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Abstract

This paper studies a cooperative multi-agent ban-
dit scenario in which the rewards observed by
agents are heterogeneous—one agent’s meat can
be another agent’s poison. Specifically, the total
reward observed by each agent is the sum of two
values: an arm-specific reward, capturing the in-
trinsic value of the arm, and a privately-known
agent-specific reward, which captures the personal
preference/limitations of the agent. This hetero-
geneity in total reward leads to different local op-
timal arms for agents but creates an opportunity
for free exploration in a cooperative setting—an
agent can freely explore its local optimal arm with
no regret and share this free observation with some
other agents who would suffer regrets if they pull
this arm since the arm is not optimal for them. We
first characterize a regret lower bound that cap-
tures free exploration, i.e., arms that can be freely
explored have no contribution to the regret lower
bound. Then, we present a cooperative bandit algo-
rithm that takes advantage of free exploration and
achieves a near-optimal regret upper bound which
tightly matches the regret lower bound up to a con-
stant factor. Lastly, we run numerical simulations
to compare our algorithm with various baselines
without free exploration.
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1 INTRODUCTION

Multi-armed bandit (MAB) [Lai et al., 1985, Bubeck et al.,3

2012] is a classic sequential decision making problem. In the4

stochastic MAB, an agent faces a set K := {1, 2, . . . ,K}5

(K∈N+) of arms, where each arm k is associated with a6

reward random variable with unknown mean µ(k). The7

agent sequentially pulls arms from K in T ∈ N+ decision8

rounds and observes the pulled arm rewards. The goal of9

the agent is to maximize its total reward over all decision 10

rounds, which is equivalent to minimizing the total regret, 11

i.e., the cumulative reward difference between the aggregate 12

reward of the optimal arm k∗ with the highest mean and the 13

agent’s sequential choices. To achieve this goal, the agent 14

needs to balance between exploration and exploitation, i.e., 15

either optimistically choose the arm with high uncertainty in 16

reward (exploration), or myopically pull the one with high 17

empirical mean reward (exploitation). 18

Multi-agent MAB (MA2B) is an extension of the basic 19

MAB, where a group of M ∈ N+ agents (denoted as 20

M := {1, 2, . . . ,M}) pulls arms from the same arm set 21

K. This model has been studied in various settings, e.g., 22

federated bandits [Shi and Shen, 2021, Shi et al., 2021a, 23

Zhu et al., 2021, Huang et al., 2021], cooperative pure 24

exploration [Hillel et al., 2013, Tao et al., 2019, Karpov 25

et al., 2020], multi-agent MAB with collision [Boursier and 26

Perchet, 2019, Mehrabian et al., 2020, Shi et al., 2021b], 27

and cooperative multi-agent MAB [Landgren et al., 2016, 28

Martínez-Rubio et al., 2019, Wang et al., 2020a,b]. 29

The majority of prior works on MA2B, with a few excep- 30

tions (see Appendix A), study a homogeneous reward set- 31

ting, where the reward distribution of an arm is the same for 32

all agents. The homogeneous reward setting, however, fails 33

to capture agent-specific preferences/limitations. In many 34

real-world applications, the agents represent different clus- 35

ters of users with specific preferences, or users in different 36

geographical locations with different costs/limits to access 37

the arm set. In such settings, the reward of each arm might 38

be different for different agents. We refer to Section 2.3 for 39

a detailed explanation of various application scenarios. 40

This paper introduces a multi-agent multi-armed ban- 41

dits problem with heterogeneous reward (MA2B-HR). In 42

MA2B-HR, the reward observed by an agent consists of 43

two components representing arm- and agent-specific terms. 44

Specifically, when agent i ∈ M pulls arm k ∈ K, the ob- 45

served reward is X(i)
t (k) = Xt,arm(k) +X

(i)
t,agent(k), where 46

Xt,arm(k) is the arm-specific reward with bounded mean 47
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µ(k) ∈ (0, b) (where b is a positive constant) and X
(i)
t,agent(k)48

