
Reproducing "Identifying through flows for recovering latent
representations"

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

The authors claim to introduce a model for recovering the latent representation of observed data, that outperforms3

the state-of-the-art method for this task; namely the iVAE model. They claim that iFlow outperforms iVAE both in4

preservation of the original geometry of source manifold and correlation per dimension of the latent space.5

Methodology6

To reproduce the results of the paper, the main experiments are reproduced and the figures are recreated. To do so, we7

largely worked with code from the repository belonging to the original paper. We added plotting functionality as well as8

various bug fixes and optimisations. Additionally, attempts were made to improve the iVAE by making it more complex9

and fixing a mistake in its implementation.We also tried to investigate possible correlation between the structure10

of the dataset and the performance. All code used is publicly available at https://github.com/HiddeLekanne/11

Reproducibility-Challenge-iFlow.12

Results13

The obtained mean and standard deviation of the MCC over 100 seeds are within 1 percent of the results reported in14

the paper. The iFlow model obtained a mean MCC score of 0.718 (0.067). Efforts to improve and correct the baseline15

increased the mean MCC score from 0.483 (0.059) to 0.556 (0.061). The performance, however, remains worse than the16

performance of iFlow, further supporting the authors’ claim that the iFlow implementation is correct and more effective17

than iVAE.18

What was easy19

The GitHub repository associated with the paper provided most necessary code and ran with only minor changes. The20

code included all model implementations and data generation. The script that was used to obtain results was provided,21

which allowed us to determine which exact hyperparameters were used with experiments on the iFlow models. Overall,22

the code was well organised and the structure was easy to follow.23

What was difficult24

The specific versions of the Python libraries used were unknown, which made it infeasible to achieve the exact results25

from the paper when running on the same seeds. The code used to create figures 1-3 in the original paper was missing26

and had to be recreated. Furthermore, the long time the models needed to train made experimentation with e.g., different27

hyperparameters challenging. Finally, the code was largely undocumented.28

Communication with original authors29

Communication with the authors was attempted but could not be established.30
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1 Introduction31

Nowadays, different types of deep generative models excel at generating new data by either explicitly or implicitly32

modelling the distribution of the training data. However, sometimes it is useful to recover the distribution that generated33

the observed data, i.e. the latent distribution, rather than the data distribution itself. It is easy to see that this is a more34

difficult task due to the unknown relation between the unobserved latent variables and the observed data. The concept35

of recovering the true latent distribution underlying the data is a form of identifiability.36

Some research has been done in this area. Previously, models (notably β-VAE [1] and its variations) were created with37

the purpose of creating disentangled representations, where single latent units correspond to single generative factors.38

While related to identifiability, such models do not provide any proof or guarantee that they can recover the true latent39

representations.40

More recently, an identifiable variation of the VAE called iVAE was proposed [4], which uses a factorised prior41

conditioned on an auxiliary variable to guarantee a basic form of identifiability. In practice however, the fact that this42

model optimises a lower bound on the posterior, rather than the actual posterior, could negatively affect the capability of43

the model to recover the true latent variables.44

The paper "Identifying through flows for recovering latent representations" proposes iFlow, a model that aims to45

alleviate these problems by using Normalising Flow models rather than VAEs [8]. The fact that Normalising flows46

model exact distributions rather than approximating the posterior could make them more suitable for this task.47

2 Scope of reproducibility48

In this review, the work of the proposed iFlow model by Li et al. [8] is reproduced and examined. The aim is to49

reproduce the results obtained by the authors and to investigate the claims made in the paper. The claims made can be50

seen below. Each claim will be examined in a corresponding subsection in section 4.51

1. Simulations on synthetic data validate the correctness and effectiveness of the proposed iFlow method and52

demonstrate its practical advantages over other existing methods.53

2. iFlow outperforms iVAE in identifying the original sources while preserving the original geometry of source54

manifold.55

3. iFlow exhibits much stronger correlation than iVAE does in each single dimension of the latent space.56

4. Making iVAE more expressive does not help it approximate the real latent space further, justifying the57

discrepancy in parameters.58

3 Methodology59

Most of the original source code was available and used to test the reproducibility of the paper which can be found in60

the corresponding GitHub repository 1. This repository itself contained code from the repository of the iVAE model261

and nflows 3.62

The iFlow implementations were used largely as is, while the iVAE implementation was refactored to apply modifications63

more easily. The nflows code base has been removed from the repository and imported as a library instead. Furthermore,64

some small optimisations were made to make certain functions more efficient by vectorising them. For reproducing the65

results the models were trained on a GPU (see section 3.5). The code for creating the visualisations was not included in66

the repository and was therefore recreated. The implementation was made using the PyTorch and NumPy libraries with67

