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Illusory Attacks: Detectability Matters in
Adversarial Attacks on Sequential Decision-Makers

Anonymous Authors1

Abstract
Autonomous agents deployed in the real world
need to be robust against adversarial attacks on
sensory inputs. Robustifying agent policies re-
quires anticipating the strongest attacks possible.
We demonstrate that existing observation-space
attacks on reinforcement learning agents have a
common weakness: while effective, their lack
of temporal consistency makes them detectable
using automated means or human inspection. De-
tectability is undesirable to adversaries as it may
trigger security escalations. We introduce perfect
illusory attacks, a novel form of adversarial at-
tack on sequential decision-makers that is both
effective and provably statistically undetectable.
We then propose the more versatile R-illusory
attacks, which result in observation transitions
that are consistent with the state-transition func-
tion of the adversary-free environment and can
be learned end-to-end. Compared to existing at-
tacks, we empirically find R-illusory attacks to
be significantly harder to detect with automated
methods, and a small study with human subjects1

suggests they are similarly harder to detect for
humans. We propose that undetectability should
be a central concern in the study of adversarial
attacks on mixed-autonomy settings.

1. Introduction
Deep reinforcement learning algorithms [52, 66, 25,
64] have been applied to numerous sequential decision-
making problems, ranging from recreational games [3], to
robotics [79, 2], nuclear fusion [17], and solar geoengineer-
ing [16]. In autonomous driving, deep neural networks are
increasingly used for vision-related control tasks involv-
ing object detection [61, 60, 92, 88, 42, 68] and segmenta-

1Anonymous Institution, Anonymous City, Anonymous Region,
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Figure 1: The left image shows an observation sequence
(older observations are faded out) as seen under a state-of-
the-art adversarial attack. One easily classifies this sequence
as adversarially attacked as the cart appears to jump hori-
zontally, violating the transition dynamics of the unattacked
system. The sequence in the image on the right, resulting
from our proposed illusory attacks, appears unsuspicious.

tion [27, 51], lane detection [7, 55], or depth estimation [83].
However, the susceptibility of deep neural networks to ad-
versarial attacks poses threats to their safety-critical applica-
tion [38, 30]. This motivates research into strong adversarial
attacks and robustification against them [90, 72, 47].

Autonomous AI systems deployed to the real world often
feature a combination of both automated and human secu-
rity monitoring [82]. In practice, strong attackers seek to
evade detection as attacked agents might have access to con-
tingency options such as executing an emergency shutdown
or triggering security escalations [11]. A prime example of
such behaviour are security incidents where attackers feed
unsuspicious pre-recorded input to surveillance cameras, or
an industrial control panel [43, STUXNET 417 attack]. We
argue that attack detectability should become a central con-
sideration when safeguarding the robustness of (Human-)AI
systems to adversarial attacks.

Existing frameworks for observation-space adversarial at-
tacks on sequential-decision makers are often not primarily
concerned with detectability [90, 72], be it by automated
means, or by human inspection. In this paper, we introduce
the illusory attack framework. Unlike most existing types
of observation-space adversarial attacks, illusory attacks are
not fundamentally constrained by perturbation budgets, but
detectability concerns.

To illustrate the need for our new attack framework, we
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Illusory Attacks

first construct simple automated detectors and empirically
show that these can detect state-of-the-art observation-space
attacks with high probability across a variety of simulated
environments. Such automated detectors merely require
victim agents to have access to a (possibly approximate)
model of the state-transition function. Access to such world
models is a common assumption in autonomous systems
literature [24, 74], e.g. world models can be learned from
train-time experience [73, DYNA]. Likewise, we show that
humans can detect state-of-the-art observation-space attacks
through visual inspection (see Figure 1 for an illustration).

We then show that our novel framework gives rise to adver-
sarial attacks that are harder to detect, or indeed statistically
undetectable, by both automated means and humans. To
illustrate the latter, we construct perfect illusory attacks, a
novel class of provably statistically undetectable adversarial
attacks, and implement these in various standard benchmark
environments. However, we prove that there are environ-
ments that do not admit perfect illusory attacks. We thus in-
troduce the more versatile R-illusory attacks attacks, which
are a relaxation of perfect illusory attacks that, while be-
ing statistically detectable in theory, can be learned through
end-to-end gradient-based optimisation and can dynamically
trade-off between detectability and adversarial performance.

We empirically confirm that R-illusory attacks can be effi-
ciently learned, and are much harder to detect than existing
observation-space adversarial attacks - both using automated
detectors based on world models, as well as for humans. We
also find that that existing robustification methods are largely
ineffective against R-illusory attacks in practice. This sug-
gests that the implementation and effective use of reality
feedback channels, i.e., observation channels that are hard-
ened against adversarial interference, will be of fundamental
importance in the quest to adversarially robustify real-world
mixed- and shared-autonomy, and (Human)-AI systems.

Our work makes the following contributions:

• We demonstrate that state-of-the-art adversarial attacks
are reliably detected both with simple automated detectors,
as well as by human inspection.

• We formalise the novel illusory attack framework and
show that it gives rise to perfect illusory attacks, which are
statistically undetectable observation-space adversarial
attacks (see Section 3.5).

• We introduce R-illusory attacks, a relaxation of perfect
illusory attacks that can be learned using gradient-based
optimisation (see Section 3.8) and, as we show empiri-
cally, are significantly harder to detect by both automated
means and human inspection.

Figure 2: In CartPole, the agent aims to balance the brown
pole by adjusting the position of the black cart. In the perfect
illusory attack depicted above, the agents observations (left)
appear unperturbed while the true system fails (right).

2. Background and notation
We denote a probability distribution over a set X as P(X ),
and an unnamed probability distribution as P(·). The empty
set is denoted by ∅, and the unit impulse as δ(·).

MDP and POMDP. A Markov decision process (MDP)
[6] is a tuple ⟨S,A, p, r, γ⟩, where S is the finite2 non-
empty state space, A is the finite non-empty action space,
p : S ×A 7→ P(S) is the probabilistic state-transition func-
tion, and r : S ×A 7→ P(R) is a bounded reward function,
i.e. ∀(s, a) ∈ S ×A, |r(s, a)| ≤ R almost surely for some
finite R > 0. Starting from a state st ∈ S at time t, an
action at ∈ A taken by the agent policy π : S 7→ P(A) ef-
fects a transition to state st+1 ∼ p(·|at) and the emission of
a reward rt+1 ∼ r(·|st+1, at). We define the initial system
state at time t = 0 is drawn as s0 ∼ p(·|∅). For simplicity,
we consider episodes of infinite horizon and hence intro-
duce a discount factor 0 ≤ γ < 1. In a partially observable
MDP [94, 35, POMDP] ⟨S,A,Ω,O, p, r, γ⟩, the agent does
not directly observe the system state st but instead receives
an observation ot ∼ O(·|st) where O : S 7→ P(Ω) is an
observation function and Ω is a finite non-empty observa-
tion space. The canonical embedding pomdp : M ↪→ P
from the set of finite MDPs M to the family of POMDPs
P maps Ω 7→ S, and sets O(s) = s, ∀s ∈ S. In a
POMDP, the agent acts on a policy π : H∗

\r 7→ P(A),
growing a history ht+1 = htatot+1rt+1 from a set of
histories Ht := (A×O × R)t, where H∗ :=

⋃
tHt de-

notes the set of all finite histories. We denote histories
(or sets of histories) from which reward signals have been
removed as (·)\r, and the distribution over a history ht as
Pπt . In line with standard literature [53], we distinguish
between two stochastic processes that are induced by pair-
ing a POMDP with a policy π: The core process, which
is the process over state random variables {St}, and the
observation process, which is induced by observation ran-
dom variables {Ot}. We also define the reward process

2For conciseness, we restrict our exposition to finite state, ac-
tion and observation spaces. Results carry over to continuous
state-action-observation spaces under some technical conditions
that we omit for brevity [76].
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Illusory Attacks

over reward random variables as {Rt}, where t ∈ N0.
The frequentist agent’s goal is then to find an optimal pol-
icy π∗ that maximises the total expected discounted re-
turn, i.e. π∗ = arg supπ∈Π Eh∞∼Pπ

∞

∑∞
t=0 γ

trt, where
Π := {π : H∗

\r 7→ P(A)} is the set of all policies.