is the agent-specific reward with mean ν(i)(k). We denote49

ω(i)(k) := µ(k) + ν(i)(k) as the reward mean of this pull.50

In MA2B-HR, we assume both Xt,arm(k) and X
(i)
t,agent(k) are51

stochastic and independent. The arm-specific reward mean52

µ(k) is not known to agents, and each agent i only privately53

knows its own agent-specific mean values ν(i)(k),∀k ∈ K.54

Further, in the MA2B-HR setting, the agents can broadcast55

the observed values of the arm-specific term in the total56

reward (by subtracting the agent-specific reward mean from57

the observed reward, i.e., X(i)
t (k)− ν(i)(k)) at no cost. We58

note that one may consider other settings for MA2B-HR,59

e.g., known vs. unknown and homogeneous vs. heteroge-60

neous assumptions for the agent-specific reward. We refer to61

Appendix B.1 for a detailed discussion and the connection62

of each setting to the prior literature.63

In MA2B-HR, the reward heterogeneity of agents creates a64

counterintuitive opportunity for free exploration of a subset65

of arms. With heterogeneous rewards among agents, there66

might be no global optimal arm(s). In other words, agents67

may have different local optimal arms, i.e., the arms with68

the largest reward mean are different among agents, so the69

characterization of the regret of agents becomes more com-70

plicated. However, the existence of multiple local optimal71

arms poses a surprising opportunity to develop a cooperative72

learning algorithm to explore local optimal arms for free73

(without cost), share the free observations with others, and74

significantly improve the total regret among all agents.75

While the idea of free exploration is intuitive, designing a76

cooperative bandit algorithm that effectively implements77

this idea is nontrivial. The main challenge is that the local78

optimal arms are unknown in advance to the bandit agents.79

Hence, an algorithm should be designed to economically80

identify the local optimal arms and assign them to agents81

that can freely explore them and prevent other agents from82

pulling these arms (with cost).83

We note that MA2B-HR could be considered as an ex-84

tended version of two recent models in the bandits’ liter-85

ature: action-constrained multi-agent multi-armed bandits86

(AC-MA2B) Yang et al. [2022] and grouped K-armed ban-87

dits Baek and Farias [2021]. The idea of free exploration88

is applicable to both Yang et al. [2022], Baek and Farias89

[2021], however, they did not explicitly utilize free explo-90

ration in algorithm design, so they fail to achieve optimal91

performance that takes into account the free exploration. A92

detailed discussion on both models and their connection to93

MA2B-HR, and the significance of our results with respect94

to both models are given in Section 1.2.95

It is worth noting that the high-level idea of free exploration96

has been leveraged in some other bandit settings in the liter-97

ature [Chen et al., 2018, Shi et al., 2021c]. However, these98

works considered the problem of incentivizing exploration;99

specifically, they considered a principal, aiming to learn the100

global bandit model, offering bonuses to agents to do ex- 101

plorations on the principal’s behalf. In these settings, Chen 102

et al. [2018], Shi et al. [2021c] studied free exploration in the 103

sense that the principal pays no cost rather than free explo- 104

ration in cooperation among agents. Hence, these works are 105

in clear contrast to the idea of free exploration in MA2B-HR 106

introduced in this paper. A comprehensive comparison to 107

related works are presented in Appendix A. 108

1.1 CONTRIBUTIONS

In this paper, we first present the MA2B-HR model and 109

highlight its real-world applications. Then, we propose 110

FreeExp, a cooperative algorithm designed to enable free 111

exploration in the learning process. Finally, we characterize 112

a regret lower bound that explicitly captures the impact of 113

free exploration on MA2B-HR, and show that the regret of 114

FreeExp matches the regret lower bound up to a constant 115

factor. The contributions of this work are: 116

Modeling and practical relevance of MA2B-HR: We 117

present the MA2B-HRmodel in Section 2 and justify its prac- 118

tical relevance by highlighting several application scenarios 119

in online advertising, wireless networks, and cloud and edge 120

resource allocation. We also introduce a new definition for 121

the suboptimality gap in MA2B-HR as a key parameter to 122

explicitly characterize the impact of free exploration in the 123

regret analysis. 124

Algorithm design: In Section 3, we present FreeExp, a 125

cooperative learning algorithm that tackles MA2B-HR and 126

implements the idea of free exploration. The high level idea 127

of FreeExp is that agents judiciously reduce the selection 128

of arms that are likely to be local optimal for other agents. 129

Instead, by cooperation, those agents can still get the obser- 130

vations on those arms from others without regret cost. In 131

doing so, free exploration of some arms becomes possible 132

and the cooperative bandit algorithm achieves significant 133

improvement in regret. A key technique in FreeExp is to 134

perform periodic pulls of the empirical local optimal arms 135

(i.e., the arm with the highest empirical mean) while balanc- 136

ing between exploration and exploitation, which guarantees 137

that the empirical optimal arm is indeed the ground truth 138

local optimal arm in most time slots. 139

Regret analysis: In contrast to the common regret analysis 140

in multi-agent bandits where only the pulled arm matters 141

regardless of the agent who pull the arm, in MA2B-HR, we 142

have to address a unique technical challenge since the regret 143

cost of pulling an arm depends not only on which arm is 144

pulled, but also on which agent pulls it. In Section 4, we 145

tackle this challenge and derive a regret lower bound for 146

MA2B-HR that echos the importance of recognizing free 147

explorations: arms that can be freely explored only cause 148

constant regret, instead of the usual logarithmic regret in 149

MA2B. We derive the regret upper bound of the FreeExp 150



Table 1: A simple example with three agents and three arms (b > µ(1) > µ(2) > µ(3) > 0). The entries of the table show
the total reward of each arm for each agent, e.g., ω(1)(1) = µ(1) or ω(3)(2) = µ(2)− b < 0. Arms 1, 2, and 3 are the local
optimal arms of agents 1, 2, and 3, respectively. On the right-hand side, denoting ∆(i, j) = µ(i)− µ(j), the regret of our
work is compared with a classic non-cooperative algorithm [Auer, 2002] and the works of Yang et al. [2022] and Baek and
Farias [2021] as two special cases of MA2B-HR.

Arm 1 Arm 2 Arm 3

Agent 1 µ(1) µ(2) µ(3)
Agent 2 < 0 µ(2) µ(3)
Agent 3 < 0 < 0 µ(3)

UCB [Auer, 2002] O
((

1
∆(1,2) +

1
∆(1,3) +

1
∆(2,3)

)
log T

)
CO-UCB [Yang et al., 2022] O

((
1

∆(1,2) +
1

∆(2,3)

)
log T

)
KL-UCB [Baek and Farias, 2021] O (log log T )
FreeExp (our work) O(1)

algorithm which matches the regret lower bound up to a151

constant factor. Deriving this result requires new analysis152

techniques (see Theorem 4.3’s proof sketch in Section 4153

for detail). The tightness of both regret upper and lower154

bounds reflects the intrinsic property of MA2B-HR where155

free exploration plays a key role, and that FreeExp is156

near-optimal. A surprising observation is that in the special157

cases where every arm is local optimal for at least one agent158

(reasonable when M ⩾ K), FreeExp achieves an O(1)159

regret.160

Numerical results: In Section 5, we report numerical ex-161

periments of comparing our algorithm to several baselines.162

1.2 TECHNICAL COMPARISON TO THE PRIOR
WORK

In this section, we highlight our contribution in leveraging163

free exploration by applying our algorithm to the action-164

constrained MA2B problem (AC-MA2B) which was recently165

studied by Yang et al. [2022]. In AC-MA2B, each agent166

i ∈ M only pulls from a subset of arms K(i) ⊂ K and its167

goal is to find the local optimal arm in K(i). AC-MA2B can168

be regarded as a special case of MA2B-HR when agent i’s169

specific reward ν(i)(k) for arm k is 0 if k ∈ K(i), and −b170

if k ̸∈ K(i), where b > 0 and µ(k) ∈ (0, b) for all arm171

k (see Remark 2.1 for a formal definition). Since agent i172

knows its agent-specific reward means, she would never173

pull arms with ν(i)(k) = −b and thus is equivalent to only174

having access to arms in the constrained arm set K(i). We175

provide a simple example in Table 1 to illustrate the benefit176

of free exploration which substantially improves regret as177

compared to the classic non-cooperative algorithms and the178

cooperative approach in Yang et al. [2022] as a special case.179

Next, we present the theoretical improvement. Recall that180

the non-cooperative optimal total regret of classic MAB [Lai181

et al., 1985] for all agents inM is182

O

∑
i∈M

∑
k∈K(i)\{k(i)