Python 3.7.9. TensorBoard was used for logging of variables during training.68

3.1 Model descriptions69

The paper compares two models: the proposed iFlow model and the iVAE model.70

The iFlow model is a variation on the Normalising Flow model rational-quadratic neural spline flows (featuring71

autoregressive layers) (RQ-NSF (AR)) [2], where the prior has been replaced with a factorised exponential prior72

1https://github.com/MathsXDC/iFlow
2https://github.com/siamakz/iVAE
3https://github.com/bayesiains/nflows
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distribution conditioning the latent variables z on auxiliary variables u to obtain identifiability up to an equivalence73

relation. The natural parameters of the prior are obtained through a trainable multi-layer perceptron (MLP) which takes74

the auxiliary variable u as input. Each iFlow model contains approximately 3 million trainable parameters.75

The iVAE model is implemented as an extension of vanilla VAE models [6], using MLPs for both the encoder and76

decoder. The number of layers, hidden dimensions and activation functions are hyperparameters. The encoder uses two77

MLPs (one for mean and variance each), while the decoder uses just one. Additionally, the prior mapping the auxiliary78

variables u to the latent variables z is also implemented as an MLP. In total, the iVAE model with standard parameters79

has roughly 18,000 trainable parameters.80

There is a significant difference in the complexities of iFlow and iVAE, seen in the number of trainable parameters the81

models have. The authors argue that this is not the cause of the inferior performance of the iVAE, showing that adding82

more layers/increasing the hidden dimensions of the model does not increase performance. However, only a limited83

range of parameters were used for this, resulting in only weak evidence to support the claim that the comparison is84

fair. We further investigate this claim by scaling up the complexity of iVAE through various methods, namely adding85

residual connections and layer normalisation in addition to changing hyperparameters.86

When looking at the implementation of the iVAE model, there appears to be a difference with the theory: the mean of87

the prior distribution is not a function of the auxiliary variables u, as the theory states, but simply fixed to be 0 at all88

times. We aim to incorporate this change into the implementation of iVAE to see if it leads to better performance.89

3.2 Dataset90

A synthetic dataset is required in order to truly know the underlying latent distribution, which is necessary for quantitative91

analysis of the performance. The authors chose to use a dataset consisting of sources of non-stationary Gaussian92

time-series. Such data was previously used to introduce time-contrastive learning as a means of achieving identifiable93

non-linear independent component analysis [3] and was additionally used to assess the performance of the iVAE [4].94

The latent representation (source) is created as non-stationary Gaussian time series. This data consists of M segments,95

which are modelled as Gaussian distributions with different, randomly selected mean and variance. The means are96

sampled from uniform distribution [−5, 5], while the variances are sampled from uniform distribution [0.5, 3]. Each97

segment contains L samples drawn from the corresponding distribution of segment M . The segment labels serve as the98

auxiliary variables u.99

A 3 layer invertible MLP is used to transform the samples in a non-linear manner to obtain the observable data. The100

invertible MLP consists of mixing matrices with the non-linear activation function h(x) = tanh(x) + α · x. The last101

layer does not contain a non-linear activation function. Due to the constraints of Flow models, the dimensionality d of102

these observed data points has to be the same as the dimensionality of the latent representation n. The data generator103

allows for the addition of noise to the data points, but this is not utilised.104

In the paper, results are reported on a dataset created using M = 40, L = 1000, n = d = 5 and α = 0.1. For105

visualisations of the sources and the estimations of the models, M = 5, L = 1000, n = d = 2 and α = 0.1 are used.106

This differs from the reported M = 40 from the original paper where the figure indicates that the true M = 5.107

3.3 Hyperparameters108

The authors of the original paper mention specific values for some of the hyperparameters. However, for other109

hyperparameters only a range is provided without a clear indication of what values were used for each evaluation.110

As mentioned before, for generating the data, the parameters M = 40, L = 1000, n = d = 5 and M = 5, L = 1000,111

n = d = 2 were used for experiments and visualisation respectively. A factorised Gaussian distribution was used112

as a prior for the source distributions. The means and variances for these distributions were sampled from uniform113

distributions [−5, 5] and [0.5, 3] respectively. The data was transformed with an invertible MLP of depth 3 with tanh114

activation function and a slope of 0.1.115

Both the iVAE and iFlow used the same batch size (B = 64) and learning rate of 0.001. A learning rate drop factor of116

