
MISSINGNESS-MDPs: BRIDGING THE THEORY OF MISSING DATA AND POMDPs

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce *missingness-MDPs* (miss-MDPs); a subclass of partially observable Markov decision processes (POMDPs) that incorporates the theory of missing data. Miss-MDPs capture settings where, at each step, features of the current state may go missing, that is, the state is not fully observed. Missingness of state features occurs dynamically, governed by the *missingness function*, a restricted observation function. In Miss-MDPs, we distinguish three types of missingness functions: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). Our problem is to compute a policy for a miss-MDP with an *unknown* missingness function from a dataset of **observations and actions**. We propose probably approximately correct (PAC) algorithms that, from a dataset, approximate the missingness function and, thereby, the true miss-MDP. We show that, for specific missingness functions, the policy computed on the approximated model is ε -optimal in the true miss-MDP. The empirical evaluation confirms these findings and shows that our approach becomes more sample-efficient when exploiting the type of the missingness function.

1 INTRODUCTION

Markov decision processes (MDPs; Puterman, 1994) capture sequential decision-making under uncertainty. Classically, it is assumed that all *state features* can be precisely measured at all times. However, such features can be *missing*, e.g. due to sensor failure, so decisions cannot be made based on all features. Consider a medical doctor diagnosing a patient based on the state features of heart rate and temperature: Such measurements might be incomplete.

Partially observable Markov decision processes (POMDPs; Åström, 1965) can capture the aspect of missing state features. In POMDPs, an *observation function* explicitly models uncertainty in the observations of state features, and policies are based on the resulting beliefs over features. A policy thus describes how an agent (or doctor) should act given its current belief. Yet, solving POMDPs is notoriously challenging: In particular, inferring the observation function from observations of features alone is generally *intractable* as the probabilities depend on the past sequences of actions and observations (Liu et al., 2022a; Lee et al., 2023).

Fortunately, specific problems often exhibit a simpler structure in the source of partial observability: The *missingness* of state features may occur according to a stochastic *missingness function*. Such problems are studied by the theory of *missingness* (Schafer & Graham, 2002; Buuren, 2018; Little & Rubin, 2019). As practical reasons for missingness vary, Rubin (1976) classifies missingness functions into three main types: *missing completely at random* (MCAR), *missing at random* (MAR), and *missing not at random* (MNAR). MCAR missingness is independent of observed or unobserved state features – e.g., the temperature feature is missing due to a loosely attached thermometer. MAR missingness solely depends on observed state features – e.g., the observed temperature feature influences the missingness of the heart rate feature. Missingness functions that are neither MCAR nor MAR are considered MNAR – e.g., the temperature feature influences its own missingness.

Prior work on sequential decision-making with missing observations has focused mainly on reinforcement learning, where missing data are treated as incidental rather than explicitly modeled (Lizotte et al., 2008; Li et al., 2018; Wang et al., 2019; Böck et al., 2022). Planning approaches typically overlook distinctions between MCAR, MAR, and MNAR (Liu et al., 2022b; Yamaguchi et al., 2020; Futoma et al., 2020), or rely on implicit assumptions about the missingness mechanism, which can

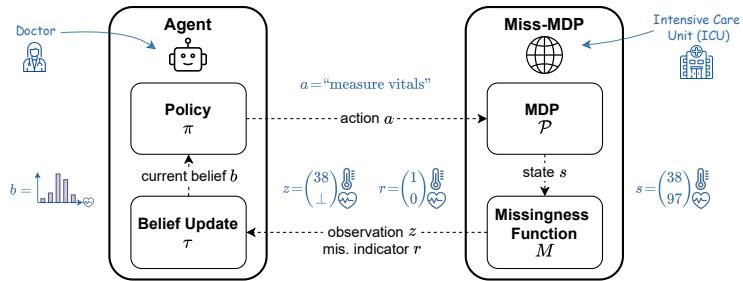


Figure 1: A doctor-treating-patient example (blue annotations) of an agent interacting with a miss-MDP. The missingness function causes the heart rate feature of the state to go missing, indicated as \perp in the observation. The missingness indicator evaluates to 0 for missing features and to 1 otherwise.

lead to biased or inconsistent estimates (Futoma et al., 2020) and provide no guarantees on policy performance (Yamaguchi et al., 2020). To our knowledge, no existing work bridges missingness and POMDPs to (1) explicitly model and learn the missingness function up to statistical guarantees, and (2) leverage the learned function to guarantee the optimality of the resulting policies.

To formalize missing state features in MDPs, we define *missingness-MDPs* (miss-MDPs) as a proper subclass of POMDPs. In miss-MDPs, the observation function is a missingness function. This function, categorized as MCAR, MAR, or MNAR, explicitly induces missing state features in the observations. In Figure 1 we depict a doctor-treating-patient example with a miss-MDP. The problem is as follows: given (1) a miss-MDP with an *unknown* missingness function and (2) a dataset of observations sampled from the miss-MDP, the goal is to compute a belief-based policy that maximizes the expected reward. To obtain guarantees on the result, our approach is to approximate a missingness function from the dataset, and thereby approximate the original miss-MDP. For this approximate miss-MDP, we compute a policy through off-the-shelf POMDP solvers such as SARSOP (Kurniawati et al., 2008). Missingness functions are *not learnable in general* (Bhattacharya et al., 2020), yet we identify and, subsequently, focus on missingness functions that are tractable to learn.

In summary, our contributions are:

1. We introduce miss-MDPs, which integrate and define the semantics of missingness in a specific subclass of the more general POMDP framework (Section 3).
2. We identify that beliefs over state features do not always depend on the probabilities of the missingness function (Remark 1), similar to *ignorability* of missing data (Little & Rubin, 2019).
3. We provide algorithms with *probably approximately correct* (PAC) guarantees for tractable subsets of the three main types of missingness functions (Sections 4.1 and 4.2).
4. Using these algorithms, we prove that we can approximate the ε -optimal policy for the miss-MDP under the correct assumption on the missingness function (Section 4.3).

Our empirical evaluation (Section 5) confirms our theory and highlights the practical advantages of our approach: Using datasets of reasonable size, the performance of policies computed using the learned missingness function converges to that of the optimal policy.

RELATED WORK

Our work builds on a rich literature in missing data analysis, see e.g. (Tsiatis, 2006; Little & Rubin, 2019). Classical assumptions such as MCAR, MAR, and MNAR provide high-level categories. More refined tools, such as missingness graphs, allow one to encode assumptions about the missingness in a structured way (Mohan et al., 2013; Shpitser et al., 2015), leading to highly specific learnability results (Bhattacharya et al., 2020; Nabi et al., 2020). Our setting departs from the standard missing data paradigm in several important aspects. In particular, the concept of missingness is embedded within the broader POMDP setting, which allows for a better and principled understanding of missingness in the context of sequential decision-making under uncertainty.

As noted previously, most work on decision making with missing data focuses on RL, where either full observations (Chen et al., 2023) or individual features may be missing (Shim et al., 2018; Yoon et al.,

108 2019; Böck et al., 2022). Some approaches incorporate missingness into belief updates for RL agents
109 (Wang et al., 2019), while others adopt model-based methods, often restricted to simpler settings such
110 as MCAR (Futoma et al., 2020). Another line of work combines deep learning with POMDP solvers
111 by learning abstract state representations, but without explicitly modeling the missingness process
112 (Liu et al., 2022b). More principled imputation strategies—such as Bayesian multiple imputation
113 (Lizotte et al., 2008) and expectation-maximization (Yamaguchi et al., 2020)—estimate missing
114 values as an intermediate step in policy computation. In contrast to imputation, our approach directly
115 learns the missingness function and offers PAC guarantees on the resulting policy.

2 PRELIMINARIES

119 A function $\mu: X \rightarrow [0, 1]$ is a *probability distribution over a countable set* X when $\sum_{x \in X} \mu(x) = 1$.
120 The set of such distributions is $\Delta(X)$. The *support* of distribution $\mu \in \Delta(X)$ is $\text{supp}(\mu) = \{x \in$
121 $X \mid \mu(x) \neq 0\}$. Writing $\mu = \{x_1 \mapsto p_1, \dots, x_k \mapsto p_k\}$ indicates that $\mu(x_1) = p_1$ and so on.
122 The random variable x sampled from μ is denoted by $x \sim \mu$. Given $\sigma: X \rightarrow \Delta(Y)$, we let
123 $\sigma(y \mid x) := \sigma(x)(y)$. The indicator function $\mathbf{1}_\varphi$ returns 1 if predicate φ holds and 0 otherwise.

124 **Definition 1** (POMDPs). A *partially observable Markov decision process* is a tuple $\mathcal{P} =$
125 $(S, A, T, b_0, \varrho, Z, O, \gamma)$ with finite factored *state space* $S = \times_{i=1, \dots, n} S_i$ and the set of *feature*
126 *indices* $I = \{1, \dots, n\}$, finite *action space* A , *transition function* $T: S \times A \rightarrow \Delta(S)$, *initial*
127 *state distribution* $b_0 \in \Delta(S)$, *reward function* $\varrho: S \times A \rightarrow \mathbb{R}$, finite factored *observation space*
128 $Z = \times_{i=1, \dots, m} Z_i$, *observation function* $O: S \rightarrow \Delta(Z)$, and *discount factor* $\gamma \in [0, 1)$.

130 **Without loss of generality, we consider the observation function to be action-independent, as**
131 **the state space of a POMDP can be augmented to carry the information of the last performed**
132 **action (Chatterjee et al., 2016).**

133 A *trajectory* in a POMDP \mathcal{P} is a sequence of states, observations, and actions. A *history* $h =$
134 $(z^{(0)}, a^{(0)}, z^{(1)}, a^{(1)}, \dots) \in \mathcal{H} \subseteq (Z \times A)^*$ is the observable fragment of a trajectory, i.e., a
135 sequence of observations and actions. A history can be summarized by a *sufficient statistic* known as
136 a *belief* $b \in \mathcal{B} \subseteq \Delta(S)$; a probability distribution over underlying states induced by a history $h \in \mathcal{H}$.
137 The *belief update* $\tau: \mathcal{B} \times A \times Z \rightarrow \mathcal{B}$ computes a *successor belief* b' via Bayes' rule (Spaan, 2012).

138 A *policy* $\pi: \mathcal{B} \rightarrow \Delta(A) \in \Pi$ maps beliefs to probability distributions over actions. The *objective*
139 is to find a policy $\pi \in \Pi$ that maximizes the infinite-horizon expected cumulative discounted
140 reward: $V_{\mathcal{P}}(\pi) = \mathbb{E}^\pi [\sum_{t=0}^{\infty} \gamma^t \varrho(s^{(t)}, a^{(t)})]$. As the problem of finding the optimal policy is
141 undecidable (Madani et al., 2003), we focus on computing ε -optimal policies (Hauskrecht, 2000).

3 MISSINGNESS IN MDPs

146 This section introduces missingness-MDPs and the different types of missingness functions.

147 **Definition 2** (Miss-MDP). A missingness-MDP is a tuple $(S, A, T, b_0, \varrho, Z, M, \gamma)$, where S , A ,
148 T , b_0 , ϱ , and γ are as in a POMDP, the finite *observation space* is $Z = \times_{i \in I} (S_i \cup \{\perp\})$, with \perp
149 denoting *missing information*, and function $M: S \rightarrow \Delta(Z)$ is the *missingness function* such that
150 $\forall s \in S, \forall z \in \text{supp}(M(s)), \forall i \in I$ either $z_i = s_i$ or $z_i = \perp$.

151 Miss-MDPs are a subclass of POMDPs where the state space S and observation space Z share the
152 feature indices I , and where $Z \supsetneq S$ because some features can go *missing* in Z , being replaced by
153 the symbol \perp . This process of “poking holes” is governed by the stochastic missingness function M .
154 **While M may take actions into account, we use an action-independent M w.l.o.g (see Section 2).**

155 **Missingness indicators.** Missingness functions can equivalently be described as a map to vectors
156 of *missingness indicators* (Mohan et al., 2013), i.e. $M: S \rightarrow \Delta(R)$, where $R = \{0, 1\}^n$. A vector
157 $r \in R$ has $r_i = 0$ if feature i is missing ($z_i = \perp$), and otherwise $r_i = 1$. The function $f_R: Z \rightarrow R$
158 maps observations to their missingness indicators.