∗ }

∆(i)(k) log T

kl(µ(k), µ(k) + ∆(i)(k))

 ,

where the suboptimality gap ∆(i)(k) := µ(k
(i)
∗ ) − µ(k)183

is the difference of reward means between agent i’s opti- 184

mal arm k
(i)
∗ and arm k, and kl(a, b) is the KL-divergence 185

between two Gaussian distributions with means a and b 186

and the same variance (defined later). To improve total 187

regret through cooperation, Yang et al. [2022] proposed 188

cooperative extensions to classic learning algorithms, e.g., 189

UCB [Auer, 2002], which improved the total regret to 190

O

 ∑
k∈∪i(K(i)\{k(i)

∗ })

∆̄(k) log T

kl(µ(k), µ(k) + ∆̄(k))

 , (1)

where ∆̄(k) denotes the smallest reward mean gap of arm 191

k compared to the local optimal arms (excluding arm k) 192

among agents having access to arm k. 193

The regret of applying FreeExp to AC-MA2B is 194

O

 ∑
k∈∪iK(i)\∪i{k(i)

∗ }

∆̄(k) log T

kl(µ(k), µ(k) + ∆̄(k))

 . (2)

The improvement of our result lies in the summation range. 195

Specifically, the summation range ∪iK(i)\∪i{k(i)∗ } in (2) is 196

a subset of (1)’s ∪i(K(i) \ {k(i)∗ }). The summation range in 197

(2) excludes the regret impact of arms in ∪i{k(i)∗ }, i.e., arms 198

that are optimal to at least one agent; these arms are freely 199

explored. In contrast, the regret of Yang et al. [2022] in (1) 200

is over ∪i(K(i) \ {k(i)∗ }), which counts some arms that are 201

optimal for some agents (and can be freely explored). We 202

note that this improvement can be substantial. Especially, 203

when all arms in K are locally optimal for some agents, 204

the regret upper in (2) is O(1), e.g., the simple example 205

in Table 1. This implies that capturing the benefit of free 206

exploration requires the development of a completely new 207

cooperative algorithm as explained in Section 3. 208

The grouped K-armed bandits model proposed by Baek and 209

Farias [2021] is almost equivalent to AC-MA2B Yang et al. 210

[2022] except for minor differences in how their actions are 211

constrained—the grouped bandits’ action constraint depends 212

on the arrived group while AC-MA2B’s is associates to the 213

agents. Therefore, the grouped bandits model can also be 214

regarded as a special case of our MA2B-HR model. Baek 215



and Farias [2021] proved that the KL-UCB algorithm Cappé216

et al. [2013] can address their grouped bandits model with217

the regret performance as follows,218

lim sup
T→∞

E[RT(A)]
log T

⩽
∑

k∈∪iK(i)\∪i{k(i)
∗ }

∆̄(k)

kl(µ(k), µ(k) + ∆̄(k))
.

We emphasize that the above bound of Baek and Farias219

[2021] was in an asymptotic form (i.e., for T →∞), while220

FreeExp’s regret bound is in a non-asymptotic form (i.e.,221

for any time T , see Eq.(10) of Theorem 4.3), which differs222

a lot in handling the regret of free arms (see Remark 4.7 for223

detail). Here, we pick the toy example in Table 1 to illus-224

trate the difference; this can be generalized to any case that225

all arms are free arms. In this example, FreeExp attains226

the O(1) regret, while KL-UCB’s regret was o(log T ) (or,227

O(log log T ) specifically) [Baek and Farias, 2021]. In Sec-228

tion 5, we conduct numerical comparisons to corroborate229

the advantage of FreeExp over KL-UCB. Also, we empha-230

size that our regret upper bound is proved for the MA2B-HR231

model which is more general than Baek and Farias [2021]’s232

grouped bandits model.233

2 MODEL AND NOTATIONS

We first present the multi-agent multi-armed bandits with234

heterogeneous rewards problem (MA2B-HR) in Section 2.1235

and its performance metric in Section 2.2. In Section 2.4, we236

introduce notations related to free exploration to facilitate237

our algorithm design and analysis.238

2.1 MA2B-HR: THE MULTI-AGENT
MULTI-ARMED BANDITS WITH
HETEROGENEOUS REWARDS

In MA2B-HR, there are K ∈ N+ arms and M ∈ N+ agents.239

Each arm k ∈ K (:= {1, 2, . . . ,K}) is associated with240

a Gaussian reward random variable with unknown mean241

µ(k) ∈ (0, b) and variance σ2
1 , where b is positive and242

known.1 This is the arm-specific reward representing the243

intrinsic value of the arm and it is independent of the pref-244

erence of the agents. In addition, each agent has its own245

private agent-specific reward for each arm to capture its246

private preference for different arms. The agent-specific re-247

ward of agent i for arm k is modelled by a Gaussian random248

variable with mean ν(i)(k) and variance σ2
2 . The variances249

σ2
1 and σ2

2 are common for all arms and agents. The agent-250

and arm-specific rewards are independent, and both are also251

independent across arms K and time t = 1, 2, . . ..252

By pulling an arm k at time t, agent i observes a Gaussian253

reward X
(i)
t (k) with mean ω(i)(k) := µ(k) + ν(i)(k) and254

variance σ2
1 + σ2

2 . In this paper, we assume that the value255

1If b is unknown, we can set it as an arbitrarily large constant.

