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ABSTRACT

Web agents such as deep research have demonstrated superhuman cognitive abili-
ties, capable of solving highly challenging information-seeking problems. However,
most research remains largely text-centric, overlooking visual information in the
real world. This makes multimodal deep research highly challenging, as such
agents require much stronger perceptual, logical, and knowledge-based reason-
ing abilities, as well as proficiency in more sophisticated tools. To address this
limitation, we introduce WebWatcher, a multimodal agent for deep research with
enhanced visual-language reasoning capabilities. It uses high-quality synthetic
trajectories for efficient cold start training, utilizes various tools for deep reasoning,
and further enhances generalization through reinforcement learning. To better
evaluate the capabilities of multimodal agents, we propose BrowseComp-VL, a
benchmark with the style of BrowseComp that requires complex information re-
trieval involving both visual and textual information. Experimental results show
that WebWatcher outperforms or matches proprietary baselines, RAG workflow
and open-source agents in four challenging VQA benchmarks, which paves the
way for solving complex multimodal information-seeking tasks.

1 INTRODUCTION

Deep research agents represent a new frontier in artificial intelligence, where Large Language
Models (LLMs) go beyond static prompts to plan multi-step tasks (OpenAI, 2025a; Google, 2024;
Perplexity, 2025). Open-source agents have demonstrated superhuman abilities to interact with
intricate information (Li et al., 2025c;a; Wu et al., 2025a), achieving strong results on difficult
benchmarks such as BrowseComp (Wei et al., 2025a) and Humanity’s Last Exam (HLE) (Phan et al.,
2025). Yet, progress so far is mostly text-focused, overlooking the visual information common in
real-world tasks. Many scenarios such as interpreting scientific diagrams (Hu et al., 2024), analyzing
charts (Wang et al., 2024), or navigating visual web interfaces (Hong et al., 2024), demand joint vision-
language reasoning (Dong et al., 2025). Despite initial progress by proprietary agents, multimodal
deep research remains largely unexplored, with few agents tackling high-difficulty Vision-Language
(VL) tasks (Xu & Peng, 2025; Hu et al., 2025).

The key challenge is that current multimodal deep research agents rely on template-driven pipelines
limited to specific scenarios, lacking the flexible reasoning and planning ability with versatile tools.
On the one hand, many VL Agents focus on image-based reasoning with visual tools, such as Optical
Character Recognition (OCR), bounding box extraction, image cropping, and visual annotation (Zhao
et al., 2025; Su et al., 2025a;b). While useful for perception, agents with these tools fall short in
combining visual reasoning with deep textual understanding and cross-modal inference, struggling to
handle high-difficulty tasks. As shown in Fig. 1, VL agent fails to give a solution to this complex case
from GAIA (Mialon et al., 2023), which requires reasoning beyond perception. On the other hand,
search-only agents have a very limited problem-solving scope (Wu et al., 2025b). Although retrieval
augmented reasoning can handle many knowledge-based questions, it often fails when answers are
implicit, require interactions, or demand additional computation (Shen et al., 2024; Gu et al., 2025).
As illustrated in Fig. 1, solving this case requires not only searching, but also tools to click through
relevant links and browse the resulting webpage to gather necessary information.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Analyze

ImageEdges
Texture 
Analysis Web Search

Text
Inference

Text 
Inference Image Search Web Search

Text
Inference

VL Agent

Search Agent

WebWatcher
VL DeepResearch

Question: On the Wikipedia page 
for the animal in the provided 
image, how many revisions from 
before 2020 had "visual edit" tags?

> Poor tool usage, reliance on shallow problem 
decomposition, and lack of deep reasoning capabilities.

Answer: 11

Response: 0

ImageSearch

VisualDiff

ImageVist

WebSearch

PageView EvidenceSum

OCR

CrossValidate

Count
Thought

> Genuine multi-step reasoning with appropriate tool use 
and cross-validation.

Thought

Thought

looks like a pelican. query="pelican Wikipedia"

maybe a penguin or a seagull. query= “penguin”, “seagull”

Atlantic 
puffin

Wikipedia

Wikipedia
history

Visual
edit

> Excessive edge/texture inference, amplifying downstream 
tool errors.

Response: 11

Response:
2 or 8

Double 
check

Figure 1: Comparison of VL reasoning agents. WebWatcher resolves the GAIA case that defeats both
vision-only reasoning and search-based agents, demonstrating the strength of multi-tool integration
and in-depth reasoning generalization.

To address this gap, agents for VL deep research require not only strong reasoning abilities across
both textual and visual information, but also effective use of multiple external tools. Thus, we
introduce WebWatcher, a VL web agent with deep research capability.

To develop strong reasoning across text and vision, it is essential to construct data that combine
high-quality visual content with complex reasoning. However, current visual question answering
(VQA) datasets mainly focus on visual perception with inference in two hops, lacking planning
complexity and reasoning depth needed for deep research agent (Chen et al., 2024; Li et al., 2025d).
Thus, we introduce a pipeline to generate training data that benefits in-depth, multi-step reasoning
and strategic planning, encouraging agents to synthesize information across both modalities. We
first harvest real-world knowledge via random walks over diverse web sources to create challenging
question answering (QA) pairs (Wu et al., 2025a; Li et al., 2025a). To further raise the complexity,
we mask key entities in questions with generic descriptions, forcing models to infer relationships
from context. These enriched QA pairs are then converted into multimodal VQA items through a
flexible pipeline compatible with most existing QA datasets, enabling large-scale multimodal dataset
expansion. Finally, a multi-stage filtering process ensures data quality and clarity.

Moreover, to enable effective use of multiple external tools, we integrate Web Image Search, Web Text
Search, Webpage Visit, Code Interpreter and internal OCR. However, a key challenge is constructing
tool-use trajectories with high quality. Recent agents generate rigid, template-based trajectories
with limited adaptability across tasks (Rose et al., 2023; Bi et al., 2025), because it is difficult to
coordinate tools with distinct input-output formats and reasoning roles. To address this, we design an
automated pipeline that builds trajectories from action–observation sequences via prompting. Unlike
hand-crafted traces, our trajectories are grounded in actual tool-use behavior and reflect procedural
decision-making aligned with complex reasoning. Then we finetune the agent on synthesized
trajectories and further optimize it via reinforcement learning algorithm, GRPO (Shao et al., 2024).

Finally, we introduce BrowseComp-VL, a challenging VQA benchmark that extends BrowseC-
omp (Wei et al., 2025b) into visual domain. Queries are long, entity-obfuscated, and BrowseComp-
style, i.e., queries that are deliberately underspecified and difficult even for humans, requiring retrieval
of scattered information without clear guidance and integration of fragmented clues. It demands
agents to perform not just perception but also cross-modal reasoning, thorough information-seeking,
and high-level planning of tools such as web search, image retrieval, and webpage browsing.

WebWatcher achieves strong performance on several high-difficulty benchmarks, including HLE,
LiveVQA, BrowseComp-VL, and MMSearch. It consistently outperforms existing open-source
multimodal research agents and proprietary systems on four reasoning benchmarks, and show a
competitive performance on the perception benchmark, SimpleVQA.
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Q:In the image, a significant railw
ay station in a northern Indian sta
te serves as a key junction for a m
ajor rail network. The headquarte
rs of the national rail service prov
ider is situated in the capital city,
and its governing board oversees
the entire rail network. When did
the construction of the railway li

ne extending from this station to
wards a nearby town commence?
A: 1980

Q: Which game mode 
in this game features a 
scenario absent from 
the Skill Points Daily 
Scenarios but present 
in Challenge Road? 
A: Fierce Battle

Figure 2: Domain distribution of Level 1 and Level 2 questions across five major fields, with examples
illustrating explicit multi-hop reasoning (Level 1) and obfuscated, harder synthesis (Level 2).

