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Abstract001

To improve Multimodal Large Language Mod-002
els’ (MLLMs) ability to process images and003
complex instructions, researchers predomi-004
nantly curate large-scale visual instruction tun-005
ing datasets, which are either sourced from ex-006
isting vision tasks or synthetically generated007
using LLMs and image descriptions. However,008
they often suffer from critical flaws, includ-009
ing misaligned instruction-image pairs and low-010
quality images. Such issues hinder training ef-011
ficiency and limit performance improvements,012
as models waste resources on noisy or irrele-013
vant data with minimal benefit to overall ca-014
pability. To address this issue, we propose a015
Visual-Centric Selection approach via Agents016
Collaboration (ViSA), which centers on image017
quality assessment and image-instruction rel-018
evance evaluation. Specifically, our approach019
consists of 1) an image information quantifica-020
tion method via visual agents collaboration to021
select images with rich visual information, and022
2) a visual-centric instruction quality assess-023
ment method to select high-quality instruction024
data related to high-quality images. Finally,025
we reorganize 80K instruction data from large026
open-source datasets. Extensive experiments027
demonstrate that ViSA outperforms or is com-028
parable to current state-of-the-art models on029
seven benchmarks, using only 2.5% of the orig-030
inal data, highlighting the efficiency of our data031
selection approach. Moreover, we conduct ab-032
lation studies to validate the effectiveness of033
each component of our method.034

1 Introduction035

Recent advancements in multimodal large language036

models (MLLMs) have led to significant progress037

in general visual understanding (OpenAI, 2023;038

Dai et al., 2023a; Liu et al., 2023). By integrating039

state-of-the-art large vision models (LVMs) with040

large language models (LLMs) and training on vast041

amounts of visual data, MLLMs have demonstrated042

Q: In which country were 
eyeglasses invented?
A: Eyeglasses were invented 
in Italy,

Q: What might be the research 
focus of Steven Ross?
A: The research appears to be in 
the field of optics

Weak Alignment TextLow Complexity Image

Figure 1: Two common issues in visual instruction tuning
datasets. (Left) Low-Complexity Image: The image lacks
meaningful visual information. (Right) Low-Quality Text:
The instruction is weakly aligned with the image.

the ability to comprehend complex images, achiev- 043

ing remarkable performance across a variety of 044

visual tasks, including object recognition (Zhang 045

et al., 2024b), visual question answering (Yu et al., 046

2024), and image captioning (Levinboim et al., 047

2021). The training of MLLMs generally involves 048

two main steps: first, pretraining on image-caption 049

pairs to align the large vision model with the lan- 050

guage model; second, instruction tuning on down- 051

stream visual tasks to enable the model to better 052

understand complex images and perform sophisti- 053

cated visual tasks. To improve the multimodal un- 054

derstanding and task-solving abilities of MLLMs, 055

existing approaches typically collect large-scale 056

visual task data from a variety of sources for 057

constructing instruction tuning datasets (Li et al., 058

2024a; Tong et al., 2024). 059

Specifically, existing works have primarily fo- 060

cused on collecting open-source training datasets 061

from existing visual tasks (Li et al., 2024a; Liu 062

et al., 2024a; Tong et al., 2024), or synthetically 063

generating various instructions using GPT-4 based 064

on the collected images and description (Liu et al., 065

2023, 2024b). Such approaches enable the col- 066

lection of large amounts of instructional data at a 067

relatively low cost, without the need for extensive 068

manual annotation. However, they often introduce 069
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significant noise into the training datasets. For ex-070