159 **Example 1.** Let \mathcal{P} be a miss-MDP with $S = \{a, b\}^2$, $Z = \{a, b, \perp\}^2$, and missingness function
160 defined as: $M((s_1, s_2)) = \{(s_1, s_2) \mapsto 0.5, (s_1, \perp) \mapsto 0.5\}$. Then, visiting state (b, a) yields either
161 (b, a) or (b, \perp) , each with probability 0.5. We have $f_R((b, a)) = (1, 1)$ and $f_R((b, \perp)) = (1, 0)$.

162 We aim to compute a near-optimal policy for a miss-MDP \mathcal{P} with *unknown* missingness function
 163 M . For this, we use a dataset \mathcal{D} of histories (of length at least $|S|$), which are collected using a *fair*
 164 policy (i.e. it has positive probability to visit all reachable states). The resulting policy is *probably*
 165 *approximately correct* (PAC) if, with high probability, its value is close to the true optimum. Formally:
 166

167 **Problem statement.** We are given a miss-MDP \mathcal{P} with an *unknown* missingness function M , a
 168 dataset $\mathcal{D} = (h_1, \dots, h_k)$ of k histories $h_i \in \mathcal{H}$ collected from \mathcal{P} under an unknown but fair
 169 policy π_b , and a precision $\varepsilon > 0$ and confidence threshold $\delta > 0$. The goal is to approximate the
 170 missingness function $\widehat{M} \approx M$ for all reachable states and use it to compute a policy $\pi^* \in \Pi$
 171 such that with probability at least $1 - \delta$, we have $\sup_{\pi} (V_{\mathcal{P}}(\pi)) - V_{\mathcal{P}}(\pi^*) \leq \varepsilon$.
 172

173 3.1 TYPES OF MISSINGNESS FUNCTIONS

175 We formally introduce the three types of missingness functions (MCAR, MAR, and MNAR) in the
 176 context of miss-MDPs using missingness indicators $r \in R$ (see Section 3). The simplest is MCAR,
 177 where the probability of a feature going missing does not depend on any *feature values* of the state.
 178 The miss-MDP in Example 1 is of type MCAR.

179 **Definition 3 (MCAR).** The missingness function $M: S \rightarrow \Delta(Z)$ of a miss-MDP is MCAR iff
 180 $\forall r \in R, \exists p_r \in [0, 1], \forall s \in S, \mathbb{P}(f_R(z) = r \mid z \sim M(s)) = p_r$.
 181

182 **Admissibility and I_{always} .** We introduce a notion of admissibility that indicates whether an observation
 183 z could originate from a state s . We say that z is *admissible* by s , denoted $z \preceq s$, if and only if $\forall i \in I$,
 184 $z_i = \perp$ or $z_i = s_i$. In Example 1, we have $(b, \perp) \preceq (b, a)$ and $(b, a) \preceq (b, a)$ but $(a, \perp) \not\preceq (b, a)$.
 185 Furthermore, $I_{\text{always}} = \{i \in I \mid \forall s' \in S: \mathbb{P}(z_i = \perp \mid z \sim M(s')) = 0\} \subseteq I$ is the set of indices of
 186 always observed features, and $I_{\text{mis}} = I \setminus I_{\text{always}}$ is its complement.

187 We distinguish two MAR variants: a restricted one we call *simple MAR* (Mohan & Pearl, 2021), and
 188 the general MAR definition (Rubin, 1976). For simple MAR, the missingness probability of a feature
 189 is only influenced by the observable features that never go missing, i.e., by z_i for $i \in I_{\text{always}}$. For
 190 MAR, a missingness probability is only influenced by the non-missing features of a given *observation*,
 191 including features that may go missing. Any MCAR missingness function is also (simple) MAR.

192 **Definition 4 ((Simple) MAR).** The missingness function $M: S \rightarrow \Delta(Z)$ of a miss-MDP is:

- 193 • **Simple MAR** iff for all $s, s' \in S$ that agree on always-observed features (i.e. $\forall i \in I_{\text{always}}$,
 194 $s_i = s'_i$), the missingness probability is the same for all missingness indicators $r \in R$, formally:
 195 $\mathbb{P}(f_R(z) = r \mid z \sim M(s)) = \mathbb{P}(f_R(z') = r \mid z' \sim M(s'))$.
- 196 • **MAR** iff for all $s, s' \in S$ and $z \in Z$, if $z \preceq s, s'$, the probability of its missingness indicator
 197 $r := f_R(z)$ is equal for both states: $\mathbb{P}(f_R(z) = r \mid z' \sim M(s)) = \mathbb{P}(f_R(z'') = r \mid z'' \sim M(s'))$.
 198

199 **Example 2.** We redefine M in the miss-MDP from Example 1 to be simple MAR: $M((s_1, a)) =$
 200 $\{(s_1, a) \mapsto 1\}$, and $M((s_1, b)) = \{(s_1, b) \mapsto 0.5, (\perp, b) \mapsto 0.5\}$. Here, the missingness probability
 201 of feature 1 depends on the *always* observed value of feature 2. As an example of MAR **which**
 202 **is not simple MAR**, consider: $M((s_1, a)) = \{(s_1, a) \mapsto 0.5, (\perp, \perp) \mapsto 0.5\}$, and $M((s_1, b)) =$
 203 $\{(s_1, b) \mapsto 0.25, (\perp, b) \mapsto 0.25, (\perp, \perp) \mapsto 0.5\}$. **Here, feature 2 may go missing as well. The**
 204 **missingness probability of feature 1 depends on the value of feature 2. But only when it is**
 205 **observed!**

206 **Definition 5 (MNAR).** The missingness function M of a miss-MDP is MNAR iff it is not MAR.

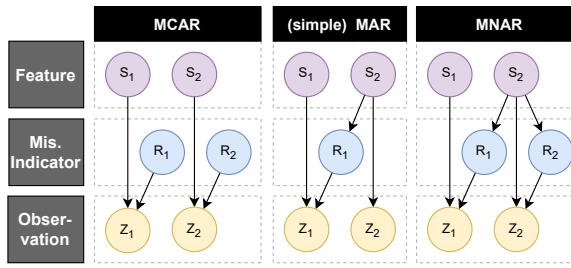
207 For MNAR, missingness probabilities may depend on the values of missing features. In particular, in
 208 *self-censoring* missingness functions, a feature's missingness probability depends on its own value.

209 **Example 3.** We adapt Example 1 to make M MNAR and self-censoring for feature 2:
 210 $M((s_1, a)) = \{(s_1, a) \mapsto 0.5, (s_1, \perp) \mapsto 0.5\}$ and $M((s_1, b)) = \{(s_1, b) \mapsto 0.1, (s_1, \perp) \mapsto 0.9\}$.
 211

212 3.2 MISSINGNESS GRAPHS

213 *Missingness graphs* (m-graphs) help visualize the dependencies of missingness functions. We adopt
 214 and translate the definition of Mohan & Pearl (2021) to our framework of miss-MDPs. An m-graph

216
217
218
219
220
221
222
223
224
225



226 Figure 2: **Example of missingness graphs visualizing relations between the elements of a miss-**
227 **MDP for the three types of missingness functions.**

230 is a causal diagram (Pearl, 1995) in the form of a directed acyclic graph. The vertices in the graph
231 correspond to variables, and the directed edges correspond to the relationships between the variables.

232 The vertices can be grouped into the following categories: \circlearrowleft -nodes correspond to features of the
233 state space, \circlearrowright -nodes correspond to the features of observations and \circlearrowup -nodes correspond to the
234 missingness indicators.¹ For always observed features, we omit the respective \circlearrowup -node from the
235 m-graph. Arrows between nodes represent a direct causal relationship: The parent node is a direct
236 cause of the child node. The absence of an edge intuitively denotes that two variables do not directly
237 influence each other; formally, it means that they are conditionally independent, given other variables
238 in the graph according to the d-separation criteria (Pearl, 2009).

239 **Visualizing types of missingness.** Figure 2 uses m-graphs to illustrate the conditional independence
240 assumptions of different types of missingness functions. For MCAR, both \circlearrowup -nodes are purely
241 stochastic, having no incoming arrows and thus not depending on any feature value. For (simple)
242 MAR, there are two changes: Feature S_2 is always observable (R_2 is absent), and it affects missingness
243 indicator R_1 (red arrow). For MNAR, S_2 can go missing, so R_1 depends on information that can
244 go missing. We remark that m-graphs cannot represent *context-specific* independence assumptions,
245 which are needed to, e.g., represent non-simple MAR functions such as the one in Example 2; but
246 the missingness functions we focus on may all be represented by m-graphs. Further, we provide the
247 corresponding m-graphs for all experiments in Appendix C.

248 4 APPROXIMATING MISSINGNESS-MDPs

251 Our goal is to compute ε -optimal policies for a miss-MDP. For this, we first compute an approximation
252 $\widehat{M} \approx M$ of the unknown M from the given dataset \mathcal{D} of histories. This yields an approximated, but
253 fully specified miss-MDP $\widehat{\mathcal{P}}$, which can be solved using any off-the-shelf POMDP solution method.

254 **Missingness types in focus.** A necessary condition is that the missingness function can be approximated
255 solely from observations, a property that missing data literature calls *identifiability* (Bhat-
256 tacharya et al., 2020). Establishing identifiability is not the focus of this paper. Instead, we provide
257 PAC guarantees for two types that are known to be identifiable. Thus, we focus on: (1) simple MAR
258 (including MCAR), and (2) non-self-censoring MNAR with independent missingness indicators.
259 Additionally, in Section 5, we experiment on MNAR with dependencies between the indicators.

260 **Outline.** Remark 1 presents an interesting insight orthogonal to our problem: For maintaining a
261 belief during policy execution, certain types of missingness can in fact be *ignored*. Sections 4.1
262 and 4.2 describe our algorithms for approximating missingness functions. Both are structured as
263 follows: They state assumptions, define how to compute \widehat{M} , prove that the approximation is probably
264 approximately correct, and explain how to utilize additional knowledge on the missingness function
265 to reduce sample complexity. Section 4.3 uses these algorithms to compute near-optimal policies.

266 **Remark 1 (Ignorability).** Missing data literature defines *ignorability* as cases where any quantity of
267 interest can be consistently estimated from observations alone and it is not necessary to model the
268

269 ¹We exclude the category of unobserved features U used in Mohan & Pearl (2021), as in our setting $U = \emptyset$
since M depends on states.

missingness process (Little & Rubin, 2019). This holds under MCAR, and also under MAR whenever the quantity depends only on the observed features. We identify a similar notion of ignorability for miss-MDPs: If the missingness function M is MAR (including MCAR), then belief updates τ can be computed without knowledge of the precise probabilities of M , since these cancel out in Bayes' rule; see Appendix A for a formal proof. Thus, MAR missingness is ignorable for maintaining a belief when executing a policy in a miss-MDP. However, we stress that the missingness function *is* required to compute belief-based policies, since the probabilities of successor beliefs depend on it.

Occurrence counts. Both algorithms extract the number of occurrences of every observation using the dataset $\mathcal{D} = (h_1, \dots, h_k)$ of k histories $h_i \in \mathcal{H}$. For each $h_i = (z^{(0)}, a^{(0)}, \dots, z^{(l)}, a^{(l)})$, we denote the j -th observation $z^{(j)}$ by $h_i^{(j)}$. The number of occurrences of an observation $z \in Z$ is: $\#_{\mathcal{D}}(z) = \sum_{i=1}^k \sum_{j=0}^{|h_i|} \mathbf{1}_{h_i^{(j)}=z}$. For a set $Z' \subseteq Z$, we define $\#_{\mathcal{D}}(Z') = \sum_{z \in Z'} \#_{\mathcal{D}}(z)$.

4.1 APPROXIMATING M FOR MCAR AND SIMPLE MAR

If a missingness function is of type simple MAR, we can approximate it using the *approximation for simple MAR* algorithm, ASMAR. The modifications to obtain the algorithm for the more restricted MCAR-type functions, AMCAR, are described at the end of the section.

