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ABSTRACT

Incorporating equivariance as an inductive bias into deep learning architectures to
take advantage of the data symmetry has been successful in multiple applications,
such as chemistry and dynamical systems. In particular, roto-translations are crucial
for effectively modeling geometric graphs and molecules, where understanding the
3D structures enhances generalization. However, equivariant models often pose
challenges due to their higher computational complexity. In this paper, we introduce
REMUL, a training procedure for approximating equivariance with multitask
learning. We show that unconstrained models (which do not build equivariance into
the architecture) can learn approximate symmetries by minimizing an additional
simple equivariance loss. By formulating equivariance as a new learning objective,
we can control the level of approximate equivariance in the model. Our method
achieves competitive performance compared to equivariant baselines while being
10× faster at inference and 2.5× at training.

1 INTRODUCTION

Equivariant machine learning models have achieved notable success across various domains, such as
computer vision (Weiler et al., 2018; Yu et al., 2022), dynamical systems (Han et al., 2022; Xu et al.,
2024), chemistry (Satorras et al., 2021; Brandstetter et al., 2022), and structural biology (Jumper
et al., 2021). For example, incorporating equivariance w.r.t. translations and rotations ensures the
correct handling of complex structures like graphs and molecules (Schütt et al., 2021; Bronstein
et al., 2021; Thölke & Fabritiis, 2022; Liao et al., 2024). Equivariant machine learning models
benefit from this inductive bias by explicitly leveraging symmetries of the data during the architecture
design. Typically, such architectures have highly constrained layers with restrictions on the form
and action of weight matrices and nonlinear activations (Batzner et al., 2022; Batatia et al., 2022).
This may come at the expense of higher computational cost, making it sometimes challenging to
scale equivariant architectures, particularly those relying on spherical harmonics and irreducible
representations (Thomas et al., 2018; Fuchs et al., 2020; Liao & Smidt, 2023; Luo et al., 2024). On
the other hand, equivariance constraints might limit the expressive power of the network, restricting
its ability to act as a universal architecture (Dym & Maron, 2021; Joshi et al., 2023).

Equivariant layers are not the only way to incorporate symmetries into deep neural networks. Several
approaches have been proposed to either offload the equivariance restrictions to faster networks (Kaba
et al., 2022; Mondal et al., 2023; Baker et al., 2024; Ma et al., 2024; Panigrahi & Mondal, 2024) or
simplify the constraints by introducing averaging operations (Puny et al., 2022; Duval et al., 2023;
Lin et al., 2024; Huang et al., 2024). Nonetheless, while these approaches leverage unconstrained
architectures, they often require additional networks or averaging techniques to achieve equivariance
and may not rely solely on adjustments to the training protocol. To this aim, a widely adopted
strategy to replace ‘hard’ equivariance (i.e., built into the architecture itself) with a ‘soft’ one, is data
augmentation (Quiroga et al., 2019; Bai et al., 2021; Gerken et al., 2022; Iglesias et al., 2023; Xu
et al., 2023; Yang et al., 2024), whereby the training protocol of an arbitrary (unconstrained) network
is augmented by assigning the same label to group orbits (e.g., rotated and translated versions of the
input). In fact, recent works have shown that unconstrained architectures may offer a valid alternative
provided that enough data are available (Wang et al., 2024; Abramson et al., 2024).

Besides the challenges in computational cost and design, there are also tasks (especially in scientific
applications of ML) that do not exhibit full equivariance, such as dynamical phase transitions
(Baek et al., 2017; Weidinger et al., 2017), polar fluids (Gibb et al., 2024), molecular nanocrystals
(Yannouleas & Landman, 2000), and cellular symmetry breaking (Goehring et al., 2011; Mietke et al.,
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2019). For such tasks, fully-equivariant networks might be excessively constrained, which further
motivates the design of a more flexible approach.

In this work, we present REMUL: Relaxed Equivariance via Multitask Learning. REMUL is a
training procedure that aims to learn approximate equivariance during training for unconstrained
networks using a multitask approach with adaptive weights. We conduct a comprehensive evaluation
of unconstrained models trained with REMUL, comparing their performance and computational
efficiency to equivariant models. We consider Transformers and Graph Neural Networks (GNNs) and
their roto-translational (E(3))-equivariant versions as our main baselines.

Our contributions are as follows:

• We formulate equivariance as a weighted multitask learning objective for unconstrained
models, aiming to simultaneously learn the objective function and approximate the required
equivariance associated with the data and the task.

• We demonstrate that by adjusting the weighting of the equivariance loss, we can modulate
the extent to which a model exhibits equivariance, depending on the requirements of the task.
Specifically, tasks that demand full equivariance require a higher weight on the equivariance
component, whereas tasks that require less strict equivariance can be managed with lower
weights.

• Empirically, we show that Transformers and Graph Neural Networks trained with our
multitask learning approach compete or outperform their equivariant counterparts.

• By leveraging the efficiency of Transformers, we achieve up to 10× speed-up at inference
and 2.5× speed-up in training compared to equivariant baselines. This finding could provide
motivations for the use of unconstrained models, which do not require equivariance in their
design, potentially offering a more practical approach.