of ν(i)(k) is only known to agent i, but unknown to other 256

agents, for all agent i ∈M. Similar to the basic setting of 257

stochastic bandits, the arm-specific reward means µ(k) are 258

unknown to all agents. We also assume, for each agent i, 259

that all mean rewards ω(i)(k) (∀k ∈ K) are different; hence 260

each agent has a unique optimal arm. 261

Remark 2.1 (Agent’s local arm set). Observe that µ(k) ∈ 262

(0, b). Consequently, if there exist two arms k1, k2 such that 263

ν(i)(k1) ⩾ ν(i)(k2) + b for agent i ∈M, then 264

ω(i)(k1)− ω(i)(k2)

= (µ(k1) + ν(i)(k1))− (µ(k2) + ν(i)(k2))

> µ(k1)− µ(k2) + b > 0,

that is, for agent i, the reward mean of arm k1 is higher than 265

that of arm k2. Therefore, there is no need for agent i to pull 266

arm k2. More generally, we define agent i’s local arm set as 267

follows, Therefore, agent i’s local arm set is 268

K(i) :=
{
k ∈ K : ν(i)(k) + b > maxℓ∈K ν(i)(ℓ)

}
,

and agent i only needs to explore arms in its local arm set. 269

Another relevant model for reward heterogeneity is contex- 270

tual bandits [Li et al., 2010]. We discuss it in Appendix B.2. 271

The MA2B-HR model finds applications in diverse domains, 272

e.g., online advertising, online shortest path routing, online 273

cloud and edge resources allocation, and personalized clini- 274

cal trial, cf., the detail application scenarios in Appendix 2.3. 275

2.2 PERFORMANCE METRICS

Since rewards are heterogeneous across agents, agents may 276

have different optimal arms. The goal of each agent is to 277

find its local optimal arm, the one with the largest total 278

reward, which is the sum of arm- and agent-specific rewards. 279

Let k(i)∗ be the local optimal arm of agent i, i.e., k(i)∗ := 280

argmaxk∈K(i) ω(i)(k). For an algorithm A, let J (i)
t (A) be 281

the arm pulled by agent i at time t. The expected regret 282

of agent i under algorithm A is the difference between 283

the aggregate reward of pulling its local optimal arm and 284

the aggregate reward of pulling arms in an online manner 285

according to a bandit algorithm, i.e., 286

E[R(i)
T (A)] := Tω(i)(k

(i)
∗ )− E

[∑T

t=1
ω(i)(J

(i)
t (A))

]
,

where the expectation is taken over the randomness of action 287

sequence {J (i)
1 (A), J (i)

2 (A), . . . }. 288

In the MA2B-HR model, agents can cooperate and share in- 289

formation to accelerate bandit learning. In particular, we as- 290

sume that each agent can broadcast the arm-specific reward 291

term (the observed rewards minus the agent-specific reward 292

mean, X(i)
t (k)− ν(i)(k)) at no cost to all other agents, and 293



other agents immediately receives the broadcast observa-294

tions. Note that this basic system model can be extended to295

include the communication costs, or an underlying topology296

to govern communication between agents, or agent privacy,297

etc. We leave these extensions to future works and focus298

on presenting the key idea of free exploration in this paper.299

The learning environment is a cooperative one, hence, we300

consider aggregate regret as the performance metric, which301

is simply the aggregate regret over M agents, i.e.,302

E[RT(A)] :=
M∑
i=1

(
Tω(i)(k

(i)
∗ )−E

[
T∑

t=1

ω(i)(k
(i)
t )

])
. (3)