Always-observable features. Based on the dataset \mathcal{D} , we partition the feature indices I into those that are always observed and those that can go missing: $\hat{I}_{\text{always}} = \{i \in I \mid \#_{\mathcal{D}}(\{z \in Z \mid z_i = \perp\}) = 0\}$ and $\hat{I}_{\text{mis}} = I \setminus \hat{I}_{\text{always}}$, respectively. Note, this partitioning is based on empirical data ($\hat{I}_{\text{always}} \approx I_{\text{always}}$) and we might misclassify a feature index to be in \hat{I}_{always} even though it can go missing.

Computing \widehat{M} . We use the fact that M can be seen as a mapping $S \rightarrow \Delta(R)$ (see paragraph “Missingness indicators”, Section 3). Consequently, for every state, we want to approximate the probability of a certain vector of missingness indicators. The simple MAR assumption tells us that the probabilities can only depend on the features in \hat{I}_{always} . Thus, for every combination of the always-observable features of a state $s \in S$ and missingness indicator vector $r \in R$, we can compute the occurrence count $\#_{\mathcal{D}}(s, r) = \#_{\mathcal{D}}(Z_s^r)$, where Z_s^r is defined as:

$$Z_s^r = \{z \in Z \mid \forall i \in I: (i \in \hat{I}_{\text{always}} \implies z_i = s_i) \wedge (r_i = 0 \implies z_i = \perp)\}.$$

Using this, we obtain $\widehat{M}(z \mid s)$ as the fraction of observing $(s, f_R(z))$ and the sum of counts for s and all possible missingness indicators values:

$$\widehat{M}(z \mid s) = \frac{\#_{\mathcal{D}}(s, f_R(z))}{\sum_{r \in R} \#_{\mathcal{D}}(s, r)}. \quad (1)$$

Probably approximately correct. With enough data, our approach yields an arbitrarily precise approximation of the true missingness function. We formalize this in Theorem 1 as a PAC guarantee, not only proving that it becomes ε -precise for every $\varepsilon > 0$, but that we can also bound the probability of an error (through unlucky sampling). Additionally, we can adapt the claim to bound the imprecision of the resulting \widehat{M} for a given dataset. The proof is provided in Appendix B.2.

Theorem 1 (PAC guarantee for ASMAR). Let \mathcal{P} be a missingness-MDP where the missingness function is simple MAR. For every given precision ε and confidence threshold δ , there exists a number n^* of histories, such that a dataset \mathcal{D} of n^* histories has the following property: With probability at least δ , \widehat{M} computed on \mathcal{D} according to Equation (1) satisfies that for all reachable states $s \in S$ and observations $z \in Z$, we have $|\widehat{M}(z \mid s) - M(z \mid s)| \leq \varepsilon$. Dually, given a dataset \mathcal{D} and confidence threshold δ , we can compute an ε such that with probability at least δ , for all reachable states $s \in S$ and observations $z \in Z$, we have the same inequality, i.e. $|\widehat{M}(z \mid s) - M(z \mid s)| \leq \varepsilon$.

Using additional assumptions on the missingness function. Beyond the necessary simple MAR assumption, we can exploit additional assumptions to improve the approximation of \widehat{M} for the same \mathcal{D} . Consider a feature i that is always observable, but does not affect the missingness probability of other features. We can exclude such i from \hat{I}_{always} , effectively merging the occurrence counts of states that differ only in this feature. Therefore, if we assume M to be MCAR, \hat{I}_{always} can be reduced to an empty set. Consequently, we get that $\#_{\mathcal{D}}(s, r)$ does not depend on s anymore, and we

effectively only count occurrences of missingness indicators, resulting in the algorithm `AMCAR`. We prove the correctness of these improvements in Appendix B.2. In Section 5, we empirically show that using such knowledge can significantly improve the precision of \widehat{M} estimated from the same \mathcal{D} .

4.2 APPROXIMATING M WITH INDEPENDENT MISSINGNESS INDICATORS

This section presents the *approximation for independent missingness indicators* algorithm, `AIMI`. Its assumptions **on M correspond to a subset of identifiable MNAR missingness functions and** are as follows:

- Independence of missingness indicators:** The fact that one feature is missing must not influence the missingness-probability of any other feature. Formally, for $s \in S$ and $z \in Z$, $\mathbb{P}(z | z \sim M(s)) = \prod_{i \in I} \mathbb{P}(z_i | z \sim M(s))$.
- No self-censoring:** Intuitively, a feature may not influence its own missingness probabilities. Formally, for all $i \in I$ and every pair of states $s, s' \in S$ that differ only in the i -th feature ($s_i \neq s'_i$, but for all $j \neq i$ we have $s_j = s'_j$) we have $\mathbb{P}(z_i = \perp | z \sim M(s)) = \mathbb{P}(z_i = \perp | z \sim M(s'))$.
- Positivity:** Intuitively, if a feature affects the missingness probabilities of other features, we need to observe its value to learn the missingness probabilities. However, this is impossible if it always misses. Therefore, we require a *positivity assumption* (Hernán & Robins, 2020): For all $i \in I$ and $s \in S$, we have $\mathbb{P}(z_i \neq \perp | z \sim M(s)) > 0$.

Computing \widehat{M} . We compute the occurrence count for every state $s \in S$, feature $i \in I$ and value of a corresponding i -th missingness indicator $r_i \in \{0, 1\}$ as $\#\mathcal{D}(s, i, r_i) = \#\mathcal{D}(Z_s^{i, r_i})$, where Z_s^{i, r_i} is the following set of observations:

$$Z_s^{i, r_i} = \{z \in Z | \forall j \in I \setminus \{i\}: (z_j = s_j) \wedge (r_i = 0 \iff z_i = \perp)\}.$$

By positivity, a large enough dataset almost surely contains observations to make the counters non-zero (i.e. for all s and i , we have $\#(s, i, 0) + \#(s, i, 1) > 0$). The probability of a non self-censoring feature i depends only on the other features $j \in I \setminus \{i\}$. Finally, using the independence assumption, we can infer \widehat{M} by taking the product of the individual missingness probabilities of all features (again viewing M as a mapping $S \rightarrow \Delta(R)$, see Section 3):

$$\widehat{M}(z | s) = \prod_{i \in I} \frac{\#\mathcal{D}(s, i, f_R(z)_i)}{\#\mathcal{D}(s, i, 0) + \#\mathcal{D}(s, i, 1)}. \quad (2)$$

Probably approximately correct. In Appendix B.3, we prove Theorem 2 that provides the same kind of guarantee as in Theorem 1; the only difference are the assumptions on the missingness function and the approach for calculating \widehat{M} .

Theorem 2 (PAC guarantee for `AIMI`). Let \mathcal{P} be a missingness-MDP where the missingness function satisfies independence, non-self-censoring, and positivity. Then, \widehat{M} computed using Equation (2) offers the same PAC guarantees as specified in Theorem 1.

Using additional assumptions on the missingness function. In its general form, `AIMI` maintains a counter for every combination of the feature valuations of other features $j \in I \setminus \{i\}$. If we know that a certain feature j does not affect the missingness probability of i – there is no edge between the j -th (\mathcal{S}) -node and the i -th (\mathcal{R}) -node – we merge the counters for all values of the j -th feature. This knowledge comes from **(a)** an m-graph, **(b)** assuming simple MAR while observing feature j goes missing in \mathcal{D} , or **(c)** assuming MCAR, in which case we drop the dependency on s in the counters. We prove in Appendix B.3 that all these modifications retain the PAC guarantees.

4.3 COMPUTING A POLICY WITH THE APPROXIMATIONS

We show in Appendix B.4 that after finitely many samples, \widehat{M} is accurate enough to yield an ε -optimal policy. We highlight that learning \widehat{M} to precision ε is insufficient, as the errors in \widehat{M} aggregate when solving the miss-MDP.

Theorem 3 (Computing ε -optimal Policies). Let \mathcal{P} be a miss-MDP with a missingness function that is simple MAR or that satisfies independence, no self-censoring, and positivity. Assume we can

sample histories collected under a fair policy, and we know a lower bound on the smallest missingness probability $p \leq \min_{s \in S, z \in Z} M(z | s)$. Then, for every given precision ε and confidence threshold δ , we can in finite time compute a policy π^* such that with probability at least δ it is ε -optimal, i.e. $(\sup_{\pi} V_{\mathcal{P}}(\pi)) - V_{\mathcal{P}}(\pi^*) \leq \varepsilon$.

Note that we use the notion of PAC guarantee that is common in statistical model checking (Brázdil et al., 2025; Ashok et al., 2019). This is inspired by, but slightly different from the original definition of Valiant (1984), as we return *in finite time* a policy that performs close to optimal with high probability.

Practical considerations. The guarantees of Theorem 3 concern asymptotic convergence to an ε -optimal policy. Thus, they provide the theoretical foundation of our approach. Still, in practice, the required number of samples is very large, and we work with datasets that are not necessarily sufficient to provide the ε -optimality guarantees. Still, we can infer \widehat{M} from any given dataset and then solve the approximated miss-MDP using an off-the-shelf POMDP solver. For datasets of limited size, we encounter a practical problem: For an observation z with $\#\mathcal{D}(s, f_R(z)) = 0$, for any $s \in S$ we obtain $\widehat{M}(z | s) = 0$, leading to a division by zero for s when performing the belief update τ . We circumvent this case by setting $\#\mathcal{D},\kappa(s, r) = \#\mathcal{D}(s, r) + \kappa$, i.e. we add a small $\kappa > 0$ to every count. The influence of κ diminishes with an increasing dataset size $|\mathcal{D}|$.

5 EXPERIMENTS

Our empirical study addresses the following questions:

- Q1.** Do the proposed methods provide adequate approximations of the missingness function?
- Q2.** How do (in)correct assumptions on the missingness function affect the approximation?
- Q3.** As the amount of data increases, does the value of the policy computed on the approximated miss-MDP converge to the optimal value of the true miss-MDP?
- Q4.** How does the value computed from the approximated miss-MDP compare against baselines that do not estimate the missingness function?

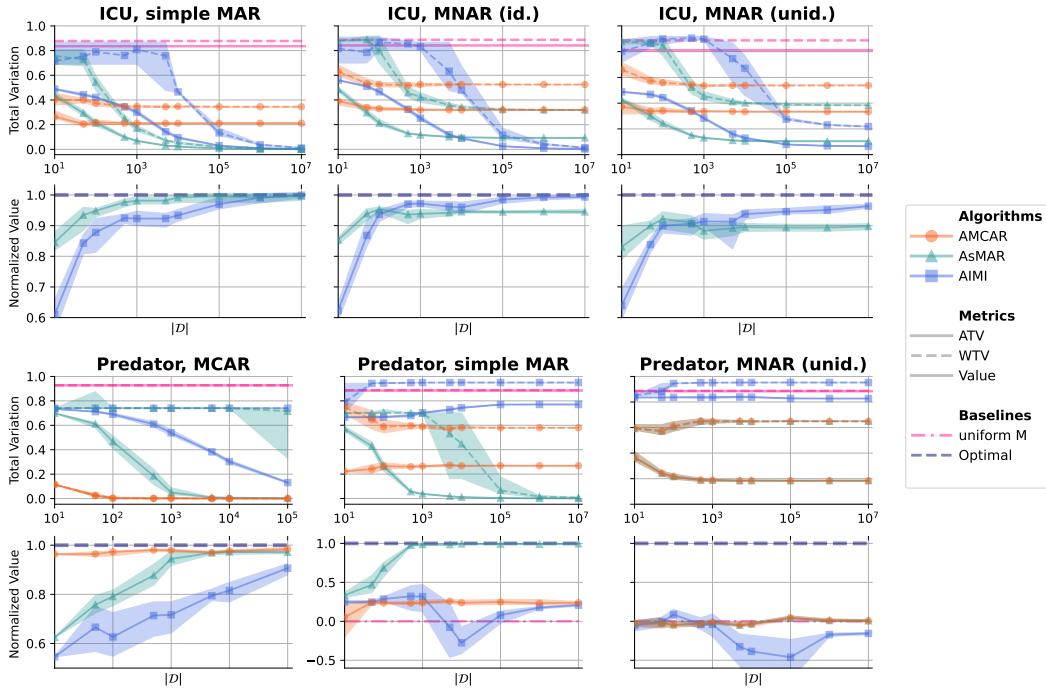
Benchmarks. We consider two environments with varying types of missingness: (1) *ICU*, a benchmark that models a doctor treating a patient, whose vital measurements are not always available (Johnson et al., 2022), and (2) *Predator*, a variant of the Tag benchmark (Pineau et al., 2003), where a predator is chasing a partially hidden prey. To answer Q2, we consider for our benchmarks a selection of the following four missingness functions: (1) *MCAR*, (2) *sMAR*, a simple MAR function, (3) *MNAR (id.)*, an identifiable MNAR function without self-censoring that satisfies the positivity assumption, and (4) *MNAR (unid.)*, an unidentifiable MNAR function with self-censoring. In the *Predator* benchmark, for all missingness functions, the (x, y) -coordinates of the prey can only go missing jointly, i.e. the missingness indicators are dependent; in the *ICU* benchmark, the missingness indicators are always independent. For details on the benchmarks, see Appendix C.