• We point out that the standard Transformer exhibits a more convex loss surface near the local
minima compared to the Geometric Algebra Transformer (Brehmer et al., 2023), which can
indicate further evidence of the optimization difficulties of equivariant networks.

2 BACKGROUND

2.1 SYMMETRY GROUPS AND EQUIVARIANT MODELS

Symmetry groups, a fundamental concept in abstract algebra and geometry, are a mathematical de-
scription of the properties of an object remaining unchanged (invariant) under a set of transformations.
Formally, a symmetry group G of a set X is a group of bijective functions from X to itself, where
the group operation is function composition.

Equivariant machine learning models are designed to preserve the symmetries associated with the
data and the task. In geometric deep learning (GDL), the data is typically assumed to live on some
geometric domain (e.g., a graph or a grid) that has an appropriate symmetry group (e.g., permutation
or translation) associated with it. Equivariant models implement functions f : X → Y from input
domain X to output domain Y that ensure the actions of a symmetry group G on data from X
correspond systematically to its actions on Y , through the respective group representations ϕ and ρ.
Formally, we say that:
Definition 2.1. A function f is equivariant w.r.t. the group G if for any transformation g ∈ G and
any input x ∈ X ,

f(ϕ(g)(x)) = ρ(g)(f(x)) (1)

The group representations ϕ and ρ allow us to apply abstract objects (elements of the group G) on
concrete input and output data, in the form of appropriately defined linear transformations. For
example, if G = Sn (a permutation group of n elements, arising in learning on graphs with n nodes),
its action on n-dimensional vectors (e.g., graph node features or labels) can be represented as an
n× n permutation matrix.
A special case of equivariance is obtained for a trivial output representation ρ = id:
Definition 2.2. A function f is invariant w.r.t. the group G if for all g ∈ G and x ∈ X ,

f(ϕ(g)(x)) = f(x) (2)
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2.2 EQUIVARIANCE AS A CONSTRAINED OPTIMIZATION PROBLEM

Consider a class of parametric functions fθ, typically implemented as neural networks, whose
parameters θ are estimated via a general training objective based on data pairs (x, y) ∼ q:

minimize
θ

E(x,y)∼q [L(fθ(x), y)] (3)

Here, L represents the loss function that quantifies the discrepancy between the model’s predictions
fθ(x) and the true labels y. The class of models is considered equivariant with respect to a group G
if it satisfies the constraint in Equation 1 for any input x ∈ X and for any action g ∈ G.

Equivariance is typically achieved by design, by imposing constraints on the form of fθ. Since fθ is
usually composed of multiple layers, ensuring equivariance implies restrictions on the operations
performed in each layer, a canonical example being message-passing graph neural networks whose
local aggregations need to be permutation-equivariant to respect the overall invariance to the action
of the symmetric group Sn. As such, finding an equivariant solution to the minimization problem in
Equation 3 corresponds to solving the following constrained optimization:

minimize
θ

E(x,y)∼q [L(fθ(x), y)]

subject to fθ(ϕ(g)(x)) = ρ(g)fθ(x), ∀g ∈ G, ∀x ∈ X
(4)

In general, such optimization is challenging, leading to complex design choices to enforce equivari-
ance that could ultimately restrict the class of minimizers and make the training harder. Additionally,
for relevant tasks, the optimal solution only needs to be approximate equivariant (Wang et al., 2022;
Petrache & Trivedi, 2023; Kufel et al., 2024; Ashman et al., 2024) meaning that the extent to which a
model needs to exhibit equivariance can vary significantly based on the specific characteristics of the
data and the requirements of the downstream application. In light of these reasons, we necessitate a
flexible approach to incorporating equivariance into the learning process. To address this, we propose
REMUL, a training procedure that replaces the hard optimization problem with a soft constraint, by
using a multitask learning approach with adaptive weights.

3 REMUL TRAINING PROCEDURE

3.1 EQUIVARIANCE AS A NEW LEARNING OBJECTIVE

Our main idea is to formulate equivariance as a multitask learning problem for an unconstrained
model. We achieve that by relaxing the optimization problem in Equation 4. Namely, once we
introduce a functional FX ,G that measures the equivariance of a candidate function fθ, we replace
the constrained variational problem in Equation 4 with

minimize
θ

E(x,y)∼q [αL(fθ(x), y) + βFX ,G(fθ(x), y)] , (5)

where α, β > 0. This decomposition allows for tailored learning dynamics where the supervised loss
specifically addresses the information from the dataset without constraining the solution fθ, while the
equivariance penalty F smoothly enforces symmetry preservation.