0.25 was used and a learning patience of 10. An Adam optimiser without weight decay and with standard β values (0.9,117

0.999) and ε (1e-8) was used [5]. A learning rate scheduler to reduce the learning rate with a factor 0.1 on plateaus118

ensured that the learning rate decreased over time.119

The iFlow models were initialised with a flow length of 10 with 8 bins. The Rational Quadratic Neural Spline Flows120

with Autoregressive transforms (RQNSF-AR) was used as flow type. The Softplus activation was exerted on the natural121

parameters.122
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To replicate the iVAE baseline, a model with a hidden dimensionality of 50, a latent dimension equal to that of the data123

(d = n = 5) and 3 layer MLPs with leaky ReLU with α = 0.1 as activation function. These same hyperparameters124

were used for the additional experiments.125

3.4 Experimental setup and code126

The code for this reproducibility review is publicly available at https://github.com/HiddeLekanne/127

Reproducibility-Challenge-iFlow. As mentioned earlier, this code consist of a combination of the iFlow128

and iVAE codebases (see section 3).129

The iFlow and iVAE models were trained with 100 different seeds to generate datasets and the aforementioned130

hyperparameters. As is standard for these types of models, the iFlow model was trained using negative log likelihood131

as a loss, and the iVAE was used using the ELBO as a loss [6]. Model performance was evaluated using the mean132

correlation coefficient (MCC) between the original source of the data and the estimated latent variables from the models.133

3.5 Computational requirements134

All experiments were run on the LISA system4 provided by the University of Amsterdam. This system provides135

multi-core nodes for research projects. A GeForce GTX 1080 Ti was used to train the models.136

Training of iVAE models for 100 different seeds took approximately 2 hours. Training of a single iFlow model with a137

flow length of 10 took approximately 45 minutes. To alleviate some of the computational cost, the 100 models were138

trained in two worker nodes instead of one. This totalled to approximately 1.5 days of training per 100 models.139

Upgrading of computational resources would not garner better results, with respect to time, based on the fact that the140

bottleneck for the computations was the speed of a single thread CPU. Attempts were made to improve this performance141

but these did not decrease training time.142

4 Results143

In this section, results from the original paper are recreated. In addition, some further experiments were done of which144

the results can also be found below. These additional experiments consist of improving the existing base line proposed145

in the paper, as well as exploring the relation between the complexity of the synthetic data and the achieved MCC146

scores.147

(a) (b)

Figure 1: Comparison of identifying performance (MCC) and the energy value (log-likelihood) versus seed number
respectively.

4https://userinfo.surfsara.nl/systems/lisa
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4.1 Results reproducing original paper148

4.1.1 Comparison of identifying performance149

The MCC scores and log-likelihood over 100 seeds are displayed in figure 1a and figure 1b respectively. The figures150

show that there is high variance in MCC scores for different datasets. The iFlow models obtained a mean accuracy of151

0.718 with a standard deviation of 0.067 whereas the iVAE models obtained a mean accuracy of 0.483 with a standard152

deviation of 0.059 which is in compliance with the results produced in the original paper. The results for the iVAE153

models are significantly worse than in the original iVAE paper. An improvement to the implementation was made to154

better emulate the performance of this paper which resulted in a fairer comparison (see section 4.2.1).155

As can be seen in figure 1b, the energy values of the iVAE are significantly lower compared to those of iFlow, matching156

the results of the paper. The authors noted that the difference in energy values could indicate that the gap between the157

ELBO and the actual log likelihood is not negligible.158

4.1.2 Preservation of original source manifold geometry159

Figure 2 shows the 2D visualisation for different data seeds. The original paper stated that an M = 40 was used but160

figures indicated that this should be M = 5.161

The results largely support the claim of the author that the original geometry of the source manifold is preserved. The162

estimations from the iFlow model seem more similar to the original source than the estimations from the iVAE models,163

although it still contain artefacts from the observations. Figure 2a is an example of such where the latent dimensions are164

not successfully recovered. In other examples, the original Gaussian distributions are mostly recovered apart from some165

transformation as was the case in the original paper. The collapse of the latent space from iVAE models observed in the166

original paper was not prevalent during experiments. However, the preservation of the original geometry of the source167

manifold is better captured by the iFlow models.168

(a) (b)

