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ABSTRACT

Despite the growing global demand for large language models (LLMs) that serve
users from diverse linguistic backgrounds, most cutting-edge LLMs remain pre-
dominantly English-centric. This creates a performance gap across languages, re-
stricting access to advanced AI services for non-English speakers. Current meth-
ods to enhance multilingual capabilities largely rely on data-driven post-training
techniques, such as multilingual instruction tuning or continual pre-training. How-
ever, these approaches encounter significant challenges, including the scarcity of
high-quality multilingual datasets and the limited enhancement of multilingual ca-
pabilities. They often suffer from off-target issues and catastrophic forgetting of
central language abilities. To this end, we propose LENS, a novel approach to
enhance multilingual capabilities of LLMs by leveraging their internal language
representation spaces. Specially, LENS operates by manipulating the hidden rep-
resentations within the language-agnostic and language-specific subspaces from
top layers of LLMs. Using the central language as a pivot, the target language
is drawn closer to it within the language-agnostic subspace, allowing it to inherit
well-established semantic representations. Meanwhile, in the language-specific
subspace, the representations of the target and central languages are pushed apart,
enabling the target language to express itself distinctly. Extensive experiments
on one English-centric and two multilingual LLMs demonstrate that LENS effec-
tively improves multilingual performance without sacrificing the model’s original
central language capabilities, achieving superior results with much fewer compu-
tational resources compared to existing post-training approaches.1

1 INTRODUCTION

In an increasingly interconnected world, large language models (LLMs) are expected to cater to a
diverse range of users across various linguistic backgrounds (Ouyang et al., 2023; Zhao et al., 2024a;
Zheng et al., 2024). However, despite this global trend, most state-of-the-art LLMs remain predom-
inantly English-centric (Brown et al., 2020; Touvron et al., 2023a;b; Jiang et al., 2023; AI@Meta,
2024). These models exhibit significantly better performance in English than in other languages,
leading to an imbalance in user experience and potentially excluding large segments of the global
population from accessing advanced AI services (Wang et al., 2024a; Zhu et al., 2024b).

This disparity has directly spurred research efforts to enhance the multilingual capabilities of LLMs,
aiming to provide more equitable access and performance across various linguistic communities.
Current approaches are predominantly based on data-driven post-training paradigm, such as mul-
tilingual instruction tuning (Zhang et al., 2023; Zhu et al., 2023; Üstün et al., 2024) or continual
pre-training (Cui et al., 2023; Kuulmets et al., 2024; Jaavid et al., 2024), which primarily seeks to
inject or elicit multilingual knowledge with the supervision signals from external datasets.

While this paradigm is widely embraced and demonstrates certain successes, it faces several sig-
nificant challenges. (1) The efficacy of multilingual enhancement heavily depend on large-scale
and high-quality multilingual datasets (Zhou et al., 2023; Liu et al., 2024b), which are both time-
consuming and labor-intensive to obtain for each language. (2) It favors improving multilingual un-
derstanding over generation capabilities, which leaves the off-target issue inadequately addressed.

1Our code and data can be found in supplementary files.
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As a result, the model often struggles to generate accurate responses in the intended language when
prompted (Zhang et al., 2020; Lai et al., 2024; Sennrich et al., 2024). (3) The model’s performance
in languages it previously handled well is risking at catastrophic forgetting (McCloskey & Cohen,
1989), such as English in the LLaMA family (Touvron et al., 2023a;b; AI@Meta, 2024).

In this work, we seek to provide a new perspective on addressing the aforementioned challenges by
exploring and manipulating the internal representation within the language-related latent spaces of
LLMs (Zou et al., 2023; Park et al., 2024). Taking the enhancement of multilingual capabilities for
English-centric LLMs as an example. This is based on the intuitive idea that the well-established En-
glish representations in existing English-centric LLMs can act as a pivot to improve the performance
of other languages. More specifically, for the target language to be extended, its language-agnostic
semantic representations should be pulled close to those of English, enabling it to quickly inherit
general abilities in English without the need for supervision signals from external multilingual train-
ing data. Conversely, the language-specific linguistic representations of the target language should
be pushed away from English to avoid off-target issues, ensuring accurate responses in the target
language. Also, during this process, it is crucial to ensure that the English pivot representation
remains unchanged to effectively prevent catastrophic forgetting.

To achieve this, we propose LENS, a novel multiLingual Enhancement method based on the hidden
represeNtations within language Space of LLMs. To be more specific, LENS comprises two stages:
Language Subspace Probing (LSP) and Language Subspace Manipulation (LSM). During LSP, the
multilingual hidden space within a single layer of the backbone are decoupled into two orthogonal
components: a language-agnostic subspace and a language-specific subspace. These subspaces are
efficiently derived using singular value decomposition. Then in LSM, we align the parallel multilin-
gual input representations of the target language and the central language in the language-agnostic
subspace. This allows the target language to directly inherit the well-established semantic represen-
tations of the central language. Simultaneously, the projection components of the target language
within the language-specific space are pushed away from those of the central language, guiding the
target language toward its distinct linguistic expression and ensuring the target language is properly
expressed thereby mitigating the off-target issue. Finally, we align the central language’s current
representations with its original ones to preserve its proficiency during multilingual enhancement.

We conduct extensive experiments under bilingual and multilingual enhancement setups. Results
on one English-centric (LLaMA-3-8B-Instruct) and 2 multilingual LLMs (LLaMA-3.1-8B-Instruct
and Phi-3.5-mini-Instruct), demonstrate that LENS succeed to improve target languages on both
multilingual comprehension and generation tasks without sacrificing the strong capability of central
language, showing the efficacy and scalability of our method. Deeper analysis highlights the signifi-
cance of steering the target language towards its unique expressions within its own language-specific
subspace to fully enhance both comprehension and generation capabilities. This is overlooked by
most existing approaches, which primarily focus on aligning representations across different lan-
guages to boost multilingual performance. It is crucial to note that, building on recent findings that
language-related parameters are primarily concentrated in the top layers of LLMs (Wendler et al.,
2024), LENS achieves high resource efficiency compared to baselines, with much fewer computa-
tional costs by only updating the model’s higher layers using just a few hundred data points.