We note that in conventional supervised settings, one has access to a dataset X = {x1, x2, . . . , xn}
with corresponding labels Y = {y1, y2, . . . , yn}. We can then introduce

Lobj(fθ,X ,Y) =

n∑
i=1

L(fθ(xi), yi), (6)

and formulate the optimization as:

Ltotal(fθ,X ,Y, G) = αLobj(fθ,X ,Y) + βLequi(fθ,X ,Y, G), (7)

where Lequi(fθ,X ,Y, G) represents our augmented equivariance loss, specifically designed to en-
force the model’s adherence to the symmetry action of the group G, given a dataset X and labels Y .
For a finite number of training samples n, we propose an equivariant loss Lequi of the form:

Lequi(fθ,X ,Y, G) =

n∑
i=1

ℓ(fθ(ϕ(gi)(xi)), ρ(gi)(yi)) (8)

3



Machine Learning for Genomics Explorations workshop at ICLR 2025

Here ℓ is a metric function, typically an L1 or L2 norm, that quantifies the discrepancy between
f(ϕ(gi)(xi)) and ρ(gi)(yi), with gi ∈ G randomly-selected group elements for each sample. In fact,
in our implementation, we change the group elements being sampled in each training step.

The parameters α and β defined in Equation 7 are weighting factors that balance the traditional
objective loss with the equivariance loss, enabling practitioners to tailor the training process according
to specific requirements of symmetry and generalization. More specifically, a large value of β
indicates a more equivariant function while the smaller value of β indicates a less equivariant function.
These parameters allow us to control the trade-off between model generalization and equivariance,
based on the specific requirements of the task.

3.2 ADAPTING PENALTY PARAMETERS DURING TRAINING

For simultaneously learning the objective and equivariance losses, we consider two distinct approaches
to regulate the penalty parameters α and β: constant penalty and gradual penalty. The constant
penalty assigns a fixed weight to each task’s loss throughout the training process. In contrast, the
gradual penalty dynamically adjusts the weights of each task’s loss during training. For gradual
penalty, we use the GradNorm algorithm introduced by Chen et al. (2018), which is particularly
suited for tasks that involve simultaneous optimization of multiple loss components, as it dynamically
adjusts the weight of each loss during training. It updates the weights of the loss components based
on the magnitudes of their gradients, w.r.t the last layer in the network, which is essential for the
contribution of each loss. It also has a learning rate parameter η, that fine-tunes the speed at which
the weights are updated, providing precise control over their convergence rates (see Algorithm 1 for
details).

3.3 EQUIVARIANCE WITH DATA AUGMENTATION

Data augmentation is a widely recognized technique that enhances the performance of machine
learning models by including different transformations in the training process. It involved creating a
transformed input and measuring the original loss between the model prediction and the transformed
target. In contrast, our method utilizes an additional controlled equivariance loss to incorporate
symmetrical considerations simultaneously with the objective loss during training. In fact, traditional
data augmentation techniques can be interpreted as special cases of Equation 7 where α = 0 and
β = 1.

4 QUANTIFYING LEARNED EQUIVARIANCE

Using group transformations to measure and assess the symmetries of ML models has been studied
in several domains (Lyle et al., 2020; Kvinge et al., 2022; Moskalev et al., 2023; Gruver et al., 2023;
Speicher et al., 2024). Inspired by the idea of frame-averaging (Puny et al., 2022; Duval et al., 2023;
Lin et al., 2024), in this section, we introduce a metric to quantify the degree of equivariance exhibited
by a function f .

Starting from Equation 1, the group integration of both sides w.r.t. the normalized Haar measure µ
yields: ∫

G

f(ϕ(g)(x)) dµ(g) =

∫
G

ρ(g)(f(x)) dµ(g) (9)

When G is a large or continuous group, as is the case in our work, the integrals over G may not be
computable in closed form. Therefore, we approximate the integrals using a Monte Carlo approach
with samples {gi}Mi=1 from G:∫

G

f(ϕ(g)(x)) dµ(g) ≈ 1

M

M∑
i=1

f(ϕ(gi)(x)) (10)

∫
G

ρ(g)(f(x)) dµ(g) ≈ 1

M

M∑
i=1

ρ(gi)(f(x)) (11)
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Where M is a large number of samples from G. Given the group averages, we define the equivariance
error E(f,G) as the average norm of the difference between these two averages over the data
distribution D:

E(f,G) =
1

|D|
∑
x∈D

∥∥∥∥∥ 1

M

M∑
i=1

ρ(gi)(f(x))−
1

M

M∑
i=1

f(ϕ(gi)(x))

∥∥∥∥∥
2

(12)

Here ∥ · ∥2 denotes an L2 norm (for non-scalar function). This error indicates the average deviation
of a function f from perfect equivariance across the data distribution D (lower value means more
equivariant function).

We also propose another measure that takes the average over the group of differences between
f(ϕ(g)(x)) and ρ(g)(f(x)),

E′(f,G) =
1

|D|
∑
x∈D

1

M

M∑
i=1

∥f(ϕ(gi)(x))− ρ(gi)(f(x))∥2 (13)

Equation 12 & Equation 13 indicate a practical metric for evaluating how closely the function f
approximates perfect equivariance throughout a data distribution D (which should be zero for a
perfect equivariance function). In practice, we use M = 100 samples from the group and noticed this
was sufficient to obtain stable results. We also observed that both measures have very similar behavior
in our experiments, where E and E′ are near zero for equivariant models. We also demonstrate that
increasing the value of β in Equation 7 results in a less equivariant error for E and E′.

