
Order-Optimal Regret in Distributed Kernel Bandits
using Uniform Sampling with Shared Randomness

Nikola Pavlovic∗
Department of Electrical and Computer Engineering

Cornell University
Ithaca, NY, USA

np358@cornell.edu

Sudeep Salgia
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA, USA

ssalgia@andrew.cmu.edu

Qing Zhao
Department of Electrical and Computer Engineering

Cornell University
Ithaca, NY, USA

qz16@cornell.edu

Abstract

We consider distributed kernel bandits where N agents aim to collaboratively
maximize an unknown reward function that lies in a reproducing kernel Hilbert
space. Each agent sequentially queries the function to obtain noisy observations at
the query points. Agents can share information through a central server, with the
objective of minimizing regret accumulated over time and agents. We develop the
first algorithm that achieves the optimal regret order with a communication cost
that is sublinear in both N and T . The key features of the proposed algorithm are
the uniform exploration at the local agents and shared randomness with the central
server. Working together with the sparse approximation of the GP model, these
two approaches make it possible to preserve the learning rate of the centralized
setting at a diminishing rate of communication.

1 Introduction

Distributed Kernel Bandits. We study the problem of zeroth-order online stochastic optimization
in a distributed setting, where N agents aim to collaboratively maximize a reward function with
communications facilitated by a central server. The reward function f : X → R is unknown, we
only assume it belongs to a Reproducing Kernel Hilbert Space (RKHS) associated with a known
kernel k. At each time instant t, each agent n chooses a point x(n)

t ∈ X and receives noisy
feedback on the function value at the query point. The goal is for each distributed agent to converge
to x∗ ∈ argmaxx∈X f(x), a global maximizer of f . We quantify this goal as minimizing the

∗This work was supported in part by the USDA/NSF AI Institute for Next Generation Food Systems under
USDA award number 2020-67021-32855.

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).

cumulative regret summed over a learning horizon of length T and over all N agents: R(T) =∑N
n=1

∑T
t=1(f(x

∗)− f(x
(n)
t)).

In addition to learning efficiency, distributed kernel bandits face a new challenge of communication
efficiency. Without constraints on the communication cost, all agents can share their local observations
and coordinate their individual query actions at no cost. At the other end of the spectrum is a complete
decoupling of the agents, resulting in N independent single-user problems without the benefit of
data sharing for accelerated learning. The tension between learning efficiency and communication
efficiency is evident. A central question to this trade-off is how to achieve the optimal learning rate
enjoyed by the centralized setting using a minimum amount of message exchange among agents.

Main Results. In this paper, we develop the first algorithm for distributed kernel bandits that
achieves the optimal order of regret enjoyed by centralized learning with a sublinear message
exchange in both T and N .

To tackle the essential trade-off between learning rate and communication efficiency, a distributed
learning algorithm needs a communication strategy that governs what to communicate and how to
integrate the shared information into local policies. To minimize the total regret that is accumulating
over time and agents, the communication strategy needs to work in tandem with the query actions to
ensure a continual flow of information available at all agents for decision-making.

A natural answer to what to communicate in a distributed learning problem is a certain sufficient local
statistics of the underlying unknown parameters [31]. However, for kernel bandits, relevant sufficient
statistics are infinite-dimensional and hence an impractical choice for communication. Existing
studies resolve this issue by exchanging local query actions and observations across all agents and
throughout the learning horizon [9, 15], resulting in a communication cost growing linearly in both
N and T . Even with a communication cost growing linearly in both N and T it is not clear how to
achieve the performance of a centralized learner with NT query points. Prevailing approaches in
centralized kernel bandits utilize reward-dependent [28] or adaptive policies [16]. Emulating such
policies at each of the NT query points is practically unfeasible as it would require the agents to take
turns in their queries and immediately share the local observations with all other agents.

To tackle the above challenges, our proposed algorithm represents major departures from the pre-
vailing approaches. Referred to as DUETS (Distributed Uniform Exploration of Trimmed Sets),
this algorithm has two key features: uniform exploration at the local agents and shared randomness
with the central server. In DUETS , each agent employs uniform sampling as the query strategy.
Uniform sampling is fully compatible with parallel learning. In particular, note that the union of
the local sets of size t query points obtained at the agents through uniform sampling is identical
(in distribution) to the set of size Nt query points obtained at a centralized decision maker using
the same uniform sampling strategy. This superposition property of uniform sampling allows us to
leverage the recent results on random exploration in centralized kernel bandits [29], and is crucial in
achieving the optimal learning rate defined by the centralized setting. In terms of communication
efficiency, uniform sampling makes it possible to bypass the exchange of query points altogether and
reduce the exchange of reward observations through the shared randomness strategy. In DUETS,
each agent has access to an independent coin, i.e., a source of randomness, which is unknown to the
other agents but is known to the server. The shared randomness enables the server to reproduce the
points queried by the agents, thereby resulting in effective transmission of the local set of queried
points to the server at no communication cost. Please refer to App. C for an additional discussion.

We analyze the performance of DUETS and establish that it incurs a cumulative regret of
Õ(
√
NTγNT log(T/δ)) with probability 1− δ, where γNT denotes the maximal information gain

of the kernel Srinivas et al. [28] and Õ(·) hides poly-logarithmic factors. To the best knowledge
of the authors, this is the first algorithm to achieve the optimal order of regret for the problem of
distributed kernel bandits. We also establish a bound of Õ(γNT) on the communication cost incurred
by DUETS (See Section 2 for a precise definition) .