The main contributions of this work are summarized as follows:

• We provide a novel perspective for the multilingual enhancement of large language models with
their internal language representation space leveraged.

• We propose LENS, an efficient and effective multilingual enhancement method that operates
within the language representation space of large language models.

• Extensive experiments on one English-centric and two multilingual LLMs demonstrate the ef-
fectiveness, efficiency, scalability of our method to obtain truly multilingual enhanced chat-style
backbones without sacrificing original central language performance.

2 RELATED WORKS

Multilingual Large Language Model With the acceleration of globalization, multilingual large
language models (MLLMs) are gaining significant attention for their ability to handle multiple lan-
guages comprehensively (Qin et al., 2024). Pretraining on multilingual data is a common approach
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to gain the multilingual capabilities (Conneau & Lample, 2019; Xue et al., 2020; Lin et al., 2022;
Shliazhko et al., 2022; Wei et al., 2023; Xue et al., 2022; Le Scao et al., 2023; Blevins et al., 2024).
However, due to the uneven distribution of data in pretraining corpora, current LLMs or MLLMs
exhibit uneven language capabilities, with most state-of-the-art models heavily biased towards En-
glish (Jiang et al., 2023; AI@Meta, 2024; Abdin et al., 2024). Moreover, pretraining from scratch
is computationally intensive. These limitations have directly sparked research into expanding or
enhancing the language capabilities of current LLMs or MLLMs.

Multilingual Enhancement for LLMs Current methods for multilingual enhancement of LLMs
can be categorized into two types: 1) prompt-based methods and 2) post-training-based methods.

The former focuses on leveraging the LLMs’ own translation capabilities to translate low-resource
language inputs into the central language, and then generating a response (Shi et al., 2023; Huang
et al., 2023; Qin et al., 2023; Etxaniz et al., 2024; Zhang et al., 2024b). For example, Huang et al.
(2023) introduce cross-lingual-thought prompting to minimize language disparities. However, Liu
et al. (2024a) reveal the limitations of these methods, showing they are not optimal for real-world
scenarios and highlighting the necessity of more comprehensive multilingual enhancement.

The latter aims to conduct further multilingual post-training to inject or elicit extensive language
knowledge for specific languages, including ways of continual pre-training (Zhang et al., 2021b;
Cui et al., 2023; Chen et al., 2023b; Lin et al., 2024; Kuulmets et al., 2024; Jaavid et al., 2024) and
instruction tuning (Muennighoff et al., 2023; Chen et al., 2023c; Indurthi et al., 2024; Ahuja et al.,
2024; Lai & Nissim, 2024; Zhang et al., 2024c; Zhu et al., 2024a; Li et al., 2024; Zhao et al., 2024d).
For example, Cui et al. (2023) attempt to inject Chinese knowledge into LLaMA by conducting con-
tinual pre-training on a large-scale Chinese corpus, while Zhu et al. (2023) focus more on building
language alignment through cross-lingual instruction tuning and translation training.

Our proposed LENS stands out from existing methods in that we seek multilingual supervision sig-
nals from the internal language representation space of the LLMs, rather than relying primarily on
external multilingual datasets as in the above methods, which offers fresh insights and new oppor-
tunities for enhancing the multilingual capabilities of LLMs both efficiently and effectively.

Representation Engineering Editing or manipulating representation within LLMs has garnered
increasing attention due to its transparency and lightweight properties (Zou et al., 2023). This is
theoritically rooted from Linear Representation Hypothesis (Mikolov et al., 2013; Nanda et al.,
2023; Park et al., 2024), which posits that various human-interpretable concepts are encoded in linear
subspaces of model representations. Building upon this, exist works attempt to edit representations
at inference time to develop models that are more truthful (Li et al., 2023b; Campbell et al., 2023;
Zhang et al., 2024a), and harmless (Lee et al., 2024; Uppaal et al., 2024). We expand and implement
this paradigm for the multilingual enhancement of LLMs by focusing on representations during the
training phase, ensuring that the efficiency of LLMs remains unaffected during the inference phase.

3 METHODOLOGY

3.1 OVERVIEW OF LENS

We propose LENS, a novel method for effective and efficient multilingual enhancement of LLMs
based on their internal language representation spaces. The overall diagram of LENS is displayed
in Figure 1, consisting of two key stages: (1) Language Subspace Probing (LSP) and (2) Language
Subspace Manipulation (LSM). The subsequent section offers a detailed introduction to them.

3.2 LANGUAGE SUBSPACE PROBING

In this section, we first introduce our method to decouple and probe the language-agnostic and
language-specific subspace within a single model layer in an unsupervised manner.

Assuming we aim to enhance the multilingual capabilities of a backbone model for L languages,
which include one central language and L− 1 target languages to be enhanced. In each layer of the

3
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Probing Samples from Target Language 2
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Figure 1: The overall architecture of our proposed LENS for multilingual enhancement. (1) In the
LSP, we begin by decomposing the multilingual latent space, which is formed by the representations
of probing samples from both the target and central languages. Using singular value decomposition
(SVD), we separate this space into two orthogonal components: a language-agnostic subspace, Ma,
and a language-specific subspace, Ms. (2) Then in LSM, the parallel multilingual representations of
the target languages are pushed toward their respective linguistic expression directions within Ms,
while being pulled closer to the central language in Ma. Additionally, the representations of the
central language are carefully constrained to remain largely intact.

backbone, we can obtain a mean representation for each language l:

ml =
1

n

n∑
i=1

eil (1)

where eil ∈ Rd is the embedding of the last token for the i-th sample in language l, and n is the total
number of samples for each language. Concatenating ml of L languages column-by-column results
in the mean embedding matrix M ∈ Rd×L specifying the multilingual latent space.

