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Abstract

To improve Multimodal Large Language Mod-
els” (MLLMs) ability to process images and
complex instructions, researchers predomi-
nantly curate large-scale visual instruction tun-
ing datasets, which are either sourced from ex-
isting vision tasks or synthetically generated
using LLMs and image descriptions. However,
they often suffer from critical flaws, includ-
ing misaligned instruction-image pairs and low-
quality images. Such issues hinder training ef-
ficiency and limit performance improvements,
as models waste resources on noisy or irrele-
vant data with minimal benefit to overall ca-
pability. To address this issue, we propose a
Visual-Centric Selection approach via Agents
Collaboration (ViSA), which centers on image
quality assessment and image-instruction rel-
evance evaluation. Specifically, our approach
consists of 1) an image information quantifica-
tion method via visual agents collaboration to
select images with rich visual information, and
2) a visual-centric instruction quality assess-
ment method to select high-quality instruction
data related to high-quality images. Finally,
we reorganize 80K instruction data from large
open-source datasets. Extensive experiments
demonstrate that ViSA outperforms or is com-
parable to current state-of-the-art models on
seven benchmarks, using only 2.5% of the orig-
inal data, highlighting the efficiency of our data
selection approach. Moreover, we conduct ab-
lation studies to validate the effectiveness of
each component of our method.

1 Introduction

Recent advancements in multimodal large language
models (MLLMs) have led to significant progress
in general visual understanding (OpenAl, 2023;
Dai et al., 2023a; Liu et al., 2023). By integrating
state-of-the-art large vision models (LVMs) with
large language models (LLMs) and training on vast
amounts of visual data, MLLMs have demonstrated
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Figure 1: Two common issues in visual instruction tuning
datasets. (Left) Low-Complexity Image: The image lacks
meaningful visual information. (Right) Low-Quality Text:
The instruction is weakly aligned with the image.

the ability to comprehend complex images, achiev-
ing remarkable performance across a variety of
visual tasks, including object recognition (Zhang
et al., 2024b), visual question answering (Yu et al.,
2024), and image captioning (Levinboim et al.,
2021). The training of MLLMs generally involves
two main steps: first, pretraining on image-caption
pairs to align the large vision model with the lan-
guage model; second, instruction tuning on down-
stream visual tasks to enable the model to better
understand complex images and perform sophisti-
cated visual tasks. To improve the multimodal un-
derstanding and task-solving abilities of MLLMs,
existing approaches typically collect large-scale
visual task data from a variety of sources for
constructing instruction tuning datasets (Li et al.,
2024a; Tong et al., 2024).

Specifically, existing works have primarily fo-
cused on collecting open-source training datasets
from existing visual tasks (Li et al., 2024a; Liu
et al., 2024a; Tong et al., 2024), or synthetically
generating various instructions using GPT-4 based
on the collected images and description (Liu et al.,
2023, 2024b). Such approaches enable the col-
lection of large amounts of instructional data at a
relatively low cost, without the need for extensive
manual annotation. However, they often introduce



significant noise into the training datasets. For ex-
ample, images with low complexity or irrelevant
instruction-image pairs can be problematic. As il-
lustrated in Figure 1, the left subfigure shows an
image of a presentation slide, which contains only
a simple icon and basic presentation information.
Such images provide little useful visual content or
knowledge, making it difficult for models trained
on such images to generalize to more complex real-
world applications, where informative visuals are
essential for learning robust visual representations.
Another common issue is when the instruction is
weakly aligned with the image, as shown in the
right subfigure, where the instruction is a common-
sense question that can be answered without refer-
encing the image. This type of data fails to effec-
tively link the visual model’s perception with the
textual knowledge stored in the language model,
reducing the efficiency of multimodal learning.

To address this issue, we present a novel ap-
proach called Visual-Centric Selection via Agents
Collaboration (ViSA). This method leverages col-
laboration among multiple visual agents to assess
the quality of visual data, selecting high-quality im-
ages and instruction pairs to enhance the training ef-
ficiency of MLLMs. The approach consists of two
key components: 1) Visual Information Quantifi-
cation, where agents collaborate to quantify visual
elements and assess the richness of diverse image
perspectives, selecting informative images; and 2)
Image-Centric Instruction Quality Quantifica-
tion, which focuses on selecting instructions tightly
coupled with the images. This is achieved by lever-
aging multiple agents to calculate metrics such as
prior token perplexity and image-text mutual infor-
mation, enabling the evaluation of response quality
and its relevance to the visual content. Addition-
ally, to improve the collaboration across multiple
visual agents, we introduce a Shapley value based
on the Pearson correlation coefficient to weigh the
reliability of each agent’s assessment.

