D according to Equation (1) satisfies that for all reachable
states s ∈ S and observations z ∈ Z, we have |M̂(z | s)−M(z | s)| ≤ ε. Dually, given a dataset D
and confidence threshold δ, we can compute an ε such that with probability at least δ, for all reachable
states s ∈ S and observations z ∈ Z, we have the same inequality, i.e. |M̂(z | s)−M(z | s)| ≤ ε.

Proof. Proof outline. We first show that the computation of every M̂(z | s) is related to a Bernoulli
process. Then, using the results of Appendix B.1, we can prove the claims of the theorem for
individual state-observation pairs. Next, we lift this to all state-observation pairs by distributing the
confidence δ. Finally, we individually explain how this yields the two claims of the theorem.

The Bernoulli process related to M̂(z | s). Fix a state s ∈ S and an observation z ∈ Z. Consider
the following random variable: Sample a state s′ ∈ S and the corresponding observation z′ ∈ Z. Set
the random variable to 1 if ∀i ∈ I : (i ∈ Ialways =⇒ z′i = si) ∧ (fR(z)i = 0 =⇒ z′i = ⊥); set the
random variable to 0 if ∀i ∈ I : (i ∈ Ialways =⇒ z′i = si); and ignore the sampled (s′, z′) otherwise,
i.e. if ∃i ∈ I : (i ∈ Ialways ∧ z′i ̸= si). Note that the random variable is 1 exactly when the sample
would be counted by #D(s, fR(z)), and the sample is not ignored exactly when it would be counted
by

∑
r∈R #D(s, r).

We require that the probability of the random variable being 1 is equal among all sampled state-
observation pairs (s′, z′) that are not ignored by it, and moreover we require this probability to be equal
to M(z | s) = M(fR(z) | s) =: p. To prove this, we use the assumption that M is a simple MAR

2Note that in this paper, we use δ as the probability of the estimate being correct, unlike e.g. Budde et al.
(2025), where δ is the probability of an error.
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missingness function; thus, we know that for all s′ that agree with s on all always observable features
(formally: ∀i ∈ I : (i ∈ Ialways =⇒ z′i = si)) , we have p = M(fR(z) | s) = M(fR(z) | s′).
We have just shown that the random variable we constructed is a Bernoulli process with success
probability p = M(z | s), with the number of repetitions n =

∑
r∈R #D(s, r) and the number of

successes k = #D(s, fR(z
′)). Note that the definition of M̂ in Equation (1) is exactly the empirical

success probability p̂ = k
n .

Observe that we do not need a separate Bernoulli process for every state-observation pair: The number
of repetitions

∑
r∈R #D(s, r) is independent of the observation z, since that only affects whether

it is counted as success or not. Further, it suffices to have one random variable per combination
of valuation for the features in Ialways, since all states that agree on the always observable features
yield the same Bernoulli process. Moreover, we do not need to consider every observation z (as this
includes observations that do not admit s), but rather only every missingness indicator vector r ∈ R.
In the following, we still write “Every state-observation pair” instead of “Every pair of set of states
that agree on the always observable features and missingness indicator vector”, as it is also true and
more concise.

Single state-observation pair. Consider the Bernoulli process just described for a fixed state-
observation pair (s, z). We explain how to use the results of Appendix B.1 towards proving the first
and second claim of the theorem:

• First claim: By the third variant of Equation (3), we have that given a precision ε and
confidence threshold δs,z , we can compute a necessary number of samples ns,z such that
we obtain the PAC guarantee for this state-observation pair.

• Second claim: Observe that a given dataset D corresponds to a number of repetitions of
every Bernoulli process. Let ns,z be the number of repetitions for the pair (s, z). Thus, using
the second variant of Equation (3), we have that given D (and thus ns,z) and a confidence
threshold δs,z , we can compute a precision εs,z such that we obtain the PAC guarantee for
this state-observation pair.