Observation-space adversarial attacks. Observation-
space adversarial attacks consider the scenario where an ad-
versary manipulates the observation of a victim at test-time.
Much prior work falls within the SA-MDP framework [90],
in which a state-adversarial agent with policy ξ : S 7→ P(S)
generates adversarial observations ot ∼ ξ(st). The per-
turbation is bounded by a budget B : S 7→ 2S , limiting
supp ξ(·|s) ∈ B(s). For simplicity, we consider only zero-
sum adversarial attacks, where the adversary minimizes the
expected return of the victim. In case of additive perturba-
tions ϵt ∈ S [40], ξ(st) := δ(ot). Here, ot := st + ϵt, and
ot are subject to a real positive episodic perturbation budget
B ∈ R. Given a victim policy πv, this yields the following
definition of an optimal state-conditioned observation-space
adversary:

ξ∗ = argminξ Eπv
[
∑∞
t=0 rt] s. t.

∑∞
t=0∥ϵt∥

2
2 ≤ B2,

(1)
where at ∼ πv

(
· |ot

)
, ot ∼ ξ(st), st+1 ∼ p(·|st, at). In

other words, given a fixed victim policy, the adversary seeks
perturbations that minimise the victim return under the given
budget constraints.

3. Illusory attacks
3.1. The illusory attack framework

We introduce a novel illusory attack framework in which an
adversary and a victim share the same environment E at test
time, thus inducing a two-player zero-sum game G [81]. The
following facts about G are commonly known [26] between
adversary and victim: At test time, the adversary performs
observation-space attacks on the victim. The victim can
sample from the environment shared with an arbitrary adver-
sary at train time, but has no certainty over which specific
test-time policy the adversary will choose. The adversary
can sample from the environment shared with an arbitrary
victim at train time, but has no certainty over which specific
test-time policy the victim will choose. The task of the vic-
tim is to act optimally with respect to its expected test-time
return, while the task of the adversary is to minimise the
victim’s expected test-time return. Unlike in prior work (see
Section 2), the adversary’s observation-space attacks are not
necessarily bounded by perturbation budgets.

We assume that the victim’s reward signal is endogenous [4],
which means it depends on the victim’s action-observation
history and is not explicitly modeled at test-time. This ex-
poses the victim’s test-time reward signal to manipulation by

the adversary. We note that even if it is assumed that the vic-
tim’s reward signal is supplied exogenously, reinforcement
learning environments of interest frequently emit sparse or
delayed reward signals that are rather uninformative about
the current environment state.

Definition 3.1 (Test-time decision process). We denote the
stochastic process induced by sharing an environment E
between a victim with policy πv and an adversary with
policy ν as Eπv

ν For simplicity, we assume that Eπv , i.e. the
special case in which the adversary chooses a policy that
leaves the victim’s observations ot ∈ Ω unaffected, reduces
to πv acting in a finite MDP ⟨S,A, p, r, γ⟩ with infinite
horizon (see Section 2). We assume that both the victim
policy πv : H∗

\r 7→ P(A) and the state-observing adversary
policy ν : S × H∗

\r 7→ P(Ω) are history-dependent. The
semantics of Eπν are as follows: At time t = 0, we sample
an initial state s0 ∼ p(·|∅). The adversary then samples
an observation o0 ∼ ν(·|s0) which is emitted to the victim.
The victim takes an action a0 ∼ π(·|o0), upon which the
state transitions to s1 ∼ p(·|s0, a0). At time t > 0, the
victim has accumulated a history ht := o0a0r1 . . . , ot−1

upon which ot ∼ ν(·|st, ht\r) conditions.

We are ultimately interested in characterising the Nash equi-
libria induced by G [54]. To this end, we now show that, for
any choice of ν , the victim’s task of finding an optimal pol-
icy in E (·)

ν is equivalent to instead finding an optimal policy
in a corresponding POMDP Ee (E (·)

ν ).

Theorem 3.2 (POMDP correspondence). For any E (·)
ν , there

exists a corresponding POMDP Ee (E (·)
ν ) for which the vic-

tim’s learning problem is identical. See Appendix B.1 for a
proof.

Theorem 3.2 implies that, given enough memory [89] , the
adversary can be chosen such that the state-space of Ee(E (·)

ν )
becomes arbitrarily due to its infinite horizon. This renders
the worst-case problem of finding an optimal victim pol-
icy in Ee(E (·)

ν ) intractable even if the adversary’s policy is
known [33, 45]. The underlying game G, therefore, assumes
an infinite state space, preventing recent progress in solving
finite-horizon extensive-form games [39, 50, 69] from be-
ing leveraged in characterising its Nash equilibria. For the
remainder of this paper, we overload E (·)

ν to instead refer to
its corresponding POMDP.

3.2. Adversary detection as a defense strategy

We investigate a victim strategy that, instead of a priori find-
ing the best response to an unknown adversary, focuses on
efficiently detecting whether an effective test-time adversary
is present, i.e. whether the victim is deployed to Eπv

ν or Eπv .
Knowing whether an effective adversary is present in the
environment would allow a real-world agent to take con-
tingency options that would suspend operations or trigger
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Illusory Attacks

security escalations3.

To understand the limits of adversary detection that the
victim can achieve, it is important to recall the concept of
stochastic equivalence between stochastic processes.

Definition 3.3 (Stochastic equivalence). Two stochastic
processes X1(t) and X2(t), t ∈ T , defined on a common
probability space are called stochastically equivalent if for
any t ∈ T , P(X1(t) = X2(t)) = 1, i.e. if the random
variables at each time-step are almost surely following the
same distribution. [36, 19]

Theorem 3.4 (The limits of adversary detection). At test-
time, the victim only has access to observation samples ot ∈
Ω from Eπv

ν . The detection task is thus limited to establish-
ing equivalence [62] of the observation processes induced
by Eπv

ν and Eπv (see Section 2). As Eπv := pomdp(M),
where M := ⟨Ω,A, p, ·, ·⟩ is a finite MDP, the detection
task can be decomposed into a sequence of empirical hy-
pothesis tests:

1. Test whether Ω = S [Observation space compatibility].
2. Test whether P(ot+1|ot, at) = O′(ot+1|ot, at) [State

transition equality].
3. Test whether P(ot+1|o≤t, a≤t) = P(ot+1|ot, at) [Condi-

tional independence4].

Here, O′ is the observation function of Eπv . Note that
these tests could be conducted either by comparing cross-
sectional distributions or autocorrelations. If any of these
tests fails, then the victim does not act in Eπv . If all tests
pass, then the observation processes of Eπv

ν and Eπv are
stochastically equivalent (see Def. 3.3). However, this
does not establish the equivalence of the underlying core
and reward processes. The proof follows by definition (see
Appendix B.2).

Note that following the protocol of Theorem 3.4 requires the
victim to sample estimates of the distributional quantities
involved. In practice, the victim’s ability to detect the pres-
ence of an effective adversary is therefore also constrained
by the number of attainable test-time samples.

3.3. Illusory attacks

We now concern ourselves with characterising the best re-
sponses that the adversary can choose when facing a victim
agent pursuing the detection protocol defined in Theorem
3.4. We assume that the adversary cannot fully characterise
the victim’s contingency options. Hence, detection poses
an unquantifiable risk to the adversary, which we assume it
prioritises to avoid.