(c) (d)

Figure 2: Visualisation of 2D-cases
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4.1.3 Separate latent dimension correlation169

Figure 3 and figure 4 show the correlation between the source signal used to generate the data and the latent variables170

recovered by the iFlow and iVAE models. Figure 3 shows the results of the best performing iFlow, which we assume171

is what figure 3 of the original paper also depicts. For fairness, we also show the results for the dataset that iVAE172

performed best on in figure 4.173

These results largely support the claim that iFlow exhibits stronger correlation than does iVAE in each single dimension174

of the latent space: while this is generally the case, it does occur for some datasets that iVAE has a higher correlation175

coefficient than iFlow on one or even two of the latent dimensions, as shown in figure 4.176

Figure 3: Comparison of the latent variables recovered by the models (orange lines) to the true latent variables (dashed
blue lines) for individual dimensions. This figure shows results for the seed that resulted in the best iFlow performance.

Figure 4: Comparison of the latent variables recovered by the models (orange lines) to the true latent variables (dashed
blue lines) for individual dimensions. This figure shows results for the seed that resulted in the best iVAE performance.
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4.2 Results beyond original paper177

4.2.1 Improved baseline178

In figure 5a and 5b the MCC scores and energy values over 100 seeds are displayed for the iFlow model, iVAE model179

and improved iVAE model. The addition of the trainable mean, based on auxiliary parameters, shows an increase in the180

mean MCC score from 0.483 (0.059) to 0.556 (0.061). The ELBO score improves almost with a constant value for181

every seed.182

Other attempts had been made to improve this baseline by increasing the complexity of the iVAE model. However,183

were tried before the mistake in the iVAE implementation had been noticed, and are therefore not very useful. These184

results can be seen in appendix B.185

In addition to figure 1, recreations of figures 2 3 using the improved baseline were made. These are not included in this186

report but can be found in appendix C187

(a) (b)

Figure 5: Comparison of identifying performance (MCC) and the energy value (log-likelihood) versus seed number
respectively, with the fixed version iVAE included.

4.2.2 Synthetic data complexity188

To measure the complexity of the dataset, the mean Kullback-Leibler divergence [7] of each source and its nearest189

neighbour was used.190

This metric showed no correlation (0.06) with the MCC scores obtained by iVAE or iFlow, showing that the randomly191

sampled parameters of the source distribution were likely not to blame for the high variance in MCC scores.192

5 Discussion193

The results reproduced in the previous section largely support the claims by the original authors. Firstly, the MCC194

scores that we obtained after training the model on synthetic data are very similar to the ones reported. Secondly, the195

recreated visualisation of 2D latent sources seems to support the claim that the iFlow method outperforms iVAE in196

identifying the original sources. Finally, the claim that iFlow exhibits much stronger correlation than iVAE in each197

single dimension of the latent space is not fully supported by our results. In the original paper, the authors show this198

correlation only for the best iFlow results. When visualising the individual dimensions of the latent variables for the199

best iVAE results, iVAE outperforms iFlow in two of the latent dimensions. This shows that the claim does not strictly200

hold true for all seeds. Nevertheless, since iFlow outperforms even the best iVAE on most latent dimensions, it still201

seems to be a reasonable claim.202

Our experiments to improve the performance of the iVAE model, by modelling the prior means as a trainable function203

of the auxiliary variable u, managed to increase its performance significantly. However, the performance remains worse204

than that of iFlow. This further cements the claim that the iFlow model is more suited for the task of identifiability than205

iVAE.206
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The strength of our approach was that we were generally faithful to the original implementation, using largely the same207

code which we examined thoroughly. Therefore, the chance of implementation differences with the original code is very208

small. Additionally, we rigorously compared the code with the underlying theory, allowing us to correct an important209

mistake in the baseline.210

A weakness of our approach was that we did not do any work to examine the models on a more realistic dataset,211

meaning the generalisability of the model remains an open question. Furthermore, due to the high variance in the results212

of identifying models, all experiments had to be run with a large number of seeds (100), which took a long time given213

the fact that training of a single model took approximately 40 minutes. For this reason, experimentation done with214

hyperparameters was limited. The experiments in the appendix of the paper were not replicated for similar reasons.215