Related Work. The existing literature on distributed kernel bandits is relatively slim. The most
relevant to our work is that by Li et al. [15], where the authors consider the problem of distributed
contextual kernel bandits and propose a UCB based policy with sparse approximation of GP models
and intermittent communication. Their proposed policy was shown to incur a cumulative regret

2

of Õ(
√
NTγNT) and communication cost of O(Nγ3

NT). The DUETS algorithm proposed in this
work, offers an improvement over the algorithm in [15] both in terms of regret and communication
cost. While the contextual setting with varying arm action sets considered in their work is more
general that the setting with a fixed arm set considered in this work, their proposed algorithm does
not offer non-trivial reduction in regret or communication cost in the fixed arm setting. Moreover,
both the regret and communication cost incurred by the algorithm in Li et al. [15] are not guaranteed
to be sublinear in the total number of queries, NT , for all kernels. Consequently, their algorithm
does not guarantee convergence to x∗ or a non-trivial communication cost for all kernels. On the
other hand, both regret and communication cost of DUETS is guaranteed to be sub-linear implying
both convergence and communication efficiency.

Among other studies, Du et al. [8] consider the problem of distributed pure exploration in kernel
bandits over finite action set, where they focus on designing learning strategies with low simple
regret. In this work, we consider the more challenging continuum-armed setup with a focus on
minimizing cumulative regret as opposed to simple regret. Another line of work explores impact
of heterogeneity among clients and design algorithms to minimize this impact. Salgia et al. [21]
consider personalized kernel bandits in which agents have heterogeneous models and aim to optimize
the weighted sum of their own reward function and the average reward function over all the agents.
Dubey and Pentland [9] consider heterogeneous distributed kernel bandits over a graph in which they
use additional kernel-based modeling to measure task similarity across different agents.

In contrast to the distributed kernel bandit, the problems of distributed multi-armed bandits and linear
bandits have been extensively studied. For distributed multi-armed bandits (MAB), a variety of
algorithms have been proposed for distributed learning under different network topologies Landgren
et al. [14], Shahrampour et al.[25], Sankararaman et al.[23], Chawla et al.[6], Zhu et al.[33]. Shi
et al. [27] and Shi and Shen [26] have analyzed the impact of heterogeneity among agents in the
distributed MAB problem. Similarly, the problem of distributed linear bandits is also well-understood
in variety of settings with different network topologies Korda et al, [13], heterogeneity among agents
Mitra et al. [17], Ghosh et al.[10], Hanna et al.[11] and communication constraints Mitra et al. [18],
Wang et al.[31], Huang et al.[12], Amani et al.[3], Salgia and Zhao[22].

2 Problem Formulation

We consider a distributed learning framework consisting of N agents indexed by {1, 2, . . . , N}.
Under this framework, we study the problem of collaboratively maximizing an unknown function
f : X → R, where X ⊂ Rd is a compact, convex set. The function f belongs to the an RKHS,
Hk, associated with a known positive definite kernel k : X × X → R. Hk is a Hilbert space that is
endowed by with an inner product ⟨·, ·⟩Hk

that obeys the reproducing property, and induces the norm
∥g∥Hk

= ⟨g, g⟩Hk
. We assume f is finite in this norm i.e ∥f∥Hk

≤ B.

Each agent, upon querying a point x ∈ X , observes y = f(x) + ϵ, where ϵ is a zero mean, R-sub
Gaussian noise term assumed to be independent across time and agents. We make the following
assumption on the unknown function f , similar to that adopted in Salgia et al [29].

Assumption 2.1. Let Lη = {x ∈ X |f(x) ≥ η} denote the level set of f for η ∈ [−B,B]. We
assume that for all η ∈ [−B,B], Lη is a disjoint union of at most Mf < ∞ components, each of
which is closed and connected. Moreover, for each such component, there exists a bi-Lipschitzian
map between each such component and X with normalized Lipschitz constant pair Lf , L

′
f <∞.

The communication efficiency is measured using the sum of the uplink and downlink communication
costs. In particular, let C(n)

up (T) denote the number of real numbers sent by the agent n to the server
over the time horizon. The uplink cost of π is given as Cπ

up(T) = 1
N

∑N
n=1 C

(n)
up (T). Similarly,

the downlink cost of π, Cπ
down(T) is the number of real numbers broadcast by the server over the

entire time horizon averaged over all agents. The overall communication cost of π is given by
Cπ(T) = Cπ

up(T) + Cπ
down(T).

2.1 GP Models

A Gaussian Process (GP) is a random process G indexed by X and is associated with a mean
function µ : X → R and a positive definite kernel k : X × X → R. The random process

3

G is defined such that for all finite subsets of X , {x1, x2, . . . , xm} ⊂ X , m ∈ N, the random
vector [G(x1), G(x2), . . . , G(xm)]⊤ follows a multivariate Gaussian distribution with mean vector
[µ(x1), . . . , µ(xn)]]

⊤ and covariance matrix Σ = [k(xi, xj)]
m
i,j=1. Throughout the work, we consider

GPs with µ ≡ 0. When used as a prior for a data generating process under Gaussian noise, the
conjugate property provides closed form expressions for the posterior mean and covariance of the
GP model. Specifically, given a set of observations {Xm,Ym} = {(xi, yi)}mi=1 from the underlying
process, the expression for posterior mean and variance of GP model is given as follows:

µm(x) = kXm(x)⊤(λIm +KXm,Xm)−1Ym, (1)

σ2
m(x) = (k(x, x)− k⊤Xm

(x)(λIm +KXm,Xm
)−1kXm

(x)). (2)

In the above expressions, kXm(x) = [k(x1, x), k(x2, x) . . . k(xn, x)]
⊤, KXm,Xm =

{k(xi, xj)}mi,j=1, Im is the m×m identity matrix and λ is the variance of the Gaussian noise.