2.3 APPLICATION SCENARIOS

The heterogeneous and known agent-specific reward means303

for MA2B-HR is a practically relevant setting and can find304

applications in diverse domains. The applications mentioned305

in Yang et al. [2022] and Baek and Farias [2021] can also be306

handled by MA2B-HR since their models are special cases307

of MA2B-HR. In the following, we present four motivating308

application scenarios that MA2B-HR could model. We note309

that we focus on motivating the arm- and agent-specific310

rewards. Detailed modeling of each application may require311

additional effort, which is beyond the scope of this paper.312

Online Advertising in Social Networks: Online adver-313

tising is a classic example of the MAB problem [Tang et al.,314

2014, Mahadik et al., 2020]. Consider a scenario where there315

are multiple bandit agents that select ads to be placed on a316

social platform. Each agent is responsible for a cluster of317

users with similar interests. The cluster may be constructed318

based on different criteria, e.g., location, age, etc. Indeed,319

the popularity of products can differ across different loca-320

tions or age groups. But the ads (arms) could be selected321

from a shared pool of available ads. In this scenario, the322

agent is aware of the personal preferences of users in its323

cluster, i.e., the agent-specific reward is known. However,324

the agents need to learn the potential value of ads as well;325

hence, arm-specific rewards are unknown. Since the learning326

agents all belong to the same social platform advertising en-327

gine, they can cooperate to share arm-specific observations328

and improve learning performance.329

Online Shortest Path Routing in Wireless Networks:330

Another example is the problem of finding shortest paths in331

a multi-hop wireless network. Consider a scenario in which332

multiple learning agents try to learn the shortest paths for333

different communication sessions. In this scenario, bandit334

algorithms can be implemented to learn the shortest routing335

paths [He et al., 2013, Zou et al., 2014, Talebi et al., 2017].336

The cost (or latency) of a certain path (arm) depends on337

the physical condition of the path itself, representing an338

arm-specific cost unknown to the learning agents. Further,339

the session of each agent might have its local physical con-340

ditions, e.g., distance and the hardware spec of the mobile341

device, which is known only to the agent and impacts the 342

overall cost of each path. In this scenario, the former is 343

an arm-specific cost, which is homogeneous and unknown 344

among all agents, while the latter varies across agents and 345

whose mean is privately known to each agent only. 346

Online Cloud and Edge Resource Allocation: In prior 347

literature, the MAB framework has been used for work- 348

load allocation into a pool of cloud/edge servers [Talebi and 349

Proutiere, 2018, Johari et al., 2017, Lattimore et al., 2014, 350

Dagan and Koby, 2018]. In this scenario, the cloud provider 351

may categorize the compute jobs into multiple types, e.g., 352

ML training workload, video processing, financial analytics, 353

etc., and create a learning agent for finding the best server 354

type for them. In this scenario, the arm-specific reward cap- 355

tures the hardware spec of the servers, and the agent-specific 356

reward captures the job-specific hardware requirement of the 357

workload, e.g., video processing is memory-intensive, while 358

finance workload is compute-intensive. In edge scenarios 359

where the workload could be run in multiple locations, the 360

agent-specific reward could be represented as the cost of 361

moving the workload to different locations as well, which is 362

known and heterogeneous for different agents. 363

Personalized Medicine and Clinical Trial: A classic 364

MAB application is clinical trial Lai [1987], Villar et al. 365

[2015], Aziz et al. [2021]. Consider a scenario where pa- 366

tients have different covariates, e.g., age, gender, genomic 367

features, and medical history, and, therefore, should be cat- 368

egorized to several heterogeneous groups, and the doctor 369

should create personalized agents (drug application policies) 370

for every group. In this scenario, the effectiveness of a treat- 371

ment for a certain patient group depends not only on the 372

treatment itself but also on the patient group’s covariates. 373

For example, the effectiveness of a treatment that disturbs 374

patients’ blood glucose concentrations may be discounted 375

on diabetics. In this scenario, the arm-specific reward cap- 376

tures treatments’ or medicines’ basic effectiveness on a 377

diseases, and the agent-specific reward (or cost) captures 378

the discounted or additional effectiveness due to the pa- 379

tient group features. The latter is known to (or can be well 380

evaluated by) an expert. 381

2.4 NOTATIONS RELATED TO FREE
EXPLORATION

To ease the presentation of FreeExp and its analysis, we 382

introduce some key notations relevant to free exploration. In 383

MA2B-HR, arms that are local optimal for at least one agent 384

can be freely explored. Then, in a cooperative environment, 385

other agents who take these arms as their suboptimal choices 386

can enjoy the freely explored observations of these arms. 387

Definition 2.2 (Set of free arms). We define the set of free 388



arms Kfr as389

Kfr := {k ∈ K :M∗(k) ̸= ∅}, (4)

whereM∗(k) := {i ∈M : k ∈ K(i), k = k
(i)
∗ } is a subset390

of agents with arm k as their local optimal arm. Any arm391

k ∈ Kfr can be freely explored without incurring regret by392

any agent inM∗(k). In the rest of this paper, we refer to393

the arms in Kfr as free arms.394

Recall that in the classic MAB, the difficulty of distinguish-395

ing a suboptimal arm k from the optimal arm depends on396

∆(k)—the reward mean gap between arm k and the optimal397

arm k∗. In MA2B-HR, the notion of optimality gap needs to398

be redefined since agents may have different local optimal399

arms. In the following, we formally define the suboptimality400

gap of each arm k as the smallest gap between arm k and401

any local optimal arms. A formal definition is given below.402

Definition 2.3 (Suboptimality gap). The suboptimality gap403

of arm k is defined as404

∆̄(k) := min
i∈M

∆(i)(k), (5)

where ∆(i)(k) := ω(i)(k
(i)
∗ ) − ω(i)(k) is the gap between405

the mean rewards of arm k and k
(i)
∗ —the local optimal arm406

of agent i.407

All free arms have zero suboptimality gaps, i.e., ∆̄(k) =408

0, ∀k ∈ Kfr. Denote ī(k) ∈ argmini∈M(k) ∆
(i)(k) to409

be an agent with the smallest reward gap of arm k (one410

can break ties arbitrarily). Then, ∆̄(k) can be rewritten as411

∆̄(k) = ω(̄i(k))(k
(̄i(k))
∗ )− ω(̄i(k))(k), where for simplicity,412

we denote ω(̄i(k))(k) as ω̄(k), i.e.,413

ω̄(k) := ω(̄i(k))(k) = µ(k) + ν (̄i(k))(k). (6)

3 THE FREEEXP ALGORITHM

In this section, we present the FreeExp algorithm, which414

solves a multi-agent bandit problem in the MA2B-HR model.415

Each agent runs its own FreeExp algorithm and cooper-416

ates with each other. In Section 4, we demonstrate that with417

FreeExp, the reward heterogeneity not only does no harm,418

but in fact benefits the cooperative learning by the unique419

opportunity of free exploration.420

High-level idea of FreeExp: We now explain how421

FreeExp implements the idea of free exploration to re-422

duce regret. The pivot of FreeExp is the local optimal423

(free) arm of each agent, which is unknown in advance. To424

address that for an agent i, FreeExp maintains an local425

optimal arm estimate I
(i)
t of the agent i and an exploration426

arm set D(i)
t containing arms that might be the ground truth427

Algorithm 1 The FreeExp Algorithm (for Agent i)

1: Initialize: dt(k) = 0, µ̂t(k) = 0, ω̂
(i)
t (k) := µ̂t(k) +

ν(i)(k).
2: for each time slot t do
3: I

(i)
t ← argmaxk∈K(i) ω̂

(i)
t (k) {identify the

empirical optimal arm}
4: Send I

(i)
t to other agents and collect their I(j)t

5: D(i)
t ← {k ∈ K(i) \ {I(i)t } : d

(i)
t (k) > ω̂

(i)
t (I

(i)
t )}

{choose arms with high KL-UCB}
6: D(i)

t ← D(i)
t \ {I(j)t : ∀j ∈ M} {take

advantage of free exploration}
7: if D(i)

t = ∅ then
8: J

(i)
t ← I

(i)
t

9: else
10: w.p., 1

2 , J (i)
t ← I

(i)
t

11: w.p., 1
2 , J (i)

t ← uniformly pick an arm from D(i)
t

12: end if
13: Pull arm J

(i)
t and receive observations X(i)

t (J
(i)
t )