These experiments looked at the effect of different activation functions on the performance of iFlow and the effect of216

more and larger hidden layers on the performance of iVAE.217

Overall, the authors provided a model which outperforms the previously best method for this problem in a quantifiable218

measure. Additionally, high variance in the results is addressed appropriately by running the experiments over a large219

number of seeds. Furthermore, the visualisation of the true sources and the estimations by the models makes it easier to220

interpret the MCC scores. Lastly, the model is theoretically well motivated.221

Despite these strengths of the original paper, some improvements could be made to further substantiate the claims made222

in the paper. There is a clear advantage that iVAE has over iFlow, which is not mentioned by the authors: iVAE can be223

used when the dimensionality of the latent sources differs from the data dimensionality, while iFlow cannot. The fact224

that iFlow needs data with such corresponding dimensionalities also means that the iVAE had to be trained without a225

bottleneck. This is an important part of the VAE architecture, and the lack thereof could have contributed to the weaker226

performance of iVAE; compared to the paper introducing iVAE (MCC of above 0.95), the MCC scores of the iVAE227

reported by the authors are significantly worse (MCC of 0.496). This discrepancy is not addressed or explained by the228

authors.229

5.1 What was easy230

The code provided in the GitHub repository worked almost out of the box, with only small adjustments needed; the231

source code of the nflows library that was included in the repository was replaced with an import. This fixed an issue232

that prevented the code from running on a CPU. The code was well organised into separate files for e.g., the iFlow233

model, iVAE models or training, making it easy to quickly find specific parts of the code when needed. The code that234

generates the data the models are trained on also came with the implementation, and worked without any issues.235

With the code, a shell script was provided that seems to be the one used for the experiments on iFlow in the paper236

(although this was not explicitly stated). This allowed for easy replication of these experiments, with all of the used237

hyperparameters provided.238

5.2 What was difficult239

There were difficulties in replicating some parts of the paper. The lack of a provided environment means that our code240

was likely run using different versions of some libraries such as PyTorch or NumPy. This could have contributed to the241

difference in outcomes of our experiments compared to the paper while using the same seeds.242

While the script used to run iFlow experiments was provided, the same was not true for the iVAE experiments. This was243

not a large problem, however, since the authors do state that the hyperparameters used are the same as in the original244

iVAE paper [4]. The code for creating plots (Figures 1,2,3 in the iFlow paper) was also not provided and additional245

code had to be written to recreate these figures.246

The training of the iFlow models for all 100 seeds took a significant amount of time. With the training for one seed247

taking approximately 40 minutes, the full training took roughly a day and a half (running two batches of 50 seeds248

simultaneously). This made it difficult to do full-scale experiments with different hyperparameters.249

Lastly, there was a large portion of unused code present in the repository, which made it more difficult to understand the250

overall structure of the code. This includes the source code of the nflows library, code for planar flows, multiple different251

iVAE variations, an alternative dataloader, an unused dataset and an implementation of training using annealing.252
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A Alternative iFlow model270

A comment in the files mentioned an error in the implementation because the Softplus function was applied to ξ as well271

as η from the natural parameters λ(u). An alternative version of the implementation was also tested where the Softplus272

activation function was only exerted on ξ, as there are no constraints on the sign of η.273

The results obtained using this method were approximately the same as the original performance of the iFlow. A mean274

MCC of 0.72 with a standard deviation of 0.057 was achieved. Because these results were not a significant improvement,275

it was decided to include this experiment as an appendix.276

B Baseline improvement experiments277

The table below shows the results of experiments with changing the iVAE architecture to increase complexity. As278

shown, adding skip connections or layer normalisation to the architecture did not increase performance with respect to279

the unchanged baseline. Due to the high training time, no additional experiments could be done.280

addition NUM_HIDDEN NUM_LAYERS AVG MCC
- 50 3 0.483 (±0.059)

residual connections 50 3 0.474 (±0.053)
layer normalisation 50 3 0.461 (±0.051)

281
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C Visualizations for Fixed iVAE282

Figure 6: Alternative visualisation of the MCC scores obtained by the models, including the fixed iVAE.

Figure 7: Visualisation of 2D-cases, comparing iFlow to the fixed version of iVAE.

Figure 8: Comparison of the latent variables recovered by the models (orange lines) to the true latent variables (dashed
blue lines) for individual dimensions. This figure shows results for the seed that resulted in the best iFlow performance.
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Figure 9: Comparison of the latent variables recovered by the models (orange lines) to the true latent variables (dashed
blue lines) for individual dimensions. This figure shows results for the seed that resulted in the best fixed iVAE
performance.
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