3Modeling such contingency options as part of an extended
game G′ lies outside the scope of this paper.

4This is to exclude long-term correlations, see Appendix B.4.

3.3.1. PERFECT ILLUSORY ATTACKS

Theorem 3.5 (Existence of perfect illusory attacks). Given
Eπv

(·) , the adversary can sometimes choose a perfect illusory
attack ν such that, simultaneously,

• The core and reward processes of Eπv
ν and Eπv differ.

• The victim cannot distinguish Eπv
ν from Eπv using the pro-

tocol defined in Theorem 3.4 even when given an unlimited
number of test-time samples.

For a proof see Appendix B.3.

We provide examples of perfect illusory attacks in Section 4
as well as in the results video in the supplementary material.
Clearly, in addition to remaining undetectable by the victim,
the adversary should choose an attack from the set of perfect
illusory attacks that minimise the victim’s expected test-time
return to the greatest possible extent.

Definition 3.6 (Optimal illusory attack). An optimal illu-
sory attack ν∗ on Eπv

(·) is the subset of perfect illusory attacks
{ν} corresponding to the highest expected adversarial test-
time return, i.e. ,

ν∗ = arg inf
ν
Eh∼Eπv

ν
[
∑∞
t=0 rt], s.t. PEπv

ν
= PEπv . (2)

Here, we use the shorthand PEπv
ν

= PEπv to imply that,
∀h ∈ H∗

\r, the probability distributions over h are equal for
both processes Eπv

ν and Eπv .

3.3.2. n-STEP PERFECT ILLUSORY ATTACKS

Perfect illusory attacks are not always possible to construct
(see Appendix B.3). To arrive at a practical relaxation of
perfect illusory attacks, we note that testing for conditional
independence of observation transitions (Step 3 in the vic-
tim detection protocol defined in Theorem 3.4) can require
a large amount of test-time samples [67], making it difficult
to achieve for long time windows in many practical settings.
Hence we define n-step perfect illusory attacks, which only
preserve conditional independence of observation transi-
tions over up to n time steps.

Definition 3.7 (n-step perfect illusory attacks). Given Eπv
(·) ,

the set of n-step perfect illusory attacks is given by all
ν for which the observation process of Eπv

ν statisfies that
P(ot|o<t, a<t) = P(ot|ot−1,...,t−n, at−1,...,t−n), ∀t ≥ 0.

We omit the analogous definition of n-step optimal illusory
attacks for brevity.

3.3.3. R-ILLUSORY ATTACKS

As we wish to perform gradient-based optimisation of illu-
sory attacks, we in practice approximate the conditional in-
dependence constraints using a Lagrangian relaxation. The
resulting R-illusory attacks are an approximation of 1-step
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Figure 3: Benchmark environments used for empirical evaluation, from left to right. In CartPole, the agent has to balance a
pole by moving the black cart. In Pendulum, the agent has to apply a torque action to balance the pendulum upright. In
Hopper and HalfCheetah, the agent has to choose high-dimensional control inputs such that the agent moves towards the
right of the image.

Normalised adversary score in %

Attack no
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MNP [40] 96 ± 4 95 ± 1 - -
SA-MDP [91] 98 ± 7 68 ± 3 89 ± 6 93 ± 7
R-illusory attack (ours) 77 ± 7 65 ± 4 72 ± 4 72 ± 6
Perfect illusory attack (ours) 63 ± 8 71 ± 1 73 ± 7 73 ± 5

Table 1: Adversary scores and standard deviations averaged
across environments for different defence methods and dif-
ferent attacks (β = 0.2). Defences decrease the adversary
score, i.e., increase the victim reward across all classes and
all attack algorithms. We find that most defences only lead
to marginal changes (see App. B.5 for discussion.)

optimal illusory attacks that weighs off 1-step detectability
and adversary task performance.
Definition 3.8 (R-illusory attacks). R-illusory attacks are a
Lagrangian relaxation of 1-step optimal illusory attacks:

νR = arg inf
ν

Eh∼Eπv
ν

∑∞
t=0rt+λD

[
PEπv

ν
(·|ot, at), p(·|ot, at)

]
,

(3)
where λ > 0 is a hyper-parameter that determines the weighing of
the two objectives, and D is a distance measure between probability
distributions.

4. Empirical evaluation of illusory attacks
We now compare and contrast perfect illusory attacks and
R-illusory attacks with state-of-the-art observation-space
adversarial attacks according to the criteria of detectability,
adversarial performance, and attainable robustification. To
this end, we first construct a simple adversarial attack de-
tector ∆ that implements a CUSUM-like decision rule [57]
based on a learned model of the observation-transition func-
tion of the adversary-free environment. We provide the
source code, a summary video, and individual videos per
attack and random seed in the supplementary material.

Experimental setup. We evaluate our methods on four
standard benchmark environments (see Figure 3) with con-

tinuous state spaces whose dimensionalities range from
1 to 17 and both continuous and discrete action spaces.
The mean and standard deviations of both detection and
performance results are estimated from 200 independent
episodes per each of 5 random seeds. Victim policies are
pre-trained in unattacked environments, and frozen during
adversary training. We assume the adversary has access to
the unattacked environment’s state-transition function t. For
implementation details please refer to the appendix.

Empirical detector evaluation. We now compare and
contrast perfect illusory attacks, R-illusory attacks, MNP
attacks and SA-MDP attacks across different perturbation
budgets β. We found results for β = 0.05 to be comparable
to those for β = 0.2 and focus on β = 0.2 in this analy-
sis (see appendix for all results). As detailed in Figure 5,
the detector ∆ detects MNP and SA-MDP attacks with a
probability close to 100%. In contrast, the detector classi-
fies R-illusory attacks as adversarially attacked with very
low probability. Note that perfect illusory attacks, as per
definition, are undetectable and do not have a perturbation
budget. In Figure1, we illustrate why SA-MDP attacks can
be detected with world models.

Detection by human inspection. We investigate whether
humans unfamiliar with adversarial attacks can detect ad-
versarial attacks in simple and easy-to-understand environ-
ments. We omit perfect illusory attacks in the study as these,
by definition, cannot be detected. We found that partici-
pants classified MNP and SA-MDP attacks as suspicious
with high accuracy (see Human detection in Figure 5). In
contrast, participants were almost equally likely to clas-
sify videos of unattacked and R-illusory attacked trajecto-
ries as unsuspicious. In fact, at a confidence level of 95%,
the hypothesis participants are equally likely to classify an
unattacked sequence as attacked as to classify an R-illusory
attacked sequence as attacked cannot be rejected. Our find-
ings suggest that humans are unable to detect R-illusory
attacks from short observation sequences in our simple en-
vironments. See Appendix B.11 for full results and the
corresponding z-test statistic.
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Figure 4: We display normalised adversary scores, indicating the reduction in the victim’s reward, on the y-axis. Each plot
shows results in different environments, with different adversarial attacks on the x-axis. We show both the raw adversary
score, as well as the adversary score adjusted for detection rates of different adversarial attacks (see Figure 5). While the
SA-MDP and MNP benchmark attacks achieve higher unadjusted scores, their high detection rates result in significantly
lower adjusted scores.

Relative adversary scores. We now investigate the ad-
versaries’ relative performance using the scalar adversary
score, i.e. the the resultant (normalized) reduction in the
victim’s return. We find that the adversary score is generally
higher for SA-MDP attacks than for R-illusory attacks and
perfect illusory attacks (see Figure 4). This is expected, as
SA-MDP attacks purely minimise the victim reward, while
R-illusory attacks trade off between minimizing the reward
of the victim and remaining undetected. Further, perfect illu-
sory attacks achieve a lower adversary score than R-illusory
attacks. This is likewise to be expected, as perfect illusory
attacks do not explicitly lower the victim reward.