14: Send observations X
(i)
t (J

(i)
t ) − ν(i)(J

(i)
t ) to other

agents and also collect theirs
15: Update ω̂

(i)
t (k) and d

(i)
t (k) for arm k and agent i

16: end for

local optimal arm and thus need further explorations. To 428

utilize free exploration, agent i periodically announces her 429

estimated optimal arm I
(i)
t to others to discourage other 430

agents exploring this arm. 431

Remark 3.1. We note that some prior works [Combes and 432

Proutiere, 2014, Combes et al., 2015, Wang et al., 2020a], 433

such as the DPE2 algorithm in cooperative MA2B [Wang 434

et al., 2020a], also involved a pivot arm and an exploration 435

arm set in the algorithm design. However, the technical 436

usage of both components in those works is very different 437

from ours. For example, DPE2 estimates the pivot arm to 438

gather all exploration responsibility to a single leader agent, 439

while our usage is relegating/dispersing the free arms to the 440

agents for which they are locally optimal. 441

Local optimal arm estimate and construction of explo- 442

ration arm set: Let nt(k) and µ̂t(k) denote the total num- 443

ber of times arm k is pulled up to time t and the empirical 444

mean of these nt(k) reward observations of arm k among 445

all M agents. Denote ω̂
(i)
t (k) := µ̂t(k) + ν(i)(k) as the 446

empirical reward mean of agent i pulling arm k and it is 447

based on all agents’ observations of arm k. FreeExp uses 448

agent i’s empirical local optimal arm I
(i)
t (the arm with the 449

largest empirical reward mean ω̂
(i)
t (k) of agent i at time t) 450

as an estimate of the pivot. Given this empirical optimal 451

arm as the pivot, the agent either pulls its own empirical 452

optimal arm I
(i)
t for free exploration, or explores other arms 453

in D(i)
t to guarantee the correctness of this estimated pivot. 454

To improve the efficiency of exploring other arms, we con- 455



struct the exploration arm set D(i)
t for each agent i using456

the KL-UCB index [Cappé et al., 2013]. The index of arm457

k at time slot t is458

d
(i)
t (k) := sup{q ⩾ 0 :

nt(k) kl(ω̂
(i)
t (k), q) ⩽ log t+ 4 log(log t)},

(7)

where kl(a, b) is the KL-divergence between two Gaussian459

distributions with means a and b and same variance σ2
1 +460

σ2
2 . The exploration arm set D(i)

t includes arms whose KL-461

UCB indexes d
(i)
t (k) are greater than the agent’s highest462

empirical mean ω̂
(i)
t (I

(i)
t ) (Line 5) and excludes arms that463

are empirically optimal for at least one agent (Line 6)—464

discourage agent i exploring others’ local optimal arms.465

Note that the agents only share the arm-specific reward to466

other, i.e., the agent subtracts the agent-specific reward from467

the observed compound reward before sharing (Line 14).468

Arm pulling policy: To guarantee the accuracy of the pivot469

estimation (i.e., the empirical optimal arm is correct with470

high probability), each agent needs to have enough observa-471

tions for her empirically optimal arm. To accomplish this,472

FreeExp implements an arm pulling policy (Lines 7-11)473

as follows: if exploration arm set D(i)
t is empty, the agent i474

pulls the empirical optimal arm I
(i)
t ; if exploration arm set475

D(i)
t is not empty, with probability 1/2, the agent, uniformly476

at random picks an arm fromD(i)
t to explore; and with prob-477

ability 1/2, pulls her empirical optimal arm—encourage478

free explorations of the agent’s empirical optimal arm. This479

policy produces sufficient observations of this arm to guaran-480

tee fast correction if the current empirical optimal arm is not481

the correct one. Let J (i)
t denote the arm selected by agent i482

in time slot t under FreeExp. We present pseudocode for483

FreeExp in Algorithm 1.484

Remark 3.2 (NoFreeExp Algorithm). There is a coun-485

terpart algorithm of FreeExp, which does not utilize free486

exploration, i.e., Algorithm 1 without Line 6. We name it as487

NoFreeExp. Even without making use of free exploration,488

NoFreeExp should have a better regret performance than489

known baselines, e.g., CO-UCB, because NoFreeExp is490

based on the KL-UCB algorithm, which is theoretically491

better than UCB-like algorithms [Cappé et al., 2013].492

4 THEORETICAL RESULTS

We present our theoretical results and their significance493

discussions in this section. The rigorous proofs of these494

results are deferred to Appendix C. We first derive a regret495

lower bound in Theorem 4.1 which reflects the impact of496

free exploration.497

Theorem 4.1 (Regret lower bound). For any consistent498

policy π (i.e., for any bandit instance ν and any α > 0, the499

policy π always guarantees Eν,π[RT ] = O(Tα)), the regret500

cost of addressing the MA2B-HR model in T time slots is 501

lower bounded by 502

lim inf
T→∞

E[RT(A)]
log T

⩾
∑

k:∆̄(k)>0

∆̄(k)

kl(ω̄(k), ω̄(k) + ∆̄(k))
, (8)

where ∆̄(k) defined in (5) is the smallest reward gap of 503

pulling arm k and ω̄(k) defined in (6) is the reward mean of 504

pulling arm k by the agent who enjoys the smallest gap. 505

Theorem 4.1’s proof leverages similar techniques of the 506

classic stochastic bandits [Lai et al., 1985]. Since ∆̄(k) = 0 507

for all free arms k ∈ Kfr and vice versa, the regret lower 508

bound can be rewritten as 509

lim inf
T→∞

E[RT(A)]
log T

⩾
∑

k∈K\Kfr

∆̄(k)

kl(ω̄(k), ω̄(k) + ∆̄(k))
. (9)

Remark 4.2 (Free arms have no contribution to the asymp- 510

totic regret lower bound). Free arms in Kfr contribute at 511

most sub-logarithmic costs to the regret lower bound. In 512

fact, given our finite regret upper bound of FreeExp next, 513

free arms only contribute finite regret. 514

Theorem 4.3 (Regret upper bound for FreeExp (Al- 515

gorithm 1)). The FreeExp algorithm’s regret is upper 516

bounded as follows, 517

E[RT(A)] ⩽ 7bM2K2(4K + δ−2)

