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ABSTRACT

Neural Radiance Fields (NeRF) has emerged as a compelling framework for scene
representation and 3D recovery. To improve its performance on real-world data,
depth regularizations have proven to be the most effective ones. However, depth
estimation models not only require expensive 3D supervision in training, but also
suffer from generalization issues. As a result, the depth estimations can be er-
roneous in practice, especially for outdoor unbounded scenes. In this paper, we
propose to employ view-consistent distributions instead of fixed depth value esti-
mations to regularize NeRF training. Specifically, the distribution is computed by
utilizing both low-level color features and high-level distilled features from foun-
dation models at the projected 2D pixel-locations from per-ray sampled 3D points.
By sampling from the view-consistency distributions, an implicit regularization
is imposed on the training of NeRF. We also propose a novel depth-pushing loss
that works in conjunction with the sampling technique to jointly provide effective
regularizations for eliminating the failure modes. Extensive experiments conducted
on various scenes from public datasets demonstrate that our proposed method can
generate significantly better novel view synthesis results than state-of-the-art NeRF
variants as well as different depth regularization methods.

1 INTRODUCTION

3D scene reconstruction from multiple images is a long-standing vision problem (Hartley and
Zisserman, 2000) but the recent advent of Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020)
has delivered a significant performance boost, especially given a dense set of input images. However,
in much the same way the old shape-from-shading was ill-posed (Prados and Faugeras, 2005), so
is the NeRF reconstruction problem: as shown in (Zhang et al., 2020), in the absence of explicit or
implicit regularization, a set of training images can be fitted independently of the recovered geometry.
This phenomenon, known as shape-radiance ambiguity, is particularly evident when the input views
are not dense enough, even though using Multi-Layer Perceptrons (MLPs) for scene representation
weakly regularizes the scene reconstructions (Zhang et al., 2020; Yu et al., 2022).

Many kinds of regularizers have been proposed to improve on this, such as imposing geometric
constraints (Kim et al., 2022; Niemeyer et al., 2022), training to directly predict radiance fields by
using networks conditioned on image features (Chen et al., 2021; Yu et al., 2021; Wang et al., 2021),
or constraining depth (Deng et al., 2022; Wang et al., 2023a; Yu et al., 2022). The first is difficult to do
for complicated scenes while the second is often limited to very specific 3-view setting and not easily
generalizable to unbounded scenes or scalable to more input views. The last, depth regularization,
has proved to be the more widely applicable. However, it typically requires expensive 3D supervision,
and can produce unreliable predictions on challenging open-space scenes that produce artifacts in the
final NeRF reconstruction.

To remedy this, we propose to use view-consistency distributions per-ray instead of fixed depth
predictions to implement a sampling technique along the rays that implicitly regularizes the training
of NeRF, as depicted by Fig. 1. Specifically, we first distill geometric information from the redundant
feature representations of foundation models to reduce their dimensionality and to alleviate mem-
ory requirements, while preserving the information most likely to be consistent across views and
discarding the rest. Given these high-level distilled features along with low-level color features, we
compute a view-consistency metric for every point along the rays and introduce an adaptive sampling

1



054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2025

View-consistency Metric Distribution

Feature Similarity Computation

Contribution to Final VC Metric

#samples

ray distance

− 𝑔. 𝑡. 22
Rendering Loss

Importance Sampling

Figure 1: View-consistent sampling. Our central idea is to pre-compute a view-consistency distribu-
tion along rays and to perform importance sampling according to this distribution. As a result, the
sampling will concentrate around surface points instead of random points in the capture volume.

scheme that favors view-consistent points, on the assumption that they are more likely to lie on a
real-world surface. Furthermore, we also introduce a depth-pushing loss to force the model to favor
samples that are farther away from the camera origin, which prevents the kind of background collapse
artifact (Barron et al., 2022) that frequently happens in NeRF reconstruction of real-world unbounded
scenes. In effect, the proposed view-consistent sampling and the depth-pushing loss focus the NeRF
reconstruction process on the part of the capture volume close to the true surface, thus providing
implicit regularization and preventing the overfitting problem (Zhang et al., 2020).

Our contribution is therefore a novel view-consistent sampling technique to implicitly regularize
the training of NeRF, along with a depth-pushing loss to provide further regularization and mitigate
background collapse artifacts. We show that our method is able to achieve significantly better
novel view synthesis results compared to existing NeRF competitors with regularizations. Our
implementation is based on open-source software and will be made publicly available.