Follow previous works (Pires et al., 2019; Libovickỳ et al., 2020; Yang et al., 2021), we hypothesize
that such multilingual latent space M could be decomposed into two orthogonal components (1) a
language-agnostic subspace Ma representing what is commonly shared across languages and (2)
a language-specific one Ms specifying on which different languages express different linguistic
signals. Following Piratla et al. (2020); Xie et al. (2022), the objective can be formulated as:

min
Ma,Ms,Γ

∥∥M −Ma1
⊤ −MsΓ

⊤∥∥2
F

s.t. Span (Ma) ⊥ Span (Ms) ,
(2)

where Ma ∈ Rd×1, Ms ∈ Rd×r and Γ ∈ RL×r is the coordinates of language-specific signals
along the subspace’s r components. And a lower dimensionality for Ma is reasonable because the
semantic consistency across different languages can be captured in a simpler form. Meanwhile, Ms

requires a higher dimensionality to account for the distinct features of each language.

The optimal solution of Equation 2 can be computed efficiently via Singular Value Decomposition
(SVD), where Algorithm 1 in Appendix B presents the detailed procedure.

After obtaining the language-specific subspace Ms, we aim to identify a direction of language ex-
pression within this subspace, which points from the projection of mean representation from target
language ml to that from central language mc. Formally, the linguistic language expression direc-
tion δl ∈ Rd for each target language l is calculated as:

δl = MT
s Ms(ml −mc) (3)

3.3 LANGUAGE SUBSPACE MANIPULATION

To eliminate the heavy reliance on hard-to-access high-quality multilingual datasets, we leverage the
well-trained hidden representations of the central language in LLMs as a pivot to derive supervision
signals for multilingual enhancement within the model’s internal language space.

4
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First, We propose to pull parallel multilingual representations closer within the shared language-
agnostic subspace Ma. This allows us to directly inherit the well-established general capabilities of
the central language. Formally, this goal is accomplished by projecting multilingual representations
(at the position of the last token) onto the subspace Ma, with the optimization objective defined as:

L1 =
∥∥MT

a Ma(xl − xc)
∥∥2 (4)

where xl and xc are parallel multilingual representations from target language l and central one.

Second, to ensure that each target language can be accurately expressed and to alleviate the off-
target issue, we need to push the multilingual representations in the language-specific subspace Ms

towards their respective language-specific expression directions. This can be achieved through the
projection onto the subspace Ms and optimizing the following objective:

L2 =
∥∥MT

s Ms(xl − xref
l )− λlδl

∥∥2 (5)

where xref
l is the representation of target language l obtained from original reference model and λl

is a scalar of push strength for the corresponding language. The above process can be interpreted
as directing the language-specific representations of each target language to shift a specific distance
from their original positions toward a direction that enables accurate expression.

Finally, to ensure that the capabilities of the central language are not compromised and maintain
a stable alignment objective for the target language, we constrain the representations of central
language to remain predominantly intact:

L3 =
∥∥xc − xref

c

∥∥2 (6)

where xref
c is the representation of central language c obtained from original reference model.

The final optimization objective of LENS is:

L = λ1L1 + L2 + λ3L3 (7)

where λ1 and λ3 are hyper-parameters to balance the impact of these two losses.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models We select one representative English-centric LLMs: LLaMA-3-8B-Instruct (AI@Meta,
2024) and 2 MLLMs: LLaMA-3.1-8B-Instruct2 and Phi-3.5-mini-instruct (Abdin et al., 2024), to
fully validate the effectiveness and generality of our LENS in enhancing multilingual performance.

Languages to be Enhanced We conduct experiments in both bilingual and multilingual settings
to address various multilingual enhancement needs.

In the bilingual setting, English (En) serves as the central language, while Chinese (Zh) is chosen as
the target language for expansion. Chinese is selected due to its growing prominence in the academic
focus on multilingual enhancement for LLMs.

In the multilingual setting, we select six target languages for enhancement based on the availabil-
ity of language resources. The high-resource languages are Chinese (Zh) and Japanese (Jp); the
medium-resource languages are Korean (Ko) and Arabic (Ar); and the low-resource languages are
Bengali (Bn) and Swahili (Sw), with English (En) continuing to serve as the central language.

It is important to note that these target languages are classified as out-of-scope in the official model
card of the above LLMs and MLLMs, which further underscores their relevance for enhancement.

Training Data The multilingual data used for the language subspace probing stage is sourced
from the Aya Dataset (Üstün et al., 2024), a human-annotated, non-parallel multilingual instruction
fine-tuning dataset with 204,000 instances in 65 languages. For the language subspace manipulation

2https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
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stage, we rely on parallel multilingual data from the Bactrian-X dataset (Li et al., 2023a), which
contains 3.4 million instruction-response pairs in 52 languages. These pairs are generated by trans-
lating 67,000 English instructions (derived from alpaca-52k (Taori et al., 2023) and dolly-15k) into
51 languages using the Google Translate API, and then obtaining natural responses from ChatGPT.

We sample 300 data points from the Aya Dataset for each language to probe the language space and
200 data points from the Bactrian-X dataset per language to manipulate the language space.

Benchmarks To comprehensively measure the efficacy of our LENS on various multilingual tasks,
we employ 5 mainstream benchmarks for evaluation, which can be categorized into multilingual
understanding and multilingual generation:

• Multilingual Understanding: (1) XCOPA (Ponti et al., 2020), (2) XWinograd (Muennighoff
et al., 2023), (3) XStoryCloze (Lin et al., 2022) and (4) M-MMLU (Hendrycks et al., 2021; Lai
et al., 2023). Accuracy is adopted as the evaluation metric and we randomly sample up to 1,000
data points from each benchmark for evaluation.

• Multilingual Generation: (5) MT-Bench (Zheng et al., 2023): The dataset is designed for open-
ended generation to evaluate a model’s ability to follow multi-turn instructions. The evaluation
follows the LLM-as-a-judge approach, where GPT-4o is prompted to assign a score directly to
a single response on a scale of 1 to 10. It is essential to highlight that the languages targeted
for enhancement, as mentioned above, are all within the capability range of GPT-4o, especially
given that its official model card3 emphasizes support for low-resource languages such as Swahili
(sw) and Bengali (bn). This underscores the validity and reliability of the evaluation approach. In
addition, we employ Language Fidelity (Holtermann et al., 2024) as a metric to assess the con-
sistency between input and output languages, offering a clear measure of how effectively different
methods mitigate the model’s off-target issues.