Protocol, algorithms, and baselines. For a range of dataset sizes $|\mathcal{D}|$, we collect data using the uniform random policy π^{rnd} where $\forall a \in A, \pi^{\text{rnd}}(a | \cdot) = 1/|A|$, and compute the estimate $\widehat{M} \approx M$ using our proposed algorithms: *AMCAR* (●), *ASMAR* (▲), and *AIMI* (■) (Section 4). Each \widehat{M} yields an approximated miss-MDP $\widehat{\mathcal{P}}$, for which we compute a policy $\hat{\pi}$ using the POMDP solver SARSOP (Kurniawati et al., 2008). To assess the efficacy of our approach, we consider the following baselines: (1) *optimal*: the SARSOP policy π^* computed for the true M (the upper bound); (2) *uniform M* : the SARSOP policy π^{M_u} computed for M_u , a guess of M that is uniform, where every feature independently goes missing with probability 0.5.

Metrics. For every dataset size and method, we perform 20 independent runs and report the average together with the interquartile range (shaded area) of the following metrics:

1. To assess the quality of the approximation \widehat{M} compared to M for a miss-MDP \mathcal{P} , we compute the *total variation* (TV) of the distributions at a state $s \in S$ as $TV(s) = \frac{1}{2} \sum_{z \preceq s} |\widehat{M}(z | s) - M(z | s)|$. We aggregate the TV across states by the average TV (ATV): $1/|S| \sum_s TV(s)$, and the worst TV (WTV): $\max_s TV(s)$.

432 2. We asses how the various $\hat{\pi}$ from the algorithms perform on the true miss-MDP \mathcal{P} by comparing
 433 their value $V_{\mathcal{P}}(\hat{\pi})$ to $V_{\mathcal{P}}(\pi^{M_u})$ and the optimum $V_{\mathcal{P}}(\pi^*)$. All policy values are normalized s.t. 1
 434 and 0 correspond to the values of the *optimum* and *uniform* baselines, respectively.



459 Figure 3: Empirical results for the *ICU* (top) and *Predator* (bottom) benchmarks, including average/-
 460 worst total variation (ATV/WTV) and normalized policy values. Values are normalized such that 1
 461 and 0 correspond to the optimal policy (using true M) and the uniform baseline, respectively.

462 **Results.** Figure 3 presents the experimental evaluation. It shows how the TV of \widehat{M} and the value of
 463 the associated $\hat{\pi}$ evolve with dataset size $|\mathcal{D}|$. Next, we discuss the questions based on these results.

464 **Q1: With a sufficient amount of data and the correct assumptions, the algorithms adequately
 465 approximate the missingness function.** We observe that under the appropriate assumptions, each
 466 algorithm can learn the corresponding missingness function (bringing the TV to zero): AMCAR learns
 467 the exact missingness function in $Predator_{MCAR}$ within 100 observations. We observe similar results
 468 for AsMAR (in ICU_{sMAR} and $Predator_{sMAR}$), as well as for AIMI (in $ICU_{MNAR\ (id.)}$).

469 **Q2: The assumptions on the missingness function significantly affect the quality of the ap-
 470 proximation.** On the one hand, relaxing the assumptions on the missingness function ensures
 471 it can be learned, though this comes at the cost of reduced sample efficiency. For example, in
 472 $Predator_{MCAR}$, we observe that AsMAR and AIMI require orders of magnitude more data to learn
 473 the missingness function than AMCAR. On the other hand, making stronger assumptions can lead
 474 to failures: for example, AMCAR converges to an incorrect missingness function in all benchmarks
 475 except $Predator_{MCAR}$. The results also show that in some cases, the algorithms might approximate
 476 the missingness function even if it does not satisfy the assumptions required for PAC guarantees, as
 477 demonstrated from the results of AIMI on $ICU_{MNAR\ (unid.)}$.

478 **Q3: The convergence to the optimal policy follows the quality of the approximation, and,
 479 therefore, the convergence of the resulting policy to the optimum.** With a sufficiently accurate
 480 approximation, the value of the policy found by using our methods converges to the optimal value.

481 **Q4: The values of the policies computed by the baseline are not competitive with the values
 482 resulting from our methods.** In all cases, the baseline algorithm fails to approximate the true
 483 M . The produced polices π^{M_u} are significantly worse than the ones resulting from our algorithms
 484 under correct type assumptions. The baseline is only competitive on $Predator_{MNAR\ (unid.)}$, where our
 485 algorithms also fail due to the fundamental challenge of having an unidentifiable missingness process.

486 6 CONCLUSION 487

488 We introduce miss-MDPs to integrate the theory of missing data into decision-making under uncer-
489 tainty. Given a dataset of **observations and actions** generated from a miss-MDP, we approximate the
490 unknown missingness function, which – under certain assumptions about the missingness function –
491 enables the computation of an ε -optimal policy. We demonstrate that incorrect assumptions about the
492 missingness mechanism can result in misspecified models and suboptimal policies. Interestingly, we
493 show that for certain missingness functions, belief updates can be computed without knowledge of
494 the missingness function, mirroring the notion of ignorability from the missing data literature. Our
495 experiments support the theoretical results and demonstrate the practical benefits of our contribu-
496 tions. Future work will explore lifting the assumption of a known transition function and extending
497 miss-MDPs to the more general setting of miss-POMDPs.
498

499 **Reproducibility Statement.** To ensure the reproducibility of our theoretical results, we provide
500 proofs for all formal claims in the appendix, always referring to the corresponding subsection
501 of the appendix after every claim. For the reproducibility of our practical results, we detail the
502 experimental setup – including experiment parameters as well as hardware specifications – in
503 Section 5 and Appendix C. Further, the repository at <https://anonymous.4open.science/r/missingness-pomdps> provides our implementations of our algorithms and the baselines as
504 used in the experiments, all benchmarks, scripts to rerun the experiments, as well as a README file
505 explaining the technical setup, installation process and creation of datasets.
506

507 REFERENCES

508 Pranav Ashok, Jan Křetínský, and Maximilian Weininger. Pac statistical model checking for markov
509 decision processes and stochastic games. In Isil Dillig and Serdar Tasiran (eds.), *Computer Aided
510 Verification*, pp. 497–519, Cham, 2019. Springer International Publishing.
511

512 Karl Johan Åström. Optimal control of Markov processes with incomplete state information. *J. Math.
513 Anal. Appl.*, 10(1):174–205, 1965.
514

515 Jacob Bernoulli. *Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis, et epistola
516 galliceé scripta de ludo pilae reticularis*. Impensis Thurnisiorum, fratrum, 1713.
517

518 Rohit Bhattacharya, Razieh Nabi, Ilya Shpitser, and James M. Robins. Identification In Missing Data
519 Models Represented By Directed Acyclic Graphs. In *UAI*, volume 115 of *Proceedings of Machine
Learning Research*, pp. 1149–1158, 2020.
520

521 Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelík, Vojtěch Forejt, Jan Křetínský, Marta
522 Kwiatkowska, Tobias Meggendorfer, David Parker, and Mateusz Ujma. Learning algorithms
523 for verification of markov decision processes. *TheoretCS*, Volume 4:10, Apr 2025. ISSN 2751-
4838.
524

525 Carlos E. Budde, Arnd Hartmanns, Tobias Meggendorfer, Maximilian Weininger, and Patrick
526 Wienhöft. Sound statistical model checking for probabilities and expected rewards. In *TACAS (1)*,
527 volume 15696, pp. 167–190. Springer, 2025.
528

529 Stef van Buuren. *Flexible imputation of missing data*. CRC Press, Taylor and Francis Group, 2018.
530

531 Markus Böck, Julien Malle, Daniel Pasterk, Hrvoje Kukina, Ramin Hasani, and Clemens Heitzinger.
532 Superhuman performance on sepsis MIMIC-III data by distributional reinforcement learning.
PLOS ONE, 17(11):e0275358, November 2022.
533

534 Krishnendu Chatterjee, Martin Chmelík, Raghav Gupta, and Ayush Kanodia. Optimal cost almost-
535 sure reachability in POMDPs. *Artificial Intelligence*, 234:26–48, 2016.
536

537 Minshuo Chen, Yu Bai, H. Vincent Poor, and Mengdi Wang. Efficient RL with impaired observability:
538 Learning to act with delayed and missing state observations. In *NeurIPS*, 2023.
539

Przemysław Daca, Thomas A. Henzinger, Jan Kretínský, and Tatjana Petrov. Faster statistical model
checking for unbounded temporal properties. *ACM Trans. Comput. Log.*, 18(2):12:1–12:25, 2017.

540 Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, and Ludolf Erwin Meester. *A*
541 *Modern Introduction to Probability and Statistics: Understanding why and how*. Springer Science
542 & Business Media, 2005.

543 Joseph Futoma, Michael C. Hughes, and Finale Doshi-Velez. POPCORN: Partially Observed
544 Prediction COnstrained ReiNforcement Learning, March 2020.

545 Milos Hauskrecht. Value-function approximations for partially observable Markov decision processes.
546 *JAIR*, 13:33–94, 2000.

547 Miguel A Hernán and James M Robins. *Causal Inference: What If*. CRC Press, 2020.

548 Stephanie L. Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Thomas Gumbisch, Cristóbal
549 Esteban, Christian Bock, Max Horn, Michael Moor, Bastian Rieck, Marc Zimmermann, Dean
550 Bodenham, Karsten Borgwardt, Gunnar Rätsch, and Tobias M. Merz. Early prediction of circulatory
551 failure in the intensive care unit using machine learning. *Nature Medicine*, 26(3):364–373, 2020.

552 Alistair Johnson, Lucas Bulgarelli, Tom Pollard, Steven Horng, Leo Anthony Celi, and Roger Mark.
553 MIMIC-IV, 2022.

554 Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP: Efficient point-based POMDP planning
555 by approximating optimally reachable belief spaces. In *RSS*. MIT Press, 2008.

556 Jonathan Lee, Alekh Agarwal, Christoph Dann, and Tong Zhang. Learning in POMDPs is sample-
557 efficient with hindsight observability. In *ICML*, volume 202 of *Proceedings of Machine Learning
558 Research*, pp. 18733–18773. PMLR, 2023.

559 Luchen Li, Matthieu Komorowski, and Aldo A. Faisal. The actor search tree critic (ASTC) for
560 off-policy POMDP learning in medical decision making. *CoRR*, abs/1805.11548, 2018.

561 Roderick Little and Donald Rubin. *Statistical Analysis with Missing Data, Third Edition*. Wiley
562 Series in Probability and Statistics. Wiley, 2019.

563 Qinghua Liu, Alan Chung, Csaba Szepesvári, and Chi Jin. When is partially observable reinforcement
564 learning not scary? In *COLT*, volume 178 of *Proceedings of Machine Learning Research*, pp.
565 5175–5220. PMLR, 2022a.

