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Abstract

We consider the design of practically-implementable schemes for the task of
channel simulation. Existing methods do not scale with the number of simultaneous
uses of the channel and are therefore unable to harness the amortization gains
associated with simulating many uses of the channel at once. We show how
techniques from the theory of error-correcting codes can be applied to achieve
scalability and hence improved performance. As an exemplar, we focus on how
polar codes can be used to efficiently simulate i.i.d. copies of a class of binary-
output channels.

1 Introduction

Channel simulation refers to the task in which Alice observes a realization x of a random variable X
and sends a bit string to Bob. Bob, who shares common randomness with Alice, outputs a random
variable Y using both the message and the common randomness. The goal is to minimize the length
of the bit string subject to the constraint that Y should have a specified distribution PY |X(·|x).
This problem can be viewed as a “soft” or “stochastic” generalization of quantization. As with
quantization, Y has a digital representation (through Alice’s message), and it can be viewed as a
degraded version of X . The difference is that here the degrading process is stochastic in general. In
fact, the quantization problem is subsumed by taking the channel PY |X to be deterministic.

This stochastic generalization of quantization arises in lossy compression of various types of sources
including images [Flamich et al., 2020, Ballé et al., 2020], models [Havasi et al., 2018], and gra-
dients [Shah et al., 2022]. In these applications, X often represents a vector of latent variables,
model weights, or even an image consisting of millions of pixels [Theis et al., 2022]. The channel
of interest is therefore high dimensional, and it is usually independent across the dimensions. For
conventional quantization, it has long been recognized that the optimum rate-distortion tradeoff
is more favorable in higher dimensions [Cover and Thomas, 2006], a trend that one expects to
generalize to channel simulation. Indeed, let n · Rn be the minimum number of bits required to
generate Y n = (Y1, . . . , Yn), when Xn is i.i.d. and Y n is conditionally i.i.d. given Xn. Thus Rn is
the minimum number of bits per dimension when simulating the channel n times. The sequence nRn
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can be shown to be subadditive and therefore satisfies (e.g., Liggett [1999, Thm. B22])

lim
n→∞

Rn = inf
n

Rn. (1)

It is known that R1 satisfies [Li and El Gamal, 2018]

I(X;Y ) ≤ R1 ≤ I(X;Y ) + log(I(X;Y ) + 1) + 5, (2)

where I(X;Y ) refers to conventional Shannon mutual information. Applying this to i.i.d. (Xn, Y n)
and using the fact that I(Xn;Y n) = nI(X;Y ), we have

nI(X;Y ) ≤ n ·Rn ≤ nI(X;Y ) + log(nI(X;Y ) + 1) + 5, (3)

which shows that as n → ∞, Rn approaches the lower bound I(X;Y ). The challenge, for both
quantization and channel simulation, is that the complexity of schemes tends to grow exponentially in
n. In fact, although many channel simulation schemes have been proposed [Harsha et al., 2007], [Li
and El Gamal, 2018], [Flamich et al., 2022], [Flamich and Theis, 2023], [Flamich et al., 2024], none
have complexity that scales subexponentially in n, ignoring isolated examples for which R1 happens
to equal I(X;Y ) [Zamir and Feder, 1992], [Agustsson and Theis, 2020].

Vector quantization has long been recognized to be the dual, in a precise sense, of channel cod-
ing [Pradhan et al., 2003]. In channel coding, the decoder maps an arbitrary point to an element
of a finite set that is “close” in some channel-dependent sense. This is analogous to the role of the
encoder in quantization. Likewise, the encoder in channel coding is analogous to the decoder in
quantization: both map bit strings to elements of said discrete set. Thus new techniques for channel
coding can often be applied to vector quantization [Goblick, 1963], [Viterbi and Omura, 1974] and
vice versa [Laroia et al., 1994].

The goal of this paper is to demonstrate how ideas from coding theory can be applied to the channel
simulation problem. We shall see that by adopting these techniques, we can develop schemes that
significantly outperform state-of-the art methods, both in terms of their scalability and their rate
performance. Specifically, we show how polar codes [Arikan, 2009] can be applied to the simulation
problem using a method called PolarSim. Polar codes make for a good exemplar of this general
proposal for five reasons. First, they have excellent channel coding performance, both theoretically
[Mondelli et al., 2016] and practically [Egilmez et al., 2019]. Second, their complexity scales as
n log n. Third, they require no manual tuning. Fourth, they are simple to describe, requiring minimal
background in coding theory. Finally, there exist highly optimized implementations of the encoding
and decoding algorithms (e.g., [Pfister, 2023]). Their limitation is that, in their basic form, they
can only be applied to symmetric binary-input channels (see (4) to follow). As we shall see, this
means that PolarSim can only simulate symmetric binary-output channels. This class includes, for
example, the binary symmetric channel, the (reverse) binary erasure channel, and channels of the
form X → signum(X + Z), where X and Z are real-valued, independent random variables with
symmetric distributions. Note that the input to the channel need not be binary and may even be
continuous.

For these channels, we show both theoretically and experimentally that, by scaling up the dimension,
the rate of PolarSim can be made to approach the mutual information lower bound I(X;Y ) ≤ Rn

from (3). The superior scalability of PolarSim thus translates to a significant rate improvement
over the state-of-the-art, since those schemes are not able to harness the amortization gain associated
with letting n grow. Although PolarSim is restricted to binary-output channels, it is worth noting
that there are currently no known schemes that simulate any nontrivial class of channels with even
subexponential complexity in n. Also, for compression applications, a binary output alphabet is not
unreasonable. It should be emphasized that the binary-output restriction is particular to the basic
form of polar codes, not error-correction methods in general. In the supplementary materials we
discuss how a different coding technique, trellis coded modulation, can be applied to closely simulate
a Gaussian channel. See also the discussion in the Concluding Remarks section on non-binary polar
codes.