ample, images with low complexity or irrelevant071

instruction-image pairs can be problematic. As il-072

lustrated in Figure 1, the left subfigure shows an073

image of a presentation slide, which contains only074

a simple icon and basic presentation information.075

Such images provide little useful visual content or076

knowledge, making it difficult for models trained077

on such images to generalize to more complex real-078

world applications, where informative visuals are079

essential for learning robust visual representations.080

Another common issue is when the instruction is081

weakly aligned with the image, as shown in the082

right subfigure, where the instruction is a common-083

sense question that can be answered without refer-084

encing the image. This type of data fails to effec-085

tively link the visual model’s perception with the086

textual knowledge stored in the language model,087

reducing the efficiency of multimodal learning.088

To address this issue, we present a novel ap-089

proach called Visual-Centric Selection via Agents090

Collaboration (ViSA). This method leverages col-091

laboration among multiple visual agents to assess092

the quality of visual data, selecting high-quality im-093

ages and instruction pairs to enhance the training ef-094

ficiency of MLLMs. The approach consists of two095

key components: 1) Visual Information Quantifi-096

cation, where agents collaborate to quantify visual097

elements and assess the richness of diverse image098

perspectives, selecting informative images; and 2)099

Image-Centric Instruction Quality Quantifica-100

tion, which focuses on selecting instructions tightly101

coupled with the images. This is achieved by lever-102

aging multiple agents to calculate metrics such as103

prior token perplexity and image-text mutual infor-104

mation, enabling the evaluation of response quality105

and its relevance to the visual content. Addition-106

ally, to improve the collaboration across multiple107

visual agents, we introduce a Shapley value based108

on the Pearson correlation coefficient to weigh the109

reliability of each agent’s assessment.110

To thoroughly assess the effectiveness of our111

method, we filter out 80K high-quality instruction112

data from the LLaVA-OneVision dataset (Li et al.,113

2024a). We then conduct extensive experiments114

to evaluate the training effectiveness of the filtered115

data. The results on seven visual benchmarks show116

that a model trained with less than 5% of the data117

used by baselines achieves performance compara-118

ble to, or even surpassing, state-of-the-art models,119

highlighting the importance of high-quality data for120

understanding intricate images. Furthermore, we121

observe significant improvements when continuing 122

the training of a 72B model with a small set of high- 123

information-density data, demonstrating that larger 124

models can still benefit from informative images 125

and well-aligned instructions. Overall, our agent 126

collaboration-based data selection method effec- 127

tively reduces noise in training datasets, leading to 128

a significant increase in MLLM training efficiency. 129

Our main contributions can be summarized as 130

follows: 131

• We propose a novel multi-agent framework for 132

quantifying and selecting high-quality visual in- 133

struction data. This framework evaluates both 134

image informativeness and instruction relevance, 135

leveraging a diverse set of visual agents to assess 136

general visual elements as well as diverse image- 137

specific features. To the best of our knowledge, 138

this is the first work to explicitly introduce im- 139

age informativeness evaluation in the context of 140

visual data selection. 141

• We introduce a new instruction quality quantifica- 142

tion method based on prior token perplexity and 143

image-text mutual information, which measure 144

the response quality for selecting instructions 145

tightly coupled with the images, respectively. We 146

propose the Shapley value approach based on 147

the Pearson correlation coefficient to effectively 148

combine the evaluations from multiple agents. 149

• We conduct extensive experiments and ablation 150

studies, demonstrating that our approach sig- 151

nificantly improves the training efficiency of 152

MLLMs. Using only 80K selected samples, our 153

method enables both 2B-scale and 7B-scale vi- 154

sion models to achieve performance on par with 155

state-of-the-art models. Moreover, with a larger 156

72B-scale model, our high-quality selected data 157

consistently enhances the model’s performance 158

in visual understanding and reasoning tasks. 159

2 Related Work 160

Vision Large Models : The development of 161

Vision Large Models (VLMs) has led to signifi- 162

cant advances in visual comprehension and reason- 163

ing (Li et al., 2022, 2023b; Zhu et al., 2024; Liu 164

et al., 2023, 2024a; Li et al., 2025). The training 165

of multimodal large models (MLLMs) typically 166

consists of two key stages. First, vision-language 167

alignment is achieved by mapping the visual repre- 168

sentations obtained from a pretrained Large Vi- 169

sual Model (LVMs) (Sun et al., 2023; Radford 170
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et al., 2021) into the LLM representation space171

