
Solving Out-of-Distribution Challenges in Optical
Foundation Models using Self-Improving Data

Augmentation

Mingqian Ma
Department of EECS

University of Michigan, Ann Arbor
mamq@umich.edu

Taigao Ma∗†

Department of Physics, University of Michigan
Ann Arbor, MI

taigaom@umich.edu

L. Jay Guo∗

Department of EECS
University of Michigan, Ann Arbor

guo@umich.edu

Abstract

Optical multilayer thin film structures are widely used in many photonic applica-
tions, including filters, absorbers, photovoltaics, display devices. The important
part to enable these applications is the inverse design, which seeks to identify a
suitable structure that satisfy desired optical responses. Recently, a Foundation
model-based OptoGPT is proposed and has shown great potential to solve a wide
range of inverse design problems. However, OptoGPT fails to design certain types
of optical responses that are important to practical applications. The major rea-
son is that the training data is randomly sampled and it is highly probable that
these design targets are not selected in training, leading to the out-of-distribution
issue. In this work, we propose a self-improving data augmentation technique by
leveraging neural networks’ extrapolation ability. Using this method, we show sig-
nificant improvement in various application design tasks with minimum fine-tuning.
The approach can be potentially generalized to other inverse scientific foundation
models.

1 Introduction

Optical multilayer thin film structures (shortened as multilayer structures) are stacked thin film layers
(typical thickness range from a few nm to several hundred nanometers) with different materials
at each layer. Because of their ease of fabrication, they have been widely used for a variety of
industrial applications including absorber [1], optical filters [2], structural color [3, 4], and distributed
Bragg reflectors (DBR) [5, 6]. The different optical properties of the material (e.g., refractive
index) and different thickness at each layer will combine together to determine the overall optical
behavior of the stack, enabling precise control over light transmission, reflection, and absorption.
The forward process of obtaining such responses for a specific structure can be easily calculated
through electromagnetic simulation tools such as Transfer Matrix Methods (TMM) [7]. However,
the inverse process is nontrivial, where one needs to identify a suitable structure to satisfy desired
optical responses. For a long time, iterative optimization-based methods have been widely used
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to design these multilayer structures, including Particle Swarm Optimization (PSO) [8, 9], Needle
Optimization [10] and Genetic Algorithm [11, 12]. However, these methods are often time-consuming
and task-specific, making them unsuitable for complex and practical design scenarios.

In recent years, advances in deep learning techniques have made it possible to inverse design diverse
multilayer structures after training a neural network. Especially, with the development of a new
foundation model based OptoGPT [13], researchers are able to design any type of spectrum and
obtain multiple different structures within 0.1 second, which significantly shortens the design time
while still achieving improved design accuracy. In OptoGPT, the authors reformulate the multilayer
structure design as a sequence generation task conditioned on an input optical spectrum, where each
generated token denotes both material and thickness information at each layer, and use a decoder-only
transformer architecture for the structure generation. In order to train OptoGPT, they generate a large
training dataset comprising 10M pairs of multilayer structures and simulated optical responses, i.e.,
the reflection and transmission spectrum. During dataset generation, they first randomly sample 10M
structures from a large potential design space with 1059 different structures, then use the TMM to
simulate and obtain corresponding optical responses.

However, random sampling inside the large space of multilayer structures does not guarantee a
similar distribution inside the space of optical responses. This is because the forward mapping from
multilayer structures to optical responses is non-uniform (originated from solving the non-linear
equations in TMM). Therefore, it is possible that the randomly sampled structures only correspond
to a limited region in the space of optical responses, e.g., the green region in Figure 1. In the cases
where we want to design optical responses in the red region, the model would find it difficult to deal
with because of insufficient training data inside this region. For example, the DBR-type high reflector
[5, 6] requires an alternating high/low refractive index profile with thickness at each layer equal to a
quarter wavelength. This leads to a special structure that can hardly be generated through random
sampling. We refer to this situation as the out-of-distribution (OOD) problem, which is a common
issue in many deep-learning-based inverse design algorithms because of the random sampling strategy
in structure space. Notice we cannot randomly sample in the space of optical responses because that’s
the target we hope to design.