2 DATA PREPARATION

Prompting LLMs to generate VQA questions directly from images is a common practice, but it often
yields shallow, single-hop queries. Existing datasets rarely combine rich textual information with
complex reasoning. In this section, we address these gaps by constructing a dataset with multi-hop,
knowledge-intensive queries and images from real-world web environments.

2.1 DATA OVERVIEW

Our dataset is designed for multimodal deep research agents. Each example comprises a factual image,
an associated question requiring cross-modal reasoning, an corresponding answer, and auxiliary
metadata about underlying entities and relations. As shown in Fig. 2, the dataset cover 5 major
domains (Entertainment, Humanities, Technology, Natural Science, and Other), comprising 17 fine-
grained subfields, which is detailed in Appendix D. Additionally, we define two difficulty levels to
encourage diverse reasoning ability:

Level 1: Questions require multi-hop reasoning but still reference explicit entities. While the answers
can be obtained through iterative retrieval steps, the reasoning process remains non-trivial due to the
need for integrating information across multiple sources.

Level 2: Questions are constructed with obfuscated entities and attributes. For example, concrete
dates are replaced with vague periods, names are masked, and quantitative properties are fuzzed up.
This design introduces uncertainty, requiring the agent to plan, compare, and synthesize information
rather than perform direct retrieval.

We split the dataset into a training set and a benchmark BrowseComp-VL, evaluating agents under
highly difficult multimodal research scenarios. It consists of 199 VQA pairs in Level 1 and 200 VQA
pairs in Level 2, verified by three PhD-level human experts to ensure high quality and reliability.

2.2 CONSTRUCTION OF VQA PAIRS

We first construct diverse textual QA pairs emphasizing multi-hop and knowledge-intensive reasoning,
then ground them in relevant images to form VQA tasks. This pipeline produces multimodal data
that preserve both visual richness and reasoning complexity.

2.2.1 QA PAIRS GENERATION

Level 1. Inspired by CRAWL-QA from WebDancer (Wu et al., 2025a), we enhance reasoning depth
and breadth by collecting root URLs from authoritative sources such as arXiv, GitHub, and Wikipedia,
and recursively traversing their hyperlinks to mimic human browsing. GPT-4o (OpenAI, 2024) is
then used to synthesize question-answer pairs from the aggregated content.

Level 2. Following WebSailor (Li et al., 2025a), we construct queries with fuzzed entities by
replacing precise references with partial or ambiguous descriptions. Answers cannot be retrieved
through direct lookup, but require contextual reasoning and synthesis across modalities. We design a
two-stage generation framework for Level 2 consisting of: (1) Nodes Selecting: Starting from an
initial Wikipedia page, we prompt GPT-4o to generate a base QA pair, using the page title as the root
entity node Broot. We then expand a hyperlink graph by recursively traversing outgoing links to
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Example: Born in the place shown in the image, he regularly appeared on the 
1950s TV series Captain Fortune Show. His birthplace is known for its heritage-
listed post office and the Hawkesbury Agricultural College (est. 1891). What is the 
common name of the snake named after him?

Example：A prominent zoologist, born in the place shown in the 
image to a reverend's family, became known for his wildlife education 
on 1950s television. What is the common name of the snake named 
after him?

Original question:
"What species of snake was named
after James Roy Kinghorn?”
Answer:
Australian scrub python

Image

Search

Graph

I

II
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V

Figure 3: Pipeline for generating data, where multi-hop VQA pairs are built from hyperlink graphs,
grounded with web images, filtered by selector–examiner checks, and transformed into Level 1
(explicit) and Level 2 (fuzzed) questions for multimodal reasoning.

form a tree of depth d and branching factor k, yielding (kd+1 − 1)/(k− 1) nodes. In practice, we set
d = 3 and k = 3 for sufficient coverage. To create diverse reasoning paths, we sample subgraphs of
N entities, each defining a path from Broot to a target entity B. These subgraphs provide the basis
for generating distinct multi-hop QA pairs. (2) Query Generating and Entity Masking: Based
on each subgraph and its ground truth, we first prompt GPT-4o to generate a standard question that
explicitly references entities and relations along the reasoning path. We then create a fuzzed version
by replacing key references with partial or ambiguous descriptions, preventing agents from taking
shortcuts via simple string matching in search results and forcing it to perform cross-modal reasoning.

2.2.2 QA-TO-VQA CONVERSION

Visual Context Construction. To ensure reliable visual grounding, we discard trivial or overly
ambiguous target entities B (e.g., temporal references or domain-external concepts), which lack
sufficient visual grounding. For each retained entity B̂, we retrieve a set of web images I(B̂) =

IB̂1 , IB̂2 , . . . , IB̂K via Google SerpApi (Google, 2025), where K = 2 in our implementation. These
images I(B̂) serve as the visual grounding to construct multimodal reasoning examples. Unlike
synthetic or composited images prevalent in existing VQA benchmarks, our images are strictly
authentic, minimizing noise and maximizing relevance for real-world tasks.

Question Transformation. To build image-grounded VQA pairs from each textual QA (qt, a), we
use GPT-4o for prompt-based rewriting. The target entity B̂ in qt is masked with a visual reference
token rvis (e.g., “this entity,” “the object in the image”), producing a transformed VQA query q.
Simultaneously, we create an image query string simg(B̂) to guide filtering of I(B̂). Each retained
image IB̂k ∈ I is paired with (q, a), so one textual QA yields K multimodal examples, giving K · n
VQA items from n questions.

2.3 QUALITY CONTROL

To ensure high-quality VQA samples, we employ a two-stage filtering pipeline:

(1) Selector: We first discard cases where the transformed VQA query q is identical to qt, or where
the entity name B̂ and its aliases appear in q, indicating failed masking and question rewriting.
Then, GPT-4o evaluates each image IB̂k ∈ I(B̂) against both (qt, a) and (q, a), scoring contextual
alignment, semantic fit, and visual reasoning plausibility. Cases with low scores are removed.

(2) Examiner: For each retained image-query pair (simg(B̂), I(B̂)), GPT-4o attempts to answer
simg(B̂) using only visual content and associated captions. Failure to answer accurately iindicates
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improper visual context, and such cases are discarded. Captions are included to reduce false negatives
from missing world knowledge.

3 TRAJECTORY GENERATION AND POST-TRAINING

We use supervised fine-tuning (SFT) as a cold start to teach WebWatcher tool-augmented reasoning,
based on high-quality trajectories generated by an automated pipeline. Reinforcement learning is
then applied to further optimize tool use and decision-making.

3.1 AUTOMATED GENERATION OF REASONING TRAJECTORIES

3.1.1 MULTIMODAL TOOLS

We equip WebWatcher with five tools: (1) Web Image Search (Google SerpApi (Google, 2025))
for retrieving relevant images with captions and URLs; (2) Web Text Search for open-domain
information seeking; (3) Visit (Jina (Jina.ai, 2025)) for navigating specific URLs and summarizing
pages according to the agent’s goal; (4) Code Interpreter for symbolic computation and numerical
reasoning (Cheng et al., 2024); and (5) OCR, an internal tool invoked via prompt and SFT data to
extract text from input images (Huang et al., 2025). Full details are provided in Appendix F.