One lesson from the coding theory literature, especially with the advent of modern coding theory in
the 1990s [Richardson and Urbanke, 2008], is that it is advantageous to prioritize scalability with the
dimension n over achieving optimal performance for particular n. The reason is that performance
naturally improves with increasing n (as in (1)-(3) above), and this improvement can overcome
suboptimality at any given value of n. For state-of-the-art channel codes, the decoder typically
does not implement the optimal (maximum likelihood) decision rule. Instead, it implements a
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scalable approximation to it. This design strategy of favoring scalability over optimality is now well
established in coding theory and vector quantization, and our goal here is to show how it can be
profitably applied to channel simulation.

The rest of the paper is organized as follows. We provide the necessary background on polar codes
in Section 2. Section 3 describes the PolarSim scheme, with Section 3.3 containing the theoretical
result and Section 3.4 contains simulation results. Some concluding remarks are offered in Section 5.

1.1 Terminology and Notation

We follow the standard convention of denoting the dimensionality of vectors by their superscript.
We will also denote compound i.i.d. channels by superscripts: p×n denotes n i.i.d. copies of a
distribution p. The number of copies here is referred to as the block length or dimension of the
channel. This is to be distinguished from the notation F⊗n which denotes a n-fold self-Kronecker
product of a tensor F . All logarithms mentioned in this paper are base 2. The binary entropy function
hB : [0, 1

2 ] 7→ [0, 1] is defined as hB(p) = −p log p− (1− p) log(1− p). We will also refer to its
inverse h−1

B : [0, 1] 7→ [0, 1
2 ] defined such that h−1

B (hB(p)) = p.

2 Background

2.1 The Channel Simulation Problem

Consider a joint probability measure pXY on the set X × Y . Alice receives a sequence of n symbols
from the input alphabet X drawn according to p×n

X and encodes it into a binary string that she
transmits to Bob. Upon receiving the message from Alice, Bob then decodes it to generate a sample
from the channel p×n

Y |X . The objective is to find coding schemes that minimize the average rate— i.e.,
the average amortized length of the bit string transmitted by Alice. We refer to n as the block length
or the dimension. We require that the set of strings that Alice can transmit to Bob to form a prefix-free
set, meaning that no string in the set is a prefix of any other. Alice’s message is thus self-terminating,
and schemes for block length m and n can be combined to obtain a scheme for block length m+ n
by concatenation. If Rn denotes the minimum average rate, i.e., the minimum average length of
Alice’s string over all schemes, normalized by n, then nRn is subadditive in n, as noted earlier.

Both Alice and Bob are permitted to use randomized strategies and are assumed to share a source of
common randomness. Under this assumption, Li and El Gamal [2018] prove the performance bounds
(2) and (3) above (see also Harsha et al. [2007]). For large n, Sriramu and Wagner [2024] improve
upon this result for i.i.d. discrete memoryless channels, showing that the logarithmic redundancy
term can be halved for some channels and eliminated for all others. While these schemes are nearly
rate-optimal, their complexity scales exponentially in n. Other practical schemes have been proposed,
although none have even subexponential scaling in n outside the small class of channels for which
the lower bound in (3) is tight for all n.

2.2 Background on Polar Codes

Modern coding theory has focused on the search for codes whose rates approach the theoretical
limit while having a low encoding and decoding complexity. Polar codes are among the crowning
achievements of this search. In their basic form, they are capacity-achieving linear codes for binary
input channels WX|Y (·|·) satisfying the following symmetry condition: there exists a bijection
π : X 7→ X such that π−1 = π and

W (x|0) = W (π(x)|1) for all x ∈ X . (4)

As a linear code, the encoding procedure for polar codes is defined by a generator matrix Gn that
maps an input Un ∈ {0, 1}n to the channel input Y n as Y n = UnGn with all operations performed
over F2. The generator matrix of size n = 2m can be constructed recursively from a kernel matrix
F = [ 1 0

1 1 ] and the “bit-reversal” permutation matrix Bn—see Arikan [2009]. The generator matrix is
then defined as Gn = BnF

⊗n. The structure of the generator matrix allows for encoding in n log n
time.

Decoding proceeds by sequentially guessing each bit of Un in order. For this, one considers the
subchannel Ui → (U i−1, Xn). Specifically, given the realization of the output xn and the decoding
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decisions for the prior bits ûi−1, one computes the likelihood ratio

Pr(Ui = 1|Xn = xn, U i−1 = ûi−1)

Pr(Ui = 0|Xn = xn, U i−1 = ûi−1)
, (5)

and selects Ûi accordingly. This decoding rule is suboptimal but scalable in that the likelihood
ratio can be computed in log n steps using the recursive structure of Gn [Arikan, 2009], resulting in
decoding complexity of n log n.

The suboptimality turns out to be acceptable because as n grows, the subchannels polarize, meaning
that for most i the likelihood ratio in (5) is close to 0, 1 or∞ with high probability. Equivalently, the
mutual information I(Ui;X

n, U i−1) is close to zero or one. Figure 1 illustrates this phenomenon for
a binary symmetric channel (BSC ) which is defined by X = Y ⊕ Z, where Z ∼ Bernoulli(p) for
some crossover probability p ∈ [0, 1].

For communication, the encoder uses the “clean” subchannels with mutual information close to
1 to send information bits. The inputs to the remaining noisy channels, called the frozen bits, are
fixed ahead of time and known to both the encoder and decoder. The data rate is thus the fraction of
subchannels that are clean, which can be shown to approach capacity [Arikan, 2009].

Implementing the code requires determining which indices correspond to the clean subchannels. This
can be done using the dimensionality reduction technique of Tal and Vardy [2013], by exploiting
the recursive structure of the polar transform [Zhang et al., 2014, Arikan, 2009], or by Monte Carlo
simulation.

3 Simulating Binary Output Channels

Previously, we described polar codes for constructing channel codes for binary input channels. Based
on the duality between channel coding and channel simulation, we will see that this naturally leads to
a scheme for simulating binary output channels.

We begin by describing a “toy scheme”. This is not a rate-efficient scheme in its own right, but it
serves as a foundation for PolarSim.