5 EXPERIMENTS AND DISCUSSION

In this section, we aim to compare constrained equivariant models with unconstrained models trained
with REMUL, our multitask approach. We are targeting three main questions: Can unconstrained
models learn the approximate equivariance, how does that affect the performance & generalization,
and what are their computational costs.

We evaluate our method on different tasks for geometric data: N-body dynamical system (Section
5.1), motion capture (Section 5.2), and molecular dynamics (Section 5.3). For unconstrained models,
we apply REMUL to Transformers and Graph Neural Networks. We then compare against their
equivariant counterparts: SE(3)-Transformer (Fuchs et al., 2020), Geometric Algebra Transformer
(Brehmer et al., 2023), and Equivariant Graph Neural Networks (Satorras et al., 2021) as well as
unconstrained models with data augmentation. We consider learning the rotation group SO(3) for
REMUL and data augmentation and we subtract the center of mass for translation. We use the
equivariance metric defined in Equation 12 to analyze our results. We also conduct a comparative
analysis for the computational requirements of unconstrained models and equivariant models in
Section 5.4. Lastly, we discuss the loss surfaces in Appendix B. Implementation details and
additional experiments can be found in Appendix C & Appendix D.

5.1 N-BODY DYNAMICAL SYSTEM

To conduct ablation studies of our method, we utilized the dynamical system problem described by
Brehmer et al. (2023). The task involves predicting the positions of particles after 100 Euler time
steps of Newton’s motion equation, given initial positions, masses, and velocities. This problem
is inherently equivariant under rotation and translation groups. We conduct comparisons between
Transformer trained with REMUL against two equivariant architectures: SE(3)-Transformer and
Geometric Algebra Transformer (GATr). We use the same Transformer version and hyperparameters
specified by Brehmer et al. (2023). Additional implementation details, including in-distribution and
out-of-distribution settings, are provided in Appendix C.2. Our results are presented in Figure 1.

From Figure 1, we noticed that increasing the penalty parameter β of the equivariance loss signifi-
cantly reduces the equivariance error in both constant and gradual settings (which results in a more
equivariant model). Equivariant architectures demonstrate an equivariance error near zero, which
is expected by their design. The performance behaves similarly; a higher penalty enhances model
generalization for both in-distribution and out-of-distribution. Transformer with high β outperforms
both data augmentation and SE(3)-Transformer across in-distribution and out-of-distribution and
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0.01 0.1 1.0 10.0 100.0

0.01 0.1 1.0 10.0 100.0

(a) REMUL: Gradual penalty
0.01 0.1 1.0 10.0 100.0

(b) REMUL: Constant penalty (c) Baselines

Figure 1: N-body dynamical system. REMUL procedure and data augmentation were applied to stan-
dard Transformer. We conclude that Transformer architecture with high β reduces the equivariance
error and improves the performance.

competes with GATr. We also observe that despite SE(3)-Transformer having a substantially lower
equivariance error, its performance is slightly worse than Transformer trained with data augmentation.
This highlights that equivariance, although improving generalization in this task, is only one aspect
of understanding model performance. Lastly, the standard Transformer (without REMUL and data
augmentation) exhibits the highest equivariance error and the lowest overall performance.

5.2 MOTION CAPTURE

We further illustrate a comparison on a real-world task, the Motion Capture dataset from CMU (2003).
This dataset features 3D trajectory data that records a range of human motions, and the task involves
predicting the final trajectory based on initial positions and velocities. We have reported results for
two types of motion: Walking (Subject #35) and Running (Subject #9). We adhered to the standard
experimental setup found in the literature (Han et al., 2022; Huang et al., 2022; Xu et al., 2024),
employing a train/validation/test split of 200/600/600 for Walking and 200/240/240 for Running.
Additional details can be found in Appendix C.3.

Besides Transformers baselines, We also compare with Equivariant MLP (Finzi et al., 2021b), as well
as two approximate equivariance architectures: Residual Pathway Priors (RPP) (Finzi et al., 2021a),
and Projection-Based Equivariance Regularizer (PER) (Kim et al., 2023a). As these architectures
are designed specifically on MLP and linear layers, we apply our method to a standard MLP with a
similar number of parameters. Our results are presented in Table 1. For REMUL, we provide plots
on how the performance and equivariance error change w.r.t. the penalty parameter β in Figure 2.

Table 1 indicates that when processing 3D positions related to human motions, both SE(3)-
Transformer and GATr perform worse than the standard Transformer. This outcome is noteworthy
because human motion inherently lacks symmetry along the vertical or gravity axis. Consequently,
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(a) Performance: Walking (b) Equiv. error: Walking (c) Performance: Running (d) Equiv. error: Running

Figure 2: Motion Capture dataset: Transformer trained with REMUL. We show a trade-off between
model performance and equivariance error, where high penalty β gives less equivariance error but the
best performance comes at an intermediate level of equivariance for both tasks.