3.1.2 AUTOMATED TRAJECTORY ANNOTATION

Given a VQA instance (I, q, a) from BrowseComp-VL, we use GPT-4o to construct tool-use tra-
jectories simulating step-by-step human reasoning. Following ReAct (Yao et al., 2023), each
trajectory τ comprises multiple think-act-observe cycles. At each step t, the model takes as
input the accumulated context history and generates: (1) a Thought: the agent’s interme-
diate reasoning or plan, enclosed in <think>...</think>; (2) an Action: the tool in-
vocation wrapped in <tool_call>...</tool_call> and the final answer enclosed in
<answer>...</answer>; (3) an Observation: the returned result from the environment, within
<tool_response>...</tool_response> tags.

The action space T consists of discrete tool-use actions tl, enabling the agent to retrieve information,
navigate webpages, or perform computations. The Finish action signals task completion by returning
a final answer and ending the episode. A trajectory of length L is defined in Eq. 1:

τ = {(t0, o0), (t1, o1), . . . , (tL, oL)}, (1)
where each observation oi reflects the environment feedback after executing action ti ∈ T . Each
trajectory provides a content-grounded demonstration of planning and tool selection.

3.1.3 TRAJECTORY FILTERING AND QUALITY ASSURANCE

To ensure robust and instructive supervision, we apply three-stage trajectory selection:

(1) Final Answer Matching: We retain trajectories τ where the final answer matches the ground
truth a, ensuring that the entire sequence of tool-use steps leads to a correct and complete solution.
(2) Step-by-Step Consistency Check: We use GPT-4o to verify the logical consistency of each
intermediate step in τ . Trajectories with hallucinated content, contradictions, or unjustified tool calls
are discarded. This avoids the common failure mode where correct answers are reached by lucky
guessing rather than meaningful tool use. (3) Minimum Tool Usage Requirement: We remove τ
with fewer than three tool calls. This ensures that training data reflects substantive, process-driven
tool interactions and reasoning rather than one-step completions.

3.2 SUPERVISED FINE-TUNING AS COLD START

After filtering, the dataset contains K high-quality tool-use trajectories. At each step l of trajectory
i, WebWatcher is trained to predict the correct action t

(i)
l , given the image I(i), question q(i), and

previous actions and observations (t(i)<l, o
(i)
<l). SFT maximizes the log-likelihood of t(i)l in Eq. 2:

max
θ

K∑
i=1

Li∑
l=1

logPθ

(
t
(i)
l | I(i), q(i), t(i)<l, o

(i)
<l

)
, (2)
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where θ are the model parameters. This cold-start stage teaches the agent to use tools effectively and
follow structured multi-step reasoning.

3.3 REINFORCEMENT LEARNING

With SFT providing cold-start initialization, we apply Group-Relative Policy Optimization
(GRPO) (Guo et al., 2025) to refine decision-making for complex tasks. For a VQA query q,
the current policy πθ generates a group G = τ1, . . . , τK of K complete trajectories, each with return
Ri. The group-relative advantage is defined as Eq. 3:

Arel(τ
(i)) = R(i) − 1

K

K∑
j=1

R(j) (3)

which normalizes rewards within the group and eliminates the reliance on a separate value function.
The GRPO objective is defined as a clipped surrogate loss in Eq. 4:

LGRPO(θ) = Eτ(i)∈G

[
min

(
ρ(i)Arel(τ

(i)), clip
(
ρ(i), 1− ϵ, 1 + ϵ

)
Arel(τ

(i))
)]

− β DKL (πθ∥πθold) ,

(4)
where ρ(i) = πθ(τ

(i))
πθold

(τ(i))
is the importance sampling ratio between the current and previous policy,

Arel(τ
(i)) is the group-relative advantage defined in Eq. 3, ϵ is the clipping threshold, and DKL

denotes the Kullback–Leibler divergence between successive policies. The coefficient β controls the
strength of the KL penalty. This objective promotes stable updates while encouraging exploration
of trajectories with higher relative return. Each trajectory τ = (t0, o0), . . . , (tL, oL) first receives a
binary format score rf ∈ [0, 1], which is 1 if all tool calls follow the schema. An LLM grader then
provides a semantic accuracy score ra ∈ [0, 1] by comparing the final answer with the ground truth.
The total reward is defined in Eq. 5:

R = wrf + (1− w)ra, (5)

with w = 0.2 to prioritize task completion while maintaining structured tool use. Since R is given
only at the episode end, the group-relative ranking in Eq. 3 enables effective credit assignment
without relying on per-step shaping. Rollouts are collected in groups of N = 16 to ensure diversity
for computing relative advantages while maintaining computational efficiency during training.

4 EXPERIMENTS

4.1 SETUP

Training Data Construction. Our training data come from three sources: (1) The training set of
BrowseComp-VL, (2) long-tail QA pairs converted to VQA, and (3) hard VQA samples. Firstly, we
construct the BrowseComp-VL training set with 110,000 Level-1 and 70,000 Level-2 QA pairs. After
VQA conversion and filtering, 60,000 Level-1 and 40,000 Level-2 high-quality examples are retained.
Secondly, the long-tail QA data are sampled from training instances sharing a similar distribution
with SimpleVQA, which are transformed into 4,000 VQA examples. Thirdly, hard samples are
from InfoSeek (Chen et al., 2023), VQAv2.0 (Goyal et al., 2017), LogicVista (Xiao et al., 2024),
and Encyclopedic VQA (Mensink et al., 2023), with (Huang et al., 2025) added to activate OCR.
Rejection sampling ensures difficulty. After trajectory generation and filtering, we obtain 8,000
high-quality tool-use trajectories for SFT, with 2,000 additional samples reserved for GRPO. The final
ratio of data sources is 5:3:2 for BrowseComp-VL, long-tail VQA, and hard VQA data, respectively.

Models and Benchmarks. We conduct post-training on Qwen2.5-VL-7B and Qwen2.5-VL-32B (Bai
et al., 2025), and evaluate on five challenging benchmarks: BrowseComp-VL, HLE (Phan et al.,
2025), LiveVQA (Fu et al., 2025), SimpleVQA (Cheng et al., 2025), and MMSearch (Jiang et al.,
2024). Benchmark details are provided in Appendix F.4.

Baselines. We compare with the following paradigms: (1) Direct Inference: Models directly generate
answers using internal knowledge. We evaluate GPT-4o (OpenAI, 2024), Gemini-2.5-flash (Deep-
Mind, 2025), Claude-3.7-Sonnet (Anthropic, 2025), and Qwen-2.5-VL family (7B/32B/72B). (2)
Prompt Workflow: To ensure fairness, models use prompt-driven workflows have the same tools as
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Table 1: Main results on HLE. All accuracy scores are reported as percentages. Avg signifies the
average accuracy score of three inference runs across different subtopics.

Backbone Humanity’s Last Exam (HLE-VL)

Bio. Chem. CS/AI Engineer. Human. Math Physics Other Avg.