Please refer to Appendix C for the detailed description of the benchmarks.

4.2 BASELINE METHODS

For comparison, we consider the following baseline methods that enhance LLMs’ multilingual capa-
bilities using multilingual instruction fine-tuning technique: (1) xSFT & xSFT-Full (Ouyang et al.,
2022): xSFT performs multilingual instruction fine-tuning using the same data volume as our LENS.
In contrast, xSFT-Full utilizes the full dataset for each target language from the Aya Collection and
Bactrian-X. (2) QAlign (Zhu et al., 2024a): It explores the benefits of question alignment, where the
model is trained to translate inputs into English by finetuning on X-English parallel question data.
(3) SDRRL (Zhang et al., 2024c): It is based on self-distillation from resource-rich languages that
effectively improve multilingual performance by leveraging self-distillated data.

4.3 IMPLEMENTATION DETAILS

LENS is a model-agnostic multilingual enhancement method that is compatible with different
transformer-based LLM. Our experiments are implemented with PyTorch (Paszke et al., 2019) and
Transformer library (Wolf et al., 2020) on a single NVIDIA A800-SXM4-80GB GPU. The training
duration is set to one epoch with the learning rate of 1e-5 and batch size of 8 across all backbones.
For more detailed settings, please refer to the Appendix D.

4.4 OVERALL RESULTS

Table 1 and Figure 2 present the performance comparison between LENS and recent multilingual
enhancement baselines on multilingual understanding and generation benchmarks, under bilingual
and multilingual configurations, respectively. For additional results, including those on Phi-3.5-
mini-instruct and multilingual configuration for the other two backbones, please see Appendix E.
From the outcomes across all backbones, we have drawn the following key insights:

LENS succeed to achieve a comprehensive improvement for the multilingual capabilities of
(M)LLMs without sacrificing original central language performance. Specifically, it enhances

3https://cdn.openai.com/gpt-4o-system-card.pdf.
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Table 1: Detailed results on the multilingual understanding and multilingual generation bench-
marks with the English-centric LLaMA-3-8B-Instruct backbone and the multilingual LLaMA-3.1-
8B-Instruct backbone under the bilingual setting (English and Chinese). Accuracy serves as the
evaluation metric for multilingual understanding, while GPT-4o ratings (on a scale of 1 to 10)
are provided for MT-Bench. The values in parentheses represent language fidelity. Results high-
lighted in green indicate an improvement or performance comparable to the original backbone,
while those highlighted in red signal a decline in performance relative to the original backbone.
The best and second-best results in our method and baselines are in bold and underlined.

Multilingual Understanding Multilingual Generation
XCOPA XWinograd XStoryCloze M-MMLU AVG. MT-Bench

En Zh En Zh En Zh En Zh En Zh En Zh

LLaMA-3 - 83.40 63.50 54.37 95.40 88.90 64.90 49.40 74.60 69.02 6.99 (100%) 2.72 (43.75%)

xSFT - 87.20 64.30 63.49 95.10 90.60 62.80 46.10 74.07 71.85 4.79 (100%) 2.94 (88.75%)
xSFT-Full - 84.60 58.80 60.11 93.50 90.30 60.60 43.20 70.97 69.55 5.80 (100%) 4.44 (92.50%)
QAlign - 52.20 55.10 47.02 89.20 71.90 56.40 34.00 66.90 51.28 3.59 (100%) 1.23 (37.50%)
SDRRL - 85.20 64.80 55.95 92.60 84.30 63.80 47.80 73.73 68.31 6.60 (100%) 3.84 (73.75%)

LENS (Ours) - 87.60 63.80 66.67 94.70 91.80 64.40 48.60 74.30 73.67 7.21 (100%) 5.77 (97.50%)

LLaMA-3.1 - 90.40 64.10 68.65 95.80 91.40 69.30 52.50 76.40 75.74 7.31 (100%) 5.38 (93.75%)

xSFT - 88.00 63.70 67.46 96.20 92.70 68.10 53.10 76.00 75.32 5.33 (100%) 3.32 (90.00%)
xSFT-Full - 86.80 60.40 62.50 90.60 83.80 66.10 49.90 72.37 70.75 6.02 (100%) 4.18 (92.50%)
QAlign - 55.00 56.00 48.02 94.10 52.30 64.10 33.50 71.40 47.20 4.13 (100%) 2.65 (83.75%)
SDRRL - 87.20 63.20 58.83 95.30 89.80 63.50 45.30 74.00 70.31 6.49 (100%) 3.14 (58.75%)

LENS (Ours) - 90.20 64.60 69.44 95.90 91.80 69.10 52.60 76.53 76.01 7.41 (100%) 5.96 (93.75%)

the multilingual capabilities of the backbone on both multilingual understanding and generation
benchmarks, showing a marked increase in language fidelity during multilingual generation. This
effectively mitigates the off-target issue. Moreover, LENS is the only approach that enhances multi-
lingual performance across all languages. In contrast, baseline methods primarily focus on boosting
multilingual understanding with little to no improvement in generation tasks. Additionally, methods
like QAlign and SDRRL, which rely on translation-based training for multilingual alignment, fall
short in effectively enhancing large models’ overall multilingual performance. This suggests that
aligning multilingual representations alone is insufficient for fully optimizing multilingual capabil-
ities (Hua et al., 2024). Finally, LENS safeguards the central language from catastrophic forgetting,
allowing the resulting model to effectively serve users from diverse linguistic backgrounds.

Using the central language representations within the backbone as a supervision signal proves
more effective than relying on external data for supervision. The key distinction between LENS
and baseline methods lies in how multilingual performance is enhanced: LENS relies on the model’s
internal representation of the central language, while baseline methods depend on external data.
This difference make baselines not only fail to improve the target languages but also lead to per-
formance degradation. This phenomenon becomes more pronounced in xSFT-Full when trained
with more data. However, the Aya Dataset and Bactrain-X datasets we used are already considered
high-quality multilingual resources, widely employed and proven effective in boosting multilingual
capabilities in previous models such as mT5 and LLaMA-2 (Li et al., 2023a; Üstün et al., 2024).
This highlights that for current extensively trained LLMs such as LLaMA-3 (which has been trained
on over 15T data), an over-reliance on external supervision signals may fall short of scalability needs
(Cao et al., 2024). We hope LENS could inspire further research to explore more efficient, scalable,
and automated supervision signals for multilingual enhancement of the most advanced LLMs.