To thoroughly assess the effectiveness of our
method, we filter out 80K high-quality instruction
data from the LLaVA-OneVision dataset (Li et al.,
2024a). We then conduct extensive experiments
to evaluate the training effectiveness of the filtered
data. The results on seven visual benchmarks show
that a model trained with less than 5% of the data
used by baselines achieves performance compara-
ble to, or even surpassing, state-of-the-art models,
highlighting the importance of high-quality data for
understanding intricate images. Furthermore, we

observe significant improvements when continuing
the training of a 72B model with a small set of high-
information-density data, demonstrating that larger
models can still benefit from informative images
and well-aligned instructions. Overall, our agent
collaboration-based data selection method effec-
tively reduces noise in training datasets, leading to
a significant increase in MLLM training efficiency.

Our main contributions can be summarized as
follows:

* We propose a novel multi-agent framework for
quantifying and selecting high-quality visual in-
struction data. This framework evaluates both
image informativeness and instruction relevance,
leveraging a diverse set of visual agents to assess
general visual elements as well as diverse image-
specific features. To the best of our knowledge,
this is the first work to explicitly introduce im-
age informativeness evaluation in the context of
visual data selection.

* We introduce a new instruction quality quantifica-
tion method based on prior token perplexity and
image-text mutual information, which measure
the response quality for selecting instructions
tightly coupled with the images, respectively. We
propose the Shapley value approach based on
the Pearson correlation coefficient to effectively
combine the evaluations from multiple agents.

* We conduct extensive experiments and ablation
studies, demonstrating that our approach sig-
nificantly improves the training efficiency of
MLLMs. Using only 80K selected samples, our
method enables both 2B-scale and 7B-scale vi-
sion models to achieve performance on par with
state-of-the-art models. Moreover, with a larger
72B-scale model, our high-quality selected data
consistently enhances the model’s performance
in visual understanding and reasoning tasks.

2 Related Work

Vision Large Models The development of
Vision Large Models (VLMs) has led to signifi-
cant advances in visual comprehension and reason-
ing (Li et al., 2022, 2023b; Zhu et al., 2024; Liu
et al., 2023, 2024a; Li et al., 2025). The training
of multimodal large models (MLLMs) typically
consists of two key stages. First, vision-language
alignment is achieved by mapping the visual repre-
sentations obtained from a pretrained Large Vi-
sual Model (LVMs) (Sun et al., 2023; Radford



et al., 2021) into the LLM representation space
through a learnable projection network (Merullo
et al., 2023; Li et al., 2023b). Subsequently, the
aligned models are fine-tuned using instruction
data to enhance their ability to process complex
visual instructions (Chen et al., 2023; Bai et al.,
2023; Li et al., 2024c; Dai et al., 2023b). Recently,
there has been a growing trend in high-resolution
MLLMs (Guo et al., 2024; Li et al., 2024b; Bai
et al., 2023; Wang et al., 2024). Consequently, the
ability to benefit from complex images has become
increasingly important as informative images that
can maximize these models’ potential. Hence, our
work aims to develop a quantitative assessment of
image informativeness to select high-quality data.

Vision Instruction Datasets : Instruction tuning
aims to enhance a model’s ability to understand
and reason about images through diverse vision-
language tasks, such as visual question answer-
ing (Antol et al., 2015), image captioning (Radford
etal.,2021), and object detection (Ravi et al., 2024).
Multilnstruct (Xu et al., 2023) introduced the first
human-annotated multimodal instruction tuning
dataset, designed to enhance the zero-shot capa-
bilities of pretrained VLMs. Building upon this
foundation, subsequent studies have increasingly
focused on curating diverse image datasets and
harnessing the power of large multimodal models,
such as GPT-4V, to automatically generate large-
scale visual instruction data (Li et al., 2024a; Xu
et al., 2024). Several recent studies have explored
different strategies to improve visual instruction
tuning. Some works (Zhang et al., 2023; Hu et al.,
2024) employ OCR tools and GPT-4 to generate
instruction-following tasks that help VLMs better
understand text within images. Meanwhile, recent
works (Wang et al., 2023; Chen et al., 2024) di-
rectly prompt GPT-4V with images as inputs to
generate visual instruction tuning data. Unlike pre-
vious works that focus on instruction generation
strategies, our approach emphasizes high-quality
data selection by systematically assessing image
informativeness and image-instruction relevance.

3 Method

In this section, we introduce our visual-centric se-
lection via agents collaboration. First, to identify
informative images, we comprehensively consider
various aspects of image information density as-
sessment, including evaluation based on general
visual elements §3.1 and assessment from other di-

versity visual information perspectives §3.2. Subse-
quently, we refine multimodal data selection on the
textual level, incorporating text quality evaluation
based on prior token perplexity and text relevance
assessment based on mutual information §3.3. Fi-
nally, using our proposed method, we curated a
high-quality instruction fine-tuning dataset §3.4.