Figure 1: Out-of-distribution (OOD) Problem: a random sampling strategy inside the structure space
may correspond to a subspace inside the responses space. When designing for a new spectrum out of
this region, e.g., the red region, the model will experience OOD problem. TMM: Transfer Matrix
Methods.

In this work, we propose a self-improving data augmentation method to solve the OOD problem
in inverse design by continuously querying the OptoGPT model and gradually obtaining improved
design performance towards the OOD region through a series of perturbation techniques. Using a
minimal amount of augmented data, we finetune our model and demonstrate improved performance
on a wide range of OOD applications. Our major contributions can be summarized as follows:

• We propose a workflow of self-improving data augmentation to iteratively finetune foun-
dation models to explore the out-of-distribution problem. The data augmentation involves
obtaining initial data by leveraging the extrapolation ability of neural networks, then com-
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bining genetic algorithm and particle swarm optimization method to actively perturb the
generated data towards the OOD region.

• We define an evaluation metric to balance the design accuracy as well as the distance away
from the original dataset region in the corresponding spectrum space. Using this metric, we
are able to visualize the learning effect of our model at different augmentation steps.

• We demonstrate the proposed methods in the OptoGPT model and achieve much better
performance in many difficult but practical photonic applications.

2 Related Work

2.1 Multilayer Thin Film Inverse Design

Traditional inverse design methods for multilayer structures are usually based on heuristic optimiza-
tions. Recently, researchers have started to use deep learning methods as an alternation, including
tandem network [14, 15], Variational Auto-Encoders (VAE) [16], Generative Adversarial Network
[17] and Generative Pretrained Transformers (GPT) [13]. After training on a large dataset, these
models can learn the inverse mapping from optical responses to structure space and finish designs
within one second, which is much faster than optimization methods. Notably, the complexity of
these deep learning models requires large amounts of training data, which are usually synthetic data
prepared through simulation methods like the Transfer Matrix Method [7]. Most of these methods
adopt a similar random sampling policy and suffer from OOD issues. However, how to deal with the
OOD problem has not been extensively explored in this domain.

2.2 Out-of-Distribution Problem

Out-of-Distribution (OOD) problem in many traditional deep learning tasks refers to the phenomenon
that the training set has a significant distribution shift with the test data, leading to poor generalization
performance [18, 19]. A promising solution method to the problem is Transfer Learning, which has
been investigated in both CV and NLP fields [20, 21, 22, 23]. The most related work in the field of
nanophotonics problems is Ref. [24, 25], which solves the OOD problems in forward simulation by
generating new training data iteratively [24] to enable the model to predict two-dimension photonic
attributes (material stiffness and strength level). However, our problem considered here is much
more complicated and difficult since we are considering the inverse problem with high dimensional
out-of-distribution data.

3 Methods

3.1 Problem Definition

In the scientific domain, considering the causal factors x ∈ X and the observed physical outcome
y ∈ Y, there are two major problems to be solved: the forward simulation of X → Y, and the inverse
design of Y → X. The forward simulation is definite and can be obtained by solving the mathematical
equations involved inside the physical system. However, the inverse design is nontrivial because there
is no such equation that describes the inverse relationship. In addition, the one-to-many mapping
issue, meaning multiple different x can lead to similar y, also complicates this problem.

For multilayer structures, the causal factors x refer to the multilayer structure and include the material
composition m = [m1,m2, . . . ,mN ] and layer thicknesses t = [t1, t2, . . . , tN ], where N denotes
the number of layers. Usually, material mi is a discrete variable, and ti is a continuous variable. On
the other hand, y refers to the optical responses that we hope to design, e.g., spectrum or colors,
and can be represented as a vector. TMM [7] can finish the forward prediction and calculate the
spectrum y for a given x by solving equations relating to the wave fields at the boundaries of each
layer. However, TMM does not inherently support the reverse computation of deriving x from a given
y. In OptoGPT, the model treats the design parameters of x = {[m1,m2, . . . ,mN ], [t1, t2, . . . , tN ]}
as a sequence of x = {[m1, t1], [m2, t2], . . . , [mN , tN ]} and uses sequential generation to design
multilayer structures layer-by-layer when given input y as a condition. In their consideration, at
each layer, there are 18 different types of materials and 50 different thicknesses discretized by 10nm
ranging from 10nm to 500nm. The maximum number of layers is 20. Therefore, the size of the
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multilayer structures design space extends to (18 ∗ 50)20 ∼ 1059. For optical responses of y, they are
considering reflection and transmission spectrum among 400-1100nm with 10nm gap.