2 RELATED WORKS

NeRF Variants. The emergence of Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) is
an immediate consequence of the study on Implicit Neural Representations (INR) (Tancik et al.,
2020; Sitzmann et al., 2020; Hertz et al., 2021; Mehta et al., 2021), which laid the foundation of
NeRF by introducing powerful network-based scene representation models. NeRFs use them to
effectively encode 3D scene properties and trains on posed images via a volume rendering equation
that differentiably relates 3D scenes to 2D images.

NeRFs deliver outstanding image synthesis results but tendsto be slow, sometimes requiring several
days for a single scene. A number of accelerated approaches have therefore been proposed (Sun
et al., 2022; Fridovich-Keil et al., 2022; Chen et al., 2022; Müller et al., 2022), using various kinds of
efficient scene representation techniques. Interestingly, not only are these approaches faster, they also
tend to yield better image synthesis results. Other works have focused more directly on improving the
quality of the synthesis results (Zhang et al., 2020; Barron et al., 2021; 2022; 2023; Turki et al., 2024),
by introducing unbounded scene representations or reducing aliasing artifacts. Nerfacto (Tancik et al.,
2023), introduced in the popular Nerfstudio project, combines many components of these approaches
into an integrated one. Hence, this is what we use as the basis for implementing our own approach.

Regularizers. A straightforward approach to improving the performance of NeRFs is to incorporate
geometric priors to regularize and guide the training process. To this end, many methods have been
proposed. They rely on depth guidance (Deng et al., 2022; Wang et al., 2023a;b; Roessle et al.,
2022; Yu et al., 2022), geometric constraints (Niemeyer et al., 2022; Somraj et al., 2023; Truong
et al., 2023; Kim et al., 2022), or pre-training on similar scenes (Chen et al., 2021; Yu et al., 2021;
Wang et al., 2021; Wu et al., 2023; Xu et al., 2023). However, these methods are all plagued by
generalization issues. For depth priors, it is difficult to obtain accurate depth predictions, especially
in real-world unbounded scenes. The geometry-based constraints often fail to properly refine the
results in complex unbounded scenes. Prediction-based methods are mostly restricted to a 3-view
setting in bounded scenes, due to the limitations of a prediction-based architecture and the limited
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availability of real-world unbounded scene data with 3D ground truth. Recently, ReconFusion (Wu
et al., 2024) has been proposed to incorporate diffusion piror into NeRF training. This method works
well for indoor or bounded scenes, but for open-space scenes the performance drops drastically as the
original paper shows.

Image Features. Recently, there has been tremendous progress in large-scale self-supervised pre-
training using Masked image Modeling (He et al., 2022; Wei et al., 2022; Zhou et al., 2021) (MIM).
These new techniques provide us with foundation models, such as DINOv2 (Oquab et al., 2023),
which encode local geometric information better than classification pretraining (Xie et al., 2023) and
generalize well to geometric vision tasks, e.g. image geometric matching (Sun et al., 2021; Edstedt
et al., 2023). While there are also models specifically designed and trained for image geometric
matching, their pairwise matching setting is ill-suited to NeRFs dealing with image collections
because using them would involve traversing all image pairs.

3 METHODOLOGY

We now introduce our View-consistent Sampling (VS-NeRF) approach for NeRF training. As our
method is built on the standard NeRF framework, we first describe it briefly in Sec. 3.1. Next,
we describe our approach to distill high-level image features and preserve only view-consistent
information from the foundation model DINOv2 (Oquab et al., 2023) in Sec. 3.2. We then introduce a
sampling mechanism to exploit these features as well as color features along camera rays in Sec. 3.3.
Finally, we describe the proposed depth-pushing loss as a weaker regularization to force the model to
favor distant samples in in Sec. 3.4.

3.1 NERF BASICS

Scene Representation. The 3D scene is generally represented by an MLP, and optionally and
additional feature grid, which encode both geometry information and view-dependent color infor-
mation. Specifically, the geometry of the scene is encoded by the neural network as a function
f : R3 → R that maps a spatial coordinate x ∈ R

3 to its corresponding volume density value σ. The
view-dependent color information is encoded by the network as a function f : R3 × S

2 → R
3 that

takes a point coordinate x ∈ R
3 as well as a viewing direction d as input and outputs the associated

view-dependent color value c = (r, g, b).