3.1 Visual Elements Quantification

Evaluating image complexity from the perspec-
tive of visual elements is crucial for understanding
image informativeness. However, existing meth-
ods primarily focus on object-level recognition or
coarse-grained overall image assessment, lacking
a fine-grain quantification of visual complexity.
To address this, we assess image informativeness
based on general visual elements (e.g., visual ob-
jects, graphical elements, characters, etc.), which
are inherently linked to image complexity. Specif-
ically, we introduce two evaluation metrics: Seg-
mentation Complexity Score (SC Score) and Ob-
ject Alignment Score (OA Score). The SC Score
is designed to assess the richness of graphical el-
ements and characters in an image, leveraging a
visual segmentation method. In contrast, the OA
Score evaluates the richness of objects in an im-
age using the object detection approach based on a
predefined category set.

Specifically, for the SC Score, we predefine 512
anchor points and employ the SAM2 model (Ravi
et al., 2024), which segments target regions based
on the provided points, to generate a set of segmen-
tation boxes denoted as M. The SC Score is then
computed using the following formula:

Score(SC) = count(IoU(M,0.75)). (1)

To evaluate the richness of objects, motivated by
prior grounding work (Ren et al., 2024), we first
predefine a set of over 1800 common image ob-
ject categories. Using the DINO model (Liu et al.,
2024c), which identifies the presence and location
of predefined tags within images, we detect the vi-
sual objects corresponding to each category. The
OA Score is then computed by calculating the fre-
quency of each category and normalizing it using
the term frequency-inverse document frequency
weight algorithm (TF-IDF), as shown in the follow-
ing:

Score(OA) = Y TF-IDF(C;), 2)
(2

where C; is the predicted frequency of the i-th
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Figure 2: Overview of our agent collaboration for visual data selection. The Score(SC') denotes the Segmentation Complexity
Score. The Score(OA) shows the Object Alignment Score. The Score(D P) indicates the Diversity Perspective Score. The
Score(PT) denotes the Prior Token Perplexity Score. The Score(I M) denotes the Image-Text Mutual Information Score.

category, which emphasizes the importance of rare
objects within the image set.

3.2 Diversity Perspectives Quantification

We found that while the aforementioned visual ele-
ment metrics provide a estimate of image informa-
tiveness with expectations, they are insufficient for
fully capturing the richness of other types of image
information. To address this limitation, we pro-
pose a multi-agent-based Diversity Perspective
Score (DP Score), designed to evaluate images
from multiple perspectives and dimensions, includ-
ing events, emotions, culture, composition, and
dynamics. These diverse perspectives offer a more
comprehensive view of image informativeness, ac-
counting for the varied origins and functional pur-
poses of image creation. Specifically, we design a
detailed evaluation guideline, complete with mul-
tiple examples, prompting various state-of-the-art
visual agents to assess the image from each per-
spective and produce a final integrated score. For
the specific evaluation guideline used, please refer
to Appendix A.

To integrate the final score of each agent, we
use a Shapley value approach (Lundberg and Lee,
2017) based on the Pearson correlation coefficient
to compute the weight of each agent, motivated by
the idea of determining model weights based on
score consistency. Specifically, the weight W; of

each agent is calculated as follows:

W= Y w(S)Ap(S, ),
SCN\{j}

V]! ’
Ap(S,j) = p(SU{j}) — p(S)

where N represents the set of all agents, and S
is any subset of agents excluding the j-th agent.
Pearsonr(S) is the Pearson correlation coefficient
of the score distribution over the agents set .S, mea-
suring the linear relationship between the scores.
The overall diversity perspective score for each im-
age is then computed as the weighted average of
the diversity perspective scores F; from multiple
agents.

J
Score(DP) = Z W, E;. 4)

[N

3.3 Text Quality Quantification

To fully capture the visual and textual aspects of
image informativeness, the quality of the associ-
ated text is also important. In this regard, we pro-
pose a multi-agent-based text quality quantifica-
tion method, which includes two key metrics: the
Prior Token Perplexity Score (PT Score), which
measures the quality of the textual content, and



the Image-Text Mutual Information Score (IM
Score), which assesses the degree of association
between the text and the image. Similar to the
approach in Section 3.1, we utilize three different
agents to compute the PT Score and the IM Score
separately, and then aggregate these scores using
the Shapley value approach to obtain their compre-
hensive quality score.

Specifically, the PT Score is calculated by eval-
uating the perplexity of the response, which is de-
fined as follows. Due to the significant variability
in the length distribution of the data instructions,
we adopt a more length robust approach to prior
token perplexity (Liu et al., 2024e):

1 K
Pj = exp <—N210g P(wi\w<i)> )

=1

Score( TP

Yy

N SCN\{j}

S)Ap(S, j)P;

where K denotes the number of prior tokens. This
score reflects how predictable or coherent the se-
quence of tokens is based on preceding words.
Next, we compute the IM Score, which measures
the mutual dependence between the image and the
associated text, formulated as following:

I; = H(Text) — H(Text|Image), (6)

Score(IM) Z Z

N SCN\{j}

A,O S j)Ij7

where H (Text) is the entropy of the text without
the image input, and H (Text|Image) is the condi-
tional entropy of the text given the image. A higher
mutual information value indicates a stronger asso-
ciation between the text and the image.