through a learnable projection network (Merullo172

et al., 2023; Li et al., 2023b). Subsequently, the173

aligned models are fine-tuned using instruction174

data to enhance their ability to process complex175

visual instructions (Chen et al., 2023; Bai et al.,176

2023; Li et al., 2024c; Dai et al., 2023b). Recently,177

there has been a growing trend in high-resolution178

MLLMs (Guo et al., 2024; Li et al., 2024b; Bai179

et al., 2023; Wang et al., 2024). Consequently, the180

ability to benefit from complex images has become181

increasingly important as informative images that182

can maximize these models’ potential. Hence, our183

work aims to develop a quantitative assessment of184

image informativeness to select high-quality data.185

Vision Instruction Datasets : Instruction tuning186

aims to enhance a model’s ability to understand187

and reason about images through diverse vision-188

language tasks, such as visual question answer-189

ing (Antol et al., 2015), image captioning (Radford190

et al., 2021), and object detection (Ravi et al., 2024).191

MultiInstruct (Xu et al., 2023) introduced the first192

human-annotated multimodal instruction tuning193

dataset, designed to enhance the zero-shot capa-194

bilities of pretrained VLMs. Building upon this195

foundation, subsequent studies have increasingly196

focused on curating diverse image datasets and197

harnessing the power of large multimodal models,198

such as GPT-4V, to automatically generate large-199

scale visual instruction data (Li et al., 2024a; Xu200

et al., 2024). Several recent studies have explored201

different strategies to improve visual instruction202

tuning. Some works (Zhang et al., 2023; Hu et al.,203

2024) employ OCR tools and GPT-4 to generate204

instruction-following tasks that help VLMs better205

understand text within images. Meanwhile, recent206

works (Wang et al., 2023; Chen et al., 2024) di-207

rectly prompt GPT-4V with images as inputs to208

generate visual instruction tuning data. Unlike pre-209

vious works that focus on instruction generation210

strategies, our approach emphasizes high-quality211

data selection by systematically assessing image212

informativeness and image-instruction relevance.213

3 Method214

In this section, we introduce our visual-centric se-215

lection via agents collaboration. First, to identify216

informative images, we comprehensively consider217

various aspects of image information density as-218

sessment, including evaluation based on general219

visual elements §3.1 and assessment from other di-220

versity visual information perspectives §3.2. Subse- 221

quently, we refine multimodal data selection on the 222

textual level, incorporating text quality evaluation 223

based on prior token perplexity and text relevance 224

assessment based on mutual information §3.3. Fi- 225

nally, using our proposed method, we curated a 226

high-quality instruction fine-tuning dataset §3.4. 227

3.1 Visual Elements Quantification 228

Evaluating image complexity from the perspec- 229

tive of visual elements is crucial for understanding 230

image informativeness. However, existing meth- 231

ods primarily focus on object-level recognition or 232

coarse-grained overall image assessment, lacking 233

a fine-grain quantification of visual complexity. 234

To address this, we assess image informativeness 235

based on general visual elements (e.g., visual ob- 236

jects, graphical elements, characters, etc.), which 237

are inherently linked to image complexity. Specif- 238

ically, we introduce two evaluation metrics: Seg- 239

mentation Complexity Score (SC Score) and Ob- 240

ject Alignment Score (OA Score). The SC Score 241

is designed to assess the richness of graphical el- 242

ements and characters in an image, leveraging a 243

visual segmentation method. In contrast, the OA 244

Score evaluates the richness of objects in an im- 245

age using the object detection approach based on a 246

predefined category set. 247

Specifically, for the SC Score, we predefine 512 248

anchor points and employ the SAM2 model (Ravi 249

et al., 2024), which segments target regions based 250

on the provided points, to generate a set of segmen- 251

tation boxes denoted as M . The SC Score is then 252

computed using the following formula: 253

Score(SC) = count(IoU(M, 0.75)). (1) 254

To evaluate the richness of objects, motivated by 255

prior grounding work (Ren et al., 2024), we first 256

predefine a set of over 1800 common image ob- 257

ject categories. Using the DINO model (Liu et al., 258

2024c), which identifies the presence and location 259

of predefined tags within images, we detect the vi- 260

sual objects corresponding to each category. The 261

OA Score is then computed by calculating the fre- 262

quency of each category and normalizing it using 263

the term frequency-inverse document frequency 264

weight algorithm (TF-IDF), as shown in the follow- 265

ing: 266

Score(OA) =
∑
i

TF-IDF(Ci), (2) 267

where Ci is the predicted frequency of the i-th 268
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Input: What time period do 
the cars belong to?
Reponse: The cars likely 
belong to the 1950s

a) Visual Elements 
Quantification

Culture: 3
Emotion: 2
Dynamic: 1

...

Prior Token Distribution

SAM2

Input: <Image>What time 
period do the cars belong to?
Reponse: The cars likely 
belong to the 1950s

Image 
Segementation

𝑆𝑐𝑜𝑟𝑒(𝑂𝐴)

Objection
 Dection

DINO

InternVL QwenVL

Llava

b) Diversity Perspectives 
Quantification

Diversity Perspective 
Evaluation Instruction

Agent Collaboration based on 
Shapley Value Approach 

𝑆𝑐𝑜𝑟𝑒(𝑆𝐶)

𝑆𝑐𝑜𝑟𝑒(𝐷𝑃)

InternVL

Llava

Agent Collaboration based on 
Shapley Value Approach 

Token PerplexityThe: 0.7
cars: 0.9
likely: 0.6
belong: 0.5

...

The: 0.8
cars: 0.3
likely: 0.5
belong: 0.3

...

Instruction without image

Instruction with image

𝑆𝑐𝑜𝑟𝑒(𝑃𝑇)

𝑆𝑐𝑜𝑟𝑒(𝐼𝑀)

Mutual Information

c) Text Quality 
Quantification

Evaluate the infor-
mational richness of 
an image based on  ...

...

Example 1: ...

Example 2: ...

Example 3: ...

QwenVL

Figure 2: Overview of our agent collaboration for visual data selection. The Score(SC) denotes the Segmentation Complexity
Score. The Score(OA) shows the Object Alignment Score. The Score(DP ) indicates the Diversity Perspective Score. The
Score(PT ) denotes the Prior Token Perplexity Score. The Score(IM) denotes the Image-Text Mutual Information Score.

category, which emphasizes the importance of rare269

objects within the image set.270

3.2 Diversity Perspectives Quantification271

We found that while the aforementioned visual ele-272

ment metrics provide a estimate of image informa-273

tiveness with expectations, they are insufficient for274

fully capturing the richness of other types of image275

information. To address this limitation, we pro-276

pose a multi-agent-based Diversity Perspective277

Score (DP Score), designed to evaluate images278

from multiple perspectives and dimensions, includ-279

ing events, emotions, culture, composition, and280

dynamics. These diverse perspectives offer a more281

comprehensive view of image informativeness, ac-282

counting for the varied origins and functional pur-283

poses of image creation. Specifically, we design a284

detailed evaluation guideline, complete with mul-285

tiple examples, prompting various state-of-the-art286

visual agents to assess the image from each per-287

spective and produce a final integrated score. For288

the specific evaluation guideline used, please refer289

to Appendix A.290

To integrate the final score of each agent, we291

use a Shapley value approach (Lundberg and Lee,292

2017) based on the Pearson correlation coefficient293

to compute the weight of each agent, motivated by294

the idea of determining model weights based on295

score consistency. Specifically, the weight Wj of296

each agent is calculated as follows: 297

Wj =
∑

S⊆N\{j}

ω(S)∆ρ(S, j),

ω(S) =
|S|!(|N | − |S| − 1)!

|N |!
,

∆ρ(S, j) = ρ(S ∪ {j})− ρ(S)

(3) 298

where N represents the set of all agents, and S 299

is any subset of agents excluding the j-th agent. 300

Pearsonr(S) is the Pearson correlation coefficient 301

of the score distribution over the agents set S, mea- 302

suring the linear relationship between the scores. 303

The overall diversity perspective score for each im- 304

age is then computed as the weighted average of 305

the diversity perspective scores Ej from multiple 306

agents. 307

Score(DP ) =

j∑
|N |

WjEj . (4) 308

3.3 Text Quality Quantification 309

To fully capture the visual and textual aspects of 310

image informativeness, the quality of the associ- 311

ated text is also important. In this regard, we pro- 312

pose a multi-agent-based text quality quantifica- 313

tion method, which includes two key metrics: the 314

Prior Token Perplexity Score (PT Score), which 315

measures the quality of the textual content, and 316
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the Image-Text Mutual Information Score (IM317