Volume Rendering. The rendering process is of critical importance because it associates a 3D
representation of the scene with 2D images, which makes the use of image reconstruction loss
possible. In the NeRF literature, the most frequently used rendering technique in 3D vision tasks is
known to be volume rendering. Given a ray r(t) = o+ td, the volume rendering equation yields the
color of one pixel in the 2D image corresponding to the ray r by evaluating

Ĉ(r) =

∫ tf

tn

ω(t)c(r(t),d)dt , (1)

where ω(t) = T (t)σ(r(t)) is the weight function, σ represents the volume density, c represents the

directional color, and T (t) = exp(−
∫ t

tn
σ(r(s))ds) represents the transparency function.

In practice, this integral is evaluated by sampling the ray in discrete locations. NeRF volume rendering
is then performed by accumulating color values from S samples (ti)1≤i≤S along a ray r. This yields

Ĉ(r) =

S
∑

i=1

Ti(1− exp(−σiδi))ci, where Ti = exp



−

i−1
∑

j=1

σjδj



 , (2)

where δi = ti+1 − ti is the distance between two consecutive samples.

Loss Function. Given the estimated color Ĉ(r) of Eq. 2, let C(r) be the corresponding pixel true
color. Using these notations, we can define an MSE loss

Lcolor =
1

|B|

∑

r∈B

∥Ĉ(r)−C(r)∥2 , (3)
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Test Image A Test Image B DINOv2 Distilled

Figure 2: Visualization of the feature distillation process. For the two test images from Megadepth
dataset (Li and Snavely, 2018), we first randomly generate 50 ground truth correspondences (same
as in the training process), shown as colored dots, and then extract vanilla DINOv2 features (384
dimension) and the proposed distilled DINOv2 features (32 dimension) at these locations. We
compute the feature similarities across the two views and show the resulting similarity matrices on
the right, where an optimal correspondence should give the identity matrix.

where B denotes a randomly chosen batch of rays and |B| denotes the batch size. The weights of the
NeRF scene representation network are computed by minimizing this loss, using a different batch of
rays at each iteration.

3.2 DISTILLATION OF GEOMETRIC INFORMATION.

To form meaningful view-consistent statistics for adaptive sampling, a good representation of images
in the context of multi-view captures is critical. In this paper, we propose to use foundation models
that provide powerful general-purpose visual features, e.g. DINOv2 (Oquab et al., 2023), for
extracting such high-level representations containing crucial context information. Note that there
are alternatives to DINOv2 such as features from diffusion models (Luo et al., 2024), which we
found to deliver similar results. Since diffusion models are slower in inference time, we opted to
use DINOv2. However, there are two main hurdles in utilizing the features from foundation models.
Firstly, as general-purpose features, the output of a foundation model encodes image information
in many different aspects that are useful in different tasks. In the NeRF setting, we are particularly
interested in geometric information that can be expected to be similar across multi-view images of
the same scene. Secondly, the dimensionality of features from foundation models is in general very
high, e.g. 384 in DINOv2, resulting in prohibitively large memory consumption in sampling.

In this paper, we propose to resolve the issues by distilling geometric information from the foun-
dational features. Note that we use the term distillation in a different way than in Feature Field
Distillation papers, such as (Kobayashi et al., 2022), which focuses on lifting 2D features to a 3D rep-
resentation. We distill features by extracting geometric information from redundant high-dimensional
image features. Inspired by (Luo et al., 2024), we use a very lightweight Resnet bottleneck block (He
et al., 2016) to project the high-dimensional features to a lower dimension for distillation. To super-
vise the distillation process, we adopt the Megadepth dataset (Li and Snavely, 2018) which provides
3D ground truth and is prevalently used in geometric matching tasks.

Training of Distillation Process. We adopt a very simple strategy for training. Specifically, in
the training phase, we freeze the foundation model and only update the parameters in the Resnet
bottleneck block. This leads to a much smaller number of training parameters and also requires
much less data. We randomly choose 50000 pairs of images from Megadepth to train. For each
image pair, we use the ground truth depth map to randomly generate 50 corresponding points, and
extract the distilled features at the point locations on the image pairs. We then supervise the network
using a symmetric cross entropy loss, in the same fashion as CLIP (Radford et al., 2021), to make
extracted features in corresponding locations as close as possible while still being distinctive from
other features. A visualization of the distillation process can be found in Fig. 2. As a result, in
our experiments we can reduce the feature dimensionality by a factor of around 10, e.g. 384 from
DINOv2 to 32, without compromising on useful geometric information. Please refer to the ablation
studies in Sec. 4.2 for the discussion of optimal dimensionality in NeRF settings.
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Reference Point VC Distribution Reprojection A Reprojection B Reprojection C