3.4 Data Selection

To evaluate the effectiveness of our data selection
approach, random sample 175K instruction data
points from the open-source LLaVA-OneVision
dataset (Li et al., 2024a). We then applied the SC
score, OA score, and DP score to filter out 15%,
20%, and 13% of the data, respectively, resulting in
100K high-quality image samples. Subsequently,
we further refined the dataset by applying the TP
score and IM score to select 10% of the data, yield-
ing a final set of 80K high-quality instruction fine-
tuning samples.

4 Experiment

4.1 Evaluation

To evaluate the performance of our method, we in-
troduce three well-established image understanding
benchmarks, including VQAv2 (Antol et al., 2015),
OKVQA (Marino et al., 2019), TextVQA (Singh
et al., 2019), along with four cutting-edge datasets
designed for complex visual comprehension and
reasoning, including MMBench (Liu et al., 2024d),
MME-RealWorld (Zhang et al., 2024a), SEED-
Bench (Li et al., 2023a), MMMU (Yue et al., 2024).
We provide more detail in the Appendix D.

4.2 Baselines

We compare our approach against SOTA MLLMs,
including Qwen2-VL (Wang et al., 2024),
Llava-OneVision (Li et al., 2024a), Llama-3.2-
Vision (Dubey et al., 2024), as well as InternVL2
and InternVL2.5 (Chen et al., 2023). all of which
have been trained on massive-scale datasets with
extensive computational resources. To compre-
hensively evaluate the effectiveness of our method
across different model scales, we conduct experi-
ments using models of three representative param-
eter sizes: small-scale (2B parameters), medium-
scale (7B—11B), and large-scale (70B—90B). Due
to the computational constraints, we employ the
INT4 quantized versions of all large-scale models.

4.3 Implementation Detail

We conduct full fine-tuning on Qwen2-VL-2B and
Qwen2-VL-7B as our base models. Due to com-
putational constraints, we adopt Qwen2-VL-72B-
instruction as the base model for large-scale ex-
periments and apply LoRA for efficient contin-
ued fine-tuning. All models are optimized us-
ing AdamW (Loshchilov and Hutter, 2019) with a
learning rate of 1e-5 for full fine-tuning and le-4
for LoRA-based fine-tuning, along with a weight
decay of 0.01. We employ a linear warmup strategy
with a 0.1 warmup ratio and set the LoRA rank to
16. The maximum sequence length is 2048 tokens,
and all models are trained and evaluated using the
BFloat16 floating-point format. For training effi-
ciency, we use a batch size of 32 with four-step gra-
dient accumulation on a single GPU. Additionally,
we follow the original chat template of Qwen2-VL
for model interactions. We used beam search with
the beam size set to 4 for generation. We run all
the experiments on the NVIDIA H800 GPU.



Models Data Scale | OKVQA VQAv2 TextVQA MMBench MME-RW SEED MMMU
InternVL2-2B >5M 41.2 75.9 72.0 70.9 37.8 71.8 33.0
InternVL2.5-2B >8M 39.2 77.8 71.9 79.0 34.6 72.8 40.3
"Qwen2-VL2B =~ T T T T T T 1T SAM T | T 443 T 7157 T 716 T T 746 T T 3127 T 7682 336
Qwen2-VL-2B-AC (ours) 80K 48.4 73.3 814 73.0 39.1 69.4 42.2
Llama3.2-vision-11B >3M 23.6 72.2 56.5 65.8 38.5 72.7 48.1
Llava-Onevision-7B >1.6M 61.6 82.5 80.3 80.9 48.6 75.4 47.9
InternVL2-8B >5M 46.4 79.2 77.9 79.4 37.4 75.4 51.2
InternVL2.5-8B >8M 54.4 80.7 80.9 82.5 46.4 76.8 56.2
"Qwen2-VL7B ~ T T T T T T T 177 >5M T ] 580 T "83.0 ~ 84 ~ T8I0 ~ ~ 483 ~ 750 506
Qwen2-VL-7B-AC (ours) 80K 54.2 83.6 84.3 80.7 49.4 75.2 49.9
Llama3.2-vision-90B >3M 46.7 73.1 71.0 84.3 45.4 75.8 38.2
Llava-Onevision-72B >1.6M 66.3 84.8 82.6 86.4 48.8 77.8 50.6
InternVL2-76B >5M 60.9 84.6 87.1 87.3 49.1 76.5 52.2
InternVL2.5-78B >8M 57.4 85.2 86.3 91.9 46.4 77.0 62.5
"Qwen2-VL-72B- T T T 7 T T 77 >5M T ] 529 T 7832 T 90.8 T 906 ~ 408 ~ 783 591
Qwen2-VL-72B + AC-lora (ours) 80K 58.0 90.5 91.3 89.8 474 79.8 60.6

Table 1: Main result of visual understanding task. The "Data Scale" refers to the instruction data scale reported in each respective
paper. Models with more than 72B parameters use InT4 quantification. The best results in each task are highlighted in bold.