5 ANALYSIS

5.1 ABLATION STUDY

We further conduct ablation studies to demonstrate the effectiveness of our proposed three optimiza-
tion objectives in LSM. The overall results under the bilingual enhancement setting with LLaMA-
3-8B-Instruct backbone are shown in Figure 3. We can draw the following key findings.

The alignment of multiple languages within language-agnostic subspaces mainly impacts mul-
tilingual comprehension rather than generation capabilities. As we incrementally raise the coef-
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Figure 2: Results on the multilingual generation benchmark with LLaMA-3-8B-Instruct backbone
under the multilingual setting. GPT-4o ratings (on a scale of 1 to 10) are provided for MT-Bench.
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Figure 3: The ablation results to verify the effectiveness and impact of different optimization objec-
tives in LSM. MU Performance stands for the average performance on all multilingual understanding
benchmarks, while MG Performance is the results on MT-Bench. LF represents language fidelity.

ficient λ1 of the multilingual alignment objective L1 from zero, Chinese comprehension improves,
but its generation ability stays largely unaffected.

Enhancing the separation between representations of different languages in the language-
specific subspace is vital for boosting multilingual performance. In particular, as illustrated
in the middle part of Figure 3, both comprehension and generation abilities in Chinese improve sig-
nificantly as the coefficient λl increases. This finding indicates that the commonly accepted notion
of merely aligning languages to enhance multilingual capabilities (Cao et al., 2020; Zhu et al., 2023;
Li et al., 2024; Hua et al., 2024) may not be sufficient for fully optimizing the multilingual perfor-
mance of current LLMs. We hope this result encourages future research to focus more on eliciting
and leveraging language-specific information within LLMs.

Maintaining the representations of the central language without significant changes can pro-
vide a stable and reliable alignment supervision for the target language to be enhanced. As
illustrated on the right side of Figure 3, removing the objective to retain English representations
leads to a significant decline in the backbone’s Chinese performance. This could be due to alter-
ations in the English representations during optimization, which may cause misalignment in the
target for Chinese, thus impacting its performance. However, regarding the English capability, since
our modifications are applied to the upper layers of the backbone (layers 31 and 32 in LLaMA-
3-8B-Instruct), most of the parameters remain frozen and unaffected. As a result, even without
the retaining objective, the backbone’s English ability does not suffer from significant catastrophic
forgetting. In the analysis shown in Figure 4, we observe that as the number of updated layers in-
creases, the backbone’s English understanding and generation capabilities are also not impacted by
catastrophic forgetting. This can manifest the effectiveness of the retain optimization objective in
safeguarding the performance of the central language.
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Figure 5: Comparison between
our bilingual enhanced model with
Chinese-LLaMA series.

5.2 IMPACT OF VARYING THE NUMBER OF MANIPULATED LAYERS

Recent studies on the interpretability of LLMs has sought to reveal the mechanisms underlying their
multilingual capabilities (Zhao et al., 2024c; Zhong et al., 2024). A growing consensus suggests
that language-specific parameters or neurons are primarily concentrated in the upper layers of these
models, while the middle layers tend to process inputs from various languages using a shared and
language-agnostic mechanism (Chen et al., 2023a; Wendler et al., 2024; Tang et al., 2024; Kojima
et al., 2024; Zhang et al., 2024d). Drawing inspiration from this, our main experiments focus on per-
forming updates solely within the upper layers of the backbone, resulting in a notable improvement
in multilingual performance. In Figure 4, we explore the effect of increasing the number of layers
involved on the model’s multilingual enhancement. The horizontal axis represents the starting point
of the layers where manipulation is applied, with the default endpoint being the final layer. This
experiment is performed under the bilingual enhancement with LLaMA-3-8B-Instruct.

“Thinking” in English at the intermediate layers is more favorable for improving multilingual under-
standing. If we partition representations of target language into the language-specific subspace too
early at the middle layers, it may impair its multilingual understanding capability. On the contrary,
inheriting more from the shared representations at the middle layers, while emphasizing language-
specific representations only at the higher layers (where most language-specific parameters and neu-
rons are concentrated), is more beneficial for enhancing multilingual performance.

It is important to note that modifying only the final layer does not significantly improve either multi-
lingual understanding or generation. This is because language-specific information is not sufficiently
enhanced, causing the model to suffer from off-target issues and struggle to represent specific lan-
guages accurately. The lack of improvement in multilingual understanding aligns with the findings
in Section 5.1, which highlight the critical role of supervision provided by the Push loss (L2).

Our proposed LENS further validates the conclusions of existing works on LLM interpretability and
applies these findings to multilingual enhancement of LLMs.

5.3 COMPARISON WITH OPEN-SOURCED MULTILINGUAL-ENHANCED LLMS

In Section 4.4, our main experiment primarily compares with reproducible baseline methods for
multilingual enhancement. Additionally, we extend our comparisons to several open-source LLMs
from the community that leverage private datasets and large-scale post-training to improve mul-
tilingual performance. In particular, we focus on the Chinese-LLaMA-3 series, which builds on
LLaMA-3 series to enhance Chinese capabilities and includes three different versions:

• Chinese-LLaMA-3-Instruct-V1:4 This model is continually pre-trained on 120GB of Chinese
text and fine-tuned with 500 million carefully curated instruction data points, based on the
LLaMA-3-8B. These training datasets is not available to the public.

4https://huggingface.co/hfl/llama-3-chinese-8b-instruct
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Figure 6: The PCA visualization of multilingual representations projected in the obtained language-
agnostic subspace (right) and the language-specific (left) subspace. The backbone model is LLaMA-
3-8B-Instruct after multilingual enhanced with LENS.