Score), which assesses the degree of association318

between the text and the image. Similar to the319

approach in Section 3.1, we utilize three different320

agents to compute the PT Score and the IM Score321

separately, and then aggregate these scores using322

the Shapley value approach to obtain their compre-323

hensive quality score.324

Specifically, the PT Score is calculated by eval-325

uating the perplexity of the response, which is de-326

fined as follows. Due to the significant variability327

in the length distribution of the data instructions,328

we adopt a more length robust approach to prior329

token perplexity (Liu et al., 2024e):330

Pj = exp

(
− 1

N

K∑
i=1

logP (wi|w<i)

)
, (5)331

332

Score(TP ) =

j∑
N

∑
S⊆N\{j}

ω(S)∆ρ(S, j)Pj ,333

where K denotes the number of prior tokens. This334

score reflects how predictable or coherent the se-335

quence of tokens is based on preceding words.336

Next, we compute the IM Score, which measures337

the mutual dependence between the image and the338

associated text, formulated as following:339

Ij = H(Text)−H(Text|Image), (6)340

341

Score(IM) =

j∑
N

∑
S⊆N\{j}

ω(S)∆ρ(S, j)Ij ,342

where H(Text) is the entropy of the text without343

the image input, and H(Text|Image) is the condi-344

tional entropy of the text given the image. A higher345

mutual information value indicates a stronger asso-346

ciation between the text and the image.347

3.4 Data Selection348

To evaluate the effectiveness of our data selection349

approach, random sample 175K instruction data350

points from the open-source LLaVA-OneVision351

dataset (Li et al., 2024a). We then applied the SC352

score, OA score, and DP score to filter out 15%,353

20%, and 13% of the data, respectively, resulting in354

100K high-quality image samples. Subsequently,355

we further refined the dataset by applying the TP356

score and IM score to select 10% of the data, yield-357

ing a final set of 80K high-quality instruction fine-358

tuning samples.359

4 Experiment 360

4.1 Evaluation 361

To evaluate the performance of our method, we in- 362

troduce three well-established image understanding 363

benchmarks, including VQAv2 (Antol et al., 2015), 364

OKVQA (Marino et al., 2019), TextVQA (Singh 365

et al., 2019), along with four cutting-edge datasets 366

designed for complex visual comprehension and 367

reasoning, including MMBench (Liu et al., 2024d), 368

MME-RealWorld (Zhang et al., 2024a), SEED- 369

Bench (Li et al., 2023a), MMMU (Yue et al., 2024). 370

We provide more detail in the Appendix D. 371

4.2 Baselines 372

We compare our approach against SOTA MLLMs, 373

including Qwen2-VL (Wang et al., 2024), 374

Llava-OneVision (Li et al., 2024a), Llama-3.2- 375

Vision (Dubey et al., 2024), as well as InternVL2 376

and InternVL2.5 (Chen et al., 2023). all of which 377

have been trained on massive-scale datasets with 378

extensive computational resources. To compre- 379

hensively evaluate the effectiveness of our method 380

across different model scales, we conduct experi- 381

ments using models of three representative param- 382

eter sizes: small-scale (2B parameters), medium- 383

scale (7B–11B), and large-scale (70B–90B). Due 384

to the computational constraints, we employ the 385

INT4 quantized versions of all large-scale models. 386

4.3 Implementation Detail 387

We conduct full fine-tuning on Qwen2-VL-2B and 388

Qwen2-VL-7B as our base models. Due to com- 389

putational constraints, we adopt Qwen2-VL-72B- 390

instruction as the base model for large-scale ex- 391

periments and apply LoRA for efficient contin- 392

ued fine-tuning. All models are optimized us- 393

ing AdamW (Loshchilov and Hutter, 2019) with a 394

learning rate of 1e-5 for full fine-tuning and 1e-4 395

for LoRA-based fine-tuning, along with a weight 396

decay of 0.01. We employ a linear warmup strategy 397

with a 0.1 warmup ratio and set the LoRA rank to 398

16. The maximum sequence length is 2048 tokens, 399

and all models are trained and evaluated using the 400

BFloat16 floating-point format. For training effi- 401

ciency, we use a batch size of 32 with four-step gra- 402

dient accumulation on a single GPU. Additionally, 403

we follow the original chat template of Qwen2-VL 404

for model interactions. We used beam search with 405

the beam size set to 4 for generation. We run all 406

the experiments on the NVIDIA H800 GPU. 407
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Models Data Scale OKVQA VQAv2 TextVQA MMBench MME-RW SEED MMMU