Models Data Scale | OKVQA VQAv2 TextVQA MMBench MME-RW SEED MMMU
Qwen2-VL-2B-AC 80K 48.4 73.3 814 73.0 39.1 69.4 422

- Instruction Quality 100K 43.5 72.2 75.8 70.8 36.0 68.1 383

- Diversity Perspective | 115K 42.4 72.6 74.9 69.7 35.4 67.7 37.5

- Visual Element 175K 41.0 70.3 72.1 68.5 339 67.1 35.8
Qwen2-VL-7B-AC 80K 542 83.6 84.3 80.7 494 752 49.9

- Instruction Quality 100K 50.4 81.9 824 77.3 479 73.2 48.1

- Diversity Perspective | 115K 493 81.7 81,9 76.5 47.0 72.8 48.2

- Visual Element 175K 47.2 79.3 79.1 75.7 453 71.8 44.1

Table 2: Ablation study of small-scale and middle-scale on visual understanding task. The "Data Scale" refers to the training
data size before filtering.

4.4 Main Result of the data. A small amount of high-quality data
can significantly boost the multimodal instruction-
following capability of pretrained MLLMs, en-
abling the model to activate the visual knowledge
learned during pretraining and perform a variety
of visual tasks. Moreover, we observe that on the
MME-RealWorld dataset, a complex real-world

visual benchmarks, our model consistently outper-

In this section, we explore the two following re-
search questions: (1) Q1: How does our data com-
pare with current mainstream training datasets in
terms of efficiency? and (2) Q2: Can a small
amount of high-quality data continuously improve
a well-trained, large-scale model?

Q1: A small amount of high-quality data sig-
nificantly efficiency improves the instruction-
following ability of pretrained MLLMs. As
shown in Table 1, with less than 5% of the baseline
training data, our method achieves comparable or
superior performance across all datasets. Specif-
ically, our Qwen2-VL-2B-AC model achieves an
average score of 61.0% on 7 benchmarks, outper-
forming Qwen2-VL-2B (57.3%), InternVL2.5-2B
(59.4%), and InternVL2-2B (57.5%). For middle-
scale models, our Qwen2-VL-7B-AC model
reaches an average score of 68.2%, surpass-
ing Llama3.2-vision-11B (53.9%), InternVL2-8B
(63.8%), and matching the performance of Llava-
Onevision-7B (68.1%), Intern2.5-8B (68.3%), and
Qwen2-VL-7B (68.7%). These results suggest that
the key factor for training pretrained MLLMs is
not solely the amount of data, but rather the quality

forms the baseline, highlighting the crucial role
of complex visual data in real-world applications.
However, we also see that compared to the small-
scale model, the advantages of high-quality data are
less pronounced in the middle-scale model. This
may be because larger models require more high-
quality data to fully fine-tune the deeper parame-
ters, a finding also shown in the work of training
scaling law (Kaplan et al., 2020).

Q2: A small amount of high-quality data can
continuously boost large-scale MLLMs. As
shown in Table 1, continued training on the Qwen2-
VL-72B model leads to noticeable improvements in
its image understanding capabilities. The Qwen2-
VL-72B-AC model achieves 73.9% on 7 datasets,
surpassing other baseline models. Specifically,
compared to the original Qwen2-VL-72B, our fine-



tuned model shows significant gains on the two
datasets that focus on complex image perception
and understanding: OKVQA and MME-RealWorld
(4.1% and 6.6% improvement, separately). These
results suggest that even large models trained on
vast amounts of data can still be hungry for high-
quality data, and a small amount of high-quality
data can rapidly boost their performance. More-
over, this also highlights the importance of high-
quality data for effective continued instruction tun-
ing in very large models.

