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ABSTRACT

To extract the local information required for effective semantic segmentation of
point clouds, a number of deep learning architectures typically make use of so-
phisticated feature extractors. Unfortunately, there has not been a lot of discussion
on how to interpret their forecasts, which is essential if deployed in real-world
settings. To that end, we propose pGS-CAM (point cloud Grad-Seg-CAM), a
quick and effective gradient-based method for class activation mapping in point
cloud semantic segmentation architectures. To gain insight into what each in-
termediate layer of the architecture does, our technique provides a heatmap for
the corresponding layer. We use the popular semantic segmentation architecture
(RandLA-Net) and a commonly used MLS dataset (SemanticKITTI) for our ex-
perimentation.

1 INTRODUCTION

Various applications, including autonomous vehicles, require perception and interpretation of the
surroundings captured using Light Detection and Ranging (LiDAR)-based sensors. These sensors
generate outcomes in the form of point clouds. A lot of research has been done on developing ef-
fective semantic segmentation architectures for point clouds Xie et al. (2020); Bello et al. (2020).
However, a crucial component of these models, i.e., interpretability, still remains unexplored. An
intricate understanding of these models if they are deployed in real-world systems is required for
better development. One way of achieving this is by visually indicating the regions of point clouds
that are influencing the learning of a neural network model and its decisions by creating heatmaps
for each activation layer of the network. This further aids in network design and reflects the changes
caused by the addition of each layer.
Recently, some attempts have been made to evaluate the point-wise importance of instance classifi-
cation and object detection tasks. Zheng et al. (2019) conducted point dropping by shifting points
towards the point cloud’s centroid to assess each point’s importance in the classification result. They
performed this study on several state-of-the-art classification algorithms. (Dworak & Baranowski,
2022) attempted to adapt Grad-CAM Selvaraju et al. (2017) for object detection on point clouds
by multiplying the bird’s-eye view projection with an up-sampled CAM to produce high-resolution
heatmaps. However, to the best of our knowledge, no work has been done to produce visual expla-
nations for point cloud semantic segmentation architectures, making this our first attempt at doing
so. We utilised RandLA-Net Hu et al. (2020), a popular and efficient encoder-decoder based archi-
tecture for semantic segmentation of large-scale point clouds, and the very popular and widely used
SemanticKITTI Behley et al. (2019) dataset for experimentation. The output of each encoder and
decoder is an activation layer that is used to produce heatmaps by per-point coloration. Relevant
codes can be accessed at GeoAI and Abhishek.

2 METHODOLOGY & EXPERIMENTATION

Consider a point cloud containing N number of points with the point space consisting of x-y-z
coordinates and feature space consisting of attributes like Intensity, RGB values, etc., denoted as
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P ∈ RN×3 and F ∈ RN×d, respectively, where d is the dimension of input feature space. Output
of segmentation network are the logits for each point i, denoted by li. For any intermediate activation
layer A ∈ RM×k (M downsampled points with k feature dimension), gradient of logit li for class c
w.r.t Ak is given by:-

∂lci
∂Ak

(1)

Eq. 1 is a measure of influence of the logit li on the kth feature vector of A. Overall influence for N
points can be obtained by summation of each gradient output:-
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Above influence measure can be enhanced by performing pointwise addition with higher derivatives
of Eq. 2. This leads to better localization and smoother heatmaps. Overall gradient influence Gk1

(using I+II+III order derivatives) aggregated over all M points in the activation layer Ak is given
by:-
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Final heatmap (H) is obtained by matrix multiplication of Gk with activation layer Ak followed by
ReLU operation (to highlight positive contributions only) and Min-Max normalization:

H = MinMax(ReLU(
∑
k

GkAk)) (4)

H acts as a scalar field with dimension RN , which can be used for per point coloration. Figure 1
shows an example of heatmaps obtained for each activation layer of the RandLA-Net architecture.

Figure 1: pGS-CAM heatmaps for the car class of SemanticKITTI. Heatmap at initial activation
layer A1 exhibits edge-like structures with localization starting at A5. Heatmaps at A2-A4 highlights
points (road, terrain) that might strongly impact prediction for car class. Heatmap at last activation
layer A8 closely resembles the per point predictions for car class.

3 DISCUSSION AND FUTURE WORK

The proposed method produced promising outcomes, and a detailed analysis of pGS-CAM will be
done in the future. Further investigation with metrics will be attempted for other popular semantic
segmentation architectures to test the robustness of our method. This work has been implemented on
MLS data; we also intend to test the method on airborne laser scanning (ALS) datasets to establish
the proposed methodology as a benchmark.