InternVL2-2B >5M 41.2 75.9 72.0 70.9 37.8 71.8 33.0
InternVL2.5-2B >8M 39.2 77.8 71.9 79.0 34.6 72.8 40.3
Qwen2-VL-2B >5M 44.3 71.5 77.6 74.6 31.2 68.2 33.6
Qwen2-VL-2B-AC (ours) 80K 48.4 73.3 81.4 73.0 39.1 69.4 42.2
Llama3.2-vision-11B >3M 23.6 72.2 56.5 65.8 38.5 72.7 48.1
Llava-Onevision-7B >1.6M 61.6 82.5 80.3 80.9 48.6 75.4 47.9
InternVL2-8B >5M 46.4 79.2 77.9 79.4 37.4 75.4 51.2
InternVL2.5-8B >8M 54.4 80.7 80.9 82.5 46.4 76.8 56.2
Qwen2-VL-7B >5M 58.0 83.0 85.4 81.0 48.3 75.0 50.6
Qwen2-VL-7B-AC (ours) 80K 54.2 83.6 84.3 80.7 49.4 75.2 49.9
Llama3.2-vision-90B >3M 46.7 73.1 71.0 84.3 45.4 75.8 38.2
Llava-Onevision-72B >1.6M 66.3 84.8 82.6 86.4 48.8 77.8 50.6
InternVL2-76B >5M 60.9 84.6 87.1 87.3 49.1 76.5 52.2
InternVL2.5-78B >8M 57.4 85.2 86.3 91.9 46.4 77.0 62.5
Qwen2-VL-72B >5M 52.9 83.2 90.8 90.6 40.8 78.3 59.1
Qwen2-VL-72B + AC-lora (ours) 80K 58.0 90.5 91.3 89.8 47.4 79.8 60.6

Table 1: Main result of visual understanding task. The "Data Scale" refers to the instruction data scale reported in each respective
paper. Models with more than 72B parameters use InT4 quantification. The best results in each task are highlighted in bold.

Models Data Scale OKVQA VQAv2 TextVQA MMBench MME-RW SEED MMMU
Qwen2-VL-2B-AC 80K 48.4 73.3 81.4 73.0 39.1 69.4 42.2

- Instruction Quality 100K 43.5 72.2 75.8 70.8 36.0 68.1 38.3
- Diversity Perspective 115K 42.4 72.6 74.9 69.7 35.4 67.7 37.5
- Visual Element 175K 41.0 70.3 72.1 68.5 33.9 67.1 35.8

Qwen2-VL-7B-AC 80K 54.2 83.6 84.3 80.7 49.4 75.2 49.9
- Instruction Quality 100K 50.4 81.9 82.4 77.3 47.9 73.2 48.1
- Diversity Perspective 115K 49.3 81.7 81,9 76.5 47.0 72.8 48.2
- Visual Element 175K 47.2 79.3 79.1 75.7 45.3 71.8 44.1

Table 2: Ablation study of small-scale and middle-scale on visual understanding task. The "Data Scale" refers to the training
data size before filtering.

4.4 Main Result408

In this section, we explore the two following re-409

search questions: (1) Q1: How does our data com-410

pare with current mainstream training datasets in411

terms of efficiency? and (2) Q2: Can a small412

amount of high-quality data continuously improve413

a well-trained, large-scale model?414

Q1: A small amount of high-quality data sig-415

nificantly efficiency improves the instruction-416

following ability of pretrained MLLMs. As417

shown in Table 1, with less than 5% of the baseline418

training data, our method achieves comparable or419

superior performance across all datasets. Specif-420

ically, our Qwen2-VL-2B-AC model achieves an421

average score of 61.0% on 7 benchmarks, outper-422

forming Qwen2-VL-2B (57.3%), InternVL2.5-2B423

(59.4%), and InternVL2-2B (57.5%). For middle-424

scale models, our Qwen2-VL-7B-AC model425

reaches an average score of 68.2%, surpass-426

ing Llama3.2-vision-11B (53.9%), InternVL2-8B427

(63.8%), and matching the performance of Llava-428

Onevision-7B (68.1%), Intern2.5-8B (68.3%), and429

Qwen2-VL-7B (68.7%). These results suggest that430

the key factor for training pretrained MLLMs is431

not solely the amount of data, but rather the quality432

of the data. A small amount of high-quality data 433

can significantly boost the multimodal instruction- 434

following capability of pretrained MLLMs, en- 435

abling the model to activate the visual knowledge 436

learned during pretraining and perform a variety 437

of visual tasks. Moreover, we observe that on the 438

MME-RealWorld dataset, a complex real-world 439

visual benchmarks, our model consistently outper- 440

forms the baseline, highlighting the crucial role 441

of complex visual data in real-world applications. 442

However, we also see that compared to the small- 443

scale model, the advantages of high-quality data are 444

less pronounced in the middle-scale model. This 445

may be because larger models require more high- 446

quality data to fully fine-tune the deeper parame- 447

ters, a finding also shown in the work of training 448

scaling law (Kaplan et al., 2020). 449

Q2: A small amount of high-quality data can 450

continuously boost large-scale MLLMs. As 451

shown in Table 1, continued training on the Qwen2- 452

VL-72B model leads to noticeable improvements in 453

its image understanding capabilities. The Qwen2- 454

VL-72B-AC model achieves 73.9% on 7 datasets, 455

surpassing other baseline models. Specifically, 456

compared to the original Qwen2-VL-72B, our fine- 457
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tuned model shows significant gains on the two458