566 Zeyu Liu, Anahita Khojandi, Xueping Li, Akram Mohammed, Robert L Davis, and Rishikesan
567 Kamaleswaran. A Machine Learning-Enabled Partially Observable Markov Decision Process
568 Framework for Early Sepsis Prediction. *INFORMS Journal on Computing*, 34(4):2039–2057, July
569 2022b.

570 Daniel J Lizotte, Lacey Gunter, Eric Laber, and Susan A Murphy. Missing data and uncertainty in
571 batch reinforcement learning. In *NeurIPS*, 2008.

572 Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning and
573 related stochastic optimization problems. *Artif. Intell.*, 147(1-2):5–34, 2003.

574 Tobias Meggendorfer, Maximilian Weininger, and Patrick Wienhöft. Solving robust markov decision
575 processes: Generic, reliable, efficient. *CoRR*, abs/2412.10185, 2024.

576 Tobias Meggendorfer, Maximilian Weininger, and Patrick Wienhöft. Solving robust markov decision
577 processes: Generic, reliable, efficient. In *AAAI*, volume 39, pp. 26631–26641. AAAI Press, 2025.

578 Karthika Mohan and Judea Pearl. Graphical models for processing missing data. *J. Am. Stat. Assoc.*,
579 116(534):1023–1037, 2021.

580 Karthika Mohan, Judea Pearl, and Jin Tian. Graphical models for inference with missing data.
581 *NeurIPS*, 26, 2013.

582 Razieh Nabi, Rohit Bhattacharya, and Ilya Shpitser. Full Law Identification in Graphical Models of
583 Missing Data: Completeness Results. In *ICML*, volume 119 of *Proceedings of Machine Learning
584 Research*, pp. 7153–7163, 2020.

594 Masashi Okamoto. Some inequalities relating to the partial sum of binomial probabilities. *Annals of*
595 *the Institute of Statistical Mathematics*, 10(1):29–35, 1959.
596

597 Judea Pearl. Causal diagrams for empirical research. *Biometrika*, 82(4):669–688, 1995.
598

599 Judea Pearl. *Causality*. Cambridge University Press, 2nd edition, 2009.
600

601 Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. Point-based value iteration: An anytime
602 algorithm for POMDPs. In *IJCAI*, pp. 1025–1032, 2003.
603

604 Tom J. Pollard, Alistair E. W. Johnson, Jesse D. Raffa, Leo A. Celi, Roger G. Mark, and Omar
605 Badawi. The eicu collaborative research database, a freely available multi-center database for
606 critical care research. *Scientific Data*, 5(1):180178, 2018. ISSN 2052-4463.
607

608 Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. Wiley
609 Series in Probability and Statistics. Wiley, 1994.
610

611 Donald B. Rubin. Inference and missing data. *Biometrika*, 63(3):581–592, 1976.
612

613 Stuart J. Russell and Peter Norvig. *Artificial Intelligence: a modern approach. Fourth Edition*.
614 Pearson Education Limited, 2022.
615

616 Joseph L. Schafer and John W. Graham. Missing data: our view of the state of the art. *Psychological
617 Methods*, 7(2):147–177, June 2002.
618

619 Hajin Shim, Sung Ju Hwang, and Eunho Yang. Joint active feature acquisition and classification with
620 variable-size set encoding. In *NeurIPS*, pp. 1375–1385, 2018.
621

622 Ilya Shpitser, Karthika Mohan, and Judea Pearl. Missing Data as a Causal and Probabilistic Problem.
623 In *UAI*, pp. 802–811, 2015.
624

625 Matthijs T J Spaan. Partially Observable Markov Decision Processes. In Marco Wiering and
626 Martijn van Otterlo (eds.), *Reinforcement Learning: State-of-the-Art*, pp. 387–414. Springer Berlin
627 Heidelberg, Berlin, Heidelberg, 2012.
628

629 Patrick J. Thoral, Jan M. Peppink, Ronald H. Driessen, Eric J. G. Sijbrands, Erwin J. O. Kompanje,
630 Lewis Kaplan, Heatherlee Bailey, Jozef Kesencioglu, Maurizio Cecconi, Matthew Churpek, Gilles
631 Clermont, Mihaela van der Schaar, Ari Ercole, Armand R. J. Girbes, and Paul W. G. Elbers.
632 Sharing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European
633 Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University
634 Medical Centers Database (AmsterdamUMCdb) Example*. *Critical Care Medicine*, 49(6), 2021.
635

636 Anastasios A Tsiatis. *Semiparametric Theory and Missing Data*. Springer Series in Statistics.
637 Springer, 2006.
638

639 Leslie G Valiant. A theory of the learnable. *Communications of the ACM*, 27(11):1134–1142, 1984.
640

641 Yuhui Wang, Hao He, and Xiaoyang Tan. Robust reinforcement learning in POMDPs with incomplete
642 and noisy observations. *CoRR*, abs/1902.05795, 2019.
643

644 Nobuhiko Yamaguchi, Osamu Fukuda, and Hiroshi Okumura. Model-based reinforcement learning
645 with missing data. In *CANDAR (Workshops)*, pp. 168–171, 2020.
646

647 Jinsung Yoon, James Jordon, and Mihaela van der Schaar. ASAC: active sensing using actor-critic
648 models. In *MLHC*, volume 106 of *Proceedings of Machine Learning Research*, pp. 451–473.
649 PMLR, 2019.

648 A PROOFS FOR SECTION 3: IGNORABILITY
649

650 **Lemma 1.** If a missingness function M is MAR, then
651

652
$$\forall z \in Z, \exists p \in [0, 1], \forall s \in S, M(z | s) = \mathbf{1}_{z \leq s} \cdot p.$$
653

654 *Proof.* Suppose that M is MAR. The lemma states that $\forall z \in Z, \exists p \in [0, 1], \forall s \in S, M(z | s) = p$
655 if $z \preceq s$ and otherwise $M(z | s) = 0$. Since $z \not\preceq s$ implies that $M(z | s) = 0$, we only need to
656 show that $\forall z \in Z, \exists p \in [0, 1], \forall s \in S, z \preceq s \Rightarrow M(z | s) = p$, which directly follows from the MAR
657 assumption.
658

659 \square

660 **Remark 2.** Lemma 1 implies that the missingness function can be omitted in the belief update. Let
661 $b \in \mathcal{B}$ be a belief, and let $s' \in S$. Then, for any $a \in A$ and $z \in Z$, it holds that
662

663
$$b'(s') = \tau(b, a, z)(s')$$
664
$$:= \frac{M(z | s') \sum_{s \in S} T(s' | s, a) b(s)}{\sum_{s'' \in S} M(z | s'') \sum_{s \in S} T(s'' | s, a) b(s)} \quad (\text{By definition of belief update})$$
665
$$= \frac{\mathbf{1}_{z \leq s'} \cdot p \sum_{s \in S} T(s' | s, a) b(s)}{\sum_{s'' \in S} \mathbf{1}_{z \leq s''} \cdot p \sum_{s \in S} T(s'' | s, a) b(s)} \quad (\text{By Lemma 1})$$
666
$$= \frac{\mathbf{1}_{z \leq s'} \sum_{s \in S} T(s' | s, a) b(s)}{\sum_{s'' \in S} \mathbf{1}_{z \leq s''} \sum_{s \in S} T(s'' | s, a) b(s)}. \quad (p \text{ cancels out})$$
667

668 Therefore, the probabilities of M do not affect the resulting probabilities of the belief update.
669 In particular, this means that maintaining a belief while executing a miss-MDP does not require
670 knowledge of M .
671

672 Still, we stress again that one needs M to compute an optimal policy because this requires constructing
673 and solving the belief MDP (see (Russell & Norvig, 2022, Chapter 16.4.1)), which in turn requires
674 knowing the probability $\mathbb{P}(b' | b, a)$ of going to a successor belief b' from a current belief $b \in \mathcal{B}$ upon
675 playing action $a \in A$. Concretely, the probability of a successor belief $b' = \tau(b, a, z)$ depends on the
676 probability of $z \in Z$ given b and a , which in turn depends on M ,
677

678
$$\mathbb{P}(b' | b, a) = \sum_{z \in Z} \mathbb{P}(z | b, a) \mathbf{1}_{b' = \tau(b, a, z)},$$
679
$$\mathbb{P}(z | b, a) = \sum_{s \in S} b(s) \sum_{s' \in S} T(s' | s, a) M(z | s').$$
680

681 Here, no normalization occurs, and the probabilities of M do not cancel out.
682

683 B PROOFS FOR SECTION 4: PROBABLY APPROXIMATELY CORRECT 684

685 This appendix is about proving that given enough data, we can approximate the missingness function
686 to arbitrary precision ε , or the other way round: we can prove a certain precision ε for any given
687 dataset \mathcal{D} . In both directions, we provide a probabilistic guarantee, i.e. that the result is correct with
688 probability at least δ . The reason the guarantee has to be probabilistic is that our knowledge relies on
689 a sampled dataset, and, intuitively, there always is a chance that we were “unlucky” and received a
690 very unlikely sequence of samples from which we infer a wrong approximation.
691

692 **Outline.** First, in Appendix B.1 we recall standard notions from statistics literature: Bernoulli
693 processes and the fact that building on Okamoto’s inequality, we can obtain a size for our dataset \mathcal{D}
694 given precision ε and confidence δ (or, analogously, obtain a precision ε given \mathcal{D} and δ). Afterwards,
695 Appendix B.2 and Appendix B.3 provide the proofs of Theorems 1 and 2, respectively, i.e. the
696 guarantees for our algorithms. Moreover, they prove the guarantees for the modified algorithms when
697 using more information about the missingness function. Finally, Appendix B.4 proves Theorem 3,
698 our main result that ε -policies can be computed.
699

702 B.1 BERNOUlli PROCESSES
 703

704 **Definition 6** (Bernoulli process [Bernoulli \(1713\)](#), [Dekking et al., 2005](#), Chapter 4.3)). A Bernoulli
 705 process is a sequence of binary random variables that are independent and identically distributed. All
 706 random variables have probability p to yield a 1, and probability $1 - p$ to yield a 0.

707 Throughout this appendix, we write n for the length of the sequence of a Bernoulli process, and k for
 708 the number of successes, i.e. the number of times it yielded a 1. Moreover, we denote by $\hat{p} = \frac{k}{n}$ the
 709 empirical success probability. Okamoto's seminal work proves the following property of estimating p
 710 through observing a Bernoulli process:

711 **Theorem 4** (Okamoto's inequality ([Okamoto, 1959](#), Theorem 1)). For a Bernoulli process with n
 712 repetitions and k successes and a given precision ε , we have

$$714 \Pr(\hat{p} - p \geq \varepsilon) \leq e^{-2 \cdot n \cdot \varepsilon^2} \text{ and } \Pr(p - \hat{p} \geq \varepsilon) \leq e^{-2 \cdot n \cdot \varepsilon^2}.$$

716 Combining these, we get that $\Pr(|\hat{p} - p| \geq \varepsilon) \leq 2 \cdot e^{-2 \cdot n \cdot \varepsilon^2}$, in words: The probability of the
 717 estimate \hat{p} being more than ε away from the true probability p is less than $2 \cdot e^{-2 \cdot n \cdot \varepsilon^2}$. For our
 718 guarantees, we want to be ε -precise with probability at least δ , so the probability of error should be
 719 upper bounded by $1 - \delta$.² Thus, we require $2 \cdot e^{-2 \cdot n \cdot \varepsilon^2} \leq 1 - \delta$. Then, we can solve the inequality
 720 for ε or n :

$$722 2 \cdot e^{-2 \cdot n \cdot \varepsilon^2} \leq 1 - \delta \Leftrightarrow \varepsilon \geq \sqrt{\frac{\ln(\frac{2}{1-\delta})}{2 \cdot n}} \Leftrightarrow n \geq \frac{\ln(\frac{2}{1-\delta})}{2 \cdot \varepsilon^2}. \quad (3)$$

724 In other words, given two of precision ε , confidence δ , and number of repetitions n , we can infer the
 725 third. We remark that there exist other inequalities similar to Okamoto's that yield the same result,
 726 but with tighter bounds; we refer to ([Budde et al., 2025](#), Section 3) for a discussion. However, as our
 727 goal is only to prove the existence of a bound, we choose the conservative Okamoto bound for its
 728 easier accessibility.