Table 1: Performance on Motion Capture dataset: MSE (×10−2). REMUL procedure and data
augmentation were applied to standard Transformer & MLP. First, Second (highlighted). REMUL
comes the best in both tasks.

SE(3)-Transformer GATr Transformer DA REMUL-Tr
Walking (Subject #35) 10.85±1.3 10.06±1.3 5.21±0.08 5.3±0.18 4.95±0.1

Running (Subject #9) 42.13±3.4 32.38±3.9 20.78±1.5 29.83±1.4 18.5±0.7

EMLP RPP PER MLP DA REMUL-MLP
Walking (Subject #35) 7.01±0.46 6.99±0.21 7.48±0.39 6.80±0.18 6.37±0.04 6.04±0.09

Running (Subject #9) 57.38±8.39 34.18±2.00 33.03±0.37 39.56±2.25 40.23±0.94 32.57±1.47

Table 2: Performance on MD17 dataset: MSE (×10−2). REMUL procedure and data augmentation
were applied to GNN. First, Second (highlighted). REMUL comes the best on six molecules and the
second on two molecules.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

EGNN 14.41±0.15 62.40±0.53 4.64±0.01 13.64±0.01 0.47±0.02 1.02±0.02 11.78±0.07 0.64±0.01

GNN 9.26±0.40 26.13±0.11 4.26±0.03 18.45±0.54 0.54±0.001 1.02±0.02 9.93±0.82 0.70±0.001

Data Augmentation 13.7±0.04 110.93±5.3 5.74±0.02 13.65±0.02 0.69±0.001 1.33±0.04 19.14±0.001 0.73±0.002

REMUL 9.28±0.40 25.95±0.18 4.02±0.16 13.59±0.03 0.54±0.001 0.99±0.001 9.38±0.20 0.67±0.001

the assumption of equivariance across all axes may not be beneficial or even detrimental. In contrast,
a standard Transformer trained with REMUL has the best performance in both tasks.

Following Figure 2, there is a noticeable trade-off in model performance with different values of
penalty parameter β. Best performance is observed at an intermediate level of equivariance, where
the model balances between being too rigid (fully equivariant) and too flexible (non-equivariant).
This finding underscores the importance of carefully considering the specific characteristics of the
data and the task when designing equivariant architectures.

5.3 MOLECULAR DYNAMICS

We also present a comparative analysis between constrained equivariant models and unconstrained
models focusing on molecular dynamics, specifically predicting 3D molecule structures. We utilize
the MD17 dataset (Chmiela et al., 2017), which comprises trajectories of eight small molecules.
We use the same dataset split in Huang et al. (2022); Xu et al. (2024), allocating 500 samples
for train, 2000 for validation, and 2000 for test. For this task, we selected the Equivariant Graph
Neural Network (EGNN) architecture and its non-equivariant GNN counterpart, as presented in
Satorras et al. (2021). We then apply REMUL procedure as well as data augmentation to the GNN
architecture. Both architectures have the same hyperparameters. More information is indicated in
Appendix C.4. Our results are provided in Table 2.

From the results presented in Table 2, GNN trained with REMUL outperforms EGNN in six out of
eight molecules. Interestingly, a standard GNN, without data augmentation or REMUL, surpasses the
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(a) Combined forward pass (b) Backward pass (c) Inference time

Figure 3: Computational time for GATr and Transformer architectures. GATr has the highest time
in all scenarios. Inference times for all versions of the Transformer (standard and trained with
equivariance loss and data augmentation) are the same.

performance of EGNN on multiple molecules, such as Aspirin and Toluene. In Figure 8 & Figure 9,
we observe that the optimal performance of each molecule is attained at different values of the penalty
parameter β. For instance, Malonaldehyde exhibits a direct correlation between model performance
and equivariance, where a higher β yields better performance. Conversely, for most other molecules,
there appears to be a pronounced trade-off where the best performance is achieved at a lower value
of β. This is particularly evident with molecules like Aspirin, where a standard GNN architecture
outperforms EGNN. We also plot the 3D structures of the eight molecules in Figure 11. Molecules
such as Malonaldehyde, characterized by their symmetric components, might be ideally suited for
equivariant design. However, this advantage does not apply to all molecules. Aspirin on the other
side, might have an asymmetric structure and exhibit a range of interactions and dynamic states that
equivariant models might simplify. Consequently, for such molecules, less equivariant models could
potentially offer more accurate predictions.

5.4 COMPUTATIONAL COMPLEXITY

In this section, we report the computational time for the Geometric Algebra Transformer (GATr) and
Transformer architectures. We selected models with an equivalent number of blocks and parameters
for a fair comparison. Detailed configurations are provided in Appendix C.5. We measured the
computational efficiency of each model by recording the time taken for both forward and backward
passes during training, as well as inference time. Figure 3 includes the wall-clock time as a function of
batch size with a fixed number of nodes. In all comparisons, GATr architecture consistently required
the highest time, being approximately ten times slower than Transformer architecture. Furthermore,
GATr reached its memory capacity earlier, hitting an out-of-memory issue at a batch size of 211.
During inference, the computational speed for the Transformer trained with equivariance loss or data
augmentation matches the standard Transformer, which results in an inference speed that is 10×
faster than GATr.