3.1 Toy Scheme for Binary Output Channel Simulation

Consider a joint distribution pXY where pY is Bernoulli
(
1
2

)
. Then, the following algorithm simulates

pY |X exactly:

1. Use the common randomness to generate Z ∼ Unif(0, 1) and V = 1
(
Z > 1

2

)
at both the

encoder and decoder.

2. At the encoder, having observed an input realization x, compute the output bit Y =
1
(
Z > pY |X(0|x)

)
and the correction bit ∆ = Y ⊕ V .

3. Transmit ∆ to the decoder after lossless compression.

4. Recover Y = ∆⊕ V at the decoder.

In Appendix A, we show that the rate associated with repeated application of this scheme is upper
bounded by hB

(
1
2 − h−1

B (1− I(X;Y ))
)
. As we can see in Figure 2, this is highly suboptimal in

general. However, we note that for the special case in which the mutual information is polarized, i.e.,
where I(X;Y ) ≈ 0 or I(X;Y ) ≈ 1, the toy scheme is close to optimal.

This observation is crucial as it suggests a path forward: If we can transform a given channel
simulation problem to the problem of simulating polarized channels, it can be solved rate-efficiently
using the toy scheme. Polar codes provide us with the means to achieve such a transformation.

3.2 Channel Simulation using Polar Codes

As in the toy scheme, we shall consider a joint distribution pXY where pY is Bernoulli
(
1
2

)
. We will

additionally assume that pX|Y satisfies the symmetry condition described in (4). Let us then examine
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Figure 1: Channel polarization for a BSC with crossover probability 0.2 and block lengths n = 212 (top) and
n = 215 (bottom). The scatter plots on the left show the subchannel capacities I(Ui;X

n, U i−1) for each index
i. In the curves ( ) on the right, these indices are sorted in the increasing order of their subchannel capacities
for better visualization. The area under these curves is the mutual information lower bounds at their respective
block length. The vertical dotted line marks the ideal polarized channel, i.e., the fraction of indices to its right
is equal to the mutual information of the channel. We see that the sorted subchannel capacity curve approaches
this line as the block length is increased. Finally, we also plot the theoretical upper bound (see (38)) on the rate
of our proposed scheme, PolarSim, for block lengths n = 212 and n = 215. The area under these curves
is an upper bound on the rate of PolarSim. The shaded area in between is therefore an upper bound on the
redundancy of PolarSim, which vanishes as n → ∞ due to the polarization phenomenon.
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Figure 2: The upper bound on the rate of the toy scheme ( ) described in section 3.1 is plotted against the
mutual information lower bound ( ).
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the problem of simulating two independent realizations of the channel pY |X , X2 → Y 2. Consider
the following bijection applied to the output (Y1, Y2):

U1 = Y1 ⊕ Y2,

U2 = Y2. (6)

It is clear that simulating the original pair of i.i.d. channels X1 → Y1 and X2 → Y2 is equivalent to
simulating the transformed pair of channels (X1, X2)→ U1 and (X1, X2, U1)→ U2.

The mutual information of each of the original i.i.d. channels are equal to I(X;Y ). However, the two
transformed channels differ in terms of mutual information: I(X1, X2, U1;U2) > I(X;Y ) because
U2 is observed through two different channels. This necessitates that the other channel has lower
mutual information: I(X1, X2;U1) < I(X;Y ). Therefore, the linear transformation (6) we applied
to the output had the effect of polarizing the target channel.

For block lengths that are larger powers of two, we can apply the transform inductively, resulting
in the relationship we saw in section 2: Un = Y nG−1

n . Similar to the two-dimensional (n = 2)
case, this transforms the original simulation problem Xn → Y n into the problem of simulating
the subchannels Xn → U1, (X

n, U1)→ U2, (X
n, U1, U2)→ U3, . . . , (X

n, Un−1)→ Un. Arikan
[2009] shows that these subchannels are polarized for large n: for each i, I(Ui;X

n, U i−1) ≈ 0 or
I(Ui;X

n, U i−1) ≈ 1. This allows us to simulate them using the toy algorithm described in the
previous section.

Algorithms 1 and 2 describe the complete scheme.

Algorithm 1: Encoder for simulating a channel using polar codes.
Input :Block length n

Random bit string zn ∼ Unif ([0, 1]n)
Probability table pn ∈ [0, 1]n

Source string xn ∈ Xn

Output :String b ∈ {0, 1}∗
for i = 1, . . . , n do

if zi > SoftPolarDec(xn, ui−1) then ui ← 1 else ui ← 0
if zi > 1/2 then vi ← 1 else vi ← 0
∆i ← ui + vi

b← Compress(∆n, pn)
return b

Algorithm 2: Decoder for simulating a channel using polar codes.
Input :Block length n

Random bit string zn ∼ Unif ([0, 1]n)
Probability table pn ∈ [0, 1]n

Compressed offset string b
Output :Simulated channel output yn ∈ {0, 1}n
∆n ← Decompress(b, pn)
for i = 1, . . . , n do

if zi > 1/2 then vi ← 1 else vi ← 0
ui ← ∆i + vi

yn ← PolarEnc(un)
return yn

The encoder input p̄i refers to the subchannel parameter

p̄i = h−1
B (H(Ui|U i−1, Xn)). (7)

This can be calculated offline using the techniques used to compute subchannel quality for communi-
cation described at the end of Section 2. The SoftPolarDec(ui−1, xn) subroutine outputs

Pr(Ui = 0|U i−1 = ui−1, Xn = xn), (8)
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which can be calculated with O(n log n) complexity using a recursion given by Arikan [2009].
The PolarEnc(un) subroutine simply multiplies by the generator matrix in: yn = unGn. This
can be implemented in O(n log n) by exploiting the recursive structure, as noted earlier. The
Compress(∆n, p̄n) and Decompress(b, p̄n) routines can be any prefix-free lossless compres-
sor/decompressor pair that uses at most

c+

n∑
i=1

[
1(∆i = 1) log

1

1/2− p̄i
+ 1(∆i = 0) log

1

1/2 + p̄i

]
(9)

bits to send ∆n, where c is some constant independent of n and ∆n. Arithmetic coding (Rissanen
[1976]) is a widely-used scheme that achieves this guarantee with c = 2.