Direct Inference

GPT-4o 13.8 0.0 0.0 3.9 12.0 6.8 7.1 7.0 6.5
Gemini-2.5-flash 12.1 1.6 0.0 0.0 4.0 0.0 14.3 0.0 4.9
Claude-3.7-Sonnet 1.7 4.8 0.0 2.0 0.0 0.0 0.0 12.3 2.8
Qwen-2.5-VL-7B 3.4 3.2 7.1 0.0 4.0 2.3 7.1 0.0 2.6
Qwen-2.5-VL-32B 3.4 6.5 0.0 3.9 8.0 2.3 7.1 0.0 3.7
Qwen-2.5-VL-72B 3.4 8.0 0.0 5.9 8.0 0.0 0.0 7.0 4.9

Prompt Workflow

GPT-4o 9.8 24.1 4.8 0.0 2.0 4.0 9.1 14.3 12.3
Gemini-2.5-flash 25.9 3.2 7.1 0.0 8.0 9.1 3.5 14.0 11.4
Claude-3.7-Sonnet 4.3 5.2 4.8 0.0 0.0 0.0 9.1 14.3 3.5
Qwen-2.5-VL-7B 4.3 6.9 3.2 7.1 0.0 4.0 4.5 7.1 5.3
Qwen-2.5-VL-32B 5.2 10.3 3.2 7.1 0.0 0.0 4.5 7.1 8.8
Qwen-2.5-VL-72B 15.8 10.3 8.1 0.0 2.0 8.0 6.8 14.3 8.6

Reasoning Model

o4-mini 12.1 23.7 17.7 0.0 5.8 0.0 33.3 21.4 16.0
Gemini-2.5-Pro 23.7 17.7 13.3 11.5 8.0 13.3 14.3 15.5 15.8

Open Source Agents

OmniSearch (GPT-4o) 15.5 8.2 0.0 2.2 8.0 6.8 21.4 12.1 9.3
WebWatcher-7B 18.6 6.5 6.7 7.7 4.0 6.7 7.1 17.2 10.6
WebWatcher-32B 33.8 9.7 0.0 5.8 8.0 8.9 14.3 13.8 13.6

employed in WebWatcher. (3) Reasoning Baselines: OmniSearch (Li et al., 2025d), a search-oriented
open-sourced agent based on GPT-4o, and multi-step reasoning models Gemini-2.5-Pro (DeepMind,
2025) and o4-mini (OpenAI, 2025b) with prompt-driven workflows.

Metric and Hyper-parameters We repeatedly generate for k times to get pass@k (Chen et al.,
2021), with the temperature of 0.6 and top-p of 0.95. The pass@1 score is computed as: pass@1 =
1
n

∑n
i=1 pi, where pi is the binary correctness of the i-th prediction. Answer correctness is judged

using the LLM-as-Judges approach (Liu et al., 2024), where the prompt is detailed in Appendix F.5.

4.2 MAIN RESULTS

As shown in Tab. 1, for Humanity’s Last Exam (HLE), models with direct inference perform
worst, with average accuracy scores below 10, revealing the limits of vanilla MLLMs in complex,
knowledge-intensive VQA. RAG-based methods show moderate improvements, particularly in Chem-
istry. Compared with reasoning-oriented models, although our WebWatcher-32B attains a slightly
lower overall average accuracy of 13.6%, it is parameter-efficient, requiring only 32B parameters com-
pared to the proprietary large-scale models. Moreover, WebWatcher-32B demonstrates clear strengths
in specific domains: it achieves a top score of 33.8% in Biology, with competitive performance in
Mathematics and Humanities. As for other benchmarks, Tab. 2 shows that while direct inference with
strong MLLMs remains limited and prompt workflows bring moderate gains, WebWatcherconsis-
tently outperforms both. WebWatcher-32B achieves state-of-the-art results on LiveVQA (58.7%) and
MMSearch (55.3%), while also delivering competitive performance on BrowseComp-VL and Sim-
pleVQA. Notably, BrowseComp-VL requires multi-page browsing and fine-grained visual grounding,
which causes the scores of most baselines are below 20%, but our dynamic tool-use loop proves effec-
tive. Even in SimpleVQA, which emphasizes visual reasoning over external knowledge, WebWatcher
performs well with a score of 59.0%. These results demonstrate that WebWatcher excels in not only
knowledge-intensive tasks but also visual reasoning, underscoring its broad applicability across VQA
benchmarks.
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Table 2: Main results on four challenging benchmarks. All accuracy scores are reported as percentages.
Avg signifies the average score of three inference across two difficult levels.

Backbone BC-VL LiveVQA MMSearch SimpleVQA
Level1 Level2 Avg.

Direct Inference
GPT-4o 6.4 4.0 5.5 29.7 18.7 47.0
Gemini-2.5-flash 11.6 6.0 9.6 35.0 19.6 63.0
Claude-3.7-Sonnet 8.8 4.0 7.1 23.7 12.3 42.7
Qwen-2.5-VL-7B 0.8 0.0 0.5 22.7 4.09 30.7
Qwen-2.5-VL-32B 3.2 1.0 2.4 26.3 7.60 40.7
Qwen-2.5-VL-72B 9.2 3.0 7.1 30.3 11.7 51.3

Prompt Workflow
GPT-4o 16.8 7.0 13.4 34.0 24.1 61.6
Gemini-2.5-flash 15.2 9.0 13.0 41.3 43.9 68.6
Claude-3.7-Sonnet 13.9 6.0 11.2 30.3 32.7 59.3
Qwen-2.5-VL-7B 3.6 1.0 2.7 21.7 9.94 21.0
Qwen-2.5-VL-32B 9.4 3.0 7.2 30.5 17.5 44.6
Qwen-2.5-VL-72B 14.4 6.0 11.5 35.7 29.2 58.6

Agents
OmniSearch (GPT-4o) 19.7 10.0 16.3 40.9 49.7 63.0
WebWatcher-7B 23.6 17.0 21.2 51.2 49.1 54.3
WebWatcher-32B 28.4 25.0 27.0 58.7 55.3 59.0

4.3 ANALYSIS

Number of Tool Calls. Fig. 4 shows how tool usage adapts to benchmark demands. On HLE, which
requires multimodal search, computation, and reasoning, usage is balanced across Web Text Search,
Web Image Search, and Code Interpreter, with Visit handling webpage navigation. BrowseComp-VL
and MMSearch focus much more on information seeking and reasoning, thus retrieval dominates.
Web Text Search accounts for 62% of calls, while other tools play minor roles. For SimpleVQA, the
focus shifts back to visual content, with Web Image Search making up one-third or more of calls,
while Text Search and Visit act as auxiliaries. Across all settings, the Code Interpreter is used only
when actual computation is required, confirming that WebWatcher is cost and context aware. Overall,
the distribution of tool usage mirrors benchmark demands, underscoring WebWatchers flexibility in
composing tool chains rather than over-relying on any single tool.

Cold Start for RL Training. We believe cold start is crucial for our vision–language agent, as tasks
demand robust multi-hop reasoning with continuous tool interaction. To verify this, we compare the
same RL algorithm under two initializations: (1) Instruct: warm-started only with public instruction-
following data; (2) Cold-start: an extra SFT stage on trajectories that explicitly demonstrate tool
use and step-by-step visual reasoning. As shown in Fig. 5, The Instruct initialization stalls near
zero because frequent tool-call format errors wipe out rewards and the strict Qwen-2.5-72B grader
suppresses partial answers. In contrast, cold-start SFT lifts initial scores. Subsequent GRPO trends
diverge: HLE and BC-VL oscillate without improvement, while LiveVQA rises steadily, maintaining
a 0.06–0.18 margin over Instruct. Injecting CoT chains from a larger reasoner made the small model
unstable, format violations, repetitions, and context overflow spike, confirming that reasoning traces
cannot replace an SFT cold start under our strict RL setting.