datasets that focus on complex image perception459

and understanding: OKVQA and MME-RealWorld460

(4.1% and 6.6% improvement, separately). These461

results suggest that even large models trained on462

vast amounts of data can still be hungry for high-463

quality data, and a small amount of high-quality464

data can rapidly boost their performance. More-465

over, this also highlights the importance of high-466

quality data for effective continued instruction tun-467

ing in very large models.468

5 Ablation Study469

In this section, we conduct ablation experiments470

to assess the effectiveness of the proposed filter-471

ing methods, as presented in Table 2. Our find-472

ings reveal that even when the total amount of data473

is increased by removing the specific filter, the474

performance quickly degrades. This suggests that475

fine-tuning with a small amount of high-quality476

data is significantly more efficient than using large477

amounts of noisy data. Our method effectively478

filters out noisy data, thereby improving the fine-479

tuning efficiency of the model. Notably, the per-480

formance shows the most significant decline when481

the instruction quality filter is removed, with av-482

erage performance drops of 3.1% and 2.5% for483

the small and middle-scale models, respectively.484

This confirms our observation that weakly aligned485

instructions in the current visual instruction data486

have a detrimental effect. Poorly aligned instruc-487

tion data negatively impacts the perception and488

knowledge alignment between the visual encoder489

and the large language model, ultimately reducing490

the overall performance. Moreover, the removal of491

the visual element filter also leads to a noticeable492

decrease in performance (1.6% and 2.1% for the493

small and middle-scale models, respectively). This494

emphasizes the critical role of image quality in data495

selection; low-quality or noisy images hinder the496

efficiency of visual representation learning by the497

vision encoder.498

6 Complex Visual Understanding499

To fully explore the role of high-quality data in500

complex image perception and understanding, we501

selected six sub-tasks of image comprehension502

from the practical related benchmark, including503

sentiment classification, quality assessment, scene504

perception, and style classification from MMBench,505

as well as scene understanding from SEED Bench506

and visual perception from MME-RealWorld. We 507

report the results of our method on a 7B model 508

setup, as shown in Figure 4. 509

Our findings reveal that, unlike the similar over- 510

all performance with baselines in the main results, 511

our Qwen2-VL-7B-AC model consistently outper- 512

forms the baseline across all complex image under- 513

standing tasks. This demonstrates that informative 514

image data is crucial for improving a model’s abil- 515

ity to perceive and understand complex images. 516

While recent works (Li et al., 2024d; Guo et al., 517

2024) in visual model architectures often focus on 518

increasing image resolution to enhance complex 519

image understanding, higher resolution images do 520

not necessarily equate to greater complexity. For 521

example, compared to a high-resolution document 522

scan with more content, a lower-resolution yet 523

content-rich street scene image proves to be far 524

more beneficial for a model’s visual representation 525

learning. Images containing dense visual elements 526

effectively activate the model’s ability to recognize 527

and learn the relationships between these elements, 528

thus bridging the gap between the visual model’s 529

low-level visual perception and the world knowl- 530

edge stored in the pretrained language model. 531

7 Quantification Distribution Analysis 532

In this section, we present a visualization and de- 533

tailed analysis of the proposed image informative- 534

ness metrics, focusing on three metrics, with the 535

additional metrics provided in Appendix B. 536

Segmentation complexity score distribution 537

As shown in Figure 3, we observed that the distri- 538

bution of the segmentation complexity score varies 539

across different datasets. For example, the score of 540

the “llava_gpt4_20k” dataset is relatively low, as 541

it typically contains text-image pairs with limited 542

visual content, resulting in fewer visual elements 543

within the dataset. In contrast, the “sharegpt4v” 544

dataset primarily includes scene images from real- 545

life scenarios, which are generally richer in vi- 546

sual elements, leading to higher SC scores. This 547

difference indicates that the “sharegpt4v” dataset 548

contains more complex images. This distribution 549

demonstrates that our proposed segmentation com- 550

plexity score effectively reflects the number of vi- 551

sual elements in the data, indirectly capturing the 552

complexity of the images. 553

Diversity perspectives score distribution Un- 554

like the distribution of other scores, the diversity 555

7



(a) (b) (c)

Figure 3: Score distributions across different datasets: (a) segmentation complexity, (b) diversity perspectives and (c) prior token
perplexity.

Figure 4: Results of the medium-scale model on six curated
complex image understanding and perception datasets.

perspectives score exhibits a notably extreme trend,556

with the visual agent tending to assign either the557

highest or the lowest ratings. Our analysis sug-558

gests that this is primarily due to the multifaceted559

nature of the image evaluation process, where im-560

ages are assessed with multiple dimensions. The561

diversity in the types and sources of images further562

complicates the task of providing a comprehensive563

score. Additionally, we intentionally designed the564

system to prevent the agent from assigning low565

scores based on a few weak dimensions of an im-566

age. For example, we cannot devalue the quality567

of a close-up photograph of still life simply due to568

the lacking of visual events. As a result, the agent 569

tends to classify images as either extremely poor 570

or exceedingly rich in terms of visual content. This 571

underscores the substantial challenge in evaluating 572

images across multiple dimensions of quality. The 573

diverse characteristics of images make it difficult to 574

achieve a balanced and nuanced assessment, which 575

remains an open issue in multimodal evaluation 576

tasks. 577

Prior token perplexity score distribution For 578

analytical convenience, we apply the negative trans- 579

formation to the prior token perplexity scores when 580

visualization. Upon examining the distribution of 581

the prior token perplexity scores, we observe sig- 582

nificant variability across datasets. This can likely 583

be attributed to the greater disparity in the response 584

text across different tasks. While higher scores 585

(shifted towards the right) indicate that the token 586

probability distribution is more certain. However, 587

excessively high scores may also reflect overly 588

simplistic responses. Therefore, when setting the 589

threshold for filtering prior token perplexity scores, 590

we exclude a small number of outlines values to 591

enhance training efficiency. 592

8 Conclusion 593

In this paper, we present a novel approach called 594

visual-centric selection approach via agent collabo- 595

ration, which improve the training efficiency and 596

effectiveness of MLLMs through reduce the noise 597

data. Extensive experiments indicate that , with 598

less than 5% of the data, models trained with our 599

method achieve comparable or even superior results 600

to state-of-the-art approaches. Our paper demon- 601

stration that even a small number of high quality 602

data could surpass a large scale of data. Future 603

work will focus on developing more diverse and 604

comprehensive image quality evaluation metrics to 605

capture a broader range of visual complexities and 606

enhance the robustness of model training. 607
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Limitations608