• Chinese-LLaMA-3-Instruct-V2:5 This version is directly fine-tuned on the same 500 million
instruction data points using the LLaMA-3-8B-Instruct model.

• Chinese-LLaMA-3-Instruct-V3:6 This model is created by merging V1, V2, and the original
LLaMA-3-8B-Instruct, followed by fine-tuning on 5,000 instruction data points.

The experimental results and the resource consumption of different methods are presented in Figure
5 and Table 5 in Appendix E, respectively. The resulting model applied with LENS is identical to the
one utilized for bilingual enhancement in Table 1. Remarkably, LENS demonstrates more compre-
hensive enhancement of the Chinese capabilities with extremely low resource overhead compared
to these three models. This reinforces our claim that LENS is an efficient and effective approach
for boosting the multilingual capabilities of LLMs. Additionally, all the data leveraged by LENS
is publicly accessible, which eliminates the need for laboriously gathering extensive high-quality
multilingual datasets and makes it easily shareable with the community.

5.4 VISUALIZATION ANALYSIS

To further confirm whether LENS manipulates language representations within different language
subspaces as anticipated, we perform a visualization analysis. Specifically, as shown in Figure 6,
we perform Principal Component Analysis (PCA) to visualize the projection of multilingual repre-
sentations in our obtained language-agnostic subspace and the language-specific subspace. Parallel
inputs in seven languages are sourced from the MultiQ datasets (Holtermann et al., 2024). The visu-
alization results indicate that representations of different languages converge within a narrow range
in the language-agnostic subspace, while forming distinct clusters in the language-specific subspace,
supporting our claim. This also highlights the advantages of LENS in delivering transparent, con-
trollable, and interpretable solutions for the multilingual enhancements of LLMs.

6 CONCLUSION

In this paper, we introduce LENS, a novel method designed for the effective, efficient and com-
prehensive multilingual enhancement of large language models (LLMs). LENS first decouple the
multilingual hidden spaces of the backbone into two orthogonal components: a language-agnostic
subspace and a language-specific subspace. Then taking well-established representations of the cen-
tral language as a pivot, representations of target languages are pulled closer and pushed away from
them in language-agnostic subspace and language-specific subspace, respectively. Experimental re-
sults on 3 representative cutting-edge LLMs demonstrate that LENS outperforms baseline methods
with much lower training costs, underscoring its efficacy, efficiency and scalability.

5https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2
6https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3
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Jindřich Libovickỳ, Rudolf Rosa, and Alexander Fraser. On the language neutrality of pre-trained
multilingual representations. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 1663–1674, 2020.

Peiqin Lin, Shaoxiong Ji, Jörg Tiedemann, André FT Martins, and Hinrich Schütze. Mala-500:
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Ahmet Üstün, Viraat Aryabumi, Zheng-Xin Yong, Wei-Yin Ko, Daniel D’souza, Gbemileke
Onilude, Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, et al. Aya model: An in-
struction finetuned open-access multilingual language model. arXiv preprint arXiv:2402.07827,
2024.

Bin Wang, Zhengyuan Liu, Xin Huang, Fangkai Jiao, Yang Ding, Aiti Aw, and Nancy Chen. Seae-
val for multilingual foundation models: From cross-lingual alignment to cultural reasoning. In
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 370–390,
2024a.

Weixuan Wang, Barry Haddow, Minghao Wu, Wei Peng, and Alexandra Birch. Sharing matters:
Analysing neurons across languages and tasks in llms. arXiv preprint arXiv:2406.09265, 2024b.

Xinyi Wang, Hieu Pham, Philip Arthur, and Graham Neubig. Multilingual neural machine trans-
lation with soft decoupled encoding. In International Conference on Learning Representations,
2019.

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and im-
proving multi-task optimization in massively multilingual models. In International Conference
on Learning Representations, 2021.

15

https://github.com/tatsu-lab/stanford_alpaca


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Xiangpeng Wei, Haoran Wei, Huan Lin, Tianhao Li, Pei Zhang, Xingzhang Ren, Mei Li, Yu Wan,
Zhiwei Cao, Binbin Xie, et al. Polylm: An open source polyglot large language model. arXiv
preprint arXiv:2307.06018, 2023.

Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do llamas work in En-
glish? on the latent language of multilingual transformers. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15366–
15394. Association for Computational Linguistics, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
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Algorithm 1: Language Subspace Probing
In: languages’ mean embeddings M , rank of subspace r
Out: language-agnostic subspace Ma, language-specific subspace Ms, coordinates Γ
/* 1) Approximate M in low rank */

1 M ′
a ← 1

dM1;
2 M ′

s, ,Γ′ ← Top-r SVD
(
M −M ′

a1
⊤);

3 M ′ ←M ′
a1

⊤ +M ′
sΓ

′⊤;
/* 2) Force orthogonality */

4 Ma ← 1
∥M ′+1∥2M

′+
1;

5 Ms, ,Γ← Top-r SVD
(
M ′ −Ma1

⊤)

A LIMITATION AND FUTURE WORK

Despite our LENS achieving comprehensive and efficient multilingual enhancement, there are still
limitations and future directions worth exploring.

First, due to limited computational resources, our experiments are not conducted on larger-scale
models (larger than 8B). This remains a valuable direction to apply LENS on larger LLMs.

Second, our current operations on language representation are still relatively coarse-grained. Future
work could delve into more specific parameter areas for finer operations.

Finally, as we find that relying too much on external datasets to enhance multilingual capabilities
may be limited, we instead seek higher quality supervision signals from within the model itself. Fu-
ture work could consider combining these two paradigms by incorporating data selection strategies
(Albalak et al., 2024; Liu et al., 2024b), thereby providing higher quality multilingual supervision
signals to the model from both internal and external sources.

B PROBING FOR LANGUAGE SUBSPACE

The optimal solution of Equation 2 can be computed efficiently via Singular Value Decomposition
(SVD). Algorithm 1 presents the detailed procedure. Readers interested in more details can consult
the proof provided in Xie et al. (2022). The only hyperparameter r < L controls the amount
of language-specific information captured by the identified subspace. The larger r is, the more
language-specific signals we can identify.