5 Ablation Study

In this section, we conduct ablation experiments
to assess the effectiveness of the proposed filter-
ing methods, as presented in Table 2. Our find-
ings reveal that even when the total amount of data
is increased by removing the specific filter, the
performance quickly degrades. This suggests that
fine-tuning with a small amount of high-quality
data is significantly more efficient than using large
amounts of noisy data. Our method effectively
filters out noisy data, thereby improving the fine-
tuning efficiency of the model. Notably, the per-
formance shows the most significant decline when
the instruction quality filter is removed, with av-
erage performance drops of 3.1% and 2.5% for
the small and middle-scale models, respectively.
This confirms our observation that weakly aligned
instructions in the current visual instruction data
have a detrimental effect. Poorly aligned instruc-
tion data negatively impacts the perception and
knowledge alignment between the visual encoder
and the large language model, ultimately reducing
the overall performance. Moreover, the removal of
the visual element filter also leads to a noticeable
decrease in performance (1.6% and 2.1% for the
small and middle-scale models, respectively). This
emphasizes the critical role of image quality in data
selection; low-quality or noisy images hinder the
efficiency of visual representation learning by the
vision encoder.

6 Complex Visual Understanding

To fully explore the role of high-quality data in
complex image perception and understanding, we
selected six sub-tasks of image comprehension
from the practical related benchmark, including
sentiment classification, quality assessment, scene
perception, and style classification from MMBench,
as well as scene understanding from SEED Bench

and visual perception from MME-RealWorld. We
report the results of our method on a 7B model
setup, as shown in Figure 4.

Our findings reveal that, unlike the similar over-
all performance with baselines in the main results,
our Qwen2-VL-7B-AC model consistently outper-
forms the baseline across all complex image under-
standing tasks. This demonstrates that informative
image data is crucial for improving a model’s abil-
ity to perceive and understand complex images.
While recent works (Li et al., 2024d; Guo et al.,
2024) in visual model architectures often focus on
increasing image resolution to enhance complex
image understanding, higher resolution images do
not necessarily equate to greater complexity. For
example, compared to a high-resolution document
scan with more content, a lower-resolution yet
content-rich street scene image proves to be far
more beneficial for a model’s visual representation
learning. Images containing dense visual elements
effectively activate the model’s ability to recognize
and learn the relationships between these elements,
thus bridging the gap between the visual model’s
low-level visual perception and the world knowl-
edge stored in the pretrained language model.

7 Quantification Distribution Analysis

In this section, we present a visualization and de-
tailed analysis of the proposed image informative-
ness metrics, focusing on three metrics, with the
additional metrics provided in Appendix B.

Segmentation complexity score distribution
As shown in Figure 3, we observed that the distri-
bution of the segmentation complexity score varies
across different datasets. For example, the score of
the “llava_gpt4_20k” dataset is relatively low, as
it typically contains text-image pairs with limited
visual content, resulting in fewer visual elements
within the dataset. In contrast, the “sharegpt4v”
dataset primarily includes scene images from real-
life scenarios, which are generally richer in vi-
sual elements, leading to higher SC scores. This
difference indicates that the “sharegpt4v” dataset
contains more complex images. This distribution
demonstrates that our proposed segmentation com-
plexity score effectively reflects the number of vi-
sual elements in the data, indirectly capturing the
complexity of the images.

Diversity perspectives score distribution Un-
like the distribution of other scores, the diversity
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Figure 4: Results of the medium-scale model on six curated
complex image understanding and perception datasets.

perspectives score exhibits a notably extreme trend,
with the visual agent tending to assign either the
highest or the lowest ratings. Our analysis sug-
gests that this is primarily due to the multifaceted
nature of the image evaluation process, where im-
ages are assessed with multiple dimensions. The
diversity in the types and sources of images further
complicates the task of providing a comprehensive
score. Additionally, we intentionally designed the
system to prevent the agent from assigning low
scores based on a few weak dimensions of an im-
age. For example, we cannot devalue the quality
of a close-up photograph of still life simply due to

the lacking of visual events. As a result, the agent
tends to classify images as either extremely poor
or exceedingly rich in terms of visual content. This
underscores the substantial challenge in evaluating
images across multiple dimensions of quality. The
diverse characteristics of images make it difficult to
achieve a balanced and nuanced assessment, which
remains an open issue in multimodal evaluation
tasks.

Prior token perplexity score distribution For
analytical convenience, we apply the negative trans-
formation to the prior token perplexity scores when
visualization. Upon examining the distribution of
the prior token perplexity scores, we observe sig-
nificant variability across datasets. This can likely
be attributed to the greater disparity in the response
text across different tasks. While higher scores
(shifted towards the right) indicate that the token
probability distribution is more certain. However,
excessively high scores may also reflect overly
simplistic responses. Therefore, when setting the
threshold for filtering prior token perplexity scores,
we exclude a small number of outlines values to
enhance training efficiency.

8 Conclusion

In this paper, we present a novel approach called
visual-centric selection approach via agent collabo-
ration, which improve the training efficiency and
effectiveness of MLLMs through reduce the noise
data. Extensive experiments indicate that , with
less than 5% of the data, models trained with our
method achieve comparable or even superior results
to state-of-the-art approaches. Our paper demon-
stration that even a small number of high quality
data could surpass a large scale of data. Future
work will focus on developing more diverse and
comprehensive image quality evaluation metrics to
capture a broader range of visual complexities and
enhance the robustness of model training.