All state-observation pairs. We can split the given confidence threshold δ uniformly over all state-
observation pairs, i.e. for every s ∈ S, z ∈ Z, we have δs,z = δ

|S|·|Z| . Then, by the union bound, the
probability of all state-observation pairs being correctly estimated is the sum of all δs,z , which (since
we distributed it uniformly) is δ. By splitting the confidence threshold in this way, we can obtain the
PAC guarantee for all state-observation pairs.

Second claim. We first provide the full argument for the second claim, as it is simpler. Given the
dataset D and confidence threshold δ, we obtain an εs,z for all state-observation pairs. The probability
that all of these are correct is at least δ. We obtain the claim by taking the maximum over these, i.e.
setting ε := maxs∈S,z∈Z εs,z . Then we have that with probability at least δ, for all states s ∈ S and
observations z ∈ Z, we have |M̂(z | s)−M(z | s)| ≤ ε.

First claim. We proceed in two steps: We explain the analogous argument to the second claim, based
on an assumption on the dataset. Afterwards, we explain how this assumption on the dataset can be
satisfied.

Assume that for every state-observation pair (s, z), the dataset D contains at least ns,z samples, i.e.
the number computed using Equation (3) inserting ε and δs,z . Then, analogously to the proof of the
second claim, computing M̂ using this dataset satisfies that with probability at least δ, for all states
s ∈ S and observations z ∈ Z, we have |M̂(z | s)−M(z | s)| ≤ ε.

It remains to show that there exists a number n∗ such that a sampled dataset of n∗ histories has the
required property. For this, we have to spend some of our confidence threshold δ, since we can only
guarantee the property with a certain probability; there is the chance that even upon sampling n∗

histories, we are unlucky and some state-observation pair has not been sampled often enough. Thus,
we split δ as follows: δD is used to guarantee the property of the dataset, and δM̂ is used to guarantee
the consequential property of M̂ . Thus, δs,z above are obtained by uniformly distributing δM̂ , not

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

all of δ. Then, by the union bound, the probability that D has the desired property and that the PAC
guarantee holds is δD + δM̂ = δ.

We now need to show that there exists an n∗ such that a dataset of this size contains the required
number of samples with probability at least δD. Recall that the dataset is sampled using a fair policy,
which means that every state has a positive probability to be visited; thus (assuming that the length of
every history is at least as large as the number of states in the miss-MDP), there exists a minimum
probability m such that every state is visited with at least probability m in every history. Moreover,
observe that for a state-observation pair (s, z), the number of samples for its Bernoulli process is at
least the number of times s has been visited; this is because a sample is used when it agrees with s on
the always observable features. Thus, for every sampled history, we have a probability of at least
m to obtain at least one sample for (s, z). This lower bound on the number of samples for (s, z) is
binomially distributed with success probability m (Dekking et al., 2005, Chapter 4.3). Thus, there
exists a number of histories n∗ such that the probability of having at least ns,z samples for (s, z)
when sampling at least nh histories is greater than δD. As before, this argument was for a single
state-observation pair; thus, δD is also uniformly distributed over all state-observation pairs.

Summarizing the above: There exists a number n∗, such that with probability δD, a dataset consisting
of n∗ histories contains at least ns,z samples for every state-observation pair (s, z), where ns,z is
the number computed using Equation (3) inserting ε and δs,z . Consequently, M̂ using this dataset
satisfies that with probability at least δM̂ , for all states s ∈ S and observations z ∈ Z, we have
M̂(z | s) = M(z | s) ± ε. Together, we can guarantee that probably (with probability at least
δ = δD + δM̂ ), M̂ is approximately correct.

Proposition 1. The improvements described in Section 4.1 for using knowledge retain the PAC
guarantees stated in Theorem 1.

Proof. The improvements use the fact that the underlying Bernoulli process in fact does not depend
on all features in Ialways. While it is correct to still split on these variables, obtaining two processes
with the same true success probability, we can also merge them.