C MULTILINGUAL BENCHMARKS

We comprehensively measure the efficacy of our LENS on various multilingual tasks, including 5
mainstream benchmarks for evaluation. They can be categorized into the evaluation of multilingual
understanding and multilingual generation.

For multilingual understanding:

• XCOPA (Ponti et al., 2020):7 A benchmark to evaluate the ability of machine learning models to
transfer commonsense reasoning across languages. The dataset is the translation and re-annotation
of the English COPA (Roemmele et al., 2011) and covers 11 languages from 11 families and
several areas around the globe. The dataset is challenging as it requires both the command of
world knowledge and the ability to generalise to new languages. In our experimental setup, this
benchmark covers both Chinese (Zh) and Swahili (Sw).

• XWinograd (Muennighoff et al., 2023):8 A benchmark to evaluate the ability of machine learning
models to transfer commonsense reasoning across languages. The dataset is the translation of the
English Winograd Schema datasets and it adds 488 Chinese schemas from CLUEWSC2020 (),

7https://huggingface.co/datasets/cambridgeltl/xcopa
8https://huggingface.co/datasets/Muennighoff/xwinograd
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Table 2: Detailed hyper-parameter settings for bilingual enhancement. The number under the col-
umn of Manipulated Layer represents the starting point of the layers where manipulation is applied,
with the default endpoint being the final layer.

Manipulated Layer λZh

LLaMA-3-8B-Instruct 31 1
LLaMA-3.1-8B-Instruct 30 0.05
Phi-3.5-mini-Instruct 27 0.3

Table 3: Detailed hyper-parameter settings for multilingual enhancement. The number under the
column of Manipulated Layer represents the starting point of the layers where manipulation is ap-
plied, with the default endpoint being the final layer.

Manipulated Layer λZh λJp λKo λAr λBn λSw

LLaMA-3-8B-Instruct 29 1 0.6 1 0.5 0.2 0.2
LLaMA-3.1-8B-Instruct 30 0.01 0.01 0.03 0.01 0.01 0.01
Phi-3.5-mini-Instruct 29 0.2 0.2 0.2 0.2 0.2 0.2

totaling 6 languages. Formulated as a fill-in-a-blank task with binary options, the goal is to choose
the right option for a given sentence which requires commonsense reasoning. In our experimental
setup, this benchmark covers English (En), Chinese (Zh) and Japanese (Jp).

• XStoryCloze (Lin et al., 2022):9 A benchmark to evaluate the ability of machine learning models
to transfer commonsense reasoning across languages. The dataset consists of the professionally
translated version of the English StoryCloze dataset (Spring 2016 version) to 10 non-English lan-
guages. The dataset is challenging and is designed to evaluate story understanding, story genera-
tion, and script learning. In our experimental setup, this benchmark covers English (En), Chinese
(Zh), Arabic (Ar) and Swahili (Sw).

• M-MMLU (Hendrycks et al., 2021; Lai et al., 2023):10 A benchmark to evaluate the ability of
machine learning models to transfer commonsense reasoning across languages. The datasets is
a machine translated version of the MMLU dataset by GPT-3.5-turbo and covers 34 languages.
This is a massive multitask test consisting of multiple-choice questions from various branches of
knowledge. To attain high accuracy on this test, models must possess extensive world knowledge
and problem solving ability. In our experimental setup, this benchmark covers English (En),
Chinese (Zh), Arabic (Ar), Korean (Ko), and Swahili (Sw).

For multilingual generation:

• MT-Bench (Zheng et al., 2023): The dataset is designed for open-ended generation to evaluate a
model’s ability to follow multi-turn instructions. In our experimental setup, this benchmark covers
English (En), Chinese (Zh), Arabic (Ar), Japanese (Jp), Korean (Ko), Swahili (Sw) and Bengali
(Bn). We collect data in English11, Japanese12, Korean13, and Arabic14 from huggingface, and
Chinese15 from github. In addition, we use GPT-4o to translate the English data into Swahili and
Bengali, and performed manual proofreading to ensure correctness.

D IMPLEMENTATION DETAILS

Our experiments are implemented with PyTorch (Paszke et al., 2019) and Transformer library (Wolf
et al., 2020) on a single NVIDIA A800-SXM4-80GB GPU. The training duration is set to one

9https://huggingface.co/datasets/juletxara/xstory_cloze
10https://huggingface.co/datasets/alexandrainst/m_mmlu
11https://huggingface.co/datasets/HuggingFaceH4/mt_bench_prompts
12https://huggingface.co/datasets/shi3z/MTbenchJapanese
13https://huggingface.co/datasets/StudentLLM/Korean_MT-Bench_questions
14https://huggingface.co/spaces/QCRI/mt-bench-ar/tree/main/data/mt_

bench_ar
15https://github.com/HIT-SCIR/huozi
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Table 4: Detailed results on the multilingual understanding and multilingual generation benchmarks
with Phi-3.5-mini-Instruct backbone under the bilingual setting (English and Chinese). Accuracy
serves as the evaluation metric for multilingual understanding, while GPT-4o ratings (on a scale of
1 to 10) are provided for MT-Bench. The values in parentheses represent language fidelity. Results
highlighted in green indicate an improvement or performance comparable to the original backbone,
while those highlighted in red signal a decline in performance relative to the original backbone.
The best and second-best results in our method and baselines are in bold and underlined.