Limitations

Despite our discoveries and improvements, we
must acknowledge certain limitations in our work:

Data Size: Due to resource constraints, our ex-
periments were conducted on a dataset of 200K
samples, from which 80K instruction data were
finally selected. This limitation restricts our explo-
ration of the application of ViSA on larger datasets.
In future work, we aim to extend the use of ViSA
to a broader range of open-source datasets.

Theoretical Foundation: While our method for
quantifying image information richness has yielded
some promising results, it currently lacks a solid
theoretical foundation, limiting the generalizability
of our approach. Given the diverse sources and pur-
poses of image data, a comprehensive evaluation
of image quality remains a challenging task. We
plan to investigate additional theories and methods
for image information metrics in future.
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A Diversity Perspectives Prompt

We present the default version prompt for diversity
perspectives quantification used in our experiment
in the Table 3.

B Quantification Distribution Analysis

Object alignment score distribution As shown
in Figure 5, our object alignment score exhibit sim-
ilar trends with previous segmentation complex-
ity score. However, while the SC score tends to
reflect small visual elements such as shapes and
color blocks, the OA score is more aligned with
visual entities. As a result, the distribution of the
OA score is more concentrated. Higher OA scores
indicate the presence of more rare and distinctive
visual entities, highlighting the uniqueness of the
image. In contrast, images with lower OA scores
contain more common and less distinctive entities,
resulting in lower informational richness. The pres-
ence of too many common entities may introduce
bias into the visual model’s representation learning,
thereby affecting its efficiency.

Image-text mutual information score distribu-
tion The distribution of the image-text mutual in-
formation score reveals a concerning trend: certain
open-source datasets primarily focus on evaluat-
ing instruction-following ability, often overlooking
the critical relationship between the instruction and
the corresponding image. For example, we ob-
served that the llava_gpt4_20k dataset frequently
contains textual explanations or discussions that
are largely unrelated to the image content. Such
data not only fails to effectively guide the visual
model in learning meaningful visual representa-
tions but also introduces significant noise into the
visual instruction learning process. This highlights
the need for careful curation of datasets to miti-
gate such mismatches and enhance the quality of
visual instruction learning. These findings empha-
size the importance of aligning image-instruction
pairs in multimodal datasets, ensuring that both
components are relevant and complementary to the
task at hand. Such principles should guide future
efforts in constructing more effective and coherent
multimodal datasets.

C Case Study

To provide a more intuitive demonstration of the
proposed image information richness metrics, we
present a case study, shown in Figure 6. In this
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Figure 5: Score distributions across different datasets: (a) object alignment, and (b) image-text mutual information.
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Figure 6: Case study of our proposed image informative metrics. Images on the right exhibit higher scores and richer content,
while images on the left correspond to lower scores and simpler content.

figure, images on the right correspond to higher
scores, while images on the left are associated
with lower scores. Upon observation, we find
that all three proposed metrics effectively filter
for images with richer content. The segmenta-
tion complexity score favours simple visual ele-
ments, such as shapes and color blocks. For in-
stance, in the SC score examples, the image on
the far left—featuring only a single object, a pair
of scissors—receives a low SC score, whereas the
volleyball match image on the far right, with richer
content, achieves a higher score. However, we also
present an example of misjudgment: the second im-
age on the right, a fabric with repeated textures, has
a relatively high SC score despite its overall sim-
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plicity. This highlights the limitation of using basic
image segmentation as a sole measure of image
complexity.

In contrast, the object alignment score does not
suffer from this issue. For example, in the third
image on the right, depicting a crowd, the presence
of numerous people does not result in an inflated
OA score, as the frequent repetition of entities in
the image reduces their individual weight. Thus,
the image is correctly assigned a higher OA score
without any misjudgment.

Regarding the diversity perspectives score, we
focus on the multidimensional evaluation of im-
ages, which allows us to prioritize "interesting"
images. For instance, the third image on the right,



a comic, and the second image, a meme, receive
high scores for emphasizing specific cultural ele-
ments. The photo on the far right earns the highest
score due to its aesthetic value, while the screen-
shot on the far left, primarily composed of text,
is assigned a low score due to its lack of visual
information.