6 CONCLUSION

We introduced a novel, simple method for learning approximate equivariance in a non-constrained
setting through optimization. We formulated equivariance as a new weighted loss that is simultane-
ously optimized with the objective loss during the training process. We demonstrated that we can
control the level of approximate equivariance based on the specific requirements of the task. Our
method competes with or outperforms constrained equivariant baselines, achieving up to 10× faster
inference speed and 2.5× faster training speed.

Limitations and Future Directions. This work introduces a simple approach for understanding
and analyzing unconstrained versus equivariant models, which significantly impact the field by
enabling broader applicability and easier integration into existing frameworks. Building on these
foundations, numerous additional ideas for extending our study present exciting opportunities for
future research. For instance, as we noted earlier, α and β serve as additional hyperparameters
in the training procedure. Future directions could explore more efficient learnable weights, such
as Crawshaw & Košecká (2021) or recent approaches that use gradient projection as suggested in
Bohn et al. (2024). Another promising avenue is applying our method during the fine-tuning phase
when leveraging pre-trained models for tasks that require equivariance. For example, integrating our
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framework with denoising objectives (Zaidi et al., 2023; Ni et al., 2024) could broaden its applicability
and improve the performances in scenarios where pre-trained models are adapted to new tasks. On
the other side, while REMUL demonstrates promising empirical results, a more rigorous theoretical
foundation is still necessary. In particular, further analysis is required to understand the theoretical
guarantees of approximate equivariance offered by REMUL. As one potential direction, studying how
relaxing equivariance constraints affects the model’s generalization bounds could provide valuable
insights (Petrache & Trivedi, 2023).
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A RELATED WORK

Equivariant ML Models. In the vision domain, group convolutions have proven to be a powerful tool
for handling rotation equivariance for images and enhanced model generalization (Cohen & Welling,
2016; Cohen et al., 2019; Weiler & Cesa, 2019; Qiao et al., 2023). Similarly, the development of
equivariant architectures with respect to roto-translations for geometric data has been an active area
of research (Chen et al., 2021a; Satorras et al., 2021; Han et al., 2022; Xu et al., 2024). Techniques
that use spherical harmonics and irreducible representations have shown a large success in modeling
graph-structured data, such as SE(3)-Transformers (Fuchs et al., 2020), Tensor Field Networks
(Thomas et al., 2018), and DimeNet (Gasteiger et al., 2020). More recently, Brehmer et al. (2023)
introduced an E(3) equivariant Transformer that employs geometric algebra for processing 3D point
clouds.

Data Augmentation and Unconstrained Models. Alternatively, integrating transformations through
data augmentation is a widely used strategy across multiple vision tasks, enhancing performance
in image classification (Perez & Wang, 2017; Inoue, 2018; Rahat et al., 2024), object detection
(Zoph et al., 2020; Wang et al., 2019; Kisantal et al., 2019), and segmentation (Negassi et al., 2022;
Chen et al., 2021b; Yu et al., 2023). For geometric data, Hu et al. (2021) has adapted a Graph
Neural Network architecture with data augmentation to process 3D molecular structures. In parallel,
Dosovitskiy et al. (2021) introduced that Vision Transformers (ViTs) with a large amount of training
data can achieve comparable performance with Convolutional Neural Networks (CNNs), obviating
the need for explicit translation equivariance within the architecture. Recently, this has shown to be
effective for handling geometric data (Wang et al., 2024; Abramson et al., 2024).

Learning Symmetries and Approximate Equivariance. Several studies have shown that the layers
of CNN architectures can be approximated for a soft constraint (Wang et al., 2022; van der Ouderaa
et al., 2022; Romero & Lohit, 2022; Veefkind & Cesa, 2024; Wu et al., 2024; McNeela, 2023).
Conversely, van der Ouderaa et al. (2023) extends the Bayesian model selection approach to learning
symmetries in image datasets. Yeh et al. (2022) introduced a parameter-sharing scheme to achieve
permutations and shifts equivariances in Gaussian distributions. Recent works have relaxed the hard
constrained models to a soft constraint by adding unconstrained layers in the architecture design
(Finzi et al., 2021a; Pertigkiozoglou et al., 2024), canonicalization network (Lawrence et al., 2024),
or explicit relaxation (Kaba & Ravanbakhsh, 2023). Additionally, Lin et al. (2019) modified the loss
of CNN for segmentation task. Shakerinava et al. (2022) introduced a method to learn equivariant
representation using the group invariants, while Bhardwaj et al. (2023) defined a regularizer that
injects the equivariance in the latent space of the network by explicitly modeling transformations
with additional learnable maps. In contrast, several works have started from pre-trained models
(Basu et al., 2023; Kim et al., 2023b). Furthermore, the EGNN framework (Satorras et al., 2021)
has been modified using an invariant function (Zheng et al., 2024) or adversarial training procedure
(Yang et al., 2023). However, in our work, we start from completely unconstrained models, without
imposing any equivariance constraints on the space of functions within the architecture. Moreover,
we didn’t assume a specific class of models or introduce additional parameters, which increases the
applicability of our method to various domains and makes it computationally efficient.