Following a standard approach in the literature [28], we model the data corresponding to observations
from the unknown f , which belongs to the RKHS of a positive definite kernel k, using a GP with the
same covariance kernel k. 2. The benefit of this approach is that the posterior mean and variance of
this GP model serve as tools to both predict the values of the function f and quantify the uncertainty
of the prediction at unseen points in the domain [30, Thm. 1].

Sparse approximation of GP models. The sparsification of GP models refers to the idea of
approximating the posterior mean and variance of a GP model, corresponding to a set of observations
{Xm,Ym}, using a subset of query points Xm. In particular, let S be a subset of Xm consisting of
r < m points. The approximate posterior mean and variance [32] based on points in S , referred to as
the inducing set, is given as

µ̃m(x) = zS(x)
⊤ (λI|S| + Z⊤

Xm,SZXm,S
)−1

Z⊤
Xm,SYm (3)

λσ̃2
m(x) =

[
k(x, x)− z⊤S (x)Z⊤

Xm,SZXm,S
(
λI|S| + Z⊤

Xm,SZXm,S
)−1

zS(x)
]
, (4)

where zS(x) = K
− 1

2

S,SkS(x) and ZXm,S = [zS(x1), zS(x2), . . . , zS(xm)]⊤.

3 The DUETS Algorithm

We first describe the randomization at each agent and the shared randomness with the server. Each
agent n has a coin Cn for generating random bits that are independent of those generated by other
agents. Each agent’s coin is unknown to other agents, but known to the central server. In a practical
implementation, the coins can be thought of as seeds for generating random numbers.

DUETS employs an epoch-based elimination structure where the domain X is successively trimmed
across epochs to maintain an active region that contains a global maximizer x∗ with high probability.
Specifically, in each epoch j, the server and the agents maintain a common active subset of the
domain Xj ⊆ X with X1 initialized to X . The operations in each epoch are as follows.

During the jth epoch, each agent n, using its private coin Cn, generates D(n)
j , a set of Tj =

⌊
√
TTj−1⌋ points that are uniformly distributed in the set Xj

3.Each agent n queries all the points in
D(n)

j and obtains Y(n)
j ∈ RTj , the corresponding vector of reward observations. Since the server has

access to the coins of all the agents, it can faithfully reproduce the set Dj =
⋃N

n=1D
(n)
j without any

communication between the server and the agents. In order to efficiently communicate the observed
reward values from the agents to the server, we leverage sparse approximation of GP models along
with the knowledge of the set Dj at the server. The server constructs a global inducing set Sj by
including each point in Dj with probability pj := p0σ

2
j,max, independent of other points where

σ2
j,max = supx∈Xj

σ2
j (x), σ

2
j (·) is the posterior variance corresponding to points collected in Dj and

p0 is an appropriately chosen constant. The server broadcasts the inducing set Sj to all the agents.

2We assume a fictitious GP prior over the fixed, unknown function f along with fictitious Gaussian noise.
3If the active region consists of multiple disjoint regions, then we carry out this step for each region separately.

For simplicity of description, we assume the active region consists of a single connected component.

4

Upon receiving the inducing set, each agent n computes v(n)j := Z⊤
D(n)

j ,Sj

Y
(n)
j ∈ R|Sj |, the projec-

tion of its reward vector onto the inducing set. All agents then send the projected observations v(n)j to

the server, which aggregates them to obtain the vector vj := (λI|Sj |+Z⊤
Dj ,Sj

ZDj ,Sj
)−1(

∑N
n=1 v

(n)
j).

Note that the summation
∑N

n=1 v
(n)
j equals to Z⊤

Dj ,Sj
Yj , i.e., projection of the rewards of all agents

onto the inducing set. The server then broadcasts the vector vj and σj,max to all the agents. The
benefit of sending vj as opposed to the sum of rewards is that it allows the agents to compute the
posterior mean at the agents using their knowledge of the inducing set Sj (See. Eqn (3)).

As the last step of the epoch, all the agents and the server trim the current set Xj to Xj+1 using
the update rule: Xj+1 =

{
x ∈ Xj : µ̃j(x) ≥ supx′∈Xj

µ̃j(x
′) − 2β(δ

′
)σj,max

}
, where δ′ =

δ
2|UT |·(log(logN log T))+4) and µ̃j(x) = z⊤Sj

(x)vj is the approximate posterior mean computed based
on the inducing set Sj (See Eqn. (3)). Below we present the pseudo code for DUETS on the agent’s
side. For pseudo-code for the server side please refer to App. A .