Despite our discoveries and improvements, we609

must acknowledge certain limitations in our work:610

Data Size: Due to resource constraints, our ex-611

periments were conducted on a dataset of 200K612

samples, from which 80K instruction data were613

finally selected. This limitation restricts our explo-614

ration of the application of ViSA on larger datasets.615

In future work, we aim to extend the use of ViSA616

to a broader range of open-source datasets.617

Theoretical Foundation: While our method for618

quantifying image information richness has yielded619

some promising results, it currently lacks a solid620

theoretical foundation, limiting the generalizability621

of our approach. Given the diverse sources and pur-622

poses of image data, a comprehensive evaluation623

of image quality remains a challenging task. We624

plan to investigate additional theories and methods625

for image information metrics in future.626
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A Diversity Perspectives Prompt 971

We present the default version prompt for diversity 972

perspectives quantification used in our experiment 973

in the Table 3. 974

B Quantification Distribution Analysis 975

Object alignment score distribution As shown 976

in Figure 5, our object alignment score exhibit sim- 977

ilar trends with previous segmentation complex- 978

ity score. However, while the SC score tends to 979

reflect small visual elements such as shapes and 980

color blocks, the OA score is more aligned with 981

visual entities. As a result, the distribution of the 982

OA score is more concentrated. Higher OA scores 983

indicate the presence of more rare and distinctive 984

visual entities, highlighting the uniqueness of the 985

image. In contrast, images with lower OA scores 986

contain more common and less distinctive entities, 987

resulting in lower informational richness. The pres- 988

ence of too many common entities may introduce 989

bias into the visual model’s representation learning, 990

thereby affecting its efficiency. 991

Image-text mutual information score distribu- 992

tion The distribution of the image-text mutual in- 993

formation score reveals a concerning trend: certain 994

open-source datasets primarily focus on evaluat- 995

ing instruction-following ability, often overlooking 996

the critical relationship between the instruction and 997

the corresponding image. For example, we ob- 998

served that the llava_gpt4_20k dataset frequently 999

contains textual explanations or discussions that 1000

are largely unrelated to the image content. Such 1001

data not only fails to effectively guide the visual 1002

model in learning meaningful visual representa- 1003

tions but also introduces significant noise into the 1004

visual instruction learning process. This highlights 1005

the need for careful curation of datasets to miti- 1006

gate such mismatches and enhance the quality of 1007

visual instruction learning. These findings empha- 1008

size the importance of aligning image-instruction 1009

pairs in multimodal datasets, ensuring that both 1010

components are relevant and complementary to the 1011

task at hand. Such principles should guide future 1012

efforts in constructing more effective and coherent 1013

multimodal datasets. 1014

C Case Study 1015

To provide a more intuitive demonstration of the 1016

proposed image information richness metrics, we 1017

present a case study, shown in Figure 6. In this 1018
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(a) (b)

Figure 5: Score distributions across different datasets: (a) object alignment, and (b) image-text mutual information.

Segmentation Complexity Score highlow

Object Alignment Score highlow

Diversity Perspectives Score highlow

Figure 6: Case study of our proposed image informative metrics. Images on the right exhibit higher scores and richer content,
while images on the left correspond to lower scores and simpler content.

figure, images on the right correspond to higher1019

scores, while images on the left are associated1020

with lower scores. Upon observation, we find1021

that all three proposed metrics effectively filter1022

for images with richer content. The segmenta-1023

tion complexity score favours simple visual ele-1024

ments, such as shapes and color blocks. For in-1025

stance, in the SC score examples, the image on1026

the far left—featuring only a single object, a pair1027

of scissors—receives a low SC score, whereas the1028

volleyball match image on the far right, with richer1029

content, achieves a higher score. However, we also1030

present an example of misjudgment: the second im-1031

age on the right, a fabric with repeated textures, has1032

a relatively high SC score despite its overall sim-1033

plicity. This highlights the limitation of using basic 1034

image segmentation as a sole measure of image 1035

complexity. 1036

In contrast, the object alignment score does not 1037

suffer from this issue. For example, in the third 1038

image on the right, depicting a crowd, the presence 1039

of numerous people does not result in an inflated 1040

OA score, as the frequent repetition of entities in 1041

the image reduces their individual weight. Thus, 1042

the image is correctly assigned a higher OA score 1043

without any misjudgment. 1044

Regarding the diversity perspectives score, we 1045

focus on the multidimensional evaluation of im- 1046

ages, which allows us to prioritize "interesting" 1047

images. For instance, the third image on the right, 1048
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a comic, and the second image, a meme, receive1049