+
∑

k:∆̄(k)>0

4(∆̄(k)− 2δ)(log T + 4 log(log T ))

kl(ω̄(k) + δ, ω̄(k) + ∆̄(k)− δ)
(10)

where 0 < δ < 1
4mini∈M,k1 ̸=k2∈K|ω(i)(k1)− ω(i)(k2)|, 518

and that σ2
1 and σ2

2 are the variance of arm- and agent- 519

specific Gaussian rewards respectively, and b is an upper 520

bound of arm-specific reward mean µ(k) for all k ∈ K.2 521

If we let T → ∞ and δ → 0 (e.g., δ = (log(log T ))−1), 522

the above finite-time regret upper bound has the following 523

asymptotical form, 524

lim sup
T→∞

E[RT(A)]
log T

⩽ O

 ∑
k:∆̄(k)>0

∆̄(k)

kl(ω̄(k), ω̄(k) + ∆̄(k))

 .

(11)

Proof sketch and technical challenges. The proof of the 525

regret upper bound in Theorem 4.3 consists of two steps: 526

(i) bound the regret cost of pulling free arms in Kfr, and 527

(ii) other arms outside Kfr. To bound (i), notice that for 528

any free arm k in Kfr, there exists “corresponding” agent(s) 529

that takes arm k as its local optimal and can explore it 530

with no cost. Hence, we only need to count the number of 531

2One can also obtain a near-optimal regret upper bound if the
arm- and agent-specific rewards follow Bernoulli distributions.



times that arm k is pulled by agents other than “correspond-532

ing” one(s), which only happens when the “corresponding”533

agent’s empirical optimal arm I
(i)
t is not its true local op-534

timal arm k
(i)
t . Such events only occur with finite number535

of times even with a very large value of T . The proof of (i)536

shares the similar logical flow to that of [Wang et al., 2020b,537

Theorem 1]. To proof (ii), however, we need to develop538

new techniques for addressing the heterogeneous rewards539

in MA2B-HR. Note that in MA2B-HR the suboptimality re-540

ward gaps of pulling the same arm depend on the agents541

and thus are different. Hence, one cannot bound the cost of542

pulling a suboptimal arm k via multiplying the number of543

times of pulling the suboptimal arm k by one suboptimality544

reward gap as the usual bandits literature did. To address545

the challenge, we introduce two new techniques. First, we546

respectively count the number of times of the suboptimal547

arm pulls by agents (see Lemma C.7 and its proof), and548

secondly, we apply an Abel transformation to summing up549

the regret costs of all agents on pulling the arm k according550

to the order of magnitude of the arm’s reward gaps ∆(i)(k)551

for these agents (see Lemma C.8 and its proof).552

Similar to the regret lower bound’s another expression in (9),553

this regret upper bound’s summation range can also be ex-554

pressed according to the free arms,555

lim sup
T→∞

E[RT(A)]
log T

⩽ O

 ∑
k∈K\Kfr

∆̄(k)/kl(ω̄(k), ω̄(k) + ∆̄(k))

 .

(12)

Remark 4.4 (Regret optimality of the FreeExp algorithm).556

This regret upper bound in (11) matches the regret lower557

bound in (8) up to a constant factor, which implies that558

both bounds are near-optimal, and therefore the FreeExp559

algorithm is near-optimal as well.560

Remark 4.5 (Comparison to Yang et al. [2022]’s regret561

bounds). Yang et al. [2022] proposed algorithms achieving562

regret upper bounds [Yang et al., 2022, Theorems 2 and 4]563

for AC-MA2B as follows (adapted to our notations),3564

lim sup
T→∞

E[RT(A)]
log T

⩽ O

 ∑
k∈∪i∈M(K(i)\{k(i)

∗ })

∆̄(k)

kl(ω̄(k), ω̄(k) + ∆̄(k))

 .

Note that K = ∪i∈MK(i) and Kfr = ∪i∈M{k(i)∗ }. So, we565

have K \ Kfr ⊂ ∪i∈M(K(i) \ {k(i)∗ }). For example, if an566

3To express Yang et al. [2022]’s result, we abuse ∆̄(k) nota-
tion once, where ∆̄(k) := mini∈M\M∗(k) ∆

(i)(k)—the smallest
reward mean gap of arm k compared to the local optimal arms
(excluding arm k) among agents having access to k. The difference
between this definition and the original one in (5) is that for arm k
in Kfr this ∆̄(k) is positive while the original one is zero.