Algorithm 1 DUETS : Agent n ∈ {1, 2, . . . , N}
1: Input: Size of the first epoch T1, error probability δ
2: t← 0, j ← 1, X1 ← X
3: while t < T do
4: D(n)

j = ∅
5: for i ∈ {1, 2, . . . , Tj} do
6: Query a point x(n)

t uniformly at random from Xj using the coin Cn and observe y
(n)
t

7: D(n)
j ← D(n)

j ∪ {x(n)
t }, t← t+ 1

8: if t > T then Terminate
9: end for

10: Receive the global inducing set Sj ,
11: Set v(n)j ← Z⊤

D(n)
j ,Sj

Y
(n)
j , where Y

(n)
j = [yt−Tj , yt−Tj+1, . . . , yt]

⊤

12: Receive vj and σj,max from the server and compute µ̃j(·) = z⊤Sj
(·)vj

13: Update Xj to Xj+1 using Eqn. (3) ,Tj+1 ← ⌊
√
TTj⌋, j ← j + 1

14: end while

Performance guarantees. The following theorem characterizes the regret performance and com-
munication cost of DUETS.
Theorem 3.1. Consider the distributed kernel bandit problem described in Section 2. For a given
δ ∈ (0, 1), let the policy parameters of DUETS be such that T1 ≥M/N and p0 = 72 log 4N

δ . Then
with probability at least 1− δ, the regret and communication cost incurred by DUETS satisfy the
following relations:

RDUETS = Õ(
√

NTγNT log(T/δ)); CDUETS = Õ(γNT).

In the above theorem, M is a constant that is independent of N and T . As shown in above theorem,
DUETS achieves order-optimal regret as it matches the lower bound established in [24] upto
logarithmic factors. DUETS is the first algorithm to close this gap to the lower bound in the
distributed setup and achieve order-optimal regret performance. We refer the reader to App. B for a
detailed proof of the theorem.

4 Conclusion

We propose a new algorithm for the problem of distributed kernel bandits. The proposed algorithm
represents major departures from prevailing approaches and has two key features: uniform exploration
and shared randomness. It is the first algorithm to achieve optimal-order regret in distributed kernel
bandit setting while simultaneously achieving diminishing rates of communication in both the time
horizon and the number of agents. We also corroborate our theoretical claims with empirical studies
(see App. D).

5

References
[1] J. Acharya, C. L. Canonne, and H. Tyagi. Inference under information constraints i: Lower

bounds from chi-square contraction. IEEE TRANSACTIONS ON INFORMATION THEORY,
VOL. 66, NO. 12, DECEMBER 2020, 2020.

[2] J. Acharya, C. L. Canonne, and H. Tyagi. Inference under information constraints ii: Com-
munication constraints and shared randomness. IEEE TRANSACTIONS ON INFORMATION
THEORY, VOL. 66, NO. 12, DECEMBER 2020, 2020.

[3] S. Amani, T. Lattimore, A. György, and L. F. Yang. Distributed Contextual Linear Bandits with
Minimax Optimal Communication Cost, 2022.

[4] J. Azimi, A. Jalali, and X. Z. Fern. Hybrid batch bayesian optimization. In Proceedings of the
29th International Conference on Machine Learning, ICML, volume 2, pages 1215–1222, 2012.

[5] D. Calandriello, L. Carratino, A. Lazaric, M. Valko, and L. Rosasco. Gaussian Process
Optimization with Adaptive Sketching: Scalable and No Regret. Proceedings of Machine
Learning Research, 99:1–25, 2019.

[6] R. Chawla, A. Sankararaman, A. Ganesh, and S. Shakkottai. The Gossiping Insert-Eliminate
Algorithm for Multi-Agent Bandits, 2020.

[7] S. R. Chowdhury and A. Gopalan. On kernelized multi-armed bandits. In Proceedings of the
34th International Conference on Machine Learning, ICML, volume 2, pages 1397–1422, 2017.

[8] Y. Du, W. Chen, Y. Kuroki, and L. Huang. Collaborative Pure Exploration in Kernel Bandit. In
Proceedings of the 11th International Conference on Learning Representations, ICLR, 2023.

[9] A. Dubey and A. Pentland. Kernel methods for cooperative multi-agent contextual bandits. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, pages
2720–2730, 2020.

[10] A. Ghosh, A. Sankararaman, and K. Ramchandran. Adaptive Clustering and Personalization in
Multi-Agent Stochastic Linear Bandits, 2021.

[11] O. Hanna, L. Yang, and C. Fragouli. Learning from distributed users in contextual linear
bandits without sharing the context. In Proceedings of the 36th Annual Conference on Neural
Information Processing Systems, volume 35, pages 11049–11062, 2022.

[12] R. Huang, W. Wu, J. Yang, and C. Shen. Federated Linear Contextual Bandits. In Advances in
Neural Information Processing Systems, volume 32, pages 27057–27068, 2021.

[13] N. Korda, B. Szorenyi, and S. Li. Distributed clustering of linear bandits in peer to peer
networks. In 33rd International Conference on Machine Learning, ICML 2016, volume 3, pages
1966–1980, 2016.

[14] P. Landgren, V. Srivastava, and N. E. Leonard. On distributed cooperative decision-making in
multiarmed bandits. In Proceedings of the European Control Conference, ECC, pages 243–248,
2017.

[15] C. Li, H. Wang, M. Wang, and H. Wang. Communication Efficient Distributed Learning for
Kernelized Contextual Bandits. In Proceedings of the 36th Annual Conference on Neural
Information Processing Systems, 2022.