This defines PolarSim for n that is a power of two. An arbitrary n can be handled by partitioning
{1, . . . , n} into subsets, each of which has a cardinality that is a power of two. One then applies
PolarSim to each subset separately. Since the coding is prefix-free, the encoder outputs can simply
be concatenated together, as noted in Sec. 2.1.

3.3 Theoretical Guarantees

If one uses a linear complexity algorithm for Compress and Decompress, then the overall complexity
of PolarSim is O(n log n) for both encoding an decoding. Using the fact that polar codes achieve
capacity for channels satisfying the symmetry condition in (4), we can show that PolarSim is rate
optimal in the large-n limit, making it currently the only scheme with subexponential complexity in
n with a comparable guarantee.
Theorem 1. Consider a joint distribution PXY in which Y is binary and uniform and the reverse
channel PX|Y satisfies the symmetry condition in (4). Suppose Compress and Decompress achieve
the guarantee in (9).

1. (Correctness:) Algorithms 1 and 2 simulate the channel P×n(Y |X) exactly: If Zn is
i.i.d. Unif[0, 1], and p̄i = h−1

B (H(Ui|U i−1, Xn)), then the conditional probability that
Algorithm 2 outputs yn given that xn is the input to Algorithm 1 is

n∏
i=1

PY |X(yi|xi). (10)

2. (Optimality:) Algorithms 1 and 2 are asymptotically rate optimal:

lim
n→∞

1

n
E[ℓ(b)]→ I(X;Y ), (11)

where b is the output of the encoder.

The proof is provided in Appendix D.

3.4 Experimental Results

We run PolarSim on the reverse (PY |X) version of three channels: (1) the BSC with a uniform input
(2) the binary erasure channel, X = Z · Y , where Y is uniform over {−1, 1} and Z is Bernoulli(ϵ),
and (3) the binary Gaussian channel X = Y + Z, where Y is again uniform over {−1, 1} and Z is
N (0, σ2). Note that the reverse of the BSC with a uniform input is the BSC itself.

Fig. 3 and Fig. 4 show the rate performance of these simulations. Even at a block length of 212, the
performance is already close to the mutual information lower bound across all channels and rates.
Performance improves with n as expected, with both the average rate and the variance in the rate
decreasing.

We also compare our scheme to the state-of-the-art scheme for channel simulation, Greedy Poisson
Rejection Sampling (GPRS) [Flamich, 2024] (see Appendix E for the implementation details). Fig. 5
shows that PolarSim significantly outperforms GPRS in terms of the communication rate, even
when the latter is optimized for the channel at hand. In Table 1, we can see that its computational
efficiency is also significantly better, by several orders of magnitude. This is due to the exponential
computational complexity of GPRS in n compared to the pseudolinear complexity of PolarSim.
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Figure 3: Rates achieved by PolarSim at different block lengths — n = 212 (left), n = 217 (top-right and
middle-right), n = 214 (bottom-right) for different noise levels across different channels, compared against
the theoretical lower bound I(X;Y ) . Top: BSCp for p ∈ (0, 1

2
), Middle: Gaussian for σ ∈ (0, 3), Bottom:

Erasure for ϵ ∈ (0, 1). The lines represent the median values, and the boundaries of shaded regions represent the
5th to 95th percentile rates over 200 simulation runs.
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Figure 4: The redundancy of PolarSim is plotted for certain fixed channels (Top: BSC with p = 0.05,
Middle: Reverse binary Gaussian channel with σ = 0.5, Bottom: Reverse binary erasure channel with ϵ = 0.2)
as the block length n is varied. The plotted curve ( ) is the median redundancy over 200 simulations, with the
boundaries of the shaded region showing the bootstrapped 95% confidence interval around the sample median.
The redundancy is defined as the gap between the achieved rate and the mutual information lower bound. For
comparison, the theoretical maximum redundancy of PFRL ( ) is also plotted for the respective channels (see
3 ). We see that for large block lengths, PolarSim has a higher redundancy, which is consistent with known
results from channel coding [Mondelli et al., 2016].
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Figure 5: Comparison of schemes for BSC simulation: Average rates for PolarSimwith n = 212 and
n = 217 compared against GPRS with n = 8 and the theoretical lower bound I(X;Y ) over 1000 simulation
runs.

p PolarSim GPRS λ
Median p5 p95 Median p5 p95

0.00 0.009 0.008 0.01 192.0 161.4 205.8 21333
0.25 0.009 0.008 0.01 246.1 180.7 415.7 27347
0.49 0.009 0.008 0.01 227.7 176.1 318.7 25305

Table 1: Execution time comparison between PolarSim and GPRS, for simulating BSC’s with block length
n = 212. The reported statistics are computed over 1000 trials for each value of the crossover probability p.
GPRS cannot directly simulate such large block lengths. Therefore, the GPRS runtimes are obtained by scaling
up the runtime for n = 8 blocks. This is justified by subadditivity (see (1)). The column λ computes the ratio
between the medians of the two schemes. For our chosen block length, PolarSim performs over four orders of
magnitude faster than GPRS.

4 Related Work

4.1 Performance Bounds

Arguably the first to consider the channel simulation problem was Wyner [1975], who studied the
problem without common randomness. The problem with common randomness was first introduced
in the context of quantum information theory literature by Bennett et al. [2002] and Winter [2002].
Harsha et al. [2007] proposed a greedy one-shot channel simulation algorithm that achieved a
logarithmic rate redundancy with respect to the lower bound for discrete channels. Li and El Gamal
[2018] showed a similar achievability result that generalizes to more general channels using their
strong Poisson functional representation lemma. Sriramu and Wagner [2024] showed via a two-stage
rejection sampling scheme that an even lower redundancy was achievable in the i.i.d. case. Li and
Anantharam [2021] extended the Poisson representation to obtain a generalised method for deriving
one-shot achievability in different settings (see also Phan et al. [2024]).