arm k ∈ Kfr is also a suboptimal arm for another agent, 567

then k ∈ ∪i∈M(K(i) \ {k(i)∗ }) but k ̸∈ K \ Kfr. In other 568

words, the arm k contributes logarithmic regret costs to 569

their upper bound but only contributes finite costs in ours. 570

Therefore, their regret upper bound failed to capture the 571

advantage of free exploration and their algorithms did not 572

utilize this appealing mechanism. 573

Remark 4.6 (Special cases with O(1) finite regret in 574

MA2B-HR). The regret upper bound in (12) echos the re- 575

gret lower bound’s Remark 4.2 that arms in Kfr only cause 576

finite O(1) costs in regret. Therefore, if all arms are local 577

optimal for some agents, K \ Kfr = ∅ (e.g., the example in 578

Table 1), then the regret upper bound in (11) becomes O(1), 579

i.e., a time horizon independent finite regret. 580

Remark 4.7 (Comparsion to Baek and Farias [2021]). Re- 581

call that the set of free arms Kfr defined in our Eq.(4) con- 582

tains arms that can be freely explored. In our regret upper 583

bound, we show that FreeExp’s regret cost due to pulling 584

arms in Kfr is O(1), while Baek and Farias [2021]’s regret 585

bound was asymptotic with respect to log T , implying that 586

KL-UCB’s regret due to pulling arms in Kfr was o(log T ) 587

(the analysis in Baek and Farias [2021] upper bounds the 588

cost for arm set Kfr by O(log log T )). 589

Remark 4.8 (Generalization to the homogeneous reward 590

setting). If all agents’ local arm sets are the same, then only 591

one unique optimal arm can be freely explored (i.e., |Kfr| = 592

1) and all other arms would appear in the summation range in 593

regret bounds (8) and (11). Then, both the regret upper and 594

lower bounds reduce to the ones in classic MABs in Lai et al. 595

[1985] (also the same as the optimal bounds of cooperative 596

MA2B). This observation highlights the “generality” of our 597

regret bounds and shows that FreeExp also works for the 598

homogeneous reward setting. 599

5 NUMERICAL SIMULATIONS

Baselines: We report results of numerical experiments that 600

compare FreeExp to three known cooperative algorithms 601

that do not leverage free exploration: (1) CO-UCB and (2) 602

CO-KLUCB, extensions of UCB and KLUCB algorithms to 603

cooperative multi-agent scenarios proposed by Yang et al. 604

[2022] and Baek and Farias [2021] respectively; and (3) 605

NoFreeExp, a variant of FreeExp that does not make 606

use of free exploration (see Remark 3.2). 607

Experimental setup: Unless otherwise specified, we con- 608

sider a MA2B-HR model with M = 25 agents and K = 50 609

arms. Each arm is associated with a Gaussian distribu- 610

tion whose arm-specific mean µ(k) ∈ (0, 1) is chosen 611

uniformly at random from the click-through-rates of Kag- 612

gle’s Ad-Click dataset [Avito, 2015] and with variance 1/2. 613

We consider two special cases of agent-specific reward 614

means: Case (1) ν(i)(k) is either 0 or −1 ∀k ∈ K, i ∈ M 615

(i.e., AC-MA2B [Yang et al., 2022, Baek and Farias, 2021] 616



(a) Case (1) (b) Case (2)

Figure 1: FreeExp vs. baselines

(a) Vary # local arms (b) Vary # agents (c) Vary % of free arms

Figure 2: Vary parameters of MA2B-HR

where agents have different local arm sets) and Case (2)617

ν(i)(k) ∈ (−1/2, 1/2) ∀k ∈ K, i ∈ M (i.e., all agents618

have the same local arm sets) as the more general heteroge-619

neous reward scenario. The variances of all agent-specific620

rewards are set to 1/2. In the AC-MA2B setting (Case (1)),621

for each agent, we randomly select 20 of these 50 arms and622

set their agent-specific rewards ν(i)(k) = 0, i.e., as local623

arms. The remaining arms’ agent-specific rewards is set to624

ν(i)(k) = −1. In the heterogeneous reward setting (Case625

(2)), all agents have the same 50 arms but different agent-626

specific rewards whose means are uniformly and randomly627

generated between (−1/2, 1/2) for each arm and agent. All628

simulations are averaged over 50 runs and their standard629

deviations are plotted as shadow regions.630

Experimental results: In Figures 1a and 1b, we compare631

the cumulative regret of all algorithms in Cases (1) and (2).632

The notable observations are: (1) Comparison of FreeExp633

to NoFreeExp shows that utilizing the free exploration634

mechanism can further improve an algorithm’s performance.635

(2) The KLUCB algorithm outperform our FreeExp algo-636

rithm. This is because FreeExp needs to explicitly exclude637

arms likely to be local optimal (Line 6) and thus suffers a638

high time-independent cost at the beginning, while KLUCB639

does not; and the additional cost of FreeExp cannot be640

compensated by the advantage of FreeExp in saving cost641

on free arms in these two scenarios. Especially, we note that642

when the number of free arms are large (e.g., see Figure 2c’s643

100% free arm case below), the advantage of FreeExp in644

saving cost on free arms becomes significant and, therefore,645

FreeExp has similar performance to KLUCB.646

We report the results of varying the number of parameters of647

MA2B-HR (Case (1)) in Figure 2. In Figure 2a, we vary the648

number of local arms between 10 and 45 and report their cu-649

mulative regret at round 30K. All algorithm regrets increase650

linearly with respect to the number of local arms. Figure 2b651

shows the impact of the number of agents M (from 10652

agents to 50) on the regrets. Their regrets also have linear653

increasing rate in M , which is due to the fixed per-agent654

costs (independent of T ). Lastly, we consider an MA2B-HR655

consisting of M = 20 agents and K = 20 arms, and devise656

fours cases containing {5, 10, 15, 20} free arms respectively657

(i.e., 25%, 50%, 75%, 100% of all arms are free arms). We658

report their regret performance in Figure 2c. The notable659

observations are: (1) The regret of FreeExp decreases as 660

the percentage of free arms increases which corroborates 661

that FreeExp saves the costs due to pulling free arms. (2) 662

when all (100%) arms are free, FreeExp has similar per- 663

formance to KLUCB and outperforms other algorithms. 664

6 CONCLUSION

This paper introduced a multi-agent multi-armed bandit 665

problem with heterogeneous rewards among agents. The 666

heterogeneous scenario creates a unique opportunity to ex- 667

plore a subset of arms for free and share the observation 668

by cooperation, and hence, improve the aggregate regret 669

significantly. We proposed a cooperative learning algorithm 670

which would benefit from the free exploration and its regret 671

is tight up to a constant factor. As a notable special case, 672

when each arm is a local optimal arm in at least one agent, 673

the proposed algorithm achieves an O(1) regret. 674

This problem of multi-agent bandits with heterogeneous 675

reward calls for several interesting follow-up questions, i.e., 676

an interesting question is to extend the FreeExp algorithm 677

with an effective communication protocol. In a distributed 678

multi-agent setting, cooperation may come with a cost of 679

communication, and hence the goal is to enhance the coop- 680

erative algorithms with a communication policies that only 681

needs sublinear communication times w.r.t. decision rounds 682

T , while directly extend current algorithm requires O(T ) 683

communication times. 684
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