The dataset generation in OptoGPT is a two-step random sampling process. They first randomly
generate 10M different structures by uniformly sampling the material and thickness at each layer,
then use TMM to simulate and obtain their spectrum, making the dataset consist of (x, y) pairs of
structures and spectrum. This synthetic dataset is then used to train OptoGPT to learn the inverse
mapping from desired spectral outcomes back to structural designs. As mentioned above, this would
lead to the issue of OOD and causes problems when designing for some practical applications. This
issue is non-trivial as we cannot add infinite data in the sampling process due to computational limit,
and many traditional methods in CV and NLP such as in-context learning [26] cannot be applied as we
have no plausible assumptions on the distribution of our sampled region with the actual distribution
of the space.

3.2 Self-Improving Data Augmentation

Neural networks have shown some limited extrapolation ability [27]. This, however, can be utilized
to provide a starting point when augmenting training data. Here is the intuition: we can gradually
explore and extend the data space out of the original scope through perturbations guided by physical
simulators and finally reach the OOD region. We illustrate this idea in Figure 2a. The green region
refers to the space of y corresponding to the random sampling in the space of x. The red region is the
OOD region that is not sampled or under-sampled in the space of y. Notice that each point denotes a
different optical response, namely, a different inverse design task. After training on the green region,
we expect that the neural networks have some extrapolation ability to expand the identifiable region
to the blue region, which is the region that is slightly outside of the training dataset distribution.

Figure 2: Illustration of the self-improving data augmentation. (a) Visualization of the self-improving
in the space of optical responses y. (b) Diagram of our workflow: We input a synthetic OOD dataset
and ask the model to generate the structure design. Then using perturbation method, we further
explore beyond the scope of the original model, and construct a small augmented dataset with better
data representation of the OOD region to finetune the model.

To reach the blue region, we query our model with some practical and difficult design targets that are
outside of the training dataset and ask our model to give designs, which will be used as a starting
point to approach the red region. Next, we will perturb inside the structure space of x. To guarantee
that we are approaching the red region in the response space of y, we use GA to perturb the materials
and PSO to perturb the thickness with the goal of minimizing the difference in the optical responses.
However, instead of running the complete optimization which requires thousands of iteration steps,
we only run limited optimization steps (e.g., 5 iterations) to maintain small perturbation and fast speed.
After that, we use TMM to obtain the simulated optical responses for these perturbated structures
and calculate their spectrum MSE compared to the target spectrum. We only keep these structures
with a lower spectrum MSE than the previous model and collect them to create a new dataset for
finetuning. We can iterate this process several times to gradually push the model to approach the OOD
region and achieve better performance. Figure 2b shows the complete pipeline of self-improving data
augmentation. We also provide a pseudo algorithm in Algorithm 1.
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Algorithm 1 Self-Improving Data Augmentation

1: Construct a dataset S with optical responses in the OOD region.
2: Query the OptoGPT model with S and generate a set of structures X using auto-regressive

decoding method D, e.g., greedy decoding, Top-KP sampling [28, 29], or beam search.
3: Apply perturbation method GA_PSO on X to create multiple new samples X̂ .
4: Use TMM to evaluate the performance of X̂ and select those with improved performance to form

a new augmented dataset X ′.
5: Finetune OptoGPT on this augmented dataset X ′.
6: Repeat step 2-5 until no significant improvement on model performance.