[16] Z. Li and J. Scarlett. Gaussian process bandit optimization with few batches. In Proceedings of
the 25th International Conference on Artificial Intelligence and Statistics, AISTATS, 2022.

[17] A. Mitra, H. Hassani, and G. Pappas. Exploiting Heterogeneity in Robust Federated Best-Arm
Identification, 2021.

[18] A. Mitra, H. Hassani, and G. J. Pappas. Linear Stochastic Bandits over a Bit-Constrained
Channel, 2022.

6

[19] H.-Y. Park, S.-H. Nam, and S.-H. Lee. Exactly optimal and communication- efficient private
estimation via block designs. IEEE Journal on selected areas in information theory , vol. 5,
2024, 2024.

[20] V. Picheny, T. Wagner, and D. Ginsbourger. A benchmark of kriging-based infill criteria for
noisy optimization. Structural and Multidisciplinary Optimization, 48(3):607–626, 2013.

[21] S. Salgia, S. Vakili, and Q. Zhao. Collaborative learning in kernel-based bandits for distributed
users. IEEE Transactions on Signal Processing, 71:3956–3967, 2023.

[22] S. Salgia and Q. Zhao. Distributed linear bandits under communication constraints. In Proceed-
ings of the 40th International Conference on Machine Learning, ICML, pages 29845–29875.
PMLR, 2023.

[23] A. Sankararaman, A. Ganesh, and S. Shakkottai. Social learning in multi agent multi armed
bandits. Proc. ACM Meas. Anal. Comput. Syst., 3(3), dec 2019.

[24] J. Scarlett, I. Bogunovic, and V. Cehver. Lower Bounds on Regret for Noisy Gaussian Process
Bandit Optimization. In Conference on Learning Theory, volume 65, pages 1–20, 2017.

[25] S. Shahrampour, A. Rakhlin, and A. Jadbabaie. Multi-armed bandits in multi-agent networks.
In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 2786–2790, 2017.

[26] C. Shi and C. Shen. Federated Multi-Armed Bandits. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence, pages 9603–9611, 2021.

[27] C. Shi, C. Shen, and J. Yang. Federated Multi-armed Bandits with Personalization, 2021.

[28] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit
setting: no regret and experimental design. In Proceedings of the 27th International Conference
on Machine Learning, ICML, pages 1015–1022, 2010.

[29] S. Sudeep, V. Sattar, and Z. Qing. Random exploration in bayesian optimization: Order-optimal
regret and computational efficiency, 2023.

[30] S. Vakili, N. Bouziani, S. Jalali, A. Bernacchia, and D.-s. Shiu. Optimal order simple regret for
Gaussian process bandits. In Proceedings of the 35th Annual Conference on Neural Information
Processing Systems, 2021.

[31] Y. Wang, J. Hu, X. Chen, and L. Wang. Distributed Bandit Learning: Near-Optimal Regret
with Efficient Communication. In Proceedings of the 7th International Conference on Learning
Representations (ICLR), 2019.

[32] V. Wild, M. Kanagawa, and D. Sejdinovic. Connections and equivalences between the nyström
method and sparse variational gaussian processes, 2021.

[33] Z. Zhu, J. Zhu, J. Liu, and Y. Liu. Federated Bandit: A Gossiping Approach. Proceedings of
the ACM on Measurement and Analysis of Computing Systems, 5(1):1–29, 2021.

7

A Additional details about DUETS

Below we outline the pseudo-code of DUETS from the server and agent side.

Algorithm 2 DUETS : Server

1: input: Size of the first epoch T1, error probability δ
2: t← 0, j ← 1, X1 ← X
3: while t < T do
4: Use the coins C1,C2, . . . ,CN to reproduce the sets D(1)

j ,D(2)
j , . . . ,D(N)

j

5: Dj ← ∪Nn=1D
(n)
j

6: Set σj,max ← supx∈Xj
σj(x)

7: Construct the set Sj by independently including each point from Dj with probability pj

8: Broadcast Sj to all the agents and receive v
(n)
j from all agents n ∈ {1, 2, . . . , N}

9: Set vj using Eqn. (3)
10: Broadcast vj and σj,max to all the agents
11: Update Xj to Xj+1 using Eqn. (3)
12: t← t+ Tj , Tj+1 ← ⌊

√
TTj⌋

13: j ← j + 1
14: end while

B Proof of Theorem 3.1

In this section, we provide a detailed proof of Theorem 3.1. For the regret bound, we first bound
the regret incurred by DUETS in each epoch j and then sum it across different epochs to obtain
a bound on the overall cumulative regret. We first prove the theorem assuming the results from
Lemmas B.1, B.2 and B.3 and then separately prove the lemmas.

Lemma B.1. Let ∆j := supx∈Xj
f(x∗)− f(x). Then, the following bound holds all epochs j ≥ 1

with probability 1− δ/2.

∆j ≤ 8β(δ′) · sup
x∈Xj−1

σj(x) +
4B

T
,

where δ′ = δ
2(log(logN+log T)+4)|UT | and UT denotes the discretization defined in Assumption B.8.

Lemma B.2. [29] Let σ2
j (·) denote the posterior variance corresponding to the set Dj obtained by

sampling NTj points uniformly at random from the domain Xj . Then, for T1 ≥ M(δ)/N and for
any f satisfying Assumption 2.1, the following holds w.p. 1− δ for all epochs j ≥ 1:

sup
x∈Xj

σ2
j (x) ≤ Cf,X ·

γNTj

NTj
.