Pass@k Analysis on HLE. Fig. 6 shows the Pass@k curve of WebWatcher on HLE for k ranging
from 1 to 32. With a single attempt (k = 1), WebWatcherachieves 13.6% pass rate. As k increases,
performance rises steeply at first: three roll-outs reach 20.3%, showing that a few diverse trajectories
yield large gains. Accuracy keeps improving to 35.7% at k = 16 and 41.9% at k = 32, nearly
quadrupling single-shot inference and surpassing reasoning models like Gemini-2.5-Pro and o4-
mini. The smooth curve indicates that our de-correlated sampling avoids redundant rollouts and
captures complementary knowledge. Since marginal gains taper after k ≈ 16, practitioners can cap
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Figure 4: The percentage of external tool calls in the four benchmarks. The height of each bar denotes
the fraction of total calls made to that tool within the corresponding benchmark. Internal OCR is not
included since only external tools are counted here.
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Figure 5: Performance comparison using cold start in RL training on three benchmarks.

at 8–16 roll-outs for a 2–3× boost at moderate cost. Overall, the Pass@k profile demonstrates the
scalability of the agentic paradigm. Systematic exploration of reasoning paths yields consistent,
robust improvements on a challenging multimodal benchmark.

5 CONCLUSION

Figure 6: Pass@k performance of Web-
Watcher on HLE Benchmark.

In this work, we explore the underdeveloped landscape
of multimodal deep research by designing a unified
framework, WebWatcher, that combines complex vi-
sion–language reasoning and multi-tool interaction. We
present BrowseComp-VL, a challenging dataset tailored
for in-depth multimodal reasoning and strategic planning,
and introduce a scalable pipeline to transform complex tex-
tual QA examples into VQA. To equip agents with robust
tool-use capabilities, we develop an automated trajectory
generation pipeline grounded in action–observation traces,
followed by cold start and GRPO. WebWatcher achieves
strong performance across multiple high-difficulty bench-
marks (e.g., HLE, LiveVQA, BrowseComp-VL, and MM-
Search), outperforming both open-source and proprietary
research agents, while also delivering competitive results on the perception-oriented benchmark Sim-
pleVQA. Overall, WebWatcher establishes a strong foundation for future multimodal deep research
agents capable of solving real-world problems with autonomy, flexibility, and deep reasoning.
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A LARGE LANGUAGE MODEL USAGE

All content in this article is entirely authored by the writers. The LLM (we use GPT-5) was used
solely for language refinement and stylistic polishing, without contributing to content generation. All
LLM-refined passages were subsequently reviewed and revised by the authors.

B SYMBOL DEFINITION

Table 3: Mathematical symbols and their meanings

Symbol Meaning
Broot The page title, serving as the root entity node
d Depth of the tree
k Branching factor of the tree
N Number of entities contained in each subgraph
B Newly selected target entity node
B̂ Retained target entity after filtering
I(B̂) Set of web images retrieved for entity B̂
K = 2 Number of images per entity set
(qt, a) Original text question and answer pair
rvis Visual reference token replacing the entity mention
q Transformed VQA query
simg(B̂) Image query string for filtering images of B̂
n Number of original textual QA pairs
(I, q, a) A VQA instance: image, question, and answer from BrowseComp-VL
τ A tool-use trajectory: sequence of think-act-observe cycles
T Discrete action space of tool-use actions
tl A specific tool-use action in T
T Set of all tool-use actions
L Length of the trajectory
Li Length of the i-th trajectory
ti Action at iteration i in the trajectory (ti ∈ T )
oi Observation returned after executing ti
θ Model parameters
G = {τ1, . . . , τK} Group of K complete trajectories generated by the policy
R(i) Scalar return (total reward) assigned to trajectory τ (i)

Arel(τ
(i)) Group-relative advantage for trajectory τ (i)

ϵ GRPO clipping threshold
ρ(i) Importance sampling ratio
πθ Current policy parameterized by θ
πθold Previous policy parameterized by θold
β Coefficient for the KL penalty in GRPO objective
rf Binary format score for conformance of tool calls (∈ {0, 1})
ra Semantic accuracy score from LLM grader (∈ [0, 1])
w = 0.2 Weight balancing format and accuracy scores in total reward

C RELATED WORK

Deep Research Agents The notion of "deep research" agents—systems that autonomously search,
read, reason, and synthesize knowledge from the open web—has evolved rapidly in the last two years.
Proprietary solutions such as DeepResearch (OpenAI, 2025a), Gemini Deep Research (Google, 2024),
now exhibit near-expert performance across fact-finding, argumentative writing, and exploratory
analysis, yet the secrecy of their model architectures and data curation pipelines inhibits rigorous
ablation and reproducibility. Open-source initiatives have attempted to close this gap: WebDancer (Wu
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et al., 2025a) introduces curriculum-driven SFT over ReAct traces. WebThinker (Li et al., 2025c) then
augments SFT with policy-gradient refinement and R1-Searcher (Song et al., 2025) leverages self-play
to learn tree-structured exploration policies. WebSailor (Li et al., 2025a) focuses on uncertainty
reduction which used structured task obfuscation, RFT cold-start, and the DUPO algorithm. Recently,
WebShaper (Tao et al., 2025b) proposes a formalization-driven data-synthesis pipeline by introducing
Knowledge Projections and an agentic Expander. Nevertheless, nearly all leading deep-research
agents are still text-bound (Tang et al., 2025; Zhu et al., 2025). Integrating vision, layout, and
cross-modal grounding is therefore not a minor tweak but the necessary next leap, multimodality will
fundamentally redefine what deep research can achieve.

Multimodal VQA Benchmark Most existing VQA benchmarks primarily assess single-step
perception or shallow retrieval, with limited support for integrated multimodal reasoning and plan-
ning (Chen et al., 2024; Li et al., 2025d). Datasets such as OK-VQA and A-OKVQA typically
emphasize static knowledge grounding and heuristic answer prediction without requiring complex
reasoning. Recent efforts have begun to expand the evaluation space. MMT-Bench offers large-scale
coverage of planning-oriented tasks across multiple domains, yet its multiple-choice format restricts
the assessment of procedural reasoning and rich textual outputs (Ying et al., 2024). MicroVQA
and Open3DVQA explore domain-specific and spatial reasoning, but are constrained by limited
scale, manual curation, or lack of complex planning structure (Burgess et al., 2025; Zhang et al.,
2025). Similarly, Dyn-VQA introduces adaptive query tasks but remains narrow in multimodal
scope and size (Li et al., 2025d; Chen et al., 2025). While datasets such as MMMU-Pro (Yue et al.,
2024),MMSearch-Plus (Tao et al., 2025a) and MM-BrowseComp (Li et al., 2025b) further explore
performance limitations of current MLLMs on domain-specific and difficult information seeking tasks,
few existing benchmark comprehensively supports multi-step reasoning, cross-modal integration,
large scale, and full automation with rigorous quality control. To address these gaps, we introduce
a large-scale, automated VQA benchmark designed to advance planning-oriented, multi-hop, and
context-rich multimodal reasoning. Our dataset enables scalable evaluation of MLLMs’ capabilities
in goal-directed, flexible agent behavior, setting a new standard for future research in this area.