730 B.2 PAC GUARANTEES FOR ASMAR
 731

732 **Theorem 1** (PAC guarantee for ASMAR). Let \mathcal{P} be a missingness-MDP where the missingness
 733 function is simple MAR. For every given precision ε and confidence threshold δ , there exists a
 734 number n^* of histories, such that a dataset \mathcal{D} of n^* histories has the following property: With
 735 probability at least δ , \widehat{M} computed on \mathcal{D} according to Equation (1) satisfies that for all reachable
 736 states $s \in S$ and observations $z \in Z$, we have $|\widehat{M}(z | s) - M(z | s)| \leq \varepsilon$. Dually, given a dataset \mathcal{D}
 737 and confidence threshold δ , we can compute an ε such that with probability at least δ , for all reachable
 738 states $s \in S$ and observations $z \in Z$, we have the same inequality, i.e. $|\widehat{M}(z | s) - M(z | s)| \leq \varepsilon$.

739 *Proof. Proof outline.* We first show that the computation of every $\widehat{M}(z | s)$ is related to a Bernoulli
 740 process. Then, using the results of Appendix B.1, we can prove the claims of the theorem for
 741 individual state-observation pairs. Next, we lift this to all state-observation pairs by distributing the
 742 confidence δ . Finally, we individually explain how this yields the two claims of the theorem.

744 **The Bernoulli process related to $\widehat{M}(z | s)$.** Fix a state $s \in S$ and an observation $z \in Z$. Consider
 745 the following random variable: Sample a state $s' \in S$ and the corresponding observation $z' \in Z$. Set
 746 the random variable to 1 if $\forall i \in I: (i \in I_{\text{always}} \implies z'_i = s_i) \wedge (f_R(z)_i = 0 \implies z'_i = \perp)$; set the
 747 random variable to 0 if $\forall i \in I: (i \in I_{\text{always}} \implies z'_i = s_i)$; and ignore the sampled (s', z') otherwise,
 748 i.e. if $\exists i \in I: (i \in I_{\text{always}} \wedge z'_i \neq s_i)$. Note that the random variable is 1 exactly when the sample
 749 would be counted by $\#\mathcal{D}(s, f_R(z))$, and the sample is not ignored exactly when it would be counted
 750 by $\sum_{r \in R} \#\mathcal{D}(s, r)$.

751 We require that the probability of the random variable being 1 is equal among all sampled state-
 752 observation pairs (s', z') that are not ignored by it, and moreover we require this probability to be equal
 753 to $M(z | s) = M(f_R(z) | s) =: p$. To prove this, we use the assumption that M is a simple MAR

755 ²Note that in this paper, we use δ as the probability of the estimate being correct, unlike e.g. [Budde et al. \(2025\)](#), where δ is the probability of an error.

missingness function; thus, we know that for all s' that agree with s on all always observable features (formally: $\forall i \in I: (i \in I_{\text{always}} \implies z'_i = s_i)$), we have $p = M(f_R(z) | s) = M(f_R(z) | s')$.

We have just shown that the random variable we constructed is a Bernoulli process with success probability $p = M(z | s)$, with the number of repetitions $n = \sum_{r \in R} \#_{\mathcal{D}}(s, r)$ and the number of successes $k = \#_{\mathcal{D}}(s, f_R(z'))$. Note that the definition of \widehat{M} in Equation (1) is exactly the empirical success probability $\hat{p} = \frac{k}{n}$.

Observe that we do not need a separate Bernoulli process for every state-observation pair: The number of repetitions $\sum_{r \in R} \#_{\mathcal{D}}(s, r)$ is independent of the observation z , since that only affects whether it is counted as success or not. Further, it suffices to have one random variable per combination of valuation for the features in I_{always} , since all states that agree on the always observable features yield the same Bernoulli process. Moreover, we do not need to consider every observation z (as this includes observations that do not admit s), but rather only every missingness indicator vector $r \in R$. In the following, we still write “Every state-observation pair” instead of “Every pair of set of states that agree on the always observable features and missingness indicator vector”, as it is also true and more concise.

Single state-observation pair. Consider the Bernoulli process just described for a fixed state-observation pair (s, z) . We explain how to use the results of Appendix B.1 towards proving the first and second claim of the theorem:

- First claim: By the third variant of Equation (3), we have that given a precision ε and confidence threshold $\delta_{s,z}$, we can compute a necessary number of samples $n_{s,z}$ such that we obtain the PAC guarantee for this state-observation pair.
- Second claim: Observe that a given dataset \mathcal{D} corresponds to a number of repetitions of every Bernoulli process. Let $n_{s,z}$ be the number of repetitions for the pair (s, z) . Thus, using the second variant of Equation (3), we have that given \mathcal{D} (and thus $n_{s,z}$) and a confidence threshold $\delta_{s,z}$, we can compute a precision $\varepsilon_{s,z}$ such that we obtain the PAC guarantee for this state-observation pair.

All state-observation pairs. We can split the given confidence threshold δ uniformly over all state-observation pairs, i.e. for every $s \in S, z \in Z$, we have $\delta_{s,z} = \frac{\delta}{|S| \cdot |Z|}$. Then, by the union bound, the probability of all state-observation pairs being correctly estimated is the sum of all $\delta_{s,z}$, which (since we distributed it uniformly) is δ . By splitting the confidence threshold in this way, we can obtain the PAC guarantee for all state-observation pairs.

Second claim. We first provide the full argument for the second claim, as it is simpler. Given the dataset \mathcal{D} and confidence threshold δ , we obtain an $\varepsilon_{s,z}$ for all state-observation pairs. The probability that all of these are correct is at least δ . We obtain the claim by taking the maximum over these, i.e. setting $\varepsilon := \max_{s \in S, z \in Z} \varepsilon_{s,z}$. Then we have that with probability at least δ , for all states $s \in S$ and observations $z \in Z$, we have $|\widehat{M}(z | s) - M(z | s)| \leq \varepsilon$.

First claim. We proceed in two steps: We explain the analogous argument to the second claim, based on an assumption on the dataset. Afterwards, we explain how this assumption on the dataset can be satisfied.

Assume that for every state-observation pair (s, z) , the dataset \mathcal{D} contains at least $n_{s,z}$ samples, i.e. the number computed using Equation (3) inserting ε and $\delta_{s,z}$. Then, analogously to the proof of the second claim, computing \widehat{M} using this dataset satisfies that with probability at least δ , for all states $s \in S$ and observations $z \in Z$, we have $|\widehat{M}(z | s) - M(z | s)| \leq \varepsilon$.

It remains to show that there exists a number n^* such that a sampled dataset of n^* histories has the required property. For this, we have to spend some of our confidence threshold δ , since we can only guarantee the property with a certain probability; there is the chance that even upon sampling n^* histories, we are unlucky and some state-observation pair has not been sampled often enough. Thus, we split δ as follows: $\delta_{\mathcal{D}}$ is used to guarantee the property of the dataset, and $\delta_{\widehat{M}}$ is used to guarantee the consequential property of \widehat{M} . Thus, $\delta_{s,z}$ above are obtained by uniformly distributing $\delta_{\widehat{M}}$, not

810 all of δ . Then, by the union bound, the probability that \mathcal{D} has the desired property and that the PAC
811 guarantee holds is $\delta_{\mathcal{D}} + \delta_{\widehat{M}} = \delta$.
812

813 We now need to show that there exists an n^* such that a dataset of this size contains the required
814 number of samples with probability at least $\delta_{\mathcal{D}}$. Recall that the dataset is sampled using a fair policy,
815 which means that every state has a positive probability to be visited; thus (assuming that the length of
816 every history is at least as large as the number of states in the miss-MDP), there exists a minimum
817 probability m such that every state is visited with at least probability m in every history. Moreover,
818 observe that for a state-observation pair (s, z) , the number of samples for its Bernoulli process is at
819 least the number of times s has been visited; this is because a sample is used when it agrees with s on
820 the always observable features. Thus, for every sampled history, we have a probability of at least
821 m to obtain at least one sample for (s, z) . This lower bound on the number of samples for (s, z) is
822 binomially distributed with success probability m (Dekking et al., 2005, Chapter 4.3). Thus, there
823 exists a number of histories n^* such that the probability of having at least $n_{s,z}$ samples for (s, z)
824 when sampling at least n_h histories is greater than $\delta_{\mathcal{D}}$. As before, this argument was for a single
825 state-observation pair; thus, $\delta_{\mathcal{D}}$ is also uniformly distributed over all state-observation pairs.
826

827 Summarizing the above: There exists a number n^* , such that with probability $\delta_{\mathcal{D}}$, a dataset consisting
828 of n^* histories contains at least $n_{s,z}$ samples for every state-observation pair (s, z) , where $n_{s,z}$ is
829 the number computed using Equation (3) inserting ε and $\delta_{s,z}$. Consequently, \widehat{M} using this dataset
830 satisfies that with probability at least $\delta_{\widehat{M}}$, for all states $s \in S$ and observations $z \in Z$, we have
831 $\widehat{M}(z \mid s) = M(z \mid s) \pm \varepsilon$. Together, we can guarantee that probably (with probability at least
832 $\delta = \delta_{\mathcal{D}} + \delta_{\widehat{M}}$), \widehat{M} is approximately correct.
833

□

834 **Proposition 1.** The improvements described in Section 4.1 for using knowledge retain the PAC
835 guarantees stated in Theorem 1.

836 *Proof.* The improvements use the fact that the underlying Bernoulli process in fact does not depend
837 on all features in I_{always} . While it is correct to still split on these variables, obtaining two processes
838 with the same true success probability, we can also merge them.
839

840 More formally, observe that if feature i does not affect the missingness probability of other features,
841 for all valuations of feature i , the corresponding Bernoulli processes have the same success probability.
842 MCAR missingness functions are the most extreme case of this, where the given state is completely
843 irrelevant and it suffices to have one Bernoulli process per missingness indicator vector. As a side
844 note: Observe that it is indeed necessary to consider every missingness indicator vector and not
845 individual features, since the missingness probabilities need not be independent. □
846

847 B.3 PAC GUARANTEES FOR AIMI (SECTION 4.2)

848 **Theorem 2** (PAC guarantee for AIMI). Let \mathcal{P} be a missingness-MDP where the missingness function
849 satisfies independence, non-self-censoring, and positivity. Then, \widehat{M} computed using Equation (2)
850 offers the same PAC guarantees as specified in Theorem 1.
851

852 *Proof.* This proof is analogous to that of Theorem 1: every missingness probability computed by
853 Equation (2) corresponds to the empirical success probability of a Bernoulli process, which allows
854 to apply the results from Appendix B.1. This proof differs in the argument why all states grouped
855 together in the same Bernoulli process have the same success probability, and in the argument why it
856 is feasible to sample a dataset of the necessary size.
857

858 By the independence assumption, we know that it suffices to learn every individual $\mathbb{P}(z_i \mid z \sim M(s))$
859 for each $i \in I$. By non self-censoring, we know that this probability depends only on features in
860 $I \setminus \{i\}$. Thus, the counter $\#(s, i, 0)$ counts exactly the successes of a Bernoulli process with success
861 probability $\mathbb{P}(z_i \mid z \sim M(s))$, and $\#(s, i, 1)$ counts the failures.
862

863 It only remains to argue that a sufficient dataset can be feasibly obtained. For this, we use the
864 assumption that no feature is missing surely. In other words, every feature has a positive probability
865 to be observed. Thus, every reachable states has a positive probability m to be fully observed. Using
866 this, we can repeat the argument from the proof of Theorem 1. □
867

864 **Proposition 2.** The improvements described in Section 4.1 for using knowledge retain the PAC
865 guarantees stated in Theorem 2.

867
868 *Proof.* (a) If we know from an m-graph that a particular feature i is not influenced by feature j , for
869 all valuations of j the Bernoulli process has the same success probability. Thus, we can merge these
870 Bernoulli processes and ignore feature j .