4.2 Practical Schemes

The achievability proof in Li and El Gamal [2018] inspired several practical schemes that exploit
properties of the Poisson process and perform well at short block lengths [Flamich et al., 2022,
Flamich, 2024]. Similarly, the rejection sampler proposed by Harsha et al. [2007] has been generalized
by Flamich et al. [2024] to work for arbitrary probability spaces. None of these schemes exhibit
subexpoential complexity with n when applied to product channels, however. If one restricts attention
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to n = 1 and unimodal distributions, then improved schemes are possible [Flamich et al., 2024,
Hegazy and Li, 2022], although by their nature such schemes cannot harness the amortization gain
associated with increasing n.

Chou et al. [2018] addresses the problem of total variation approximate channel simulation and
proposes a fixed rate scheme based on a soft covering argument that uses polar codes.

As noted in the introduction, the primary application of the channel simulation task is learned
compression. Lei et al. [2024] and Li et al. [2020] consider how vector quantization methods can
be directly applied to the compression task without explicitly simulating a channel. Although their
methods do not simulate an i.i.d. channel, their use of ideas from error-correcting codes and vector
quantization makes them the closest prior works to the present paper, along with Chou et al. [2018].

5 Concluding Remarks

PolarSim shows how polar codes can be used to simulate channels with favorable scalability in the
dimension. By harnessing the attending amortization gain, the codes are able to realize significantly
improved performance compared with existing schemes. Our focus has been on how the original
form of polar codes can simulate symmetric, binary output channels. Subsequent extensions of polar
codes [Şaşoğlu et al., 2009] could potentially be used to simulate arbitrary channels. This would be
an interesting topic of future research.

The aim of the paper, however, is not to show that polar codes are useful for simulation per se.
Rather, we seek to make the larger point that ideas from the field of error-correcting codes are useful
for the simulation problem. We have used polar codes as an exemplar, but one could potentially
apply turbo codes (Berrou et al. [1993]), low-density parity-check codes LDPCs (Gallager [1962]),
algebraic codes [Blahut, 2003], trellis-coded modulation/quantization (Taubman et al. [2002]), sparse
superposition codes (Joseph and Barron [2012]), or other codes (e.g., Caire et al. [1998]) instead.
The PolarSim method is not expected to generalize to these other families. Polar codes are linear,
however, and one can transform them into a simulator for the BSC using a different approach that
relies on linearity alone. This is discussed in the supplementary materials, where we find that this
alternate scheme achieves comparable performance to PolarSim. This alternate approach is directly
applicable to other linear codes such as LDPCs.

In learned compression applications, the channels of interest are generally continuous. Error-
correcting schemes that operate directly on continuous channels, such as trellis-coded modula-
tion/quantization, are therefore of particular interest. To illustrate the potential of these codes, in the
supplementary materials we show how trellis-coded quantization can be used to approximately simu-
late a Gaussian channel. The simulation is not exact, but in practical applications, exact simulation
may be unnecessary.
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A Rate of the Toy Scheme

The rate of this scheme is governed by the cost of compressing the correction bit ∆. We have
Pr(∆ = 1) = E [Pr(∆ = 1|X)] (12)

= E

[
1

2
− min

j∈{0,1}
pY |X(j|X)

]
(13)

=
1

2
− E

[
min

j∈{0,1}
pY |X(j|X)

]
(14)

=⇒ H(∆) = hB

(
1

2
− E

[
min

j∈{0,1}
pY |X(j|X)

])
. (15)

Rearranging this, we can obtain

E

[
min

j∈{0,1}
pY |X(j|X)

]
=

1

2
− h−1

B (H(∆)). (16)

Next, consider
I(X;Y ) = 1−H(Y |X) (17)

= 1− E

[
hB

(
min

j∈{0,1}
pY |X(j|X)

)]
(18)

≥ 1− hB

(
E

[
min

j∈{0,1}
pY |X(j|X)

])
(19)

= 1− hB

(
1

2
− h−1

B (H(∆))

)
. (20)

Rearranging this, we finally obtain the required upper bound:

H(∆) ≤ hB

(
1

2
− h−1

B (1− I(X;Y ))

)
. (21)

B Trellis-Coded Quantization

The channel simulation scheme described in the the body of the paper is limited to binary-output
channels. However, in many practical applications, we need to simulate channels with real-valued
outputs. To demonstrate that the tools from coding theory are not limited to binary channels, we
describe a scheme that uses trellis coded quantization for approximately simulating a AWGN channel
for an i.i.d. Gaussian source.

The encoding algorithm for trellis coded quantization was originally developed as an efficient
decoding algorithm for a family of channel coding schemes called convolutional codes. We will
directly describe the construction used in source coding as it can be described in a self-contained
manner.

A fixed-rate time-invariant trellis with k states S = {s1, s2, ..., sk} consists of a k × k binary
transition matrix G where each row and each column have exactly two nonzero entries, a set of
disjoint codebooks V = {C1, C2, ..., Cm} with each containing 2R−1 codewords from the source
alphabet X , and a map T : {1, . . . , k} × {1, . . . , k} 7→ V which assigns a codebook to each pair of
states.

A path of length n through the trellis consists of a traversable sequence of states st =
(st0 , st1 , ..., stn)—i.e, all sequences such that G(sti , sti+1

) = 1. For any sequence of codewords
x̂n, we will use the shorthand x̂n ∈ st if x̂n can be produced by the transitions of the path—i.e., if
x̂i ∈ T (sti−1

, sti) for all i.