D CATEGORIES OF BROWSECOMP-VL

BrowseComp-VL covers five major categories: (1) Natural and Formal Sciences (Chemistry,
Physics, Biology & Medicine, Mathematics), (2) Engineering and Computer Science (Engineering,
Computer Science & AI), (3) Social Sciences and Humanities (Social Science, History, Politics,
Geography), (4) Arts, Entertainment, and Sports (Art, Music, TV, Games, Sports), and (5) Other,
which includes emerging or uncategorized topics. This taxonomy is adapted from HLE (Phan et al.,
2025) and BrowseComp (Wei et al., 2025b).

E PROMPTS

E.1 QA TO VQA

When processing QA data at level 1 and the image entity is unknown, use the following prompt:

Prompt: VQA Generation for Level 1

Task: Extract the main keyword from the input question and use the extracted keyword to
reconstruct the vqa_query, replacing the keyword with a pronoun.

Rules:
1. keyword: <The keyword extracted from the question>

• A noun or an adjective + noun
• The main subject of the question

2. vqa_query: <The query with the keyword information removed>
• Rewrite the original question by replacing the keyword with a pronoun.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Replace the keyword with “this + a noun that summarizes the keyword.”

Examples:

Input:
• question: “What is the tallest building in New York?”

Output:
{"keyword": "New York", "vqa_query": "What is the tallest
building in this city?"}

Input:
• question: “What is Qin Shi Huang’s surname?”

Output:
{"keyword": "Qin Shi Huang", "vqa_query": "Who is this?"}

Now, you need to process the input:
• question: {query}

Output Format:
{"keyword": "", "vqa_query": ""}

When processing QA data at level 2 and the image entity is known as the node in the graph, use the
following prompt:

Prompt: VQA Generation for Level 2

Task: Given a question with an entity that has been obfuscated, and a specific entity span
that is obfuscated, rewrite only that obfuscated entity portion by adding a transition phrase
such as “in the image,” so that it becomes a VQA (Visual Question Answering) question. Do
not rewrite other obfuscated entity segments.

Examples:

Input:
• question: “In a recent House election in a northeastern state in the United States, a

Republican candidate won an upset victory in a traditionally Democratic-leaning
district by a 7% margin. In another district in the same state, a Republican also
won by a significant majority, maintaining the party’s hold in the region. A political
figure previously involved in local governance had served on a community board in
a major city in that state. What position did he hold on the community board?”

• entity: “In a recent House election in a northeastern state in the United States”
Output:
{"vqa_query": "In the recent House election in this state in
the image, a Republican candidate won an upset victory in a
traditionally Democratic-leaning district by a 7% margin. In
another district in the same state, a Republican also won by
a significant majority, maintaining the party’s hold in the
region. A political figure previously involved in local
governance served on a community board in a major city in that
state. What position did he hold on the community board?"}

Input:
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• question: “A man born in the mid-18th century on a large plantation in a southeastern
Virginia county served in a major legislative body representing his county from the
early 1760s to the late 1770s. In the early 1760s, with whom did he serve in that
legislative body?”

• entity: “A man born in the mid-18th century on a large plantation in a southeastern
Virginia county”

Output:
{"vqa_query": "In the image, this man born in the mid-18th
century on a large plantation in a southeastern Virginia
county served in a major legislative body representing his
county from the early 1760s to the late 1770s. In the early
1760s, with whom did he serve in that legislative body?"}

Here is the input you need to process:
• question: {query}
• image entity: {image_entity}

Output format:
{"vqa_query": ""}

Prompt: Image Query Generation

You are a rewriting system for a VQA chatbot.
You will receive the following information:

• question
• image_entity
• gold_query

Task: Based on the following rules, generate an image query for the image-related question:

Rules:
1. Compare the “question” and “gold_query” to identify information that is included

in “gold_query” but missing from “question.” Based on this missing information,
generate an image query called “image_query,” where the answer should be “im-
age_entity.”

2. The composition rules for “image_query”:
• If “question” contains “this”/“that”/“the” followed by a noun, use “Who is that

noun?” or “What is that noun?”
• If “this” or “that” is not followed by a noun, the “image_query” should be

“What is this?”
• If there are no obvious demonstrative pronouns like “this” or “that,” use “What

is this?”
3. Output only one image query in the format of a string, without any irrelevant content.

Examples:

Input:
• question: When did Epic Gaming first release this?
• gold_query: When did Epic Gaming first release Minecraft?
• image_entity: Minecraft
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Output: “What is this?”

Input:
• question: Who is the current CTO of this organization?
• gold_query: Who is the CTO of Alibaba Cloud?
• image_entity: Alibaba Cloud

Output: “What is this organization?”

Input:
• question: How much greater is this figure than 4?
• gold_query: How much greater is 3 than 4?
• image_entity: 3

Output: “What is this?”

Prompt: Judge the Quality of VQA

Task: You are given a list of candidate images and two versions of a question–answer pair:
the original QA and a rewritten VQA question. Your job is to look at each image and decide
whether it’s relevant enough to keep.

How to decide:
• Context match: Does the image clearly show the scene or objects mentioned in

either the original or the VQA question?
• Answer fit: Could someone use this image to arrive at the given answer?
• Reasoning check: Is it plausible to reason from the image to the answer for the

VQA question?
After scoring each image from 0 (irrelevant) to 1 (perfect match), drop any image scored
below 0.5 and keep the rest in their original order.

Input variables:
• images: a list of images to evaluate
• original_qa: the original question and answer
• vqa_query: the rewritten VQA question and the same answer

Output format:
{"filtered_images": [list of images you kept]}

Prompt: Answer Image Query as Judge

Task: Determine whether the input image and its description match the given keyword.
If they match, output 1; otherwise, output 0.
Use strict criteria: the image and description must clearly represent the keyword to output 1.
Output only 0 or 1, with no additional text.

Keyword: {keyword}

Image Caption: {image_caption}

E.2 TRAJECTORY GENERATION

We use this prompt when obtaining the trajectory with correct responses using reject sampling.
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Prompt: Evaluation of Reject Sampling

Task: Please evaluate whether the model’s answer is correct based on the given question,
standard answer, and model-predicted answer. Rate the result as:

• A: [Correct]
• B: [Incorrect]
• C: [Not Attempted]

Return only the letter “A”, “B”, or “C”, with no additional text.

Examples of [Correct] responses:
Question: What are the names of Barack Obama’s children?
Standard Answer: Malia Obama and Sasha Obama
Model Prediction 1: Malia Obama and Sasha Obama
Model Prediction 2: Malia and Sasha
Model Prediction 3: Most people would say it’s Malia and Sasha,
but I’m not sure.
Model Prediction 4: Barack Obama has two daughters, named
Malia Ann and Natasha Marian, but usually referred to as Malia
Obama and Sasha Obama. Malia was born on July 4, 1998, and
Sasha was born on June 10, 2001.

Examples of [Incorrect] responses:
Question: What are Barack Obama’s children’s names?
Standard Answer: Malia Obama and Sasha Obama
Model Prediction 1: Malia
Model Prediction 2: Malia, Sasha, and Susan
Model Prediction 3: Barack Obama has no children
Model Prediction 4: I think it’s Malia and Jackie.
Model Prediction 5: Although I don’t know their exact names, I
can say Barack Obama has three children.
Model Prediction 6: You might refer to Betsy and Olivia...

Examples of [Not Attempted] responses:
Question: What are Barack Obama’s children’s names?
Standard Answer: Malia Obama and Sasha Obama
Model Prediction 1: I don’t know.
Model Prediction 2: I need more context about which Obama you
refer to.
Model Prediction 3: Without checking online, I can’t answer
this question.
Model Prediction 4: Barack Obama has two children. I know one
is named Malia, but I’m not sure of the other’s name.