3.3 Perturbation Method

The core of our method is the perturbation, which enables our model to effectively explore beyond
the current scope and move to the desired OOD region. Therefore, the generated structures of X
should be as diverse as possible, giving a wide range of distinct starting point so that we can better
explore beyond the original scope. Fortunately, for GPT-type models, this can be easily achieved
using probabilistic decoding methods such as top-k [28] or top-p sampling [29], where different
sampling seeds would lead to different outputs.

Once we obtain initial structures from OptoGPT, the next step is to perturb these structures towards the
OOD region. Multilayer structures have two different sets of parameters: the material and thickness.
Therefore, we propose a two-step perturbation approach called GA_PSO to first perturb the material
using GA, then perturb thickness using PSO. During each perturbation, the structures are optimized
and modified with the goal of decreasing the difference between simulated optical responses and
target responses. However, different from general optimization process which takes thousands or
more iterations, we terminate the optimization process within few iterations of the workflow. This is
because we only want to introduce a small perturbation to the training dataset for a better learning.
In addition, running more iterations on each individual sample from this generated structures can
take a long time. Early termination in the optimization process can provide a good balance between
performance and efficiency. We also provide a pseudo algorithm for GA_PSO in Algorithm 2.

Algorithm 2 GA_PSO Perturbation Method

1: For each individual structure in the generated structure X , fix its thickness and apply the Genetic
Algorithm (GA) to perturb the materials with the following strategies:

• Mutation: Divide materials into five different types based on the refractive index: high,
medium, and low refractive index dielectric material, metal, and semiconductor materials.
For each layer, perform material mutations with probabilities: 70% within the same group,
20% switch to a different group, and 10% remain unchanged.

• Crossover: Select two structures, and create a new structure by concatenating the first half
from the first structure and the second half from the second structure.

2: For each individual structure in the generated structure X after doing material perturbation, fix its
material and apply Particle Swarm Optimization (PSO) on the thickness. Since we only conduct
several iterations for PSO, we save all these intermediate structures among the optimization
trajectory for next step.

Notice here we perturb the material and thickness separately using different optimization methods.
There are several considerations: (1) The space of the combination of material and thickness is huge,
and the perturbation method needs to achieve progress in a controllable time. Since genetic algorithm
is time-consuming, separating the thickness optimization for PSO will yield better efficiency. (2)
Conducting material permutation requires integrating prior knowledge in material design, in which
here we separate the materials in groups. This is only achievable by Genetic Algorithm in mutation
phase since it can deal with discrete variables.
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4 Experiment

In this section, we report experiments with both synthetic evaluation dataset and real-world design
cases to offer insights into the effectiveness of our workflow. We highlight the following results:

• Our workflow significantly improves the model’s design ability in multiple different tasks
which experience out-of-distribution issues.

• We observe that our model is continuously learning and performs better with more self-
augmenting iterations. Although the added dataset is much smaller compared to the training
dataset, after finetuning, our model exhibits improved performance in each iteration mea-
sured by two metrics: the distance toward the original training dataset and the mean squared
error with the target design dataset.

• In multiple practical photonic design tasks, our workflow surpasses original OptoGPT model
and design structures with close-to-target spectrum.

4.1 Framework Performance

4.1.1 Synthetic OOD Dataset S

We construct our synthetic OOD dataset S using 1,000 spectrum from the following four types: (1)
Gaussian spectrum; (2) Double Gaussian spectrum; (3) Sigmoid-shape Spectrum (4) High reflection
spectrum from distributed Bragg reflector (DBR) structures [5]. We select these four kinds of
spectrum for the following reasons: (1) The original OptoGPT model has very poor performance on
these kinds of spectrum, i.e., they are in the out-of-distribution region. (2) Improving the performance
on these synthetic spectrum designs benefits a series of real-word applications, including Fabry–Perot-
cavity-based filters [30], DBR structures [5], band-pass filter [31], etc. This is because most of these
applications are related to design spectrum with shapes similar to our synthetic dataset S.

Figure 3 provides several examples for these spectrum. In the dataset S, each spectrum differ from
each other in terms of the peak position, center spectrum and standard deviation. The reflectance and
transmittance spectrum are either set to be complementary (added to 100%), or 0 for one of them.