high scores for emphasizing specific cultural ele-1050

ments. The photo on the far right earns the highest1051

score due to its aesthetic value, while the screen-1052

shot on the far left, primarily composed of text,1053

is assigned a low score due to its lack of visual1054

information.1055

D Evaluation Detail1056

In this section, we provide additional information1057

and details regarding the evaluation benchmarks.1058

VQAv2 is a widely adopted open-domain visual1059

question answering dataset, consisting of over one1060

million question-answer pairs. For our evaluation,1061

we sample a subset of 10,000 questions. OKVQA1062

is designed to assess models’ ability to answer vi-1063

sual questions by leveraging external knowledge1064

sources. Likewise, TextVQA includes over 45,0001065

text-centric questions based on more than 28,0001066

images extracted from selected categories of the1067

OpenImages dataset. To evaluate advanced mul-1068

timodal reasoning capabilities, MMBench (V1.1)1069

provides a diverse set of 4876 multiple-choice ques-1070

tions compiled from various sources, spanning 201071

distinct capability dimensions. MME-RealWorld1072

(MME-RW) serves as a benchmark tailored to real-1073

world applications, focusing on practical scenar-1074

ios; we utilize its lite version, which consists of1075

1919 of the most challenging questions. SEED-1076

Bench (SEED) comprises 14232 carefully anno-1077

tated multiple-choice questions, covering 12 key1078

evaluation dimensions. Lastly, MMMU consists1079

of 1050 challenging questions across a wide range1080

of interdisciplinary tasks, requiring college-level1081

subject knowledge and advanced reasoning skills.1082

For each dataset, we follow the answer-matching1083

strategy recommended in its original paper and1084

compute accuracy with a widely used open-source1085

evaluation toolkit (Duan et al., 2024).1086
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The default version of PICA prompt with an example

# Image Complexity Assessment Task

In this task, you will evaluate the informational richness of an image based on multiple dimensions. Each image may
contain multiple layers of information, including various visual elements, contextual settings, emotional expressions,
and cultural backgrounds. Please provide a detailed evaluation based on the following rating criteria.

## Rating Criteria:

The overall score will be based on all valid indicators. Images with particularly strong performance in certain
dimensions (e.g., complex context or strong emotional expression) will receive higher scores, and weaker performance
in other dimensions will not significantly lower the final score. It is recommended to focus on the image’s overall
informational layers, element rarity, context building, and uniqueness rather than the absence of a single dimension.

1 Point: Very low information, typically a single subject with a simple background or no clear context. The image lacks
depth and multi-dimensional understanding, with few visual elements and no notable uniqueness.
2 Point: Low information, with a few simple elements. It may have basic context or structure but lacks detail
and uniqueness. The image is plain and suitable for basic understanding tasks, with weak emotional or contextual
expression.
3 Point: Moderate information, with a reasonable number of elements or layers. Context, emotion, or uniqueness
are more noticeable, and the image provides moderate multi-dimensional understanding. It has some depth in visual
elements and context but doesn’t meet all high-level requirements.
4 Point: High information, with rich elements and clear context, showing uniqueness and diverse layers. The image is
detailed, with strong emotional or contextual expression, but may lack some rare or background features. Suitable for
in-depth analysis, particularly in context, emotion, culture, or history.
5 Point: Very rich information, with diverse elements, complex scenes, unique perspectives, and abundant detail. The
image features rare qualities and deep context, emotion, and cultural background. Ideal for advanced analysis with
multi-dimensional depth.

## Evaluation Dimensions

### 1. Details and Materiality
Detail Density: Evaluate the number and complexity of details in the image. The denser the details, the greater the
informational content.
Material and Texture: Evaluate whether the image showcases multiple materials (e.g., wood, metal, fabric) and
whether the textures are clearly visible. A variety of material layers adds to the visual richness.
Detail Layers and Spatial Perception: Evaluate whether the image presents multiple layers of details, such as clear
details in the foreground and a blurred background, creating a sense of depth.

### 2. Context and Narrative
Context Constructio: Evaluate whether the image constructs a clear context or scene that conveys rich information
through visual elements (e.g., a family gathering, office work, festive events).
Narrative Complexity: Evaluate whether the image depicts one or more complex events or actions, increasing the
narrative depth and informational content.
Implied Background Story: Evaluate whether the image implies a potential story or context through visual elements,
such as through the environment, actions of people, or objects that hint at social, historical, or cultural contexts.

### 3. Emotion and Atmosphere
Emotional Expression: Evaluate whether the image conveys a specific emotion or atmosphere through elements like
lighting, color tones, and composition. Emotional expression increases the image’s complexity.
Emotional Layering: Evaluate whether the image expresses multiple emotional layers or emotional shifts through
different elements. Images with rich emotional layers often have greater depth.

### 4. Cultural and Historical Context
Cultural Characteristics: Evaluate whether the image contains elements that reflect a specific cultural, historical, or
social context (e.g., distinctive architectural styles, clothing, festivals).
Historical Background: Evaluate whether the image reflects historical events, periods, or characteristics. Historical
elements enhance the image’s depth.

### 5. Camera Angle and Composition
Unique Perspective: Evaluate whether the image features a unique or creative angle, using uncommon perspectives.
Composition Complexity: Evaluate whether the image’s composition is complex and varied, using techniques like
contrast, symmetry, and spatial distribution to enhance the image’s depth. Complex compositions effectively convey
more information.

### 6. Dynamics and Interaction
Dynamic Elements: Evaluate whether the image includes dynamic elements (e.g., movement of people or objects, hints
of time progression).
Interactivity: Evaluate whether the image depict interaction between elements (e.g., people talking, animals hunting)?
Interaction enhances the appeal and complexity of the image.

Table 3: The default version of PICA prompt with an example
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