Multilingual Understanding Multilingual Generation
XCOPA XWinograd XStoryCloze M-MMLU AVG. MT-Bench

En Zh En Zh En Zh En Zh En Zh En Zh

Phi-3.5 - 81.40 75.80 67.70 95.40 89.40 71.70 47.30 81.00 71.40 6.18 (100%) 4.92 (90.50%)

xSFT - 80.80 77.20 69.64 95.40 89.40 71.70 46.80 81.43 71.66 5.29 (100%) 3.31 (88.75%)
xSFT-Full - 80.40 73.10 65.67 95.20 88.20 71.90 44.70 80.07 69.74 5.25 (100%) 3.84 (87.50%)
QAlign - 78.00 69.60 58.73 95.10 84.70 70.80 46.60 78.50 67.01 5.28 (100%) 3.15 (88.75%)
SDRRL - 81.80 76.30 66.87 95.60 90.20 71.60 46.90 81.17 71.44 6.15 (100%) 4.03 (90.00%)

LENS (Ours) - 81.60 75.80 67.66 95.40 89.40 71.70 47.40 80.97 71.51 6.44 (100%) 5.16 (92.50%)

Table 5: Resource consumption of different multilingual enhancement methods under the bilingual
enhancement setup. The backbone model is LLaMA-3-8B-Instruct.

Lens xSFT xSFT-Full SDRRL QAlign V1 V2 V3

Training time 2m08s 5m33s 192m35s 11m30s 12m03s - - -
Trainable parameters rate 5.43% 100.00% 100.00% 100.00% 100.00% 13.08% 13.08% -
Instruction data 0.8K 0.8K 111.5K 4K 0.8K 5M 5M 5K
Pre-training data - - - - - 120G - -

epoch with the learning rate of 1e-5, cosine learning rate scheduler with warm up ratio of 0.05
and batch size of 8 across all backbones. And all backbones are trained with their official chat
template with λ1 = 1 and λ3 = 1. The hyper-parameter r specifying the dimension of language-
specific subspace in language subspace probing stage is set to L − 1, where L is the total number
of languages participated in this process. We use GlotLID (Kargaran et al., 2023) to identify the
response language to obtain the language fidelity. GlotLID is an open-source language identification
model that supports more than 1,600 languages. GlotLID returns iso 636 9 language codes, which
we manually map to the language codes in this work.

More detailed hyper-parameter settings for bilingual and multilingual enhancement across different
backbones are listed in Table 2 and Table 3, respectively.

Further, we carefully evaluate the official implementations of all baselines, in order to make the
comparison as fair as possible. We strictly follow the hyper-parameter settings in their original
code. If this could not reach the expected performance, we carry out the hyper-parameter search of
the learning rate and batch size.

E ADDITIONAL EXPERIMENTAL RESULTS

We report the multilingual understanding performance of LLaMA-3-8B-Instruct in Figure 7. Ex-
perimental results of the comparison between LENS and baseline methods on Phi-3.5-mini-Instruct
under bilingual and multilingual setups are shown in Table 4 and Figure 9, respectively. And the
multilingual enhancement results for LLaMA-3.1-8B-Instruct are displayed in Figure 8.

The results demonstrate that our LENS is still capable of achieving the comprehensive multilingual
enhancement. Similarly, LENS continues to improve the model’s multilingual generation capability,
enhancing the quality of the model’s responses in specific languages. However, the improvement
in language fidelity is more pronounced in the English-centric backbone than in the multilingual
backbone, which the latter one undergoes more extensive multilingual alignment training. Notably,
while the baseline method considerably decreases the language fidelity of the multilingual backbone,
LENS has minimal impact on it. These extensive experimental results demonstrate that LENS can
serve as an effective, efficient, and scalable multilingual enhancement solution. We hope that our
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Figure 7: Results on the multilingual understanding benchmark with LLaMA-3-8B-Instruct back-
bone under the multilingual setting. We report the average performance of each language on the
corresponding benchmarks.
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Figure 8: Results on the multilingual understanding and generation benchmarks with LLaMA-3.1-
8B-Instruct backbone under the multilingual setting.
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Figure 9: Results on the multilingual understanding and generation benchmarks with Phi-3.5-mini-
Instruct backbone under the multilingual setting.

method can provide inspiration for future work to seek multilingual supervision more from the LLM
itself rather than heavily relying on external dataset.

F ADDITIONAL RELATED WORKS

Here we provide additional discussion on the theoretical foundation of language-agnostic and
language-specific subspaces, dividing it into two aspects: linguistic theory and LLM interpretability.

Linguistic Theory From a linguistic standpoint, the idea of separating representations into
language-agnostic and language-specific spaces is grounded in established theories of language uni-
versals and typology. Language-agnostic features align with universal linguistic structures, such as
shared syntactic patterns or semantic primitives (Greenberg, 1963; Comrie, 1989), while language-
specific features capture unique aspects like phonology, morphology, or syntax (Croft, 2002; Cot-
terell et al., 2016). These distinctions have also been studied in computational linguistics, such as
in multilingual embeddings (Artetxe et al., 2018) and cross-lingual representation learning (Ruder
et al., 2019), supporting the conceptual basis in LENS.

LLM Interpretability Recent interpretability studies have provided compelling evidence that
LLMs internally encode language-agnostic and language-specific subspaces. For example, specific
neurons or groups of neurons have been identified as responsible for mapping multilingual input rep-
resentations into either a shared language-agnostic space (Chen et al., 2023a; Starace et al., 2023;
Wang et al., 2024b; Chen et al., 2024; Wendler et al., 2024) that different languages share the com-
mon knowledge or distinct language-specific spaces (Tang et al., 2024; Kojima et al., 2024; Zhang
et al., 2024d) that are crucial for the accurate expression for specific languages. These findings sup-
port our assumption that LLMs naturally exhibit such separable structures, and our work leverages
this inductive bias to improve multilingual performance.
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Building upon such two theoretical foundations, particularly from linguistic theory, most previous
works regarding multilingual enhancement have focused on aligning representations in the language-
agnostic space (Hu et al., 2024; Berend, 2020; Cao et al., 2020; Karthikeyan et al., 2020; Alaux et al.,
2019; Wang et al., 2019) or aligning gradients during optimization (Lee et al., 2022; Wang et al.,
2021) to leverage shared features across languages. However, few works in multilingual machine
translation have considered language-specific characteristics, primarily to implement routing mech-
anisms or modular designs to improve performance (Zhao et al., 2024b; Zhang et al., 2021a)

In contrast, our proposed LENS goes a step further that it leverages both language-agnostic and
language-specific subspaces to comprehensively enhance multilingual performance both inheriting
the theoretical soundness and demonstrating practical utility of our approach.
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