More formally, observe that if feature i does not affect the missingness probability of other features,
for all valuations of feature i, the corresponding Bernoulli processes have the same success probability.
MCAR missingness functions are the most extreme case of this, where the given state is completely
irrelevant and it suffices to have one Bernoulli process per missingness indicator vector. As a side
note: Observe that it is indeed necessary to consider every missingness indicator vector and not
individual features, since the missingness probabilities need not be independent.

B.3 PAC GUARANTEES FOR AIMI (SECTION 4.2)

Theorem 2 (PAC guarantee for AIMI). Let P be a missingness-MDP where the missingness function
satisfies independence, non-self-censoring, and positivity. Then, M̂ computed using Equation (2)
offers the same PAC guarantees as specified in Theorem 1.

Proof. This proof is analogous to that of Theorem 1: every missingness probability computed by
Equation (2) corresponds to the empirical success probability of a Bernoulli process, which allows
to apply the results from Appendix B.1. This proof differs in the argument why all states grouped
together in the same Bernoulli process have the same success probability, and in the argument why it
feasible to sample a dataset of the necessary size.

By the independence assumption, we know that it suffices to learn every individual P(zi | z ∼ M(s))
for each i ∈ I . By non self-censoring, we know that this probability depends only on features in
I \ {i}. Thus, the counter #(s, i, 0) counts exactly the successes of a Bernoulli process with success
probability P(zi | z ∼ M(s)), and #(s, i, 1) counts the failures.

It only remains to argue that a sufficient dataset can be feasibly obtained. For this, we use the
assumption that no feature is missing surely. In other words, every feature has a positive probability
to be observed. Thus, every reachable states has a positive probability m to be fully observed. Using
this, we can repeat the argument from the proof of Theorem 1.
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Proposition 2. The improvements described in Section 4.1 for using knowledge retain the PAC
guarantees stated in Theorem 2.

Proof. (a) If we know from an m-graph that a particular feature i is not influenced by feature j, for
all valuations of j the Bernoulli process has the same success probability. Thus, we can merge these
Bernoulli processes and ignore feature j.

(b) If we know the missingness function is simple MAR and feature j goes missing, we know that
it cannot influence the missingness probability of any other feature by definition (Mohan & Pearl,
2021). Then, the proof is the same as in Case (a).

(c) If the missingness function is MCAR, we know that no feature influences the missingness
probability of any other feature. Thus, we can repeatedly apply the argument of Case (a) to merge all
Bernoulli processes until we have one for every feature.

B.4 COMPUTING ε-OPTIMAL POLICIES (SECTION 4.3)

Theorem 3 (Computing ε-optimal Policies). Let P be a miss-MDP with a missingness function
that is simple MAR or that satisfies independence, no self-censoring, and positivity. Assume we can
sample histories collected under a fair policy, and we know a lower bound on the smallest missingness
probability p ≤ mins∈S,z∈Z M(z | s). Then, for every given precision ε and confidence threshold
δ, we can in finite time compute a policy π∗ such that with probability at least δ it is ε-optimal, i.e.
(supπ VP(π))− VP(π

∗) ≤ ε.

Proof. Sampling the dataset. We have sampling access with a fair policy, so every state has positive
probability to be visited. Thus, for any finite number n, we can almost surely obtain n samples of
every state s in finite time. For the Bernoulli process underlying Equation (1), and if the missingness
function is simple MAR, this suffices to guarantee that for every state-observation pair, we can obtain
the number of samples ns,z required for achieving precision ε with confidence δs,z . Similarly, for the
Bernoulli process underlying Equation (2), and if the missingness function satisfies positivity, we
can also obtain the required number of samples for every state-observation pair. Overall, under the
assumptions of the theorem, we can almost surely obtain a dataset in finite time such that it suffices
to give PAC guarantees on every state-observation pair.

We remark that this does not even require spending confidence budget as we did in the proofs of
Theorems 1 and 2, since there we required to get this dataset within a certain number of histories n∗.
Here, we only claim that we can get a sufficient dataset in finite time almost surely.