In a data compression setting, the encoder, upon receiving a source sequence xn, examines all
traversable paths through the trellis to find a codeword sequence ϕ(xn) that is closest to xn under the
mean squared error distortion metric:

ϕ(xn) = argmin
x̂n∈sn0 ,

sn0 is traversable

∥xn − x̂n∥2. (22)
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It then encodes this into a bit-string by specifying the sequence of state transitions used and the
codeword index in the associated codebook for each transition. Our chosen structure for the transition
matrix G ensures that each transition can be encoded by one bit. Each codeword can be then indexed
within the corresponding codebook using R− 1 bits, bringing the total communication rate to R bits
per symbol.

Although the search space for finding the best codeword grows exponentially in n, it can be imple-
mented efficiently using the Viterbi algorithm [Viterbi, 1967]. Here, at every stage k of our scheme,
we keep track of the best paths terminating at every state s and their associated costs recursively:

J(s, k) = min
ŝ∈S

(
J(ŝ, k − 1) + min

x̂∈T (ŝ,s)
(xk − x̂)2

)
, and (23)

U(s, k) = argmin
ŝ∈S

J(s, k). (24)

The base case of the recursion is specified by the choice of the initial state st0 , which is typically
set to be s1. The initial costs are then set to be J(s1, 0) = 0, and J(ŝ, 0) =∞ for all s1 ̸= ŝ. The
optimal state transition sequence and the corresponding codeword sequence ϕ(xn

1 ) can be recovered
using U(·, ·).
To encode a sequence of length n, the Viterbi algorithm performs nm2R−1 single-letter squared
distance evaluations and 2nk comparisons — thus, the computational cost grows only linearly in the
block length making the algorithm highly scalable. Many practical data compression schemes use
trellis codes due to this scalability, and because of their performance in terms of rate.

B.1 Approximate AWGN Simulation Using Trellis-Coded Quantization

1. Let Xn ∼ N (0, σ2) be the input at the encoder, and f∗(·, R) be a rate R trellis coded
quantizer that obtains an average distortion value of D. We use a 256-state trellis with each
state having exactly two branches leaving it, along with a codebook of size 2R+1 which is
partitioned into 4 subsets, each of size 2R−1. Each branch of the trellis is then associated
with one of the 4 subsets (See Figure 3.15 and Table 3.5 of Taubman et al. [2002] for a full
description of the mapping used for this assignment ).

The above Trellis is initialised with randomly generated codewords from a standard normal
and is subsequently trained using the Lloyd-Max algorithm.

Refer to Taubman et al. [2002] for a detailed description of the Trellis construction and
training.

2. Using the common randomness, select a uniformly random rotation matrix Π at both the
encoder and decoder.

3. At the encoder, compute the randomly rotated source X̃n = ΠXn and the reconstruction
ˆ̃Xn = f(X̃n, R). Transmit the reconstruction to the decoder by specifying the correspond-

ing trellis path.

4. Compute the scaling factor a = σ2

σ2−D and the reconstruction Ỹ n = a ˆ̃Xn

5. Finally, compute Y n = Π−1Ỹ n as the output of the channel simulation scheme.
In figure 6, we generate 100 independent realizations of Xn with n = 1000 and source
power σ2 = 1. The scheme outlined above is then used to generate the corresponding
Y n realizations. The quantiles of the sample noise D = ∥Xn − Y n∥2 are plotted
against the theoretical quantiles obtained by assuming pY |X to be AWGN with noise power
1
n

n∑
i=1

∥Xn
i − Y n

i ∥2.

In Figure 7, we plot the rate of our approximate scheme (i.e. the rate of the trellis coded
quantizer used) against the mutual information of the simulated channel. Bootstapped
95%ile confidence intervals for the mutual information are plotted to account for the error
in estimating the noise power.
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Figure 6: For trellis coded quantizers with rates R = 1 (Left), R = 2 (Middle) and R = 3 (Right), the
quantiles for M = 100 realizations of the sample noise D = ∥Y n −Xn∥2 are plotted against the theoretical
quantiles obtained from an AWGN with noise power 1

n
E[D]. We use the sample mean to estimate E[D].

Using a trellis with a fixed codebook limits the output alphabet to a finite set of real numbers. To
simulate a continuous channel, we introduce a random orthogonal transformation, chosen by the
common randomness, that is applied to the input before encoding. The decoder subsequently applies
the inverse transformation to the reconstruction. This has the effect of randomizing the output symbols
while retaining their proximity to the source on average.

We present the results of this scheme in Figures 6 and 7. We see that the distribution of the realizations
of the simulated channel noise are fairly close to an AWGN with matching power, and that each of
the operating rates of the trellis is very close to the mutual information of the simulated channel for
that rate.

C Channel Simulation Using Arbitrary Linear Codes

Given any lattice Λ ⊂ Rn, an associated quantizer QΛ, and a source realization Xn observed at
the encoder, Zamir and Feder [1992] provide a mechanism for simulating an additive noise channel
whose noise distribution is uniform over the decoding cell of the lattice,

Q−1
Λ (0n) = {zn ∈

n

R : QΛ(z
n) = 0n}, (25)

using dithered quantization: we generate Zn ∼ Unif(Q−1
Λ (0n)) using the common randomness, and

at the encoder compute QΛ(X
n + Zn), which is transmitted to the decoder. Then, according to

Theorem 1 in Zamir and Feder [1992], computing

Y n = QΛ(X
n + Zn)− Zn (26)

recovers a sample from the target distribution. An analogous fact holds for linear codes over finite
fields.
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C.1 Alternative Scheme for the BSC Simulation Using Polar codes

For a linear code to be capacity-achieving over a channel, its decoding cell must have a certain
structure. For binary codes to achieve the capacity of a BSC (such as polar codes) their decoding
cells must resemble Hamming balls. Thus applying the above procedure with a polar code simulates
an additive noise channel in which the noise is approximately uniformly distributed over a Hamming
ball. Instead of using an additive dither to randomize the input to a deterministic quantizer, we can
randomly shift the codewords to a coset of the original lattice to have the same effect. This is especially
convenient for polar codes because shifting their cosets can be accomplished by randomizing the
frozen bits, saving a call to the quantization routine.