B LOSS SURFACE

In this section, we analyze the relative ease of training equivariant models compared to non-equivariant
models by examining the loss surface around the achieved local minima for each model. We explore
how each architecture influences the loss landscape when trained on the same task. However, due to
the high dimensionality of parameter spaces in neural networks, visualizing their loss functions in
three dimensions might be a significant challenge. We use the filter normalization method introduced
by Li et al. (2018), which calculates the loss function along two randomly selected Gaussian directions
in the parameters space, starting from the optimal parameters θ∗ achieved at the end of training.

We visualize the loss surface of the Geometric Algebra Transformer (GATr) and Transformer in
Figure 4, trained on the N-body dynamical system. We observe that the Transformer architecture
exhibits a more favorable loss shape around its local minima, characterized by a convex structure.
This might suggest that the optimization path for the Transformer is smoother and potentially easier
to navigate during training, leading to more stable convergence. In contrast, the loss surface of GATr
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(a) Geometric Algebra Transformer (b) Transformer

Figure 4: Loss surface around local minima of trained models on N-body dynamical system.

appears more erratic and rugged. This complexity in the loss landscape can indicate multiple local
minima and a higher sensitivity to initial conditions or parameter settings. Such characteristics might
complicate the training process, requiring more careful tuning of hyperparameters. We leave this for
future work to analyze how the optimization path for each model behaves during training.

C IMPLEMENTATION DETAILS

C.1 GRADNORM ALGORITHM

Algorithm 1 GradNorm Algorithm (one step)
1: Input: α, β, η, γ, Lobj, Lequi, and W (the weights of the last layer in the network)
2: Gobj = ∥∇WαLobj∥2, L̃obj = Lobj/Lobj(0)

3: Gequi = ∥∇WβLequi∥2, ˜Lequi = Lequi/Lequi(0)

4: Ḡ =
Gobj+Gequi

2 , r =
L̃obj+ ˜Lequi

2

5: rα =
L̃obj

r , rβ =
L̃equi

r

6: Lg = |Gobj − Ḡ × [rα]
γ |+ |Gequi − Ḡ × [rβ ]

γ |
7: α = α− η∇αLg
8: β = β − η∇βLg
9: Return: α, β

C.2 N-BODY DYNAMICAL SYSTEM

Following the methodology outlined in Brehmer et al. (2023), the dataset for the N-body system
simulation encompasses four objects per sample. The center object is assigned a mass ranging
from 1 to 10, whereas the other objects are uniformly positioned at a radius from 0.1 to 1.0 with
masses between 0.01 and 0.1. We structured the datasets into two setups: in-distribution and out-
of-distribution (OOD). Each sample in the in-distribution dataset is subjected to a random rotation
within the range [−10◦, 10◦]. REMUL and data augmentation are trained with random rotations in
the same range. Conversely, the OOD dataset is designed to evaluate the model’s generalization
capabilities by incorporating extreme rotational perturbations, specifically with angles set within the
ranges [−180◦,−90◦] and [90◦, 180◦]. We trained on 100 samples, and each of the validation, test,
and OOD datasets contains 5000 samples. For models hyperparameters and training, we follow the
same settings in Brehmer et al. (2023), summarized in Table 3. For REMUL, initial α = 1.
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Table 3: Hyperparameters settings for N-body dynamical system.
Hyperparameters Geometric Algebra Transformer SE(3)-Transformer Transformer

#attention blocks 10 - 10
#channels 128 8 384
#attention heads 8 1 8
#multivector 16 - -
#layers - 4 -
#degrees - 4 -
#training steps 50000 50000 50000
#optimizer Adam Adam Adam
#batch size 64 64 64
#lr 3× 10−4 3× 10−4 3× 10−4

C.3 MOTION CAPTURE

Motion Capture dataset by CMU (2003) features 3D trajectory data that records a range of human
motions, and the task involves predicting the final trajectory based on initial positions and velocities.
We have reported results for two types of motion: Walking (Subject #35) and Running (Subject #9).

Table 4: Hyperparameters settings for Motion Capture dataset.
Hyperparameters Geometric Algebra Transformer SE(3)-Transformer Transformer

#attention blocks 12 - 10
#channels 128 8 384
#attention heads 8 1 8
#multivector 16 - -
#layers - 4 -
#degrees - 4 -
#epochs 2000 2000 2000
#optimizer Adam Adam Adam
#batch size 12 12 12
#lr 3× 10−4 3× 10−4 3× 10−4

Hyperparameters Equivariant MLP RPP PER standard MLP

#hidden dim 532 348 532 680
#layers 3 3 3 3

Following the standard experimental setup in the literature on this task (Han et al., 2022; Huang
et al., 2022; Xu et al., 2024), we apply a train/validation/test split of 200/600/600 for Walking and
200/240/240 for Running. The interval between trajectories, ∆T = 30 for both tasks. For model
hyperparameters, we fine-tuned around the same in Table 3 and found it the best for each model
except for the Geometric Algebra Transformer we increased the attention blocks to 12. We train each
model for 2000 epochs with batch size = 12. For MLP comparisons, all models and baselines have
the same number of layers and parameters. More details in Table 4. For REMUL, α = 1.