Obtaining M̂ . The assumptions on the missingness function in the statement of the theorem match
those in Theorem 1 or Theorem 2. Hence, given the dataset described in the previous paragraph, we
can approximate M̂ in a way such that with probability δ, it is εM -precise. Note that here we do not
employ the full allowed imprecision ε, but rather a smaller εM < ε, since there will be other sources
of error.

M and M̂ qualitatively agree. For our technical reasoning, we require that M(z | s) = 0 if and
only if M̂(z | s) = 0. We prove both directions separately: If M(z | s) = 0, then we never observe a
sample for z when given s, and thus M̂(z | s) = 0, as it uses an empirical average (Equations (1)
and (2)). If M(z | s) > 0, as we use a fair sampling process, we almost surely eventually observe z

when given s, and consequently the empirical average is positive, i.e. M̂(z | s) > 0.

It remains to prove that we can in finite time conclude that M and M̂ qualitatively agree. This means
that we need to be sufficiently certain that if M̂(z | s) = 0, this is because indeed M(z | s) = 0
and not just because we haven’t sampled enough yet. For this, we use a proof technique employed
in, e.g., Daca et al. (2017): We utilize knowledge of (a lower bound on) the smallest missingness
probability p. Further, recall that the confidence threshold δ is distributed over all Bernoulli processes
(see Appendices B.2 and B.3). Thus, for each Bernoulli process, we have a confidence threshold δs,z .
Okamoto’s inequality (see Appendix B.1) provides an upper bound on the missingness probability
that is correct with probability at least δs,z . Thus, when this upper bound is less than p, we can
conclude with sufficient confidence that M̂(z | s) = 0.
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Utilizing Lemma 2. Let P̂ be the approximated missingness-MDP that is exactly P except for the
missingness function, which is M̂ instead of M . We have just proven that in finite time we know
that with probability δ, M̂ is εM -precise and qualitatively agrees with M . Thus, it satisfies the
assumptions specified in Lemma 2, which is proven below. This key technical lemma shows that
the values obtained when following a policy π in either the original P or the approximated P̂ have a
bounded difference.3 Formally, for every policy π, we have |VP(π)− VP̂(π)| ≤ f(εM ), where f is a
monotonically increasing function that depends on εM , the precision of M̂ .

From this, we obtain two facts: Firstly, since this holds for all policies, it also holds for the supremum
over all policies, and thus we can bound the difference in the values of the two missingness-MDPs:

|sup
π

VP(π)− sup
π

VP̂(π)| ≤ f(εM ). (4)

Secondly, we can apply the same reasoning to a near-optimal policy in P̂. For this, let επ < ε be a
precision smaller than our overall error tolerance, and let π∗ be an επ-optimal policy in P̂, i.e.

sup
π
(VP̂(π))− VP̂(π

∗) ≤ επ. (5)

We remark that P̂ is a fully specified missingness-MDP, and thus a fully specified POMDP, for
which solvers computing ε-optimal policies such as SARSOP (Kurniawati et al., 2008) exist. Using
Lemma 2, we obtain the following inequality:

|VP(π
∗)− VP̂(π

∗)| ≤ f(εM ). (6)

Implications of the inequalities. Since we reason about absolute differences, we need to make
case distinctions on whether supπ VP(π)− supπ VP̂(π) ≥ 0 or not when applying Equation (4). If
supπ VP(π) − supπ VP̂(π) ≥ 0, then supπ VP(π) − supπ VP̂(π) ≤ f(εM ), and by reordering we
get supπ VP(π) ≤ supπ VP̂(π)+ f(εM ). Otherwise, we have supπ VP(π) < supπ VP̂(π). Together,
we can obtain that Equation (4) implies:

sup
π

VP(π) ≤ sup
π

VP̂(π) + f(εM ) (7)

Analogously, we can make a case distinction in Equation (6) and obtain that:

VP̂(π
∗) ≤ VP(π

∗) + f(εM ) (8)

Combining the inequalities. To conclude the proof, we use a chain of inequalities.

sup
π

VP(π) ≤ sup
π

VP̂(π) + f(εM ) (By Equation (7))

≤ VP̂(π
∗) + επ + f(εM ) (By Equation (5))

≤ VP(π
∗) + f(εM ) + επ + f(εM ) (By Equation (8))

By reordering, we obtain

|sup
π

VP(π)− VP(π
∗)| ≤ επ + 2 · f(εM ).

Hence, since f is a monotonically increasing function, there exists a choice of εM and επ so that
επ + 2 · f(εM ) ≤ ε. Intuitively, while the errors incurred by approximating M̂ and by using an
approximately optimal policy add up, we can bound the overall maximum error. Thus, we can choose
the two precisions so that the overall error criterion is met, and the policy π∗ is ε-optimal in the
original missingness-MDP (with probability δ; with the remaining probability, our sampling was
unlucky and M̂ can differ by more than εM ). This concludes the proof.

Lemma 2 (Bounding the Value-Difference between P and P̂). Let P be a missingness-MDP and P̂
be a missingness-MDP that differs from P only in its missingness function, where it uses M̂ instead
of M . Further, assume that for all states s ∈ S and observations z ∈ Z, we have M(z | s) = 0 if and
only if M̂(z | s) = 0, and moreover M(z | s) = M̂(z | s)± εM . Then, for every policy π we have
|VP(π)− VP̂(π)| ≤ f(εM ), where f is a monotonically increasing function.

3We highlight that every policy is applicable in both missingness-MDPs, as they only differ in their missing-
ness probabilities, but agree on states, observations, and actions.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Proof. To uncountable MDPs. Note that both P and P̂ are missingness-MDPs, and thus POMDPs.
Thus, for each of them, we can construct an uncountable belief MDP with the same value, called
B or B̂, respectively. Intuitively, this is achieved by unrolling step-by-step the observation function
and all possible beliefs that the agent can have after an action; the transition probabilities in these
uncountable MDPs depend on the missingness functions. For a more extensive description, see
(Russell & Norvig, 2022, Chapter 16.4.1).

To finite MDPs. We consider discounted expected reward, with γ the discount factor and ϱmax :=
max(s,a)∈S×A ϱ(s, a) the maximum state reward. As the expected reward is a geometric series, we
can bound the reward that can be obtained after n steps from above as follows:

∞∑
i=n

γi · ϱmax = γn · ϱmax ·
∞∑
i=0

γi =
γn · ϱmax

1− γ
.

For every arbitrarily small precision εγ > 0, we can thus obtain an n such that the reward after n
steps is less than εγ . Let Bεγ be the finite MDP obtained from B by only considering states that are
reachable within n steps, and analogously define B̂εγ . (Note that n is the same for both, since it only
depends on γ and ϱmax, which is the same for both of them.) The value of these finite belief MDPs
differs from the value of the uncountable belief MDPs and thus the original missingness-MDPs by at
most εγ .

Bounding the difference. Recall that B or B̂ are the same except for their transition functions, which
depend on M and M̂ , respectively. Still, by assumption of the theorem M and M̂ qualitatively agree,
i.e. M(z | s) = 0 if and only if M̂(z | s) = 0. Hence, the graph structure of B or B̂ is the same.
Thus, the only difference are small perturbations of individual transition probabilities by at most εM .

It remains to show the following: Given two finite MDPs that are the same except for small pertur-
bations of the transition probabilities, but where the supports of the the transition functions are the
same, provide a bound on the difference in their value. Such a result exists in the literature, namely
in Meggendorfer et al. (2025), or more precisely in the extended version of that paper (Meggendorfer
et al., 2024, Lemma 5). It remains to show that our setting indeed satisfies the assumptions of
(Meggendorfer et al., 2024, Lemma 5).