Detection-adjusted adversary scores. We now adjust
adversary scores to include the outcome of the automated
detector ∆ by setting the adversary’s return to zero across
episodes classified as attacked. This reflects a middle ground
across different scenarios in which adversary detection
could trigger victim contingency options ranging from no ac-
tion, to test-time termination, major security escalation, and
adversary persecution. Specifically, we adjust the adversary
score by multiplying it by 1−P(detection). Figure 4 shows
that R-illusory attacks result in the highest average adver-
sary score. In contrast, detection-adjusted adversary scores
for state-of-the-art attacks are close to zero as expected from
their high empirical detectability (see Fig. 5).

5. Conclusion and future work
This paper introduces a novel class of observation-space
adversarial attacks, illusory attacks, which aim to minimize
statistical detectability. We study both automated detec-
tion and detection by humans of existing observation-space
adversarial attacks and illusory attacks.

We expect the potential positive impact of enabling adversar-
ial defense systems to counter illusory attacks to outweigh
the potential negative consequences associated with study-
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R-illusory attack (ours)
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Human detection*

Figure 5: Different adversarial attacks are shown on the
x-axis, with detection rates on the y-axis. We see that both
the automated detector as well as human subjects are able to
detect SA-MDP and MNP attacks, while R-illusory attacks
are less likely to be detected. Perfect illusory attacks are
excluded here as they are undetectable.

ing enhanced adversarial attacks. However, it should be
acknowledged we assume the availability of contingency
options for victim agents, which may not always hold true in
real-world scenarios. Moreover, our experimental investiga-
tions are confined to simulated environments, necessitating
further exploration in more intricate real-world domains.

Future research should conduct comprehensive theoretical
analysis of the Nash equilibria within the two-player zero-
sum game introduced by the illusory attack framework.
Furthermore, efforts are required to develop more effec-
tive detection mechanisms and robustification techniques
that are applicable to real-world environments. An equally
significant aspect of detection is gaining a deeper under-
standing of the human capability to perceive and identify
(illusory) adversarial attacks. We ultimately aim to demon-
strate the viability of illusory attacks and the correspond-
ing defense strategies in real-world settings, particularly in
mixed-autonomy scenarios.
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[76] Szepesvári, C. Algorithms for Reinforcement Learn-
ing. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Springer International Publishing,
Cham, 2010. ISBN 978-3-031-00423-0 978-3-031-
01551-9. doi: 10.1007/978-3-031-01551-9. URL
https://link.springer.com/10.1007/
978-3-031-01551-9.

[77] Tartakovsky, A., Nikiforov, I., and Basseville, M. Se-
quential analysis: Hypothesis testing and changepoint
detection. CRC Press, 2014.

[78] Tekgul, B. G., Wang, S., Marchal, S., and Asokan, N.
Real-time attacks against deep reinforcement learning
policies. arXiv preprint arXiv:2106.08746, 2021.

[79] Todorov, E., Erez, T., and Tassa, Y. MuJoCo: A
physics engine for model-based control. In 2012 Inter-
national Conference on Intelligent Robots and Systems,
2012.

[80] Tu, J., Ren, M., Manivasagam, S., Liang, M.,
Yang, B., Du, R., Cheng, F., and Urtasun, R.
Physically Realizable Adversarial Examples for
LiDAR Object Detection. pp. 13713–13722. IEEE
Computer Society, June 2020. ISBN 978-1-72817-
168-5. doi: 10.1109/CVPR42600.2020.01373.
URL https://www.computer.org/csdl/
proceedings-article/cvpr/2020/
716800n3713/1m3o75on8VG.

[81] Von Neumann, J. and Morgenstern, O. Theory of
games and economic behavior. Theory of games and

https://papers.nips.cc/paper_files/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=BkJ3ibb0-
https://ieeexplore.ieee.org/document/8954080/
https://ieeexplore.ieee.org/document/8954080/
http://arxiv.org/abs/2206.05825
http://arxiv.org/abs/2206.05825
https://dl.acm.org/doi/10.1145/122344.122377
https://dl.acm.org/doi/10.1145/122344.122377
https://link.springer.com/10.1007/978-3-031-01551-9
https://link.springer.com/10.1007/978-3-031-01551-9
https://www.computer.org/csdl/proceedings-article/cvpr/2020/716800n3713/1m3o75on8VG
https://www.computer.org/csdl/proceedings-article/cvpr/2020/716800n3713/1m3o75on8VG
https://www.computer.org/csdl/proceedings-article/cvpr/2020/716800n3713/1m3o75on8VG


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Illusory Attacks

economic behavior. Princeton University Press, Prince-
ton, NJ, US, 1944. Pages: xviii, 625.

[82] Vyas, S., Hannay, J., Bolton, A., and Burnap, P. P.
Automated Cyber Defence: A Review, March 2023.
URL http://arxiv.org/abs/2303.04926.
arXiv:2303.04926 [cs].

[83] Wang, Y., Chao, W.-L., Garg, D., Hariharan, B.,
Campbell, M., and Weinberger, K. Q. Pseudo-LiDAR
From Visual Depth Estimation: Bridging the Gap in
3D Object Detection for Autonomous Driving. pp.
8437–8445. IEEE Computer Society, June 2019. ISBN
978-1-72813-293-8. doi: 10.1109/CVPR.2019.00864.
URL https://www.computer.org/csdl/
proceedings-article/cvpr/2019/
329300i437/1gyrjqe4Oac.

[84] Werbos, P. J. Applications of advances in nonlinear
sensitivity analysis. In System Modeling and Opti-
mization: Proceedings of the 10th IFIP Conference
New York City, USA, August 31–September 4, 1981.
Springer, 2005.

[85] Wu, F., Li, L., Huang, Z., Vorobeychik, Y., Zhao, D.,
and Li, B. CROP: Certifying Robust Policies for Re-
inforcement Learning through Functional Smoothing.
ArXiv, 2021.

[86] Xie, C., Wang, J., Zhang, Z., Ren, Z., and Yuille, A.
Mitigating Adversarial Effects Through Randomiza-
tion. May 2023. URL https://openreview.
net/forum?id=Sk9yuql0Z.

[87] Xu, W., Evans, D., and Qi, Y. Feature Squeez-
ing: Detecting Adversarial Examples in Deep Neu-
ral Networks. In Proceedings 2018 Network and
Distributed System Security Symposium, 2018. doi:
10.14722/ndss.2018.23198. URL http://arxiv.
org/abs/1704.01155. arXiv:1704.01155 [cs].

[88] Yang, B., Luo, W., and Urtasun, R. PIXOR:
Real-time 3D Object Detection from Point Clouds.
In 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 7652–7660, Salt
Lake City, UT, USA, June 2018. IEEE. ISBN
978-1-5386-6420-9. doi: 10.1109/CVPR.2018.
00798. URL https://ieeexplore.ieee.
org/document/8578896/.

[89] Yu, H. and Bertsekas, D. P. On near Optimality of
the Set of Finite-State Controllers for Average Cost
POMDP. Mathematics of Operations Research, 33
(1):1–11, 2008. ISSN 0364-765X. URL https:
//www.jstor.org/stable/25151838. Pub-
lisher: INFORMS.

[90] Zhang, H., Chen, H., Xiao, C., Li, B., Liu, M., Bon-
ing, D., and Hsieh, C.-J. Robust Deep Reinforcement
Learning against Adversarial Perturbations on State

Observations. In Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., 2020.

[91] Zhang, H., Chen, H., Boning, D., and Hsieh, C.-J.
Robust Reinforcement Learning on State Observations
with Learned Optimal Adversary, January 2021.