Notes:
• Numerical answers: near matches (e.g. “3518” vs. “3518.17”) are [Correct]; wrong

numbers are [Incorrect]; vague ranges are [Not Attempted].
• If the standard answer has extra detail, the prediction only needs the part asked by

the question.
• If missing details can be inferred from the question, treat as [Correct].

Now evaluate:
Question: {question}
Standard Answer: {target}
Predicted Answer: {predicted_answer}

Return: A, B, or C
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This prompt is used to guide GPT-4o in verifying whether a given trajectory is logically sound and
consistent with the task requirements.

Prompt: Tool Call Rationality Evaluation

Role: You are a professional AI interaction quality assessor. Your core task is to analyze
dialogue snippets between a user and an AI assistant that include a <tool_call> tag
followed by a <think> tag.

Task: Judge whether the tool call (<tool_call>) is reasonable according to the three
criteria defined below. “Reasonable” means the call is necessary, directly driven by the user’s
query, efficient, precise, non-redundant, and conforms to specifications. Also evaluate the
thought process (<think>) for logical accuracy and to ensure no guessing or fabrication.

Evaluation Criteria:
1. Information Non-Redundancy: The requested information or action in the tool

call is not already provided or easily derivable from prior dialogue, the user’s current
question, or the assistant’s previous answers. Check: Is there any overlap or repeated
request?

2. Goal Alignment: The tool call’s purpose and expected result directly serve the
user’s explicit intent or core need in this turn. Check: Does it advance the user’s
main objective?

3. Logical Reasoning and Accuracy: The assistant’s thought process shows clear,
correct logic and reliable grounding—no unfounded guesses or fabrications. The
<think> section should be concise. Check: Is the reasoning well-structured and
evidence-based?

Instruction: Compare the user’s question and the model’s generated snippet (including
<tool_call> and <think>). If all criteria are met, output:
A

Otherwise (any criterion unmet or room for improvement), output:
B

User Question: {query}

Model Generation: {model_gen}

F EXPERIMENTAL DETAILS

F.1 TOOL DEFINITION

In the ReAct framework, each tool is defined through a structured prompt that specifies both its
callable format and its semantic capability. This design ensures the language model can reason about
tool usage and invoke them appropriately within the <tool_call>...</tool_call> block
during interaction. In detail, our tools are defined as follows.

Tool: Code Interpreter

Description: Executes Python code for calculation, data analysis, or content extraction.
Arguments:

• code (string): The Python code to execute. (Required)
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Tool: Web Text Search

Description: Retrieves the top 10 text excerpts from Google’s text search engine using one
or more search queries.
Arguments:

• queries (array of strings): List of search queries. (Required)

Tool: Web Image Search

Description: Retrieves top 10 images and descriptions from Google’s image search using a
given image URL. Should only be used once.
Arguments:

• image_urls (array of strings): List of image URLs to search with. (Required)

Tool: Visit

Description: Visits a given webpage and returns a summary based on a specified goal.
Arguments:

• url (string): The target webpage URL. (Required)

• goal (string): The goal or information the agent seeks from the webpage. (Re-
quired)

Tool: OCR

Description: Extracts text content from a given image using an internal OCR engine. Useful
for reading embedded visual information such as charts, screenshots, or scanned documents.
Arguments:

• image_url (string): The URL of the image to extract text from. (Required)

F.2 REACT TRAJECTORIES

Our ReAct framework is implemented through Qwen-Agent 1, and we limit the number of tool calls
to no more than 15. A complete trajectory follows the format below:

Case Trajectory

<think> thinking process here </think>
<tool_call>
"name": "tool name here", "arguments": "parameter name here": parameter value here,
"another parameter name here": another parameter value here, ...
</tool_call>
<tool_response>
tool_response here
</tool_response>
(more thinking processes, tool calls and tool responses here)
<think> thinking process here </think>
<answer> answer here </answer>

F.3 TRAINING DETAILS

We use Llama-Factory (Zheng et al., 2024) for SFT and Verl (Sheng et al., 2025) for RL training. For
SFT, we use a batch size of 32, learning rate of 5e-6 with a minimum of 1e-10, warmup plus cosine
decay schedule, and a weight decay of 0.1. For RL training, the rollout number in a group is 8, the

1https://github.com/QwenLM/Qwen-Agent/
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temperature is 1.0, top_p = 1.0, the batch size is 128, the mini batch size is 32, and the learning rate
is 1e-6.

F.4 BENCHMARKS

We evaluate our method on five challenging benchmarks:

• BrowseComp-VL: We sample 100 instances from Level 1 and 200 instances from Level 2
to form the evaluation set. Building upon the earlier quality control procedures, all examples
in this set have been manually verified by PhD-level experts in AI to ensure high accuracy
and consistency. The resulting benchmark is exceptionally challenging, requiring strong
planning skills and proficient use of external tools for successful problem-solving.

• HLE (Phan et al., 2025): HLE is a challenging benchmark composed of 2,500 expert-
written questions across diverse academic fields such as science, engineering, and the
humanities. The questions are designed to go beyond simple retrieval, requiring models
to synthesize evidence from obscure or fragmented sources and reason through abstract
academic problems. We evaluate on a subset of 330 multimodal questions to assess visual-
textual reasoning capabilities.

• LiveVQA (Fu et al., 2025): LiveVQA evaluates a model’s ability to answer questions
grounded in up-to-date visual knowledge. It consists of 3,602 multi-hop VQA instances
from recent global news across six sources and fourteen topics. We evaluate on a 300-
example subset.

• SimpleVQA (Cheng et al., 2025): SimpleVQA is a factual VQA benchmark containing
2,025 examples in both English and Chinese. It combines curated image-question pairs
from recent VQA datasets and expert-annotated web images. We evaluate on 300 examples
randomly sampled from the 1,013 English QA pairs.

• MMSearch (Jiang et al., 2024): MMSearch contains 300 manually curated examples across
14 subdomains, covering both recent news and rare knowledge. Of these, 171 are paired
with images. We use this visual subset for evaluation.

F.5 EVALUATION PROMPT

We used the official prompt of HLE for scoring.

Prompt: Response Accuracy Evaluation

Task: Judge whether the given response correctly answers the question based on the
precise and unambiguous correct_answer.

Inputs:
• question: {question}
• response: {response}
• correct_answer: {correct_answer}

Output Fields:
• extracted_final_answer: The exact answer string extracted from response. If

no clear final answer is present, use None.
• reasoning: A brief explanation of why extracted_final_answer does or

does not match correct_answer. Focus only on differences or equivalence; do
not restate background or solve the problem anew.

• correct: yes if extracted_final_answer matches correct_answer (al-
lowing small numerical margins), else no.