871 (b) If we know the missingness function is simple MAR and feature j goes missing, we know that
872 it cannot influence the missingness probability of any other feature by definition (Mohan & Pearl,
873 2021). Then, the proof is the same as in Case (a).

874 (c) If the missingness function is MCAR, we know that no feature influences the missingness
875 probability of any other feature. Thus, we can repeatedly apply the argument of Case (a) to merge all
876 Bernoulli processes until we have one for every feature. \square

877 B.4 COMPUTING ε -OPTIMAL POLICIES (SECTION 4.3)

880 **Theorem 3** (Computing ε -optimal Policies). Let \mathcal{P} be a miss-MDP with a missingness function
881 that is simple MAR or that satisfies independence, no self-censoring, and positivity. Assume we can
882 sample histories collected under a fair policy, and we know a lower bound on the smallest missingness
883 probability $p \leq \min_{s \in S, z \in Z} M(z | s)$. Then, for every given precision ε and confidence threshold
884 δ , we can in finite time compute a policy π^* such that with probability at least δ it is ε -optimal, i.e.
885 $(\sup_{\pi} V_{\mathcal{P}}(\pi)) - V_{\mathcal{P}}(\pi^*) \leq \varepsilon$.

887 *Proof. Sampling the dataset.* We have sampling access with a fair policy, so every state has positive
888 probability to be visited. Thus, for any finite number n , we can almost surely obtain n samples of
889 every state s in finite time. For the Bernoulli process underlying Equation (1), and if the missingness
890 function is simple MAR, this suffices to guarantee that for every state-observation pair, we can obtain
891 the number of samples $n_{s,z}$ required for achieving precision ε with confidence $\delta_{s,z}$. Similarly, for the
892 Bernoulli process underlying Equation (2), and if the missingness function satisfies positivity, we
893 can also obtain the required number of samples for every state-observation pair. Overall, under the
894 assumptions of the theorem, we can almost surely obtain a dataset in finite time such that it suffices
895 to give PAC guarantees on every state-observation pair.

896 We remark that this does not even require spending confidence budget as we did in the proofs of
897 Theorems 1 and 2, since there we required to get this dataset within a certain number of histories n^* .
898 Here, we only claim that we can get a sufficient dataset in finite time almost surely.

899 **Obtaining \widehat{M} .** The assumptions on the missingness function in the statement of the theorem match
900 those in Theorem 1 or Theorem 2. Hence, given the dataset described in the previous paragraph, we
901 can approximate \widehat{M} in a way such that with probability δ , it is ε_M -precise. Note that here we do not
902 employ the full allowed imprecision ε , but rather a smaller $\varepsilon_M < \varepsilon$, since there will be other sources
903 of error.

904 **M and \widehat{M} qualitatively agree.** For our technical reasoning, we require that $M(z | s) = 0$ if and
905 only if $\widehat{M}(z | s) = 0$. We prove both directions separately: If $M(z | s) = 0$, then we never observe a
906 sample for z when given s , and thus $\widehat{M}(z | s) = 0$, as it uses an empirical average (Equations (1)
907 and (2)). If $M(z | s) > 0$, as we use a fair sampling process, we almost surely eventually observe z
908 when given s , and consequently the empirical average is positive, i.e. $\widehat{M}(z | s) > 0$.

910 It remains to prove that we can *in finite time* conclude that M and \widehat{M} qualitatively agree. This means
911 that we need to be sufficiently certain that if $\widehat{M}(z | s) = 0$, this is because indeed $M(z | s) = 0$
912 and not just because we haven't sampled enough yet. For this, we use a proof technique employed
913 in, e.g., Daca et al. (2017): We utilize knowledge of (a lower bound on) the smallest missingness
914 probability p . Further, recall that the confidence threshold δ is distributed over all Bernoulli processes
915 (see Appendices B.2 and B.3). Thus, for each Bernoulli process, we have a confidence threshold $\delta_{s,z}$.
916 Okamoto's inequality (see Appendix B.1) provides an upper bound on the missingness probability
917 that is correct with probability at least $\delta_{s,z}$. Thus, when this upper bound is less than p , we can
918 conclude with sufficient confidence that $\widehat{M}(z | s) = 0$.

918 **Utilizing Lemma 2.** Let $\hat{\mathcal{P}}$ be the approximated missingness-MDP that is exactly \mathcal{P} except for the
919 missingness function, which is \hat{M} instead of M . We have just proven that in finite time we know
920 that with probability δ , \hat{M} is ε_M -precise and qualitatively agrees with M . Thus, it satisfies the
921 assumptions specified in Lemma 2, which is proven below. This key technical lemma shows that
922 the values obtained when following a policy π in either the original \mathcal{P} or the approximated $\hat{\mathcal{P}}$ have a
923 bounded difference.³ Formally, for every policy π , we have $|V_{\mathcal{P}}(\pi) - V_{\hat{\mathcal{P}}}(\pi)| \leq f(\varepsilon_M)$, where f is a
924 monotonically increasing function that depends on ε_M , the precision of \hat{M} .

925 From this, we obtain two facts: Firstly, since this holds for all policies, it also holds for the supremum
926 over all policies, and thus we can bound the difference in the values of the two missingness-MDPs:
927

$$928 \quad |\sup_{\pi} V_{\mathcal{P}}(\pi) - \sup_{\pi} V_{\hat{\mathcal{P}}}(\pi)| \leq f(\varepsilon_M). \quad (4)$$

930 Secondly, we can apply the same reasoning to a near-optimal policy in $\hat{\mathcal{P}}$. For this, let $\varepsilon_{\pi} < \varepsilon$ be a
931 precision smaller than our overall error tolerance, and let π^* be an ε_{π} -optimal policy in $\hat{\mathcal{P}}$, i.e.

$$932 \quad \sup_{\pi} (V_{\hat{\mathcal{P}}}(\pi)) - V_{\hat{\mathcal{P}}}(\pi^*) \leq \varepsilon_{\pi}. \quad (5)$$

934 We remark that $\hat{\mathcal{P}}$ is a fully specified missingness-MDP, and thus a fully specified POMDP, for
935 which solvers computing ε -optimal policies such as SARSOP (Kurniawati et al., 2008) exist. Using
936 Lemma 2, we obtain the following inequality:

$$938 \quad |V_{\mathcal{P}}(\pi^*) - V_{\hat{\mathcal{P}}}(\pi^*)| \leq f(\varepsilon_M). \quad (6)$$

939 **Implications of the inequalities.** Since we reason about absolute differences, we need to make
940 case distinctions on whether $\sup_{\pi} V_{\mathcal{P}}(\pi) - \sup_{\pi} V_{\hat{\mathcal{P}}}(\pi) \geq 0$ or not when applying Equation (4). If
941 $\sup_{\pi} V_{\mathcal{P}}(\pi) - \sup_{\pi} V_{\hat{\mathcal{P}}}(\pi) \geq 0$, then $\sup_{\pi} V_{\mathcal{P}}(\pi) - \sup_{\pi} V_{\hat{\mathcal{P}}}(\pi) \leq f(\varepsilon_M)$, and by reordering we
942 get $\sup_{\pi} V_{\mathcal{P}}(\pi) \leq \sup_{\pi} V_{\hat{\mathcal{P}}}(\pi) + f(\varepsilon_M)$. Otherwise, we have $\sup_{\pi} V_{\mathcal{P}}(\pi) < \sup_{\pi} V_{\hat{\mathcal{P}}}(\pi)$. Together,
943 we can obtain that Equation (4) implies:

$$945 \quad \sup_{\pi} V_{\mathcal{P}}(\pi) \leq \sup_{\pi} V_{\hat{\mathcal{P}}}(\pi) + f(\varepsilon_M) \quad (7)$$

947 Analogously, we can make a case distinction in Equation (6) and obtain that:

$$948 \quad V_{\hat{\mathcal{P}}}(\pi^*) \leq V_{\mathcal{P}}(\pi^*) + f(\varepsilon_M) \quad (8)$$

950 **Combining the inequalities.** To conclude the proof, we use a chain of inequalities.

$$\begin{aligned} 952 \quad \sup_{\pi} V_{\mathcal{P}}(\pi) &\leq \sup_{\pi} V_{\hat{\mathcal{P}}}(\pi) + f(\varepsilon_M) && \text{(By Equation (7))} \\ 953 \quad &\leq V_{\hat{\mathcal{P}}}(\pi^*) + \varepsilon_{\pi} + f(\varepsilon_M) && \text{(By Equation (5))} \\ 954 \quad &\leq V_{\mathcal{P}}(\pi^*) + f(\varepsilon_M) + \varepsilon_{\pi} + f(\varepsilon_M) && \text{(By Equation (8))} \end{aligned}$$

956 By reordering, we obtain

$$957 \quad |\sup_{\pi} V_{\mathcal{P}}(\pi) - V_{\mathcal{P}}(\pi^*)| \leq \varepsilon_{\pi} + 2 \cdot f(\varepsilon_M).$$

959 Hence, since f is a monotonically increasing function, there exists a choice of ε_M and ε_{π} so that
960 $\varepsilon_{\pi} + 2 \cdot f(\varepsilon_M) \leq \varepsilon$. Intuitively, while the errors incurred by approximating \hat{M} and by using an
961 approximately optimal policy add up, we can bound the overall maximum error. Thus, we can choose
962 the two precisions so that the overall error criterion is met, and the policy π^* is ε -optimal in the
963 original missingness-MDP (with probability δ ; with the remaining probability, our sampling was
964 unlucky and \hat{M} can differ by more than ε_M). This concludes the proof. \square

965 **Lemma 2 (Bounding the Value-Difference between \mathcal{P} and $\hat{\mathcal{P}}$).** Let \mathcal{P} be a missingness-MDP and $\hat{\mathcal{P}}$
966 be a missingness-MDP that differs from \mathcal{P} only in its missingness function, where it uses \hat{M} instead
967 of M . Further, assume that for all states $s \in S$ and observations $z \in Z$, we have $M(z | s) = 0$ if and
968 only if $\hat{M}(z | s) = 0$, and moreover $M(z | s) = \hat{M}(z | s) \pm \varepsilon_M$. Then, for every policy π we have
969 $|V_{\mathcal{P}}(\pi) - V_{\hat{\mathcal{P}}}(\pi)| \leq f(\varepsilon_M)$, where f is a monotonically increasing function.

971 ³We highlight that every policy is applicable in both missingness-MDPs, as they only differ in their missingness probabilities, but agree on states, observations, and actions.

972 *Proof. To uncountable MDPs.* Note that both \mathcal{P} and $\widehat{\mathcal{P}}$ are missingness-MDPs, and thus POMDPs.
 973 Thus, for each of them, we can construct an uncountable belief MDP with the same value, called
 974 B or \widehat{B} , respectively. Intuitively, this is achieved by unrolling step-by-step the observation function
 975 and all possible beliefs that the agent can have after an action; the transition probabilities in these
 976 uncountable MDPs depend on the missingness functions. For a more extensive description, see
 977 (Russell & Norvig, 2022, Chapter 16.4.1).

978 **To finite MDPs.** We consider discounted expected reward, with γ the discount factor and $\varrho_{\max} :=$
 979 $\max_{(s,a) \in S \times A} \varrho(s, a)$ the maximum state reward. As the expected reward is a geometric series, we
 980 can bound the reward that can be obtained after n steps from above as follows:
 981

$$982 \sum_{i=n}^{\infty} \gamma^i \cdot \varrho_{\max} = \gamma^n \cdot \varrho_{\max} \cdot \sum_{i=0}^{\infty} \gamma^i = \frac{\gamma^n \cdot \varrho_{\max}}{1 - \gamma}.$$

985 For every arbitrarily small precision $\varepsilon_{\gamma} > 0$, we can thus obtain an n such that the reward after n
 986 steps is less than ε_{γ} . Let $B_{\varepsilon_{\gamma}}$ be the finite MDP obtained from B by only considering states that are
 987 reachable within n steps, and analogously define $\widehat{B}_{\varepsilon_{\gamma}}$. (Note that n is the same for both, since it only
 988 depends on γ and ϱ_{\max} , which is the same for both of them.) The value of these finite belief MDPs
 989 differs from the value of the uncountable belief MDPs and thus the original missingness-MDPs by at
 990 most ε_{γ} .