[92] Zhou, Y. and Tuzel, O. VoxelNet: End-to-End
Learning for Point Cloud Based 3D Object De-
tection. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 4490–
4499, Salt Lake City, UT, USA, June 2018. IEEE.
ISBN 978-1-5386-6420-9. doi: 10.1109/CVPR.
2018.00472. URL https://ieeexplore.ieee.
org/document/8578570/.

[93] Zhu, Y., Miao, C., Zheng, T., Hajiaghajani, F., Su,
L., and Qiao, C. Can We Use Arbitrary Objects
to Attack LiDAR Perception in Autonomous Driv-
ing? In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’21, pp. 1945–1960, New York, NY, USA,
November 2021. Association for Computing Machin-
ery. ISBN 978-1-4503-8454-4. doi: 10.1145/3460120.
3485377. URL https://dl.acm.org/doi/10.
1145/3460120.3485377.
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A. Appendix

B. Related work
The adversarial attack literature originates in image classification [75], where attacks commonly need to be visually
imperceptible. Visual imperceptibility is commonly proxied by simple pixel-space minimum-norm perturbation (MNP)
constraints [23, 49]. Several defenses against MNP attacks have been proposed [15, 87, 65, 86].

MNP attacks have been extended to adversarial attacks on sequential decision-making agents [13, 34, 58]. In the
sequential MNP framework, the adversary can modify the victim’s observations up to a step- or episode-wise perturbation
budget, both in white-box, as well as in black-box settings. Zhang et al. [90] and Sun et al. [72] use reinforcement learning
to learn adversarial policies that require only black-box access to the victim policy. Assuming a different black-box setting,
Hussenot et al. [32] introduce a class of adversaries for which a unique mask is precomputed and added to the agent
observation at every time step. Our framework differs from these previous works in that it takes into account the temporal
consistency of observation sequences.

Work towards robust sequential-decision making uses techniques such as randomized smoothing [40, 85], test-time
hardening by computing confidence bounds [21], training with adversarial loss functions [56], and co-training with
adversarial agents [91, 18, 44]. We compare against and build upon this work.

Various strands of research in cyber security concern adversarial patch (AP) attacks that do not require access to all the
sensor pixels, and commonly assume that the attack target can be physically modified [22, 10]. AP attack targets include
cameras [22, 12, 20, 29, 28], LiDAR [70, 9, 93, 80], and multi-sensor fusion mechanisms [10, 1]. Our illusory attack
framework differs from both MNP and AP attacks in that it is not restricted to patches, does not require perturbation budgets,
and introduces explicit detectability constraints. In contrast, our work explores both defenses based on learnt world models,
and human detectors rather than hand-crafted detectors that require domain knowledge.

Another body of work focuses on detection and detectability of learnt adversarial attacks on sequential decision
makers. Lin et al. [48] develop an action-conditioned frame module that allows agents to detect adversarial attacks by
comparing both the module’s action distribution with the realised action distribution. Tekgul et al. [78] detect adversaries by
evaluating the feasibility of past action sequences. Li et al. [46], Sun et al. [71], Huang & Zhu [31] focus on the detectability
of adversarial attacks but without considering notions of stochastic equivalence between observation processes. Perhaps
most closely related to our work, Russo & Proutiere [63] study action-space attacks on low-dimensional stochastic control
systems and consider information-theoretic detection [5, 41, 77] based on stochastic equivalence between the resulting
trajectories. We instead investigate high-dimensional observation-space attacks, and consider learned detectors, as well as
humans.

B.1. Proof of Theorem 3.2

We first restate Theorem 3.2 in a slightly more precise way. Consider a POMDP Ee := ⟨S ′,A,Ω,O′, p′, r, γ⟩ with finite
horizon T , a state space S ′ := (S×A×Ω)T , deterministic observation function O′ : S ′ 7→ Ω, and stochastic state transition
function p′ : S ′ ×A 7→ P(S ′). Then, for any πv : H∗

\r 7→ P(A) and ν : S ×H∗
\r 7→ P(Ω), we can define corresponding p′

and O′ such that the reward and observation processes cannot be distinguished by the victim.

Recall that the semantics of Eπν are as follows: Fix a victim policy π : H∗
\r 7→ P from the space of all possible sampling

policies Π. At time t = 0, we sample an initial state s0 ∼ p(·|∅). The adversary then samples an observation o0 ∼ ν(·|s0)
which is emitted to the victim. The victim takes an action a0 ∼ π(·|o0), upon which the state transitions to s1 ∼ p(·|s0, a0)
and the victim receives a reward r1 ∼ (·|s0, a0). At time t > 0, the victim has accumulated a history ht := o0a0r1 . . . ot,
on which ot ∼ ν(·|st, ht\r) conditions.

Proof. Now consider an equivalent POMDP formulation. Define p′ as the following sequential stochastic process: At
time t = 0, first sample s0 ∼ p(·|∅). Then sample o0 ∼ ν(·|s0), and define s′0 := p′(∅) := (s0, o0). For any t > 0,
first sample st ∼ p(·|st−1, at−1), then ot ∼ ν(·|s≤t, a<t, o<t) and define s′t := p′(s′t−1, st, ot, at−1). We finally define
O(s′t) := projo(s

′
t) := ot, where we indicate that ot is stored in s′t by using an explicit projection operator projo. Clearly,

under any sampling policy π, the observation and reward processes induced by Ee and Eπv
ν are identical as T → ∞. This

renders the reward and observation processes identical in both environments. Note that, as T → ∞, Ee’s state space grows
infinitely large.
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B.2. Proof on Theorem 3.4

Given an MDP M := ⟨S,A, p, r, γ⟩, we consider instead its canonical embedding (see Section 2) into the family of
POMDPs E := pomdp(M) with state space S and observation function O : S ×A 7→ S.

Given sampling access to another POMDP K, we wish to prove that the protocol defined in Theorem 3.4 establishes stochastic
equivalence between the observation processes of E and K (see 3.3) under an arbitrary sampling policy π : H∗ 7→ P(A).

By definition, M’s state-transition function obeys the Markov property. As O is the identity function, Eπ’s observation
process hence also obeys the Markov property. By definition of stochastic equivalence (see 3.3), for Eπ’s observation
process to be stochastically equivalent to Kπ’s, the observation processes of Kπ and Eπ have to fulfill Definition 3.3. As
Eπ’s observation process has the Markov property, Kπ hence also needs to have the Markov property (Step 3 in Theorem
3.4). If, in addition, Kπ fulfills Steps 1 and 2, then this implies stochastic equivalence between Kπ and Eπ .

B.3. Proof on the existence of perfect illusory attacks

2

1

4

3

(a)

2

1

4

3

(b)

Figure 6: An environment for which perfect illusory attacks do exist (left), and one for which they do not exist (right).

Proof that perfect illusory attacks exist. We consider an example MDP (see Figure 6a) where a victim starts in node 1 or
2 each with probability 1

2 and can go up, down, or right in both states 1 and 2. The episode terminates immediately with
a return of 0 should the victim reach state 4. Otherwise, the victim receives a reward of +1 if it reaches state 3 within a
maximum of 2 steps. The optimal victim policy is therefore to take paths 1 → 3 if starting in state 1, and take one of the two
possible paths 2 → 1 → 3 otherwise. The victim observes the labelled state graph, as well as its current state label. Clearly,
choosing ν(1) = 2 and ν(2) = 1 constitutes a perfect illusory attack in this environment.

Proof that perfect illusory attacks don’t always exist. To show that some environments do not admit perfect illusory attacks,
consider the modified environment in Figure 6b. Here, clearly a timestep-conditioned victim policy that takes the action
sequence ⟨up, right⟩ independently of observations cannot be perfectly attacked.