Figure 3: Visualization of the effectiveness of the view-consistency metric on the BONSAI scene
from the MipNeRF360 dataset. As shown, we shoot a ray from the reference point in the leftmost
image, compute the view-consistency metric distribution along the ray, and reproject the peak point
in the distribution onto other views. The projections of the peak are consistent and correspond to a
surface point.

3.3 VIEW-CONSISTENT SAMPLING

In the original NeRF and most NeRF variants, the volume rendering of Eq. 2 is typically achieved
using naive sampling strategies such as uniform, stratified, or linear disparity sampling. Hence, there
is no prior in the sampling process and hence no regularization while learning the radiance and
density fields. When there are abundant input views, this is usually not an issue but it can result in
unwanted artifacts with a smaller set of input images.

VS-NeRF remedies this by making the sampling adaptive based on a prior: it samples more densely
the 3D locations whose projections have view-consistent features because they are more likely to
correspond to 3D surface points. This requires both a view-consistency metric and an adaptive
sampling scheme based on that metric, which we describe in Sections 3.3.1 and 3.3.2, respectively. A
graphical visualization of the proposed view-consistent sampling technique can be seen in Fig. 1.

Sampling Setup. We assume that we have a collection of N posed images {Ii}
N
i=1, from which we

generate image feature representations {Fi}
N
i=1. As in NeRF and most of its variants, the training

is performed by repeatedly sampling a batch of rays. For each ray r, we initially need to place
pre-samples along the ray (ti)

pre
1≤i≤M , to obain M points {pi}

M
i=1. Note that these pre-samples

are different from the initial samples in NeRF, as pre-samples are for computing view-consistency
statistics only and will not be used to compute losses. The pre-samples are generated uniformly
within a distance, but after a fixed threshold the step sizes will increase with each sample due to scene
contraction. This strategy is the same as the initial sampling strategy in Nerfacto (Tancik et al., 2023)
and we refer to the original paper for details.

3.3.1 COMPUTATION OF VIEW-CONSISTENCY METRIC

Features from Projections. As shown in Fig. 3, the feature representation at the pixel location
where the ray comes from is denoted as reference feature fr. For each pre-sample point pi, we can
project it onto an arbitrary view vj . If the point pi is visible to vj , then naturally by interpolating over
the feature representation Fj , we can obtain the projection feature fij . Due to limited field-of-view
(FOV) of cameras, there is a varying number of views that a point pi can be projected onto. We
denote the set of views that a point pi can be projected onto as Vi, and |Vi| as its cardinality.

Normalized Similarity Measure. In this paper, we jointly use high-level distilled features, and
plain normalized RGB values as low-level color features. Please see the ablation study in Sec. 4.2
to understand their respective effects. However, the two kinds of features are defined in different
metric spaces. That is to say, while Euclidean distances can be used for measuring discrepancies
among color features, cosine similarities are most frequently used as a distance measure of features
from pre-trained models such as DINOv2. In this paper, we use a normalizing strategy to convert
the measures among features to binary numbers, be it color feature or distilled feature. In particular,
along an arbitrary ray r, we first compute the measures between the reference feature and projection
features from all sampled points {m(fr, fij) | j ∈ Vi }, be it Euclidean distances or cosine similarities.
We then normalize the set of measures based on its mean and variance, and take the negative if the
measure is Euclidean distance to align distance with similarity. Thus, we have defined the normalized
similarity measure {mn(fr, fij) | j ∈ Vi }.
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View-consistency Metric. Given the the normalized similarity measure {mn(fr, fij) | j ∈ Vi },
we assume its values follow a normal distribution and we experimentally determine a reasonable
threshold δ accordingly. The view-consistency metric of point pi along the ray is computed as:

si =
1

|Vi|

∑

j∈Vi

1{mn(f
c
r , f

c
ij) > δ ∧mn(f

d
r , f

d
ij) > δ} , (4)

where 1 denotes the indicator function, superscripts c and d denote color and distilled in projection
features respectively. Intuitively, Eq. 4 measures the average view consistency over the views the point
can be projected onto. Although occlusions may hinder the effectiveness of this metric, statistically
the score is still prominent for surface points. A visualization of the computed view-consistency
metrics along a ray using real data can be seen in Fig. 3.