Figure 3: Examples of four different types of synthetic spectrum

4.1.2 Evaluation Metrics

There are two metrics we care about: the model’s design accuracy, and the distance between
augmented dataset and the training dataset. To evaluate the design accuracy, we first input the
target spectrum y to our model and obtain designed structures x̂, then we use TMM to calculate the
simulated spectrum ŷ = TMM(x̂). The design accuracy in a dataset is defined as the Mean Square
Error (MSE) between ŷ and y:

MSE =
1

N

1

M

N∑
i=1

M∑
j=1

||ŷij − yij ||2

where N is the number of design targets, and M is dimension of spectrum.

To evaluate how far the augmented dataset is away from the original training dataset, for each
augmented spectrum yaugi , we first compare the Euclidean distance between yaugi and all spectrum
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ytrain in the training dataset, and average the distance on five nearest spectrum. The overall distance
of the augmented dataset is then averaged on all yaug:

Distance =
1

N

N∑
i=1

(
1

5

∑
Five Nearest

Euclidean(yaugi , ytrain)) (1)

where N is the number of design targets. Considering the training dataset is large, identifying the five
nearest spectrum inside the augmented dataset will take a long time. Therefore, we use FAISS[32] to
help to speed up searching the nearest spectrum.

4.1.3 Model Performance

Figure 4: (a) MSE on the original evaluation dataset. (b) MSE on the Synthetic Dataset.

We first evaluate the model’s design accuracy at each iteration step of data augmentation. We provide
the details of OptoGPT model pretraining and our finetuning method in Appendix A. In total, we
run for six iterations as we don’t see a significant improvement after that. At each iteration, we
evaluate the MSE on the original evaluation dataset and the synthetic OOD dataset, and visualize
results in Figure 4. We can see that while the initial MSE on synthetic dataset is very high, the MSE
drops quickly and continuously for several iterations using our data augmentation. This indicates that
our method does significantly improve the design performance on OOD problems. In addition, the
coherent decrease of MSE in the original evaluation dataset also suggests that our model does not
sacrifice performance on the original dataset while improving performance on the OOD region.

Figure 5: Visualization of the MSE (Design accuracy) v.s. the Distance of augmented dataset and
training dataset at iteration 1, iteration 3 and iteration 6.

To have a better understanding of our augmented dataset, we further use a 2-d box plot to represent
the distribution of augmented dataset on the two metrics of MSE and distance for iteration 1, iteration
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3, and iteration 6 of the whole finetune framework. The results can be found in Figure 5. From the
graph we can see the overall trend: with more iterations of the data augmentation, the model has
lower MSE in spectrum design and the augmented dataset shows larger distance w.r.t. the original
training dataset, i.e., the boxplot moves to the lower-right corner. This trend is coherent with the
improvement of model’s performance on the synthetic dataset.

4.2 Practical Photonic Applications

In addition to testing the performance of our methods on the synthetic dataset, we also dive into some
practical inverse design tasks. As an example, we compare the design on four different spectrum:
1) High Reflection in Near-Infrared Region (NIR), 2) High Reflection in 600-900nm wavelength,
3) Band-notch filter in 550nm, 4) Dichroic filter which only reflects at 700nm but absorbs all other
lights. These target spectrum have been widely used in many laser systems[33], spectrometer [34],
imaging and sensing instruments [35], etc.

We compare the design performance of the original OptoGPT and our model with self-augmented
dataset. In the generation stage, we use Top-KP sampling for both models with k = 10, p = 0.8. For
both models, we sample for 100 times and report the structure that has the lowest MSE w.r.t. the
target spectrum. We use TMM to obtain their simulated spectrum and visualize them in Figure 6.
From the results, we can see that designed spectrum from our model are closer to the target and have
less side reflections, demonstrating the effectiveness of our methods.