Here Cf,X denotes a constant that depends only on f and X and is independent of both N and T .

The bound on the communication cost follows directly from the following Lemmas B.3 and B.4 by
noting that the communication cost in epoch j satisfies O(|Sj |).
Lemma B.3. The total number of epochs in DUETS over a time horizon of T is at most
log(log(max{N,T})) + 4.

Lemma B.4. Let Sj denote the inducing set construct in jth epoch, as outlined in Section 3. Then,
for all epochs j the following holds with probability at least 1− δ,

|Sj | ≤ Cf,X · (3 + log(log(logN log T)/δ)) · γNT ,

where Cf,X is same constant as the one in Lemma B.2.

Consider any epoch j ≥ 1 and let R(j) denote the regret incurred by DUETS in this epoch. Since
the agents take purely exploratory actions by uniform sampling points from the current set, we have
the following crude bound R(j) ≤ ∆j ·NTj ·Mf , where ∆j := supx∈Xj

(f(x∗)− f(x)). The term

8

NTj ·Mf corresponds to number of points sampled during the epoch as we sample each connected
component of Xj , of which there are at most Mf , NTj times. For j = 1, we use the trivial bound,

∆1 = sup
x∈X

(f(x∗)− f(x)) ≤ 2 sup
x∈X

f(x) ≤ 2B,

which gives us R(1) ≤ 2B ·NT1 ·Mf . On invoking Lemma B.1 for j > 1 we obtain,

R(j) ≤ ∆j ·NTj ·Mf

≤ NTj ·Mf ·

(
8β(δ′) ·

(
sup

x∈Xj−1

σj−1(x)

)
+

4B

T

)
,

where δ′ =
δ

2(log logNT + 4)|UT |
. Using Lemma B.2, we can further bound this expression as

R(j) ≤ ∆j ·NTj ·Mf

≤ NTj ·Mf ·
(
8β(δ′) · Cf,X ·

√
γNTj−1

NTj−1
+

4B

T

)
≤Mf ·

(
8C

1/2
f,X · β(δ

′) ·
√

NTγNTj−1
+

4BNTj

T

)
≤Mf ·

(
8C

1/2
f,X · β(δ

′) ·
√

NTγNT +
4BNTj

T

)
.

In the third line, we used the inequality Tj√
Tj−1

≤
√
T , which follows from the definition of Tj . In

the last line, we used the fact that γm is an increasing function of m. Thus, if J denotes an upper
bound on the number of epochs, we can write:

J∑
j=1

R(j) ≤ 2BMf ·NT1 +

J∑
j=2

Mf ·
(
8C

1/2
f,X · β(δ

′) ·
√
NTγNT +

4BNTj

T

)

≤ 2BMf ·NT1 + J ·
(
8C ′

f,X · β(δ′) ·
√

NTγNT

)
+

4BNMf

T

J∑
j=1

Tj

≤ 2BMf ·NT1 + J ·
(
8C ′

f,X · β(δ′) ·
√
NTγNT

)
+ 4BNMf . (5)

We next optimize the length of the first epoch T1 in order to achieve order optimal regret. DUETS
achieves order optimal regret for N ≤ max(T, γNT).

If N < T we can choose T1 =
√

T
N +M(δ

′
) where δ

′
= δ

2(log logNT+4) . Left hand side of equation

(5) can now be written as Õ(
√
NTγNTβ(δ

′
)) ≡ Õ

(√
NTγNT

(
log T

δ

))
.

If N ≤ γNT we can fix T1 =
√
T +M(δ

′
). We have NT1 ≤ Õ(

√
NTγNT) and the left hand-side

is once again Õ
(√

NTγNT

(
log T

δ

))
.

Note that by Lemma B.3, J is upper bounded by log(logN log T) + 4 and is thus Õ(1).

Before moving onto the proofs of Lemmas B.1 and B.3, we state two auxiliary lemmas that will be
useful for our analysis.
Definition B.5. Let D = {x1, x2, . . . , xm} ⊂ X be a collection m points and S be any subset of
D. Let σ2

D(·) denote the posterior variance corresponding to the points in D and σ̃2
S(·) denote the

approximate posterior computed based on the points in S . We call S to be an ε-accurate inducing set
if the following relations are true for all x ∈ X .

1− ε

1 + ε
· σ̃2

S(x) ≤ σ2
D(x) ≤

1 + ε

1− ε
· σ̃2

S(x).

Lemma B.6 (Adapted from [5]). Let D = {x1, x2, . . . , xm} ⊂ X be a collection m points and S
be a random subset of D constructed by including each point with probability p, independent of

9

other points. Then S is an ε-accurate inducing set with probability 1− 4m exp

(
− 3pε2

8σ2
max

)
, where

σ2
max = supx∈X σ2

D(x).

Lemma B.7. Let DUETS be run with a choice of p0 = 72 log(4NT/δ′). Then, for all epochs j ≥ 1,
the global inducing set Sj is 0.5-accurate with probability 1− δ.

Proof. The statement is an immediate consequence of Lemma B.6 with the given choice of parameter
p0.

We are now ready to prove Lemmas B.1 and B.3.