B.4. Two stochastic processes can have the same states and state-transition function, but not be equal

0.5 0.5

A

B

C

D

E

F
1.0

1.0

0.50.5
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D E
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Figure 7: Left: An unattacked Markov Decision Process with 6 states. Right: A decision process with the same state-
transition function, but long-term correlations.

Two stochastic processes can have the same states and state-transition functions, but still not be equal. Figure 7 illustrates
this with a simple example: The attacked process on the right transitions to state E whenever it has been in B prior, and
transitions to F whenever it has been in C prior. This process has the exact same state-transition function as the process on
the left, however, the processes are not equivalent.
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B.5. Implementation overview and additional discussion.

For all four evaluation environments, we succeed in implementing perfect illusory attacks (see Definition 3.5) by first
constructing an attacked initial state distribution p(·|∅) that exploits environment-specific symmetries. We then sample the
initial attacked observations o0 from the attacked initial state distribution and generate subsequent transitions using the
unattacked state transition function p(·|ot−1, at−1) where at−1 is the action taken at the last time step. For the Algorithm
used and more details see also Appendix B.9. In contrast to perfect illusory attacks, R-illusory attacks are learned end-to-end
using reinforcement learning. As detailed in Algorithm 1, the adversary’s reward is given by the negative victim reward plus
an illusory reward that incentivises attacked observations to be aligned with the unattacked state-transition function p. We
choose the illusory reward to be proportional to the L∞-norm of the distance between the next state according to p and the
attacked observation, acting as a proxy for the distance between the unattacked and attacked distributions. A hyperparameter
λ trades off between victim reward and illusory reward. We ran a grid search over λ and found that for 1 < λ < 1000 results
are mostly insensitive to λ, while λ < 1 and λ > 1000 result in either non-illusory attacks, or unattacked observations,
respectively.

State-of-the-art adversarial attacks. We consider MNP [40] and SA-MDP [91] adversarial attacks together to be
sufficiently representative of the state-of-the-art (see Section 2). Following recent works, we evaluate both MNP and
SA-MDP attacks for perturbation budgets β ∈ {0.05, 0.2}, where β is defined relative to normalised observation vectors.
For a fair comparison, we impose the same βs on R-illusory attacks.

Robustification and Detectors. We test the defenses randomised smoothing (RS) [14, 40] and adversarial pre-training
(ATLA) [91]. In RS, Gaussian noise is i.i.d. sampled at each time step and added to the victim’s observation ot. In adversarial
pre-training, the victim policy is learned through co-training with the adversary. In ATLA, the victim is co-trained with
an SA-MDP adversary. We also consider an ablation of ATLA where we pre-train the victim agent with an R-illusory
adversary (which we refer to as ATLA abl.). For each of the four environments, we train a small neural network-based world
model [84, 24] p̂(·|s, a) using trajectory rollouts from the unattacked environment. The world model approximates the
environment’s state-transition function and can be used to approximate the detection rule used for quickest change detection
(see Appendix B.8). The detector ∆ uses p̂ to check whether, for a given observed transition (ot, at, ot+1) it holds that
the distance between the next predicted observation and the next observation is smaller than a threshold c, i.e. whether
∥p̂(ot, at)− ot+1∥∞ ≤ c. If this does not hold, the trajectory is classified as attacked. We evaluate ∆ on a held-out set of
train-time trajectories and tune the detection threshold c to achieve a false positive (FP) rate of 3%.

B.6. Detection by human inspection

We investigate whether humans unfamiliar with adversarial attacks can detect adversarial attacks in simple and easy-to-
understand environments. We found CartPole and Pendulum, in contrast to Hopper and HalfCheetah, to be immediately
accessible to participants without the need for additional training. To this end, we perform a controlled study with n = 10
human participants. Participants were first shown an unattacked introduction video for both CartPole and Pendulum,
exposing them to environment-specific dynamics. Participants were then shown a random set of videos containing both
videos of unattacked and attacked trajectories. For each video, participants were asked to indicate whether they believed
that the video was unsuspicious, with the prompt “the system shown in the video was [not] the same as the one from the
introduction video”. This phrasing was chosen so that participants would not be primed on the concept of illusory attacks
(see details in Appendix B.11).

We omit perfect illusory attacks in the study as these, by definition, cannot be detected. We found that participants classified
MNP and SA-MDP attacks as suspicious with high accuracy (see Human detection in Figure 5). In contrast, participants
were almost equally likely to classify videos of unattacked and R-illusory attacked trajectories as unsuspicious. In fact, at a
confidence level of 95%, the hypothesis participants are equally likely to classify an unattacked sequence as attacked as to
classify an R-illusory attacked sequence as attacked cannot be rejected. Our findings suggest that humans are unable to
detect R-illusory attacks from short observation sequences in our simple environments. See Appendix B.11 for full results
and the corresponding z-test statistic.

Robustification and Detectors. We test the defenses randomised smoothing (RS) [14, 40] and adversarial pre-training
(ATLA) [91]. In RS, Gaussian noise is i.i.d. sampled at each time step and added to the victim’s observation ot. In adversarial
pre-training, the victim policy is learned through co-training with the adversary. In ATLA, the victim is co-trained with
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an SA-MDP adversary. We also consider an ablation of ATLA where we pre-train the victim agent with an R-illusory
adversary (which we refer to as ATLA abl.). For each of the four environments, we train a small neural network-based world
model [84, 24] p̂(·|s, a) using trajectory rollouts from the unattacked environment. The world model approximates the
environment’s state-transition function and can be used to approximate the detection rule used for quickest change detection
(see Appendix B.8). The detector ∆ uses p̂ to check whether, for a given observed transition (ot, at, ot+1) it holds that
the distance between the next predicted observation and the next observation is smaller than a threshold c, i.e. whether
∥p̂(ot, at)− ot+1∥∞ ≤ c. If this does not hold, the trajectory is classified as attacked. We evaluate ∆ on a held-out set of
train-time trajectories and tune the detection threshold c to achieve a false positive (FP) rate of 3%.

B.7. R-illusory attacks adversarial training

Algorithm 1 R-illusory attacks adversarial training

Input: environment env with transition function p, illu-
sory reward weight λ, victim policy πv , number of training
episodes N .
Init. adversary policy νψ with parameters ψ.
while episode < N do
t = 0
s0 = env.reset()
o0 = νψ(s0)
a0 = πv(o0)
o1, r1, done = env.step(a0)
radv
1 = −r1

done = False
while not done do
t = t+ 1
ot = νψ(st)
at = πv(ot)
st+1, rt+1, done = env.step(at)
radv
t+1 = −rt+1 − λ · ∥ot − p(ot−1, at−1)∥∞

end while
Update νψ from tuples (st, ot, radv

t+1, st+1).
end while

B.8. Detector used in experiments

We assume that the victim is trained in the unattacked environment E for k episodes, each consisting of n steps. During
training, the agent records observed environment transition tuples denoted as ti = (si, ai, si+1), which are stored in a set
DE = t

i=k∗(n−1)
i=0 . These unattacked transitions in DE are used to learn an approximation of the state-transition function

denoted as p̂E(st|st−1, at−1). To implement p̂E , we employ a Multi-Layer Perceptron with two hidden layers of size 10.
The model is trained using an l2 loss for 10 epochs, with a learning rate of 0.001 and the ADAM optimizer [37].

At each time step t, the test statistic zt, utilized in CUSUM change point detection methods [5, 41, 77], is computed
based on the transition tuple consisting of the last attacked observation ot−1, the last action taken at−1, and the current
attacked observation ot. In other words, the transition tuple is represented as (ot−1, at−1, ot). To compute zt, we require
the train-time transition distribution pE and the test-time transition distribution pE′ , which are both unknwon and must be
estimated.