Figure 6: Examples for designing practical spectrum. Solid lines represent the design target and dash
lines represent model designs. (a) Design of High Reflection spectrum in NIR region. (b) Design of
High Reflection in 600-900nm wavelength. (c) Design of Band-notch filter in 550nm. (d) Dichroic
filter which only reflects at 700nm but absorbs all other lights. In all these examples, we can see that
our model performs better than the original model.
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5 Conclusion

In this study, we introduce a novel self-improving data augmentation methods to effectively address
the out-of-distribution challenges in multilayer thin film structures inverse design. By combining
genetic algorithms and particle swarm optimization for structure perturbation as well as forward
simulation to add augmented dataset for finetune, our method actively explores and expands the design
space beyond the initial training set, thereby enhancing the model’s performance and adaptability to
out-of-distribution region and real-world scenarios. The success of this methodology underscores
the potential of tackling out-of-distribution problem for general scientific inverse design problem,
including designing metasurface and waveguide in photonic applications, and possibly in other fields
like molecules or drug design.

9



References
[1] Weiwei Li et al. “Metamaterial absorbers: from tunable surface to structural transformation”.

In: Advanced Materials 34.38 (2022), p. 2202509.
[2] Chengang Ji et al. “Decorative near-infrared transmission filters featuring high-efficiency

and angular-insensitivity employing 1D photonic crystals”. In: Nano Research 12.3 (2019),
pp. 543–548.

[3] Zhengmei Yang et al. “Enhancing the Purity of Reflective Structural Colors with Ultrathin
Bilayer Media as Effective Ideal Absorbers”. In: Advanced Optical Materials 7.21 (2019),
p. 1900739.

[4] Danyan Wang et al. “Structural color generation: from layered thin films to optical metasur-
faces”. In: Nanophotonics 12.6 (2023), pp. 1019–1081.

[5] Jiaqi Hu et al. “Polariton laser in the Bardeen-Cooper-Schrieffer regime”. In: Physical Review
X 11.1 (2021), p. 011018.

[6] Yoel Fink et al. “A dielectric omnidirectional reflector”. In: Science 282.5394 (1998), pp. 1679–
1682.

[7] Steven J Byrnes. “Multilayer optical calculations”. In: arXiv preprint (2016).
[8] Rabi I. Rabady and Almahdi Ababneh. “Global optimal design of optical multilayer thin-film

filters using particle swarm optimization”. In: Optik 125.1 (2014), pp. 548–553.
[9] Inho Lee et al. “Implementation of particle swarm optimization for complete inverse design of

multilayered optical filters”. In: Appl. Opt. 62.34 (2023), pp. 8994–9001.
[10] Alexander V. Tikhonravov, Michael K. Trubetskov, and Gary W. DeBell. “Application of the

needle optimization technique to the design of optical coatings”. In: Appl. Opt. 35.28 (1996),
pp. 5493–5508.

[11] Martin F. Schubert et al. “Design of multilayer antireflection coatings made from co-sputtered
and low-refractive-index materials by genetic algorithm”. In: Opt. Express 16.8 (2008),
pp. 5290–5298.

[12] Yu Shi et al. “Optimization of Multilayer Optical Films with a memetic algorithm and mixed
integer programming”. In: ACS Photonics 5.3 (2017), 684–691.

[13] Taigao Ma, Haozhu Wang, and L. Jay Guo. “OptoGPT: A foundation model for inverse design
in optical multilayer thin film structures”. In: Opto-Electron Adv 7 (2024), p. 240062.

[14] Xiaopeng Xu et al. “An improved tandem neural network for the inverse design of nanopho-
tonics devices”. In: Optics Communications 481 (2021), p. 126513.

[15] Xiaogen Yuan et al. “Multi-headed tandem neural network approach for non-uniqueness in
inverse design of layered photonic structures”. In: Optics & Laser Technology 176 (2024),
p. 110997.

[16] Mohammadreza Zandehshahvar et al. “Inverse design of photonic nanostructures using di-
mensionality reduction: reducing the computational complexity”. In: Opt. Lett. 46.11 (2021),
pp. 2634–2637.

[17] Sunae So and Junsuk Rho. Designing nanophotonic structures using conditional-deep convo-
lutional generative adversarial networks. 2019. arXiv: 1903.08432 [physics.optics].