1Higher order derivatives > 3 brought minimal changes hence we excluded them in the formulation.
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A APPENDIX

A.1 TESTING THE LOCALIZATION OF PGS-CAM HEATMAPS

To get a glimpse of pGS-CAM’s faithfulness we can compute a localization metric for all classes of
the dataset. One such metric is IoU (Intersection over Union)/Jaccard Index commonly used in the
point cloud segmentation tasks. For a class c corresponding to an object, IoU is calculated as:-

IoU =
TPc

TPc + FPc + FNc
(5)

We compute IoU score between heatmap obtained at final decoder layer and per point predictions
for class c. We do so by constructing a binary mask for heatmaps by only considering heatmap values
greater than certain threshold. A higher IoU score suggests that the model uses points corresponding
to intended class c for its final predictions while lesser score suggest the involvement of points
corresponding to other classes. We compare the IoU score with slightly different formulations of
our Gk gradient influence 3 by varying number of higher order derivatives included in the summation
operation. Table 1 demonstrate IoU scores for 9 major classes of SemanticKITTI computed by
taking mean IoU of all point clouds scans from validation set (8th sequence of dataset). We consider

3



Published as a Tiny Paper at ICLR 2023

Table 1: Localization comparison using major SemanticKITTI classes for different Gk modes along
with segmentation mIoU performance for validation set. Higher IoU represents better localization.
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I order 51.4 10.2 20.4 78.4 36.1 50.4 58.8 35.6 56.6
I+II order 61.6 12.6 28.9 85.2 39.8 54.8 60.3 47.8 58.8
I+II+III order 66.4 13.9 34.4 87.9 41.5 57.5 64.3 50.6 65.1

Segmentation mIoU 93.0 67.7 48.8 91.4 76.5 85.5 84.2 58.5 73.6

3 modes of Gk with I order, I+II order, I+II+III order derivatives included. Higher localization is
observed for I+II+III mode when compared with I+II/I modes, however the impact mitigates as
we keep adding higher order derivatives in chain. Note that localization value does not indicate
effectiveness of the method. It is just that in case of low localization segmentation network use other
(correlated) class points for its final prediction. However, a higher localization can be indicative of
method’s faithfulness in most situations.

A.2 PGS-CAM INDICATES THE PREDICTION COMPLEXITY FOR DIFFERENT CLASSES

Usually, the classes having higher localization values ex- car, road, building, vegetation, etc., are
relatively easier to predict while classes like truck, sidewalk, pole, etc., are harder and prone to
errors. Table 1 provides insight for classes where the segmentation network struggles the most and
uses nearby correlated points for final predictions. Classes with higher IoU have higher number of
instances in validation set, higher point density per scan and relatively simpler geometries making
them easier for the network to learn.

A.3 PGS-CAM OFFERS INSIGHTS INTO NETWORK MISCLASSIFICATIONS

Figure 3 showcase an example of misclassification where segmentation network assigns person se-
mantic label to points surrounding the actual person object which can be seen as drawback of feature
extraction. pGS-CAM heatmap (obtained at last decoder layer) assigns higher score to person class
points than the neighboring points (red values for person object). We can conclude that network
was able to identify the person object better than the nearby dissimilar points. Such information is
useful for deriving valuable inferences during misclassifications and to further debug and modify
the network.

A.4 MORE QUALITATIVE RESULTS

Figure 2 demonstrates pGS-CAM explanations for KPConv Thomas et al. (2019) architecture and
Paris-Lille3D Roynard et al. (2018) dataset car class. KPConv provides state of the art results for
many datasets in point-based category. Paris-Lille3D is a dense dataset with 160 million points and
10 semantic classes. We observe similar edge-like structures as Figure 5-6 at initial activation layers
A1-A2, however, unlike RandLA-Net architecture, the localization for KPConv architecture starts
early at A3. Interestingly, KPConv encoders could identify car object pretty early within the network
depth compared to RandLA-Net.
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Figure 2: pGS-CAM heatmaps for the car class of Paris-Lille3D. Heatmap at initial activation layer
A1-A2 exhibits edge-like structures with localization starting at A3. In KPConv, context points
(road, terrain) are highlighted in the bottleneck layers (A4, A5). Heatmap at last activation layer A8
closely resembles the per point predictions for car class.

Figure 3: pGS-CAM heatmap for SemanticKITTI person class (enclosed within red dotted circle).
Heatmap highlights points corresponding to person class more than surrounding points.
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