• “For every closed constant-support RMDP”: Their claim applies to robust MDPs that are closed
constant-support. A robust MDP is an MDP whose transitions are not probability distributions,
but rather sets of possible values, see (Meggendorfer et al., 2025, Section 2). In our case, instead
of considering the concrete MDPs Bεγ and B̂εγ , we consider the robust MDP that arises when
considering an εM -interval around every missingness probability M(z | s). This robust MDP
contains both Bεγ and B̂εγ as instantiations.

• “For every pair of agent and environment policy”: An agent policy in this setting is exactly
the agent policy in ours, so (Meggendorfer et al., 2024, Lemma 5) applies to all policies. An
environment policy is the policy that chooses the instantiation of the transition function, i.e. the
exact missingness probabilities from the set of all that differ by at most εM in our setting.

• “Total-reward objectives:” (Meggendorfer et al., 2024, Lemma 5) concerns undiscounted total-
reward or mean payoff objectives. Undiscounted total-reward generalizes discounted expected
reward, using the standard construction which adds an edge transitioning with probability γ to a
dedicated sink state to every transition. Thus, the lemma is applicable to the objective in our
setting.

• “The value function is continuous w.r.t. the environment policy”: This is the claim of (Meggen-
dorfer et al., 2024, Lemma 5). More formally, if the environment chooses missingness prob-
abilities differently with some deviation εM , then the deviation in the value between the two
instantiations is bounded by some monotonically increasing function g(εM ). This is exactly the
claim we require, since it means that for all agent policies π and all missingness functions M̂
that are εM -close to M , we have |VBεγ

(π)− VB̂εγ
(π)| ≤ g(εM ).

We also argue that g can be effectively computed, as it depends on the size of the state space, the
reward function, and the minimum occurring transition probability, all of which are known to
us (recall that Theorem 3 assumes knowledge of a lower bound on the minimum missingness
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probabilities). The concrete way of deriving the distance is provided on (Meggendorfer et al.,
2024, page 17).

Putting it all together. Our goal is to show that we can compute an f such that for all policies π we
have: |VP(π)− VP̂(π)| ≤ f(εM ). The following chain of equations proves our goal:

|VP(π)− VP̂(π)| = |VB(π)− VB̂(π)|
(Using the uncountable belief MDPs)
≤ |Bεγ (π)− VB̂εγ

(π)|+ εγ

(Using the finite MDPs; decreasing both values by
at most εγ increases the difference by at most εγ)
≤ g(εM ) + εγ

(By bounding the difference).

For simplicity of presentation, we choose εγ = εM , and thus setting f(εM ) := g(εM ) + εM
concludes the proof.

C BENCHMARKS

Here we describe our benchmarks. We provide a detailed description of the benchmarks as well as
the parameters for running the experiments.

C.1 DESCRIPTION

ICU. This benchmark, inspired by prior clinical decision-making models (Johnson et al., 2022;
Pollard et al., 2018; Thoral et al., 2021; Hyland et al., 2020), simulates a doctor treating a patient with
an infection that progresses stochastically over time. The state of the patient consists of the infection
severity, the temperature, and the heart rate. The infection causally influences both the heart rate and
the temperature.

The doctor has an option to wait, to administer costly antibiotics that reduce the infection severity, or
to order a test, which is a measuring action that may reveal the infection severity. The reward function
penalizes high infection levels as well as costly interventions (ordering a test and administering
antibiotics). Thus, the doctor’s objective is to maintain the patient’s infection severity at low levels by
administering antibiotics only when necessary. For ease of modeling, the state space also includes
the value of the last test ordered.