[18] Jiashuo Liu et al. Towards Out-Of-Distribution Generalization: A Survey. 2023. arXiv: 2108.
13624.

[19] Ali Geisa et al. Towards a theory of out-of-distribution learning. 2022. arXiv: 2109.14501.
[20] Pengzhen Ren et al. A Survey of Deep Active Learning. 2021. arXiv: 2009.00236.
[21] Zhihao Peng et al. “Active Transfer Learning”. In: IEEE Transactions on Circuits and Systems

for Video Technology 30.4 (2020), pp. 1022–1036.
[22] Yang Liu et al. “Imbalanced data classification: Using transfer learning and active sampling”.

In: Engineering Applications of Artificial Intelligence 117 (2023), p. 105621.
[23] Xing Wu et al. Conditional BERT Contextual Augmentation. 2018. arXiv: 1812.06705.
[24] Charles Yang Kundo Park Grace X. Gu Seunghwa Ryu Yongtae Kim Youngsoo Kim. “Deep

learning framework for material design space exploration using active transfer learning and
data augmentation”. In: npj Computational Materials 7.1 (2021), p. 140.

[25] Chun-Teh Chen and Grace X. Gu. “Generative deep neural networks for inverse materials
design using backpropagation and active learning”. In: Advanced Science 7.5 (2020).

10

https://arxiv.org/abs/1903.08432
https://arxiv.org/abs/2108.13624
https://arxiv.org/abs/2108.13624
https://arxiv.org/abs/2109.14501
https://arxiv.org/abs/2009.00236
https://arxiv.org/abs/1812.06705


[26] Qingxiu Dong et al. “A survey on in-context learning”. In: arXiv preprint arXiv:2301.00234
(2022).

[27] Keyulu Xu et al. “How neural networks extrapolate: From feedforward to graph neural net-
works”. In: arXiv preprint (2020).

[28] Angela Fan, Mike Lewis, and Yann N. Dauphin. “Hierarchical Neural Story Generation”. In:
arXiv preprint (2018). URL: http://arxiv.org/abs/1805.04833.

[29] Ari Holtzman et al. The Curious Case of Neural Text Degeneration. 2020. URL: https:
//arxiv.org/abs/1904.09751.

[30] Peng Dai et al. “Accurate inverse design of Fabry&#x2013;Perot-cavity-based color filters
far beyond sRGB via a bidirectional artificial neural network”. In: Photon. Res. 9.5 (2021),
B236–B246.

[31] Haozhu Wang et al. “Automated multi-layer optical design via deep reinforcement learning”.
In: Machine Learning: Science and Technology 2.2 (2021), p. 025013.

[32] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-scale similarity search with GPUs”.
In: IEEE Transactions on Big Data 7.3 (2019), pp. 535–547.

[33] Cheng Zhang, Rami ElAfandy, and Jung Han. “Distributed Bragg Reflectors for GaN-Based
Vertical-Cavity Surface-Emitting Lasers”. In: Applied Sciences 9.8 (2019).

[34] Chunlei Sun et al. “Broadband and high-resolution integrated spectrometer based on a tunable
FSR-free optical filter array”. In: ACS Photonics 9.9 (2022), pp. 2973–2980.

[35] Chunqi Jin and Yuanmu Yang. “Transmissive nonlocal multilayer thin film optical filter for
image differentiation”. In: Nanophotonics 10.13 (2021), pp. 3519–3525.

11

http://arxiv.org/abs/1805.04833
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751


A OptoGPT Architecture

OptoGPT Pretrain Finetune on Augmented Dataset
(per round)

Parameter (M) 58
Number of Layers 6

Hidden Dim 1024
Input Dim 142
Dropout 0.1

Optimizer Adam
Training Size 10M 200k added

Batch Size 1000 1000
Learning Rate 1e-4 5e-5

Epoch 200 10
LR Decay Cosine None

Table 1: Training Details

OptoGPT consists of Transformers Decoder Layers with cross attention mechanism with the input
spectrum. In each round of data augmentation, we add 2% of the original dataset (about 200k data)
into finetuning stage for 10 epochs with a fixed learning rate of 5e-5.
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