3.3.2 ADAPTIVE SAMPLING SCHEME

Given the view-consistency metric of Eq. 4, implementing view-consistent sampling becomes straight-
forward. After computing the metric for each pre-sampled point along the ray, we perform importance
sampling based on the distribution along the ray. Our rationale is that this view-consistentcy distribu-
tion is concentrated around the surface point, thus importance sampling from the distribution is the
logical way to improve it.

In our implementation, we use the Probability Distribution Function (PDF) sampler from Nerfstu-
dio (Tancik et al., 2023) to perform importance sampling, which generatse samples that match a
distribution. Specifically, as illustrated by Fig. 1, we first compute view-consistency metrics from
pre-samples (ti)

pre
1≤i≤M along the ray. The PDF sampler will probabilistically sample the bins be-

tween consecutive pre-sample points, such that the distribution of number of samples in each bin will
match the view-consistency distribution, which gives the true samples (ti)1≤i≤S to compute losses
as in Eq. 2.

3.4 DEPTH-PUSHING LOSS

In NeRF, the background of the scene is generally harder to reconstruct than foreground objects,
typically because parts of the background may only be seen in very few views. This can result in
background collapse, a notorious NeRF artifact that erroneously creates false geometries near the
camera for background objects. The view-consistent sampling scheme of Section 3.3 mitigates this
problem but it can still occur in challenging cases because the feature representations extracted from
background pixels are often less reliable due to perspective effects. Thus, to complement our adaptive
sampling scheme, we introduce a depth-pushing loss

Ldepu = −
1

|B|

∑

r∈B

log(d(r) + ε), where d(r) =

S
∑

i=1

Ti(1− exp(−σiδi))ti , (5)

where ε is a small constant that stabilizes the logarithm function near 0 and d(r) is the expected depth
along the ray. Minimizing Ldepu favors distant samples along the ray and provides a regularization to
prevent background collapse. Its simple form makes it easy to integrate into the NeRF framework by
adding it to the color loss of Eq. 3.

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our VS-NeRF approach, which includes a
discussion of experimental settings and implementation details; evaluation results on benchmark
datasets and comparison with previous work; an ablation study with respect to the major components
in VS-NeRF; and a discussion of limitations.

Implementation Details. Our implementation of VS-NeRF is built upon the Nerfacto method from
the Nerfstudio project (Tancik et al., 2023). It incorporates many published methods that have been
found to work well for real data, such as Mip-NeRF360 (Barron et al., 2022), IntantNGP (Müller
et al., 2022), and NeRF-W (Martin-Brualla et al., 2021). We simply replace Nerfacto’s sampling
scheme by ours and add our depth-pushing loss and keep all other settings the same. Notably, the

6
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Ground Truth Nerfacto +Multi-view Depth +Ours

Figure 4: We show comparisons of VS-NeRF to the main competitors and the corresponding ground
truth images from held-out test views. The scenes are, from the top down: BICYCLE with 60 training
views, STUMP with 110 training views, COUNTER with 70 training views from the Mip-NeRF360
dataset and FRANCIS with 70 training views from Tanks&Temples. The ’+’ prefix indicates the
included additional component to Nerfacto.

Figure 5: We show performances of VS-NeRF and competitors with increasing number of views
over Mip-NeRF360 dataset and Tanks&Temples, in terms of PSNR values. The ’+’ prefix indicates
the included additional component to Nerfacto.

Nerfacto proposal network sampling scheme, from Mip-NeRF360 (Barron et al., 2022), is also left
unchanged. This ensures that any difference in performance is attributable to our regularization
scheme. We turn off the camera optimization for both VS-NeRF and Nerfacto, since we observed a
negative impact on datasets with accurate camera parameters.