We evaluate three different missingness functions M , corresponding to distinct missingness functions,
illustrated in the m-graph in Figure 4. In all cases, the heart rate and the infection severity may be
missing, whereas temperature and the last test ordered are always observed. The success rate of the

Figure 4: The m-graphs for the ICU benchmark describing missingness functions of types simple
MAR (gray + blue), identifiable MNAR (gray + red) and unidentifiable MNAR (gray + red + orange).
Causal dependencies between the state features were omitted for clarity.
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Figure 5: left: The Predator benchmark, where the predator (lion) is the agent trying to catch its prey
(boar). Predator and prey can move in all four cardinal directions, where prey chooses an action that
increases the distance to the predator (red arrows). right: The m-graphs for the predator and prey
benchmark describing missingness functions of types simple MAR (gray), identifiable MNAR (gray +
blue). Causal dependencies between the state features were omitted for clarity.

test that reveals the infection severity may depend on different features, resulting in the following
missingness functions. (1) Simple MAR, where the success rate only depends on the (always
observed) temperature. (2) MNAR (id.), where the success rate only depends on the (not always
observed) heart rate, resulting in an identifiable MNAR function without self-censoring and satisfying
the positivity assumption. (3) MNAR (unid.) is an extension of MNAR (id.), where the infection
severity influences the test success rate, introducing self-censoring and thus making the function
unidentifiable.

Predator. This benchmark is a variant of the Tag benchmark from Pineau et al. (2003), where an
agent (in our case, a predator) is tasked with chasing a partially hidden target (a prey) in a 2D grid
environment. The prey senses the predator and usually moves away from it; in case multiple directions
lead away from the predator, the prey chooses uniformly at random. The predator’s movement is
deterministic (dictated by the policy), but moving in an intended direction may randomly fail due to
terrain conditions. Predator obtains a flat reward upon catching the prey, and thus the discounting
incentivizes catching the prey as soon as possible.

The environment may feature three distinct biomes – plains, mountains, or jungles – that influence
the predator’s observability of the prey, see Figure 5, and thus define the missingness function. We
investigate the following three variants thereof. (1) MCAR, which features only one type of terrain,
i.e., the prey is observed with constant probability. (2) simple MAR, where the environment features
plains as well as mountains from which the predator has a higher chance of observing its target. (3)
MNAR (unid.), where the prey has an option to hide in jungle cells, introducing self-censoring of its
position. We stress that when the predator loses track of the prey, both features corresponding to x &
y coordinates of the prey go missing simultaneously, modeled by dependencies between missingness
indicators Rx & Ry. The dependence between the missingness indicators is a key difference from
the ICU benchmark.

C.2 EXPERIMENTAL SETUP

Technical Setup. For all experiments, we used high-performance workstations equipped with an
AMD Ryzen ThreadRipper PRO 5965WX (24-core, 3.8GHz) CPU, 512 GB ECC DDR4 RAM, and
a 2 TB PCIe 4.0 NVMe SSD.

Simulating trajectories. For both benchmarks, we used a discount factor of γ = 0.95. We considered
dataset sizes |D| ∈ {10, 50, 100, 500, 103, 5 · 103, 104, 105, 106, 107}. To obtain a dataset containing
|D| samples, we simulated finite trajectories until their lengths summed up to |D|. A trajectory is
terminated when it reaches a terminal state (only for the Predator bechmark, when the predator
catches the prey) or if its length exceeds L =

⌈
logγ

(1−γ)·10−3

ϱmax

⌉
, where ϱmax := maxs,a ϱ(s, a).

Here, L denotes the smallest integer satisfying
∑∞

k=L γk · ϱmax < 10−3, i.e. a time step after which
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the maximum discounted cumulative reward cannot exceed 10−3. For each dataset size |D|, we
generated 20 independent datasets of this size.

Timeouts & precision. For the baselines, we used the timeout of 5 minutes when solving the POMDP
(to obtain π∗ and πMu) and the same timeout to evaluate the resulting policy (or πrnd). To obtain
a policy π̂ by solving the corresponding P̂, we used a timeout of 3 minutes and evaluated π̂ for
2 minutes. In all cases, solving was additionally allowed to terminate upon reaching the relative
precision of 10−3.
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