The test statistic zt is defined as the logarithm of the ratio between the probability of the transition tuple under the test-time
distribution and the train-time distribution:

zt(ot−1, at−1, ot) = ln
pE′(ot | at−1, ot−1)

pE(ot | at−1, ot−1)
. (4)
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Given that state transitions in the provided environments are deterministic, the estimated probabilities are either 0 or δ.
Moreover, the estimated transition probabilities of observed transition tuples for the test-time process are δ. Therefore,
it follows that pE(ot | at−1, ot−1) ∈ {0, δ} ∀ t and pE′(ot | at−1, ot−1) = δ ∀ t. Consequently, zt(ot−1, at−1, ot) ∈
{0,∞} ∀ t.

CUSUM-based methods rely on accumulating the test statistic zt over multiple time steps and classify a sequence as attacked
if the sum exceeds a threshold. In our case, since the test statistic is either 0 or ∞, the CUSUM testing procedure simplifies
to classifying a sequence as attacked when zt = ∞. Furthermore, zt = ∞ if pE(ot | at−1, ot−1) = 0.

To determine pE(ot | at−1, ot−1), we utilize the learned state-transition model. If the l2 distance between the predicted next
observation p̂E(ot−1, at−1) and and the given next observation ot exceeds a threshold c, we set pE(ot | at−1, ot−1) to 0.
The threshold c accounts for the inaccuracy of p̂E . To determine an appropriate value for c, we evaluate p̂E on a held-out set
of training observations and tune c to achieve a false positive rate of 3%. We assess the accuracy of detecting adversarial
attacks across all scenarios presented in Table B.10.1.

B.9. Perfect illusory attacks implementation

We implement perfect illusory attacks in CartPole and Pendulum as detailed in Algorithm 2. The first observation o0 is set
to the negative of the true first state sampled from the environment, i.e. o0 = −o0. Note that in HalfCheetah and Hopper the
initial state distribution is not centered around the origin, we hence first subtract the offset, and then compute the negative
of the observation and add the offset again. As the distribution over initial states is symmetric in all environments (after
removing the offset), this approach satisfies the conditions of a perfect illusory attack (see Definition 3.5). We provide videos
of the generated perfect illusory attacks in the supplementary material in the respective folder and show an illustration of a
perfect illusory attack in Figure 2.

Algorithm 2 Perfect illusory adversarial training

Input: environment env, environment transition function t whose initial state distribution p(·|∅) is symmetric with
respect to the point psymmetry in S, victim policy πv .
k = 0
s0 = env.reset()
o0 = −(s0 − psymmetry) + psymmetry
a0 = πv(o0)
, done = env.step(a0)

while not done do
k = k + 1
ok ∼ t(ok−1, ak−1)
ak = πv(ok)
, done = env.step(ak)

end while

B.10. Learning R-illusory attacks with reinforcement learning

We next describe the algorithm used to learn R-illusory attacks and the training procedures used to compute the results in
Table B.10.1. We use the CartPole, Pendulum, HalfCheetah and Hopper environments as given in Brockman et al. [8]. We
shortened the episodes in Hopper and HalfCheetah to 300 steps to speed up training. The transition function is implemented
using the physics engines given in all environments. We normalise observations by the maximum absolute observation. We
train the victim with PPO [66] and use the implementation of PPO given in Raffin et al. [59], while not making any changes
to the given hyperparameters. In both environments we train the victim for 1 million environment steps. We implement the
ATLA [91] victim by co-training it with an adversary agent, and follow the original implementation of the authors 5. We
implement the ablation of ATLA [91] that trains the victim with an illusory adversary by replacing the SA-MDP adversary
with an R-illusory attack adversary, which is implemented as stated in algorithm 1. For co-training, we alternate between
training the victim and the adversary agent every 400 environment steps. This parameter was chosen in a small evaluation
study as it yields non-oscillating behaviour. We further investigated different ratios between training steps of the adversary

5https://github.com/huanzhang12/ATLA_robust_RL

https://github.com/huanzhang12/ATLA_robust_RL
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Figure 8: Results for β = 0.05. We display normalised adversary scores, indicating the reduction in the victim’s reward, on
the y-axis. Each plot shows results in different environments, with different adversarial attacks on the x-axis. We show
both the raw adversary score, as well as the adversary score adjusted for detection rates of different adversarial attacks (see
Figure 5). While the SA-MDP and MNP benchmark attacks achieve higher unadjusted scores, their high detection rates
result in significantly lower adjusted scores. Note that MNP attacks perform significantly worse for β = 0.05, as compared
to β = 0.2 (see Figure 4).

and training steps of the victim, but found that a ratio of one, i.e. equal training of both, yields the most stable results for
co-training.

We implement the illusory adversary agent with SAC [25], where we likewise use the implementation given in Raffin et al.
[59]. We initially ran a small study and investigated four different algorithms as possible implementations for the adversary
agent, where we found that SAC yields best performance and training stability.

We train all adversarial attacks for three million environment steps. We implemented randomized smoothing as a standard
defense against adversarial attacks on RL agents, as introduced in Kumar et al. [40]. We use the author’s original
implementation 6.

Computational overhead of R-illusory attacks. Note that there is no computational overhead of our method at test-time.
We found in our experiments that the computational overhead during training of the adversarial attack scaled with the quality
of the learned attack. In general, we found that the training wall-clock time for the R-illusory attacks results presented
in Table 1 was about twice that of the SA-MDP attack (note that MNP attacks and perfect illusory attacks do not require
training).

B.10.1. RESULTS FOR PERTURBATION BUDGET β = 0.05

We show the remaining results for a perturbation budget of β = 0.05 in Figures 8 and 9, and in Table 2. Note that the
corresponding Figures in the main paper are for a perturbation budget of β = 0.2.

6https://openreview.net/forum?id=mwdfai8NBrJ

https://openreview.net/forum?id=mwdfai8NBrJ
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MNP [40] 3 ± 7 64 ± 6 - -
SA-MDP [91] 85 ± 7 50 ± 5 85 ± 4 83 ± 4
R-illusory attack (ours) 55 ± 8 47 ± 5 76 ± 6 70 ± 8
Perfect illusory attack (ours) 57 ± 6 63 ± 6 66 ± 3 65 ± 5

Table 2: Adversary scores and standard deviations aver-
aged across environments for different defence methods
and different attacks (β = 0.05). Defences decrease the
adversary score, i.e., increase the victim reward across
all classes and all attack algorithms.

B.10.2. VIDEOS OF ALL ADVERSARIAL ATTACKS

We provide a video summarising results in the supplementary material. Further, we provide videos for different seeds for
all adversarial attacks in the supplementary material. The folders are named respectively. All videos were generated for a
budget β = 0.2.

B.11. Human study

Study approval. Our study was approved by an independent ethics committee under reference xxxxx/xxxxx.

Setup. We performed a controlled study with n = 10 human participants. All participants were graduate-level university
students. None had prior knowledge about the objective of the study. Participants participated voluntarily; we estimate the
time needed per participant to be around 15 minutes. Participants were handed a slide show which contained all relevant
information. This slide show is included in the supplementary material in the respective folder. We further add the sheet
with ground truth labels for all video sequences.

After consenting to participate, participants were provided with the slide show and an online sheet to indicate their answers.
The study was self-paced and done by the participants without further supervision. We further advised participants not to do
the study if they would not feel comfortable at any point in time.