To reduce the time cost, we only activate the proposed view-consistent sampling technique in the first
5000 iterations out of 30000 in total, which is when the regularization of the geometry is the most
needed. Empirically, the threshold δ in Eq. 4 is set to 0.4, the weight of depth-pushing loss is set to
0.0001, and the ε in the depth pushing loss as in Eq. 5 is set to 0.01.
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Dataset Mip-NeRF360 Tanks&Temples

Method / Metric PSNR↑ SSIM↑ LPIPS↓ Train PSNR↑ SSIM↑ LPIPS↓ Train

TensoRF 15.68 0.455 0.658 25m29s 15.46 0.609 0.566 29m07s

Nerfacto 19.05 0.549 0.495 11m37s 18.29 0.688 0.422 11m16s

+NeRFAcc 20.14 0.580 0.480 12m18s 18.95 0.691 0.431 12m07s

+Monocular Depth 19.45 0.549 0.488 11m55s 13.81 0.451 0.632 12m20s

+Multi-view Depth 20.15 0.578 0.465 12m24s 19.28 0.706 0.397 12m10s

+Ours 21.40 0.625 0.400 38m44s 19.45 0.714 0.373 39m05s

Table 1: Quantitative evaluation of our method compared to previous work, computed over two
datasets. The ’+’ prefix indicates the included additional component to Nerfacto.

Baselines. Since our implementation is based on Nerfacto (Tancik et al., 2023), we treat it as a
baseline to demonstrate the positive impact of our adaptive sampling scheme and depth-pushing
loss. We also use TensoRF (Chen et al., 2022) as another baseline that features efficient training. In
addition we also compare against InstantNGP (Müller et al., 2022) from the Nerfstudio project. The
most prominent difference between InstantNGP (Müller et al., 2022) and Nerfacto (Tancik et al.,
2023) is the NeRFAcc (Li et al., 2023) efficient sampling scheme, whose name we will use to refer to
this method.

Regarding depth regularizations, we compare against both monocular and multi-view methods, using
the depth-nerfacto method, again from Nerfstudio project. To test the method with Monocular
Depth regularization, we use ZoeDepth (Bhat et al., 2023) to predict pseudo depth and apply
depth-ranking loss from SparseNeRF (Wang et al., 2023a). To test the method with Multi-view
Depth regularization, we use the state-of-the-art MVSFormer++ (Cao et al., 2024) to provide depth
estimations from correlating with adjacent 9 views, along with the depth loss from DS-NeRF (Deng
et al., 2022).

Datasets and Metrics. We use two benchmark datasets for our main evaluation, first the 9 full
scenes from Mip-NeRF360 (Barron et al., 2022) and second all 8 scenes from the INTERMEDIATE

official test set in Tanks & Temples dataset (Knapitsch et al., 2017). The scenes in the two datasets
contain both a complex central object or area and a detailed background, and cover both bounded
indoor scenes and large unbounded outdoor environments, making them challenging for NeRF
methods. We use the same hyperparameter configuration for all experiments.

In order to study the effect of the number of available views on the reconstruction quality, we
subsample between 10 to 110 images per scene, 110 being the size of the smallest image set in our
datasets. To this end, for each scene, we first evenly sample 10 images as an evaluation set and
then sample evenly the remaining views. In ablation study, we use 50 views for all scenes, as it is a
reasonable number for practical usage and we observed that the need for regularization is highest as
the number of views decreases.

Following the usual convention, we report quantitative results based on PSNR, SSIM (Wang et al.,
2004), and LPIPS (Zhang et al., 2018), along with the training time in minutes as measured on a
single NVIDIA A100 80GB GPU.

4.1 COMPARATIVE RESULTS

We report our comparative results on our two datasets as a function of the number of training views
being used in Fig. 5. We provide evaluation metrics averaged over all different scenes with different
training view numbers in Tab. 1 and qualitative results in Fig. 4.

VS-NeRF clearly outperforms all baselines in terms of novel view synthesis quality on Mip-NeRF360.
On Tanks&Temples, multi-view depth regularization is on par with our method when views are dense,
but our method performs better in sparser cases. Crucially, our method significantly outperforms
Nerfacto, upon which our implementation is based, which conclusively demonstrates the effectiveness
of our view-consistent sampling and depth-pushing loss. Note that NeRFAcc also yields considerable
improvement over Nefacto when available views are sparser but its relative performance drops
when the number of views increases, which is not the case for our approach. TensoRF seems to
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PSNR ↑ SSIM ↑ LPIPS ↓ Train

A) Base Method Nerfacto 18.88 0.544 0.503 13m20s

B) Base + VS (Sec. 3.3) 19.34 0.574 0.456 38m54s

C) Base + DL (Sec. 3.4) 17.09 0.478 0.567 11m27s

D) Base + VS (Only Color Feature (Eq. 4)) + DL 19.42 0.571 0.454 32m51s

E) Base + VS (Only Distilled Feature (Eq. 4)) + DL 19.96 0.584 0.434 38m11s

F) Base + VS (Distilled Feature Dimension as 16 (Sec. 3.2)) + DL 20.04 0.587 0.432 39m22s