B.1 Proof of Lemma B.1

To ensure that the bound holds over the entire arm set we adopt a standard discretization assumption:

Assumption B.8. For each r ∈ N, there exists a discretization Ur of X with |Ur| = poly(r)4 such
that, for any f ∈ Hk, we have |f(x)− f([x]Ur)| ≤

∥f∥Hk

r , where [x]Ur = argminx′∈Ur
∥x− x′∥2.

The existence of the discretization Ur in Assumption B.8 has been justified and adopted in previous
studies [28, 30]. In particular, the popular class of kernels like Squared Exponential and Matérn
kernels are known to be Lipschitz continuous, in which case a ε-cover of the domain with ε = O(1/r)
is sufficient to show the existence of such a discretization

Consider any epoch j ≥ 2 and let x ∈ Xj . Let ∆(x) := f(x∗) − f(x). We will obtain a bound
on ∆(x) for any general x in order establish the bound on ∆j . Using the discretization from
Assumption B.8 for Xj , we obtain,

∆(x) = f(x∗)− f(x)

≤ f(x∗)− f([x∗]UT
) + f([x∗]UT

)− (f(x)− f([x]UT
))− f([x]UT

)

≤ f([x∗]UT
)− f([x]UT

) +
2B

T
.

Using the result from [21], we obtain the following high probability bound that holds with probability
1− δ:

∆(x) ≤ f([x∗]UT
)− f([x]UT

) +
2B

T

≤ µ̃j([x
∗]UT

) + β(δ′)σ̃j([x
∗]UT

)− µ̃j([x]UT
) + β(δ′)σ̃j([x]UT

) +
2B

T

≤ µ̃j(x
∗)− µ̃j(x) + β(δ′)σ̃j([x

∗]UT
) + β(δ′)σ̃j([x]UT

) +
4B

T
,

where we again used Assumption B.8 in the last step. We claim that x∗ ∈ Xj−1 for all j ≥ 2.
Assuming this claim this true, we can bound the above expression as

∆(x) ≤ sup
x∈Xj−1

µ̃j(x
′)− µ̃j(x) + β(δ′)σ̃j([x

∗]UT
) + β(δ′)σ̃j([x]UT

) +
4B

T

≤ 2β(δ′)σj,max + β(δ′)σ̃j([x
∗]UT

) + β(δ′)σ̃j([x]UT
) +

4B

T
,

where we used the update condition (Eqn. (3)) in the second step. Since Sj is 0.5-accurate
(Lemma B.7), we have σ̃2

j (x) ≤ 3σ2
j (x) ≤ 3σ2

j,max. On plugging this back into the above equation,
we obtain,

∆(x) ≤ 8β(δ′)σj,max +
4B

T
.

The statement of the lemma follows by ∆j = supx∈Xj
∆(x).

4The notation g(x) = poly(x) is equivalent to g(x) = O(xk) for some k ∈ N.

10

We prove our claim x∗ ∈ Xj for all j ≥ 1 using induction. Clearly, x∗ ∈ X1 = X , by definition.
Assume x∗ ∈ Xj−1 for some j ≥ 2. Fix an arbitrary x ∈ Xj−1, from the confidence bound lemma
we have:

µj−1(x)− µj−1(x
∗) ≤(f(x)− f(x∗)) + β(δ

′
)(σj(x) + σj(x

∗)) ≤ 2σj−1.max(x),

where the second inequality follows as f(x) ≤ f(x∗). As the inequality holds ∀x ∈ Xj−1 we must
have:

sup
x∈Xj−1

µj−1(x)− µj−1(x
∗) ≤ 2σj−1.max(x)

and thus indeed x ∈ Xj .

B.2 Proof of Lemma B.3

We define E(s) := min{j : Tj ≥ T/4 | T1 = s}. Note that Tj is an increasing function of j. Since
TE(s) ≥ T/4, we can conclude that E(s) + 4 is an upper bound on the number of epochs. Thus, we
focus on bounding E(s). We first show that E(s) is a non-decreasing function of s.

To that effect, we claim that for j ≥ 2 the epoch lengths satisfy the relation Tj ≥ T 1−2−j+1 · T 2−j+1

1 .
This relation follows immediately using induction. For the base case, note that T2 ≥ T 1/2 · T 1/2

1 , by
definition. Assume that the relation holds for j − 1. Thus,

Tj ≥ T 1/2 · T 1/2
j−1 ≥ T 1/2 · T 1−2−(j−1)+1−1

· T 2−(j−1)+1−1

1 ≥ T 1−2−j+1

· T 2−j+1

1 . (6)

Since Tj’s are lower bounded by an increasing function of T1, the number of epochs E(s) is a
non-increasing function of s. Since T1 ≥ T

N , E
(
T
N

)
is an upper bound on the number of epochs for

all choices of T1.

Let j∗ = max{log(log(T)), log(log(N))}. Using the above relation for Tj from Eqn. (6) and the
lower bound on T1, we have,

Tj∗ ≥ T ·N−21−j

= T ·
(
2−

log N

2j

)2
≥ T · 2−2

We can hence conclude that Tj∗ ≥ T/4, which implies that E(T1) ≤ j∗ for all permissible choices
of T1. Consequently, the number of epochs are bounded as log(log(max{N,T})) + 4.

B.3 Proof of Lemma B.4

For all epochs j ≥ 1, recall that the inducing set is constructed by including each point from Dj with
probability pj , independent of other points. Thus, |Sj | is a binomial random variable with parameters
|Dj | = NTj and pj . Using the Chernoff bound for Binomial random variables, we can conclude that

Pr(|Sj | > (1 + ε)NTjpj) ≤ exp

(
−ε2NTjpj

2 + ε

)
.