The first 18 videos in the slide show are 100-frame long sequences of the Pendulum environment, i.e. six each for either
no adversarial attack, an R-illusory attack or an SA-MDP attack [91]. The subsequent 24 10-frame long sequences of the
CartPole include the same attacks as for Pendulum, plus an additional six sequences under an MNP attack [40]. Note that
MNP attacks cannot be applied to the Pendulum environment, as it has a continuous action space. For all attacks, the budget
β was 0.2. Within both groups, the order of the videos shown was randomised. Subjects had to choose for each video
between correct and false, where false indicates that subjects find that the system observed in the respective video is not
the same as the one observed in the introductory video. We likewise refer to a video marked as false as a suspicious video.
Table 5 includes all empirically estimated probabilities and standard deviations for classifying a segment from a given class
as false.

Result analysis. We find that subjects reported one-third of unattacked sequences as false. Subjects classified sequences
under an MNP or SA-MDP [90] attack as false with a probability higher than 80%, while categorizing illusory attacks as
false with a probability of only 32.4%. We computed the double-sided z-statistics and were able to reject both the hypothesis
that P (false | SA-MDP)=P (false | no attack) and the hypothesis that P (false | MNP)=P (false | no attack) for α = 0.05,
while the hypothesis that P (false | E-illusory attack )=P (false | no attack) cannot be rejected. We conclude that subjects
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Table 3: Full results table for all four environments

Detection rate [%] Victim reward under different defences

attack budget β naive ATLA3 none smoothing ATLA ATLA abl.

Pendulum

SA-MDP [91] 0.05 96.2± 0.01 95.4± 0.02 -797.2± 69.9 -408.4± 146.6 -757.2± 109.3 -722.2± 30.8
R-illusory attack (ours) 1.6± 0.01 2.1± 0.01 -638.8± 204.6 -387.8± 115.8 -634.4± 370.4 -634.9± 103.9

SA-MDP [91] 0.2 97.7± 0.01 93.8± 0.02 -1387.0± 119.0 -1188.3± 70.4 -1354.6± 107.1 -1428.3± 91.5
R-illusory attack (ours) 4.9± 0.01 4.7± 0.01 -1170.1± 67.5 -940.2± 91.6 -1020.4± 50.0 -1029.4± 106.7

Perfect illusory attack (ours) 1 3.6± 0.01 3.4± 0.01 -1204.8± 88.6 -1231.7± 25.3 -1284.5± 158.5 1228.6± 50.0

unattacked 3.2± 0.01 3.5± 0.01 -189.4

CartPole

MNP [40]
0.05

96.0± 0.01 485.0± 33.5 180.3± 33.6
SA-MDP [91] 94.1± 0.02 94.5± 0.02 9.4± 0.2 122.5± 54.3 24.2± 7.3 16.8± 8.3
R-illusory attack (ours) 4.8± 0.01 4.6± 0.01 9.3± 0.1 165.4± 46.3 21.4± 6.0 45.4± 56.5

MNP [40]
0.2

95.2± 0.02 18.3± 20.8 20.8± 8.7
SA-MDP [91] 99.7± 0.01 96.0± 0.01 9.3± 0.1 39.0± 10.7 9.2± 0.1 9.7± 0.6
R-illusory attack (ours) 3.7± 0.01 5.8± 0.02 9.0± 0.3 23.9± 3.3 9.6± 0.6 10.0± 1.20

Perfect illusory attack (ours) 1 3.1± 0.01 3.6± 0.01 30.1± 2.2 25.0± 1.6 21.9± 12.8 19.1± 4.6

unattacked 3.1± 0.01 3.3± 0.01 500.0

HalfCheetah

SA-MDP [91] 0.05 94.8± 0.02 94.9± 0.02 -1570.8± 177.4 101.3± 71.7 -570.2± 156.8 -625.3± 312.6
R-illusory attack (ours) 3.8± 0.01 4.7± 0.01 -149.1± 41.8 103.1± 44.8 -67.4± 47.3 -117.2± 2.3

SA-MDP [91] 0.2 97.1± 0.01 92.2± 0.02 -1643.8± 344.8 -36.8± 8.9 -1443.9± 313.8 -1200.7± 175.1
R-illusory attack (ours) 4.7± 0.01 4.3± 0.01 -178.9± 4.6 -31.0± 8.2 -64.7± 32.6 -35.5± 21.90

Perfect illusory attack (ours) 1 3.3± 0.01 3.4± 0.01 5.9± 36.8 -33.8± 4.7 153.0± 138.9 125.4± 107.5

unattacked 3.1± 0.01 3.5± 0.01 2594.6

Hopper

SA-MDP [91] 0.05 96.8± 0.01 96.4± 0.01 144.1± 265.4 488.5± 66.4 -205.7± 148.7 -124.0± 152.0
R-illusory attack (ours) 2.9± 0.01 6.2± 0.02 408.0± 127.2 489.5± 58.5 -79.4± 192.6 140.3± 69.4

SA-MDP [91] 0.2 95.6± 0.02 94.6± 0.02 -761.5± 127.4 255.1± 28.9 -274.8± 96.1 -502.6± 209.4
R-illusory attack (ours) 3.5± 0.01 3.9± 0.01 -157.5± 225.3 238.2± 24.8 -108.0± 106.6 -84.9± 176.4

Perfect illusory attack (ours) 1 3.2± 0.01 3.4± 0.01 679.2± 63.9 239.3± 32.9 59.5± 161.9 78.7± 165.6

unattacked 3.4± 0.01 3.0± 0.01 958.1

were able to distinguish SA-MDP and MNP attacks from unattacked sequences while being unable to distinguish illusory
attacks from unattacked sequences.

B.12. Reality feedback

We conclude our empirical investigations by exploring the importance of utilizing uncorrupted observation channels, which
we refer to as reality feedback. We define reality feedback ζ as a part of the victim’s observation Z in E ′ that cannot be
corrupted by the adversary, i.e. , we assume that the victim’s observations Z := Z0 ×Zζ , where the adversary can modify
z0 ∈ Z0 but not zζ ∈ Zζ . We establish two reality feedback scenarios for CartPole: one where the cart observation is
unattacked, and one where the observation of the pole is unattacked. We find that robustifying the victim agent through
adversarial training allows victim policies to use reality feedback effectively at test-time. Our results further suggest that
having access to reality feedback channels allows for significant robustification if those channels are sufficiently informative.
In the scenarios studied, we found that having access to an unattacked observation of the pole is more valuable than having
access to an unattacked observation of the cart. See App. B.12 for details.

Setup. We evaluate the importance of realism feedback in the CartPole environment by investigating two possible
scenarios. Note that the observation in CartPole is given as a four-dimensional vector of the pole angle and angular velocity,
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Table 4: Reward achieved by victim for different
reality feedback scenarios.

Victim agent

Reality feedback naive ATLA abl.

Pole 9.84± 0.1 182.44± 36.9
Cart 8.83± 0.3 15.54± 6.6

Table 5: Results from our study with human participants.

Environment

both Pendulum CartPole

P (false | no attack) 34.2± 11.4 31.5± 10.5 37.0± 12.3
P (false | SA-MDP) 81.4± 27.2 96.3± 32.1 66.7± 22.2
P (false | R-illusory attack ) 32.4± 10.8 37.0± 12.3 27.7± 9.3
P (false | MNP) 83.3± 27.8 83.3± 27.8

as well as cart position and velocity. In the first test scenario, the victim correctly observes the pole, while the adversary can
attack the observation of the cart; the second scenario is vice versa. We investigate two test cases for each scenario: First,
attacking a naive victim, and second, attacking an agent pretrained with co-training.

Results and discussion. Table 4 shows that the reward achieved by the victim is generally higher when pretrained with
co-training. We hypothesize that this pretraining enables the agent to learn how to utilize the reality feedback effectively.
The achieved victim performance when reality feedback contains information about the pole is more than 10 times larger
than when containing information on the cart instead. This seems intuitive, as the observation of the pole appears much more
useful for the task of stabilizing the pole, and underlines the importance of equipping agents with strong reality feedback
channels.