Suppose we seek to simulate n uses of a BSC with crossover probability p. The number of message
bits is calculated as:

m = n · (1− hB(p)) (27)

and the number of frozen bits is n−m, which are generated using the common randomness. The
simulation encoder takes the input bit string Xn and the block of frozen bits. The simulation encoder
runs the channel decoding algorithm with channel output Xn and the given frozen bits to obtain m
message bits. These bits are passed to the simulation decoder, which runs the channel encoder to
produce Y n using the received message bits and the frozen bits. The role of the encoder and decoder
as thus swapped compared to the communication task, as was the case with PolarSim (see Fig. 8).
The rate of this scheme is m/n.

This scheme does not result in an exact simulation of n copies of the BSCp, however, in that Xn⊕Y n

is uniformly distributed over the cell rather than being i.i.d. Bernoulli(p). This is both because an
i.i.d. Bernoulli(p) string is not constrained to a single Hamming ball and because the cell of the polar
code is not exactly a Hamming ball to begin with. Fig 9 shows a histogram of the number of bit-flips
in this scheme compared with the target binomial distribution. We see that the actual distribution of
bit flips (top) has a mean that is too high (because the cell is not a true Hamming ball) and a variance
that is too low (because the actual noise process is not constrained to a single Hamming ball).

But we can upgrade this simulator to one that achieves exact simulation using a pre- and post-
correction process. The pre-correction is to adjust the parameter of the channel simulator to be p̂ < p,
which is chosen empirically to result in the correct (pn) number of bits being flipped on average. The
post-correction scheme corrects for deviation in the variance and any remaining discrepancy in the
mean and operates as follows. The encoder uses its private randomness to generate a realization of
a random variable N that is binomially distributed with parameters n and p. It then runs the above
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Figure 8: Block diagram representation of a BSC simulator based on polar codes. The role of the encoder and
decoder are swapped compared with conventional communication.

process, with pre-correction, and computes the number of bits flipped by the scheme. It then sends
a correction message to the decoder to ensure that the actual number of bits flipped is exactly N .
The correction message takes two forms, depending on whether one is operating in the high-rate or
low-rate regime:

1. If m < n
2 : the encoder identifies the smallest L so that the first L bits of Y n can be

overwritten in such a way that the resulting Y n string differs from Xn in exactly N
positions. The encoder sends the decoder L using log n bits and then the L bits with which
the decoder should overwrite the prefix of Y n.

2. If m ≥ n
2 : the encoder identifies a set of L bits that can be flipped to result in there being

exactly N flipped bits overall. The encoder communicates to the decoder a binary string of
length n that contains L 1’s and n− L zeros. The encoder communicates L to the decocder
using log n bits. It then communicates the bit string using 2 + log

(
n
L

)
bits, which can be

realized using arithmetic coding.

By construction, the post-correction scheme ensures that the noise sequence Zn = Xn ⊕ Y n has
the correct distribution. The simulator is still not exact, however, because the distribution of Zn is
not exchangeable. This can be rectified by generating a random permutation of {1, . . . , n}, say Π,
from the common randomness and having the encoder apply Π to Xn at the start and having the
decoder apply Π−1 to Y n at the end. Note that an exchangeable distribution over binary strings with
the property that the number of ones has a binomial distribution must be i.i.d. Bernoulli.

Note that the pre-correction part of the scheme is not needed to ensure exact simulation; it only
reduces the burden on the post-correction scheme. Also note that both the high-rate and low-rate
schemes can be used for any value of m. We found empirically that the above division performed
better than relying on either one alone. The performance of the corrected scheme is shown in (Fig. 10),
which shows that the performance is similar to PolarSim. The corrected scheme can never perform
better than the uncorrected scheme, but the difference between the two vanishes as n increases.

The idea of fixing the number of bit flips using the common randomness is reminiscent of the
two-stage channel simulation scheme of Sriramu and Wagner [2024] and the layered randomized
quantizer of Hegazy and Li [2022], which are without loss of optimality in their respective setups.
Note that the above scheme can be used to simulate a BSC using any linear code if one uses the
dithered approach in (26) instead of relying on frozen bits.

D Proof of Theorem 1

Theorem 1. Consider a joint distribution PXY in which Y is binary and uniform and the reverse
channel PX|Y satisfies the symmetry condition in (4). Suppose Compress and Decompress achieve
the guarantee in (9).
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Figure 10: BSC simulation using the polar code simulator with post-correction. The median post-correction rate
( ) is plotted along with the uncorrected rate ( ) and the mutual information lower bound ( ). The boundaries of
the shaded show the maximum and minimum rate for the corrected scheme over five simulation runs.
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1. (Correctness:) Algorithms 1 and 2 simulate the channel P×n(Y |X) exactly: If Zn is
i.i.d. Unif[0, 1], and p̄i = h−1

B (H(Ui|U i−1, Xn)), then the conditional probability that
Algorithm 2 outputs yn given that xn is the input to Algorithm 1 is

n∏
i=1

PY |X(yi|xi). (28)

2. (Optimality:) Algorithms 1 and 2 are asymptotically rate optimal:

lim
n→∞

1

n
E[ℓ(b)]→ I(X;Y ), (29)

where b is the output of the encoder.

Proof. Suppose n is a power of two, and consider the following joint distribution between
(Un, Xn, Y n):

Pr(Un = un, Y n = yn, Xn = xn) =

n∏
i=1

PX(xi)

n∏
i=1

PY |X(yi|xi)1(u
n = ynG−1) (30)

=
1

2n
1(yn = unG)

n∏
i=1

PX|Y (xi|yi). (31)

Given the input Xn, the Un string generated by the encoder has distribution P×n
U |X by construction,

since SoftPolarDec(xn, ui−1, PX|Y ) computes Pr(Ui = 0|Xn = xn, U i−1 = ui−1) under the
distribution in (30)-(31). Due to the lossless nature of the compression, ∆n is recovered exactly at
the decoder. Since V n is common to the two terminals, Un is thus recovered exactly by the decoder.
Then setting Y n = Un ·G results in (Xn, Y n) having the joint distribution P×n

XY as desired. This
establishes the correctness of the algorithm for n that is a power of two. Correctness of the algorithm
for any n immediately follows.