C.4 MOLECULAR DYNAMICS

MD17 dataset (Chmiela et al., 2017) is a molecular dynamics benchmark that contains the trajectories
of eight small molecules (Aspirin, Benzene, Ethanol, Malonaldehyde Naphthalene, Salicylic, Toluene,
Uraci). We use the same dataset split in Huang et al. (2022); Xu et al. (2024), allocating 500 samples
for train, 2000 for validation, and 2000 for test. The interval between trajectories, ∆T = 5000. We
selected the Equivariant Graph Neural Networks (EGNN) architecture and its non-equivariant version
GNN, as introduced by Satorras et al. (2021). The input for GNN architecture is the initial positions
along with atom types. Both architectures have the same hyperparameters, details in Table 5. For
REMUL, α = 1.
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Table 5: Hyperparameters settings for MD17 dataset.
Hyperparameters

#layers 4
#hidden dim 64
#epochs 500
#optimizer Adam
#batch size 200
#lr 5× 10−4

C.5 COMPUTATIONAL COMPLEXITY

In the computational experiment of Geometric Algebra Transformer (GATr) and Transformer, we
selected models with an equivalent number of blocks and parameters. GATr incorporates a unique
design that includes a multivector parameter; we adjusted the Transformer architecture to match the
parameter count of GATr. Both models have around 2.6M parameters, detailed configurations are
provided in Table 6. SE(3)-Transformer gives out of memory for this setting. We selected a uniformly
random Gaussian input with 20 nodes and 7 features dimension. We measured the computational
efficiency of each model by recording the time taken for both forward and backward passes during
training, as well as the inference time as a function of batch size. For each value, we took the average
over 10 runs with Nvidia A10 GPU.

Table 6: Hyperparameters settings for Computational Complexity.
Hyperparameters Geometric Algebra Transformer Transformer

#attention blocks 12 12
#channels 128 168
#attention heads 8 8
#multivector 16 -

D ADDITIONAL EXPERIMENTS

In this section, we present additional results on the three tasks: N-body dynamical system, Motion
Capture, and Molecular Dynamics using the equivariance measure defined in Equation 13, which is
consistent with our findings in the paper. We also include ablation studies on the number of samples
required from the symmetry group during training for REMUL and data augmentation. Finally, we
showcase molecules from the MD17 dataset, along with 2D and 3D visualizations of their structures.

D.1 N-BODY DYNAMICAL SYSTEM

(a) REMUL: Gradual penalty
0.01 0.1 1.0 10.0 100.0

(b) REMUL: Constant penalty (c) Baselines

Figure 5: N-body dynamical system. The second equivariance measure (defined in Equation 13).

Number of Samples from the Symmetry Group. We conduct ablation studies on the number of
samples required from the symmetry group during training. We compare our training procedure,
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REMUL, with data augmentation method. We selected the N-body dynamical system with the
same training details and hyperparameters indicated in Appendix C.2. As shown in Figure 6,
REMUL achieves better performance using fewer samples from the symmetry group compared to
data augmentation.

(a) Performance (MSE): In-distribution (b) Performance (MSE): Out-of-distribution

Figure 6: Performance comparison of REMUL and data augmentation on N-body dynamical system,
using different numbers of samples from the symmetry group.

D.2 MOTION CAPTURE

(a) Equiv. error: Walking (b) Equiv. error: Running

Figure 7: Motion Capture dataset: Transformer trained with REMUL. The second equivariance
measure (defined in Equation 13).

D.3 MOLECULAR DYNAMICS
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Figure 8: MD17 dataset: GNN trained with REMUL. The first column is model performance (MSE),
and the second column is equivariance error (Equation 12). Rows from top to bottom represent
Aspirin, Ethanol, Malonaldehyde, and Uracil, respectively. The equivariance error decreases on all
molecules with a higher value of β. In contrast, the required equivariance for best model performance
varies for each molecule.
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Figure 9: MD17 dataset: GNN trained with REMUL. The first column is model performance (MSE),
and the second column is equivariance error (Equation 12). Rows from top to bottom represent
Benzene, Naphthalene, Salicylic, and Toluene, respectively.
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Figure 10: MD17 dataset: GNN trained with REMUL. The second equivariance measure (defined in
Equation 13).
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(a) Aspirin (2D) (b) Aspirin (3D) (c) Ethanol (2D) (d) Ethanol (3D)

(e) Benzene (2D) (f) Benzene (3D) (g) Malonaldehyde (2D) (h) Malonaldehyde (3D)

(i) Naphthalene (2D) (j) Naphthalene (3D) (k) Salicylic (2D) (l) Salicylic (3D)

(m) Toluene (2D) (n) Toluene (3D) (o) Uracil (2D) (p) Uracil (3D)

Figure 11: MD17 molecules structures.
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