G) Base + VS (Distilled Feature Dimension as 64 (Sec. 3.2)) + DL 19.97 0.585 0.433 48m22s

Base + VS + DL (Our Complete Model) 21.57 0.631 0.400 38m44s

Table 2: An ablation study in which we remove or replace the major components in our method to
measure their effect on the Mip-NeRF360 dataset with 50 training views. The two major components
are VS: View-consistent Sampling and DL: Depth-pushing Loss.

Ground Truth Base Nerfacto Base + DL Base + VS

Only Color Only Distilled Dim as 16 Ours Complete

Figure 6: Visualization of ablating major components in our method, using the TREEHILL scene
from Mip-NeRF360 dataset.

struggle most, presumably due to the limitations of tensor-based scene representation in complex and
unbounded scenes.

We also compare agains two different depth-based regularizers, a monocular one using MVSformer++
and a multi-view one using ZoeDepth. Monocular depth estimation produces many artifacts and
results in unstable performance, especially on Tanks&Temples. This is largely because monocular
depth is only a pseudo depth that may not be consistent across views. The multi-view depth
regularization performs significantly better than the monocular one and consistently improves over
Nerfacto. However, in challenging scenes with few available views it may produce unreliable depth
estimations. In contrast, our method samples from a view-consistency distribution and is more robust
as can be seen in results on Mip-NeRF360 dataset.

4.2 ABLATION STUDY

We perform an ablation study of the two novel components of our approach, i.e. the View-consistent
Sampling (VS) and the Depth-pushing Loss (DL). For simplicity, the experiment is conducted with
a moderate 50-view setting for subsampling the scenes on Mip-NeRF360 dataset. The results are
presented in Tab. 2 and a visualization is given in Fig. 6. The first three rows of the table show
that each component, VS or DL, brings an improvement when used separately. Comparing to our
complete model in ie last row, it shows that they work best when used jointly.

Regarding the features used to compute the view-consistency metric, distilled DINOv2 features are
more powerful than color feature when used independently, but the best performance is achieved by
combining them, as in Eq. 4. The dimensionality of the distilled features is also investigated here.
We see that reducing the dimensionality to 16 or increasing it to 64 will degrade performance. Thus,
we opt to use 32 as the dimensionality of distilled features in our implementation.
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4.3 LIMITATIONS

Despite the excellent results in visual quality delivered by VS-NeRF, it has some limitations. This
includes shrinking effectiveness with available views increasing as shown in Fig. 5, and efficiency
issues. Specifically, we see that VS-NeRF takes more time than the efficient competitors from Tab. 1,
and it also requires more memory. For example, for a scene with around 80 input images, it will
consume roughly 25 GB memory. However, since our method is most effective when the views are
less dense, this drawback of a concern in practice. Furthermore, more efficient implementations are
possible and will be explored.

5 CONCLUSION AND DISCUSSIONS

In this paper, we have proposed a novel view-consistent sampling technique as a regularization for
the training of NeRF. The core idea is to combine high-level and low-level features to compute view-
consistency metrics, and use it as a prior distribution to sample on the ray. To mitigate the background
collapse problem, we also propose a depth-pushing loss, which imposes a weaker regularization to
favor distant samples on the ray. Extensive experiments on public datasets have demonstrated the
effectiveness of the proposed method.

Broader Impacts. The method in this paper can help generate highly realistic 3D scenes from 2D
images, which can find applications in various fields such as education and entertaining. On the other
hand it may also be used to create realistic forgeries which requires careful considerations.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 APPROXIMATE STORAGE COMPUTATION

The storage problem of projection features is addressed by our proposed distillation process as in
Sec. 3.2, here we show the necessity of it. For a batch of rays with size |B|, the tensor to store the
projection features would be of size |B| ×M ×N × C, where M is the number of sampled points
per ray, N is number of input views, and C is the feature dimension. This is prohibitive when the
feature dimension C is very large, for example, in the common setting where |B| = 4096, M = 256,
N = 50 and C = 384, it will consume roughly 80GB memory with float datatype. But if we distill
the features such that C = 32, the memory requirement becomes roughly 6.7GB.
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