Invoking the bound with ε = 2+log(1/δ′), with δ′ = δ/(log log(NT)+4) yields that the following
relation holds with probability 1− δ′:

|Sj | ≤ (3 + log(1/δ′)) ·NTjpj

≤ (3 + log(1/δ′)) ·NTj · p0σ2
j,max

≤ (3 + log(1/δ′)) ·NTjp0 · Cf,X ·
γNTj

NTj

≤ (3 + log(1/δ′))p0γNT ,

where we used Lemma B.2 in the third step and monotonicity of γm in the last step. On taking a
union bound over all epochs and using the bound on the number of epochs from Lemma B.3, we
conclude that for all epochs j, |Sj | = Õ(γNT) with probability 1− δ.

11

C Shared Randomness in DUETS

The setup in DUETS where the server and each agent have access to shared randomness is similar to
the class of public coin protocols that have been extensively studied in field of Information Theory.
Such class of algorithms assume that agents and the server share a common source of randomness
that is independent of the environment and comes at no communication cost between agents and the
server Park et al.[19], Jayadev et al.[2], Jayadev et al.[1], Wang et al.[31]. Public coin protocols can
concretely be implemented as an agent-server agreement on the generating seeds before the start of
the algorithm, which takes at most O(1) communication cost.

We stress that the source of shared randomness between the agent and the server is established before
any interaction with the environment and thus cannot carry any information relevant to learning the
reward function. It simply allows agents to follow an agreed on non-adaptive randomized strategy
while querying the environment similar to the randomized strategy outlined in Jayadev et al. [2] for
choice of communication channels.

D Empirical Studies

In this section, we provide additional details about our empirical studies along with results on
benchmark functions.

(a) h1(x) (b) h2(x) (c) Branin (d) Hartmann-4D

(e) h1(x) (f) h2(x) (g) Branin (h) Hartmann-4D

Figure 1: Cumulative regret (Fig. (1a-1d) and communication cost (1e-1h) for all algorithms across
different benchmark functions averaged over 5 Monte Carlo runs. The shaded region represents error
bars corresponding to one standard deviation. DUETS obtains a superior performance, both in terms
of regret and communication cost, over other algorithm across all functions.

We perform several empirical studies to corroborate our theoretical findings. We compare the regret
performance and communication cost of our proposed algorithm, DUETS, against three baseline
algorithms — DisKernelUCB, ApproxDisKernelUCB and N-KernelUCB. The first two are distributed
kernel bandits algorithms proposed in Li et al. [15]. N-KernelUCB is a baseline algorithm considered
in Li et al. [15] where each agent locally runs the GP-UCB algorithm Gopalan and Chowdhury [7]
with no communication among the agents.

12

We compare the performance of all the four algorithm across four benchmark functions. The first two
are synthetic functions h1, h2 : B → R considered in Li et al. [15], where B denotes the unit ball
centered at origin in R10. The functions are given by:

h1(x) := cos(3x⊤θ⋆); h2(x) := (x⊤θ⋆)3 − 3(x⊤θ⋆)2 + 3(x⊤θ⋆) + 3.

For both the functions θ⋆ is randomly chosen from the surface of the unit ball B. The other two
functions are Branin [4, 20] and Hartmann-4D [20], which are commonly used benchmark functions
for Bayesian Optimization. The Branin function is defined over X = [0, 1]2 while the Hartmann-4D
function is defined over X = [0, 1]4.

We consider a distributed kernel bandit described in Section 2 with N = 10 agents. For all the
experiments, we use the Squared Exponential kernel. The length scale was set to 0.2 for Branin
and to 1 for all other functions. The observations were corrupted with zero mean Gaussian noise
with a standard deviation of 0.2. The parameter D for ApproxDisKernelUCB and DisKernelUCB
was set to 20 and 10 respectively. For DUETS , we set T1 = 2 and p0 = 10. The parameter β was
selected using a grid search over {0.2, 0.5, 1, 2, 5} for all the algorithms. All the algorithms were run
for T = 50 time steps. We averaged the cumulative regret and the communication cost incurred by
different algorithms over 5 Monte Carlo runs.

The cumulative regret incurred by different algorithms across the different benchmark function
are shown in the top row of Figure 1. The bottom row consists of the corresponding plots for the
communication cost incurred by the different algorithm. The shaded regions denotes error bars upto
standard deviation on either side of the mean value. As evident from the plots, DUETS achieves
a significantly lower regret as compared to all other algorithms consistently across benchmark
functions. DUETS also incurs a smaller communication overhead as compared to other algorithms,
corroborating our theoretical results.

All simulations were run on an Intel(R) Xeon(R) E-2176M CPU@ 2.70GHz with 6 cores with no
GPU’s. Runtime of 5 Monte-Carlo-simulations for all 4 algorithms on a single data-set took roughly
2 hours of CPU time. Estimated runtime of all conducted experiments is 8 hours.

13

	Introduction
	Problem Formulation
	 GP Models

	The DUETS Algorithm
	Conclusion
	Additional details about DUETS
	Proof of Theorem 3.1
	Proof of Lemma B.1
	Proof of Lemma B.3
	Proof of Lemma B.4

	Shared Randomness in DUETS
	Empirical Studies