991 **Bounding the difference.** Recall that B or \widehat{B} are the same except for their transition functions, which
 992 depend on M and \widehat{M} , respectively. Still, by assumption of the theorem M and \widehat{M} qualitatively agree,
 993 i.e. $M(z \mid s) = 0$ if and only if $\widehat{M}(z \mid s) = 0$. Hence, the graph structure of B or \widehat{B} is the same.
 994 Thus, the only difference are small perturbations of individual transition probabilities by at most ε_M .
 995

996 It remains to show the following: Given two finite MDPs that are the same except for small pertur-
 997 bations of the transition probabilities, but where the supports of the transition functions are the
 998 same, provide a bound on the difference in their value. Such a result exists in the literature, namely
 999 in Meggendorfer et al. (2025), or more precisely in the extended version of that paper (Meggendorfer
 1000 et al., 2024, Lemma 5). It remains to show that our setting indeed satisfies the assumptions of
 1001 (Meggendorfer et al., 2024, Lemma 5).

- 1002 • “For every closed constant-support RMDP”: Their claim applies to robust MDPs that are closed
 1003 constant-support. A robust MDP is an MDP whose transitions are not probability distributions,
 1004 but rather sets of possible values, see (Meggendorfer et al., 2025, Section 2). In our case, instead
 1005 of considering the concrete MDPs $B_{\varepsilon_{\gamma}}$ and $\widehat{B}_{\varepsilon_{\gamma}}$, we consider the robust MDP that arises when
 1006 considering an ε_M -interval around every missingness probability $M(z \mid s)$. This robust MDP
 1007 contains both $B_{\varepsilon_{\gamma}}$ and $\widehat{B}_{\varepsilon_{\gamma}}$ as instantiations.
- 1008 • “For every pair of agent and environment policy”: An agent policy in this setting is exactly
 1009 the agent policy in ours, so (Meggendorfer et al., 2024, Lemma 5) applies to all policies. An
 1010 environment policy is the policy that chooses the instantiation of the transition function, i.e. the
 1011 exact missingness probabilities from the set of all that differ by at most ε_M in our setting.
- 1012 • “Total-reward objectives:” (Meggendorfer et al., 2024, Lemma 5) concerns *undiscounted* total
 1013 reward or mean payoff objectives. Undiscounted total-reward generalizes discounted expected
 1014 reward, using the standard construction which adds an edge transitioning with probability γ to a
 1015 dedicated sink state to every transition. Thus, the lemma is applicable to the objective in our
 1016 setting.
- 1017 • “The value function is continuous w.r.t. the environment policy”: This is the claim of (Meggen-
 1018 dorfer et al., 2024, Lemma 5). More formally, if the environment chooses missingness prob-
 1019 abilities differently with some deviation ε_M , then the deviation in the value between the two
 1020 instantiations is bounded by some monotonically increasing function $g(\varepsilon_M)$. This is exactly the
 1021 claim we require, since it means that for all agent policies π and all missingness functions \widehat{M}
 1022 that are ε_M -close to M , we have $|V_{B_{\varepsilon_{\gamma}}}(\pi) - V_{\widehat{B}_{\varepsilon_{\gamma}}}(\pi)| \leq g(\varepsilon_M)$.

1024 We also argue that g can be effectively computed, as it depends on the size of the state space, the
 1025 reward function, and the minimum occurring transition probability, all of which are known to
 us (recall that Theorem 3 assumes knowledge of a lower bound on the minimum missingness

probabilities). The concrete way of deriving the distance is provided on (Meggendorfer et al., 2024, page 17).

Putting it all together. Our goal is to show that we can compute an f such that for all policies π we have: $|V_{\mathcal{P}}(\pi) - V_{\hat{\mathcal{P}}}(\pi)| \leq f(\varepsilon_M)$. The following chain of equations proves our goal:

$$\begin{aligned}
 |V_{\mathcal{P}}(\pi) - V_{\hat{\mathcal{P}}}(\pi)| &= |V_B(\pi) - V_{\hat{B}}(\pi)| \\
 &\quad (\text{Using the uncountable belief MDPs}) \\
 &\leq |B_{\varepsilon_\gamma}(\pi) - V_{\hat{B}_{\varepsilon_\gamma}}(\pi)| + \varepsilon_\gamma \\
 &\quad (\text{Using the finite MDPs; decreasing both values by} \\
 &\quad \text{at most } \varepsilon_\gamma \text{ increases the difference by at most } \varepsilon_\gamma) \\
 &\leq g(\varepsilon_M) + \varepsilon_\gamma \\
 &\quad (\text{By bounding the difference}).
 \end{aligned}$$

For simplicity of presentation, we choose $\varepsilon_\gamma = \varepsilon_M$, and thus setting $f(\varepsilon_M) := g(\varepsilon_M) + \varepsilon_M$ concludes the proof. \square

C BENCHMARKS

Here we describe our benchmarks. We provide a detailed description of the benchmarks as well as the parameters for running the experiments.

C.1 DESCRIPTION

ICU. This benchmark, inspired by prior clinical decision-making models (Johnson et al., 2022; Pollard et al., 2018; Thoral et al., 2021; Hyland et al., 2020), simulates a doctor treating a patient with an infection that progresses stochastically over time. The state of the patient consists of the *infection severity*, the *temperature*, and the *heart rate*. The infection causally influences both the heart rate and the temperature.

The doctor has an option to wait, to administer costly antibiotics that reduce the infection severity, or to order a test, which is a measuring action that may reveal the infection severity. The reward function penalizes high infection levels as well as costly interventions (ordering a test and administering antibiotics). Thus, the doctor’s objective is to maintain the patient’s infection severity at low levels by administering antibiotics only when necessary. For ease of modeling, the state space also includes the value of the last test ordered.

We evaluate three different missingness functions M , corresponding to distinct missingness functions, illustrated in the m-graph in Figure 4. In all cases, the heart rate and the infection severity may be missing, whereas temperature and the last test ordered are always observed. The success rate of the

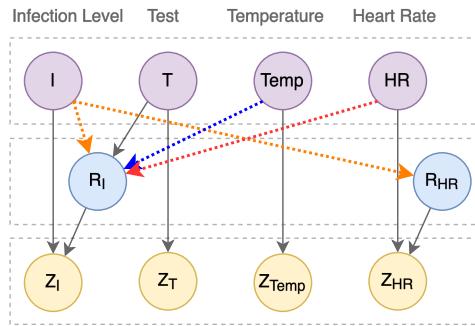


Figure 4: The m-graphs for the ICU benchmark describing missingness functions of types *simple MAR* (gray + blue), *identifiable MNAR* (gray + red) and *unidentifiable MNAR* (gray + red + orange). Causal dependencies between the state features were omitted for clarity.

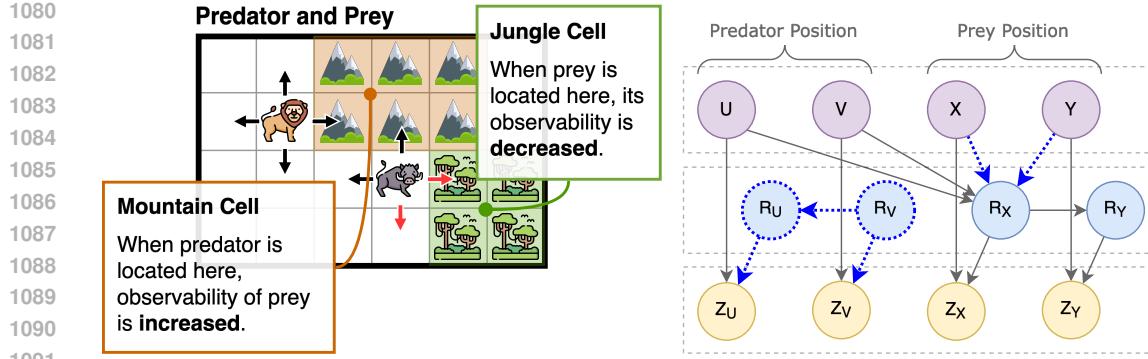


Figure 5: **left:** The *Predator* benchmark, where the predator (lion) is the agent trying to catch its prey (boar). Predator and prey can move in all four cardinal directions, where prey chooses an action that increases the distance to the predator (red arrows). **right:** The m-graphs for the predator and prey benchmark describing missingness functions of types *simple MAR* (gray), *identifiable MNAR* (gray + blue). Causal dependencies between the state features were omitted for clarity.

test that reveals the infection severity may depend on different features, resulting in the following missingness functions. (1) **Simple MAR**, where the success rate only depends on the (always observed) temperature. (2) **MNAR (id.)**, where the success rate only depends on the (not always observed) heart rate, resulting in an identifiable MNAR function without self-censoring and satisfying the positivity assumption. (3) **MNAR (unid.)** is an extension of **MNAR (id.)**, where the infection severity influences the test success rate, introducing self-censoring and thus making the function unidentifiable.

Predator. This benchmark is a variant of the *Tag* benchmark from Pineau et al. (2003), where an agent (in our case, a predator) is tasked with chasing a partially hidden target (a prey) in a 2D grid environment. The prey senses the predator and usually moves away from it; in case multiple directions lead away from the predator, the prey chooses uniformly at random. The predator’s movement is deterministic (dictated by the policy), but moving in an intended direction may randomly fail due to terrain conditions. Predator obtains a flat reward upon catching the prey, and thus the discounting incentivizes catching the prey as soon as possible.

The environment may feature three distinct *biomes* – plains, mountains, or jungles – that influence the predator’s observability of the prey, see Figure 5, and thus define the missingness function. We investigate the following three variants thereof. (1) **MCAR**, which features only one type of terrain, i.e., the prey is observed with constant probability. (2) **simple MAR**, where the environment features plains as well as mountains from which the predator has a higher chance of observing its target. (3) **MNAR (unid.)**, where the prey has an option to hide in jungle cells, introducing self-censoring of its position. We stress that when the predator loses track of the prey, both features corresponding to x & y coordinates of the prey go missing simultaneously, modeled by dependencies between missingness indicators R_x & R_y . The dependence between the missingness indicators is a key difference from the *ICU* benchmark.

C.2 EXPERIMENTAL SETUP

Technical Setup. For all experiments, we used high-performance workstations equipped with an AMD Ryzen ThreadRipper PRO 5965WX (24-core, 3.8GHz) CPU, 512 GB ECC DDR4 RAM, and a 2 TB PCIe 4.0 NVMe SSD.

Simulating trajectories. For both benchmarks, we used a discount factor of $\gamma = 0.95$. We considered dataset sizes $|\mathcal{D}| \in \{10, 50, 100, 500, 10^3, 5 \cdot 10^3, 10^4, 10^5, 10^6, 10^7\}$. To obtain a dataset containing $|\mathcal{D}|$ samples, we simulated finite trajectories until their lengths summed up to $|\mathcal{D}|$. A trajectory is terminated when it reaches a terminal state (only for the *Predator* benchmark, when the predator catches the prey) or if its length exceeds $L = \lceil \log_{\gamma} \frac{(1-\gamma) \cdot 10^{-3}}{\varrho_{\max}} \rceil$, where $\varrho_{\max} := \max_{s,a} \varrho(s, a)$. Here, L denotes the smallest integer satisfying $\sum_{k=L}^{\infty} \gamma^k \cdot \varrho_{\max} < 10^{-3}$, i.e. a time step after which

1134 the maximum discounted cumulative reward cannot exceed 10^{-3} . For each dataset size $|\mathcal{D}|$, we
1135 generated 20 independent datasets of this size.
1136

1137 **Timeouts & precision.** For the baselines, we used the timeout of 5 minutes when solving the POMDP
1138 (to obtain π^* and π^{M_u}) and the same timeout to evaluate the resulting policy (or π^{rnd}). To obtain
1139 a policy $\hat{\pi}$ by solving the corresponding $\hat{\mathcal{P}}$, we used a timeout of 3 minutes and evaluated $\hat{\pi}$ for
1140 2 minutes. In all cases, solving was additionally allowed to terminate upon reaching the relative
1141 precision of 10^{-3} .
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187