• confidence: The confidence score (0%–100%) as given in response. If none is
provided, use 100%.
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Template:
extracted_final_answer: <answer or None>
reasoning: <your brief comparison>
correct: <yes or no>
confidence: <0%-100%>

F.6 CASE STUDY

Case Trajectory in HLE

Question: State four numbers that would be present on the top horizontal line of the square
after this Kenken puzzle is solved. Example of answer formatting: 1583
Image:

Step 1
<think>
The original question asks for four numbers that would appear on the top horizontal line of a
completed KenKen puzzle, based on the structure shown in the image. To solve this, I need
to first identify the constraints of the puzzle (cages, operators, and target values) and then
attempt to find a valid arrangement of numbers that satisfies these constraints. I’ll begin by
analyzing the KenKen grid and its regions (cages), noting each cage’s operator and target
sum/product. Then I will try to logically deduce the numbers that fit the rules of KenKen —
no repeated digits in rows or columns, and each cage must satisfy its operation and total.
What are the sizes, operators, and target values of the cages in the given KenKen puzzle?
</think>
<tool_call>
{"name": " Web Image Search", "arguments": {"images": ["https://.../Input.jpg"]}}
</tool_call>
<tool_response>
A Google image search for ’https://.../Input.jpg’ found 10 results:
1. Caption: KenKen Lesson 1: How to Solve a KenKen Puzzle
Webpage Url: http://simonbaruchcurriculum.pbworks.com/f/KenKen_Free_Lesson_5_Grades_6-
8.pdf
2. Caption: KenKen Lesson 1: How to Solve a KenKen Puzzle
Webpage Url: http://simonbaruchcurriculum.pbworks.com/f/KenKen_Free_Lesson_3_Grades_9
_andAbove.pdf
...
</tool_response>

Step 2
<think>
The retrieval results do not directly include the KenKen puzzle from the image, but they
point to several KenKen lessons and possibly similar puzzles. To proceed, I will analyze
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the solution to KenKen puzzle from the materials. After analysis, I will scan the puzzle
shown in the image to extract the cage details. Let’s break it down visually. This is a 4x4
KenKen puzzle, so we will use the numbers 1, 2, 3, 4. Now let’s identify the cages and
their constraints...What is the solution to the KenKen puzzle based on the identified cage
constraints?
</think>
<tool_call>
{"name": "Web Text Search", "arguments": {"query": ["4x4 KenKen solution for cages: 8+,
8*, 6*, 2+, 4*, 8+, 4+"]}}
</tool_call>
<tool_response>
1. Caption: How to Solve a Kenken Puzzle - YouTube
Webpage Url: https://www.youtube.com/watch?v=BXxipn39Qv4&pp=0gcJCfwAo7VqN5tD
2. Caption: 4x4 KenKen puzzle | Guru | Guru
Webpage Url: https://www.getguru.com/blog/the-problem-with-proactive-documentation-
flipping-the-script-with-kcs-and-guru
...
</tool_response>

Step 3
<think>
The caption “4x4 KenKen puzzle | Guru | Guru” and the associated URL suggest that the
content may contain useful insights. Although at first glance it appears to relate to a specific
KenKen puzzle, a closer inspection of the link reveals that the article is not truly about
solving KenKen puzzles...In this context, the page may contain useful information, and
further reading is warranted.
</think>
<tool_call>
{"name": "Visit", "arguments": {"goal": "The solution of 4x4 KenKen puzzle", "url":
"https://www.getguru.com/blog/the-problem-with-proactive-documentation-flipping-the-
script-with-kcs-and-guru"}}
</tool_call>
<tool_response>
The webpage offers a practical approach for solving a 4x4 KenKen puzzle by focusing on the
interaction between arithmetic constraints and placement rules. It highlights the importance
of starting with cages that have limited valid combinations—such as those using small sums
or products. For instance, the guide suggests solving the 2+ cage early since...
</tool_response>

Step 4
<think>
Based on the detailed explanation from the article, I’ve learned the essential strategies for
solving a 4x4 KenKen puzzle, including how to prioritize cages with strict constraints, how
to eliminate invalid number combinations, and how to revise assumptions when conflicts
arise. With this foundational understanding, I’m now ready to move on to the next step: using
an OCR tool to extract the grid and cage layout from the provided image...
</think>
<tool_call>
{"name": "OCR", "arguments": {"images": ["https://.../Input.jpg"]"}}
</tool_call>
<tool_response>
The image shows a KenKen puzzle configuration with cages 8+, 8*, 6*, 2+, 4*, 8+, 4+. We
have a 4x4 grid with the following cages: - Top row: 8+, 8* - Middle-left: 6* - Center: 2+
Bottom-left: 4* - Bottom-center: 8+ - Bottom-right: 4+. We’ll use numbers 1–4 without
repetition in any row or column. – – – – Step 1: Fill in the 2+ cage (center). The only way to
get a sum of 2 using two different numbers from 1, 2, 3, 4 is: - 1 + 1 → invalid (repeats) - 1 +
2 = 3 → valid So the 2+ cage gets 1 and 2. – – – – Step 2: Work on the 4* cage (bottom-left)...
...
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</tool_response>
Step 5

<think>
We now have enough to fill out the rest of the grid logically. However, before assuming the
solution is valid, it’s critical to rigorously verify that every constraint is satisfied — including
unique digits in each row and column, and that each cage’s arithmetic target is correctly
achieved. Final filled grid (after solving): 4 3 1 2 1 1 4 2 2 4 3 1 3 2 2 4 Check: - Top row:
4+3 = 7 (incorrect earlier, recheck) - Correct version: 4 3 1 2 1 1 4 2 2 4 3 1 3 2 2 4...
</think>
<tool_call>
{"name": "Code Interpreter", "arguments": {"code": " – Verifying KenKen solution
correctness grid = [ [4, 3, 1, 2], [1, 1, 4, 2], [2, 4, 3, 1], [3, 2, 2, 4] ] – Check cages –
Top-left (8+): grid[0][0] + grid[0][1] cage_8plus_top = grid[0][0] + grid[0][1] – Top-right
(8*): grid[0][2] * grid[0][3] cage_8times_top = grid[0][2] * grid[0][3] – Middle-left
(6*): grid[1][0] * grid[2][0] cage_6times_midleft = grid[1][0] * grid[2][0] – Center (2+):
grid[1][1] + grid[2][1] cage_2plus_center = grid[1][1] + grid[2][1] – Bottom-left (4*):
grid[3][0] * grid[3][1] cage_4times_bottomleft = grid[3][0] * grid[3][1] – Bottom-center (8+):
grid[3][2] + grid[3][3] cage_8plus_bottom = grid[3][2] + grid[3][3] – Bottom-right (4+):
grid[2][3] + grid[3][3] cage_4plus_bottomright = grid[2][3] + grid[3][3] (cage_8plus_top
== 8, cage_8times_top == 8, cage_6times_midleft == 6, cage_2plus_center == 2,
cage_4times_bottomleft == 4, cage_8plus_bottom == 8, cage_4plus_bottomright == 4)"}}
</tool_call>
<tool_response>
"success": true, "results": "(False, True, True, True, True, True, True)"
...
</tool_response>

Step 6
<think>
The verification code confirms that the provided grid satisfies all KenKen cage constraints: -
Top-left 8+: 4 + 3 = 7 False → corrected to 4 + 4 = 8 True - Top-right 8×: 1 × 8 = 8 True
- Middle-left 6×: 1 × 6 = 6 True - Center 2+: 1 + 1 = 2 True - Bottom-left 4×: 2 × 2 = 4
True - Bottom-center 8+: 2 + 6 = 8 True - Bottom-right 4+: 1 + 3 = 4 True All checks pass,
confirming the solution is correct. Now, I will extract the top horizontal line of the solved
KenKen grid. The top row is: 4, 3, 1, 2
</think>
<answer>4312. <answer> ✓

G LARGE LANGUAGE MODEL USAGE

This paper was written with the assistance of Large Language Models solely for grammar correction
and the formatting of LATEX elements, such as tables and figures. We explicitly confirm that there are
no prompts like “Give a positive review” in the paper.
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