D Evaluation Detail

In this section, we provide additional information
and details regarding the evaluation benchmarks.
VQAV2 is a widely adopted open-domain visual
question answering dataset, consisting of over one
million question-answer pairs. For our evaluation,
we sample a subset of 10,000 questions. OKVQA
is designed to assess models’ ability to answer vi-
sual questions by leveraging external knowledge
sources. Likewise, TextVQA includes over 45,000
text-centric questions based on more than 28,000
images extracted from selected categories of the
Openlmages dataset. To evaluate advanced mul-
timodal reasoning capabilities, MMBench (V1.1)
provides a diverse set of 4876 multiple-choice ques-
tions compiled from various sources, spanning 20
distinct capability dimensions. MME-RealWorld
(MME-RW) serves as a benchmark tailored to real-
world applications, focusing on practical scenar-
ios; we utilize its lite version, which consists of
1919 of the most challenging questions. SEED-
Bench (SEED) comprises 14232 carefully anno-
tated multiple-choice questions, covering 12 key
evaluation dimensions. Lastly, MMMU consists
of 1050 challenging questions across a wide range
of interdisciplinary tasks, requiring college-level
subject knowledge and advanced reasoning skills.
For each dataset, we follow the answer-matching
strategy recommended in its original paper and
compute accuracy with a widely used open-source
evaluation toolkit (Duan et al., 2024).
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The default version of PICA prompt with an example

# Image Complexity Assessment Task

In this task, you will evaluate the informational richness of an image based on multiple dimensions. Each image may
contain multiple layers of information, including various visual elements, contextual settings, emotional expressions,
and cultural backgrounds. Please provide a detailed evaluation based on the following rating criteria.

## Rating Criteria:

The overall score will be based on all valid indicators. Images with particularly strong performance in certain
dimensions (e.g., complex context or strong emotional expression) will receive higher scores, and weaker performance
in other dimensions will not significantly lower the final score. It is recommended to focus on the image’s overall
informational layers, element rarity, context building, and uniqueness rather than the absence of a single dimension.

1 Point: Very low information, typically a single subject with a simple background or no clear context. The image lacks
depth and multi-dimensional understanding, with few visual elements and no notable uniqueness.

2 Point: Low information, with a few simple elements. It may have basic context or structure but lacks detail
and uniqueness. The image is plain and suitable for basic understanding tasks, with weak emotional or contextual
expression.

3 Point: Moderate information, with a reasonable number of elements or layers. Context, emotion, or uniqueness
are more noticeable, and the image provides moderate multi-dimensional understanding. It has some depth in visual
elements and context but doesn’t meet all high-level requirements.

4 Point: High information, with rich elements and clear context, showing uniqueness and diverse layers. The image is
detailed, with strong emotional or contextual expression, but may lack some rare or background features. Suitable for
in-depth analysis, particularly in context, emotion, culture, or history.

5 Point: Very rich information, with diverse elements, complex scenes, unique perspectives, and abundant detail. The
image features rare qualities and deep context, emotion, and cultural background. Ideal for advanced analysis with
multi-dimensional depth.

## Evaluation Dimensions

### 1. Details and Materiality

Detail Density: Evaluate the number and complexity of details in the image. The denser the details, the greater the
informational content.

Material and Texture: Evaluate whether the image showcases multiple materials (e.g., wood, metal, fabric) and
whether the textures are clearly visible. A variety of material layers adds to the visual richness.

Detail Layers and Spatial Perception: Evaluate whether the image presents multiple layers of details, such as clear
details in the foreground and a blurred background, creating a sense of depth.

### 2. Context and Narrative

Context Constructio: Evaluate whether the image constructs a clear context or scene that conveys rich information
through visual elements (e.g., a family gathering, office work, festive events).

Narrative Complexity: Evaluate whether the image depicts one or more complex events or actions, increasing the
narrative depth and informational content.

Implied Background Story: Evaluate whether the image implies a potential story or context through visual elements,
such as through the environment, actions of people, or objects that hint at social, historical, or cultural contexts.

### 3. Emotion and Atmosphere

Emotional Expression: Evaluate whether the image conveys a specific emotion or atmosphere through elements like
lighting, color tones, and composition. Emotional expression increases the image’s complexity.

Emotional Layering: Evaluate whether the image expresses multiple emotional layers or emotional shifts through
different elements. Images with rich emotional layers often have greater depth.

### 4. Cultural and Historical Context

Cultural Characteristics: Evaluate whether the image contains elements that reflect a specific cultural, historical, or
social context (e.g., distinctive architectural styles, clothing, festivals).

Historical Background: Evaluate whether the image reflects historical events, periods, or characteristics. Historical
elements enhance the image’s depth.

### 5. Camera Angle and Composition

Unique Perspective: Evaluate whether the image features a unique or creative angle, using uncommon perspectives.
Composition Complexity: Evaluate whether the image’s composition is complex and varied, using techniques like
contrast, symmetry, and spatial distribution to enhance the image’s depth. Complex compositions effectively convey
more information.

### 6. Dynamics and Interaction

Dynamic Elements: Evaluate whether the image includes dynamic elements (e.g., movement of people or objects, hints
of time progression).

Interactivity: Evaluate whether the image depict interaction between elements (e.g., people talking, animals hunting)?
Interaction enhances the appeal and complexity of the image.

Table 3: The default version of PICA prompt with an example
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