Turning to optimality, again suppose n is a power of two. For the sequence ∆n we have

Pr(∆i = 1) =
1

2
−

∑
ui−1,xn

PUi−1,Xn(ui−1, xn)min
(
Pr(Ui = 1|U i−1 = ui−1, Xn = xn), (32)

Pr(Ui = 0|U i−1 = ui−1, Xn = xn)
)

(33)

=
1

2
−

∑
ui−1,xn

PUi−1,Xn(ui−1, xn)h−1
B (H(Ui|U i−1 = ui−1, Xn = xn)) (34)

≤ 1

2
− h−1

B (H(Ui|U i−1, Xn)) (35)

=
1

2
− p̄i, (36)

where the inequality follows by the convexity of h−1
B (·). Thus the average rate may be bounded as

1

n
E[ℓ(b)] ≤ 1

n

n∑
i=1

[
Pr(∆i = 1) log

1

1/2− p̄i
+ Pr(∆i = 0) log

1

1/2 + p̄i

]
+

c

n
(37)

≤ 1

n

n∑
i=1

hB

(
1

2
− p̄i

)
+

c

n
. (38)

We bound this quantity using the polarization property. Fix δ > 0. By Arikan [2009], for all
sufficiently large n there is a set Nn of “noisy” indices such that

|Nn|
n
≥ 1− I(X;Y )− δ (39)

hB(1/2− p̄i) ≤ δ for all i ∈ Nn. (40)
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The rate is thus upper bounded by

E[ℓ(b)]

n
≤ n− |Nn|

n
+

1

n

∑
i∈Nn

hB(1/2− p̄i) +
c

n
(41)

≤ n− |Nn|
n

+
δ · |Nn|

n
+

c

n
(42)

≤ I(X;Y ) + 2δ +
c

n
. (43)

If we let R̄n = E[ℓ(b)]/n denote the minimum rate of PolarSim at block length n (minimized over
all partitions if it is not a power of two), then nR̄n is itself subadditive. As n increases through
powers of two, from (43) we have

R̄n → I(X;Y ). (44)
and thus

inf
n

R̄n = I(X;Y ). (45)

The result then follows by subadditivity (cf. 1).

E GPRS Implementation Details

We implement Algorithm 3 from Flamich [2024]. The proposal distribution P is chosen to be i.i.d.
Bernoulli(1/2) with n = 8. Given the input Xn = xn, the target distribution Q(yn) is chosen to
be

∏n
i=1 BSCp(yi|xi), where p ranges over (0, 1/2). The stretch function σ was derived using the

definitions provided in [Flamich 2023]:

wP (h) = F

(
log h− n(log(1− p) + 1)

log p− log(1− p)
, n,

1

2

)
,

wQ(h) = F

(
log h− n(log(1− p) + 1)

log p− log(1− p)
, n, p

)
, and

σ(h) =

h∫
0

1

wQ(η)− ηwP (η)
dη,

where F (·, n, p) is the CDF of a Binomial(n, p) random variable. This stretch function was evaluated
numerically for each input.

The algorithm outputs a positive integer n, which is entropy coded using the Zeta distribution in
[Flamich 2023, (151)]. The number of bits is divided by n = 8 to obtain the rate. For each p on a
grid in (0, 1

2 ), we run the simulation 200 times and plot the average rate obtained against the channel
mutual information 1−H(p).

We now make use of the fact that the selection rule employed by the algorithm needs to be evaluated
for each point in the output sample space only once — if the first occurrence of an output sequence in
the randomly generated codebook is rejected, all its subsequent occurrences are also rejected. This
simplification helps speed up the execution significantly and also reduces the rate as repetitions need
not be indexed.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper shows how ideas from error-correcting codes can be applied to the
channel simulation problem, resulting in significantly improved performance in both rate
and computational complexity. Both the strengths and limitations of approach are noted in
the abstract and the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our main scheme can perform nearly rate-optimal channel simulation highly
efficiently, but it is restricted to symmetric binary output channels. We make this clear even
in the abstract. Our other scheme, using Trellis Coded Quantization, does not guarantee
exact simulations. We make it clear that it is an approximate simulator in our description.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theorem 1 is stated with all necessary assumptions and has a complete proof
in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our algorithm and experimental setup in detail, and also include
code as part of our supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include code as part of our supplementary material with instructions on
how to run it.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our algorithm description and the descriptions of our results are detailed
enough to be reproducible. One of the virtues of the PolarSim is that there are no hyperpa-
rameters to choose.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The main plots that show the performance of PolarSim and the post-correction
scheme include error bars. Error bars were not included for the competitor schemes, PFRL
and GPRS, due to their computational complexity. As noted in the paper, GPRS does not
even consistently run to completion in a reasonable time for some parameter values.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: It is noted in the paper that all experiments were run on a consumer-grade
CPU. It is also noted that PolarSim for n = 1024 takes less than 0.1 seconds per run. The
context makes clear that the runtime for other experiments and channels are similar.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All authors received prevailing wages or course credit for their contributions to
the paper. The paper is methodological and does not involve any datasets or human subjects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents foundational research that is not expected to directly lead
to societal impacts. It could lead to improved compression schemes for various types of
data, which would certainly be a positive societal impact. This impact is implicit in the
introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve datasets of any kind. All experiments were run on
synthetically generated data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: Other than our own code, we used Dr. Henry Pfister’s polar code imple-
mentation (https://github.com/henrypfister/polar_intro) on GitHub which is
available under the ’GNU Affero General Public License v3.0’ license that places no restric-
tions on its usage. In our code, we have clearly mentioned which parts are derived from his
code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code we used to run our experiments along with instructions
on how to run it.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Because the research presented in this paper involved neither crowdsourcing
nor human study participants, this criteria is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Because the research presented in this paper involved neither crowdsourcing
nor human study participants, this criteria is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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