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Abstract

Randomized trials are typically designed to detect
average treatment effects but often lack the statis-
tical power to uncover individual-level treatment
effect heterogeneity, limiting their value for per-
sonalized decision-making. To address this, we
propose the QR-learner, a model-agnostic learner
that estimates conditional average treatment ef-
fects (CATE) within the trial population by lever-
aging external data from other trials or observa-
tional studies. The method is robust: it has the
potential to reduce the CATE prediction mean
squared error while maintaining consistency, even
when the external data is not aligned with the trial.
We examine the performance of our approach in
simulation studies, and find that it is robust and
reduces CATE estimation mean-squared error.

1. Introduction

By randomly assigning the interventions of interest, ran-
domized trials are unique in their ability to estimate causal
effects with little reliance on untestable assumptions. How-
ever, their high cost often limits sample size, which in
turn limits the precision of statistical inferences that can
be drawn from trial data. This limitation becomes particu-
larly problematic when the goal extends beyond estimating
an average treatment effect to understanding treatment effect
heterogeneity (Lagakos et al., 2006), which is an essential
step toward personalized decision-making for the underly-
ing population represented by the trial. A central quantity
for this purpose is the conditional average treatment effect
(CATE), which captures how treatment effects depend on
individual-level covariates (Künzel et al., 2019). However,
the estimation of CATEs for different subgroups is more
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challenging than the estimation of average effects; therefore,
the data from trials powered to detect average treatment ef-
fects are typically not adequate for the precise estimation of
CATEs (Dahabreh et al., 2016). As a result, accurately esti-
mating CATEs within a trial population remains a difficult
yet important challenge.

In recent years, there has been growing interest in aug-
menting randomized trials with external data, such as from
another randomized trial or an observational study, mainly
in the context of improving average treatment effect estima-
tion (van Rosmalen et al., 2018; Jahanshahi et al., 2021).
A key challenge in this setting is to properly account for
systematic differences and distribution shifts between the
trial population and the population underlying the external
data (Ung et al., 2024). Central to this challenge is the ques-
tion of transportability – whether causal quantities such as
the CATE remain invariant across populations (Bareinboim
and Pearl, 2016; Dahabreh and Hernán, 2019). In this work,
we study the analogous problem of augmenting CATE esti-
mation in a randomized trial using external data, focusing
on settings where the trial and external populations may
be misaligned, due to both transportability violations and
unmeasured confounding in the external data.

Contributions We propose the QR-learner, a model-
agnostic learner that improves estimation of the CATE in
the population underlying a trial by leveraging external data
from other trials or observational studies. We prove this
learner is robust even when the external data are not aligned
with the trial data: it recovers the true CATE even when
external data come from a population which is not trans-
portable with the trial population or are affected by uncon-
trolled confounding, while at the same time it can reduce
the estimated CATE mean-squared error compared to using
trial data alone if the external data is sufficiently aligned.
Our approach combines insights from domain adaptation –
specifically, how to improve performance in a target domain
(here, the trial population) by transferring knowledge from
a separate source domain – with known robustness prop-
erties of certain existing CATE learners. We evaluate the
QR-learner in simulations and find that our method is robust
and improves CATE estimation mean-squared error.
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2. Related works

Our work builds upon a rich and growing literature on CATE
learners. Our proposed learner is most closely related to
model-agnostic “meta-learners” which allow for estimating
the CATE and any nuisance models using any supervised
learning algorithm (Künzel et al., 2019; Nie and Wager,
2021; Kennedy, 2023). However, most existing model-
agnostic learners are tailored to settings where data is drawn
from a single source, such as a single randomized trial or an
observational study. More recently, several CATE learners
have been proposed for multi-source settings, often relying
on the assumption that the CATE is transportable across
the underlying populations (Kallus et al., 2018; Hatt et al.,
2022; Wu and Yang, 2022; Shyr et al., 2023; Schweisthal
et al., 2024). Although some of these approaches might
be adapted to specifically learn the CATE in the trial under
non-transportability, to our knowledge only Asiaee et al.
(2023) explicitly address this setting.

Our work draws on recent developments in the data inte-
gration literature for average treatment effect estimation in
trials using data from an external population. This work
has emphasized robustness to integrating external data mis-
aligned with the trial data (Schuler et al., 2022; Huang
et al., 2023; Liao et al., 2023; Karlsson et al., 2024; De Bar-
tolomeis et al., 2025). In particular, we will adapt ideas from
the randomization-aware estimator framework proposed by
Karlsson et al. (2024) to construct CATE learners that are
also robust to misaligned external data.

3. Problem setting

Notation Let X ∈ X denote baseline (pre-treatment) co-
variates; S the binary indicator of data source (S = 1 for
trial participants; S = 0 for individuals in the external data);
A the binary indicator for treatment assignment (A = 1 for
the experimental treatment; A = 0 denotes the control); and
Y ∈ Y the outcome (continuous, binary, or count) collected
at the end of follow-up. Throughout, we use italic capital
letters to denote random variables and lowercase letters for
their specific values. We write f(·) to denote the density
functions of random variables.

Study design and data structure We consider a non-
nested trial design where the trial and external data are
separately obtained and modeled as simple random samples
from different populations, obtained with unknown and pos-
sibly unequal sampling fractions (Dahabreh et al., 2021).
For observation i with Si = s, the data are modeled as
i.i.d., conditional on study source, with the random tuple
Oi = (Xi, Si = s,Ai, Yi) for i = 1, . . . , ns, where ns is

the number of observations from source S = s. The com-
posite dataset has total sample size n = n1 + n0, where the
proportions of trial and external participants in the compos-
ite dataset may not reflect the size of their underlying popula-
tions. In the trial, treatment is randomly assigned according
to the propensity score e(X) = Pr(A = 1 | X,S = 1)
which is assumed to be known (Rosenbaum and Rubin,
1983). As n → ∞, we assume the ratios of the trial and
external data sample sizes to the total sample size converge
to positive constants, i.e., ns/n→ qs > 0.

3.1. Identification of causal effects

To define the causal quantity of interest, we use potential
(counterfactual) outcomes (Rubin, 1974). For individual i
and for a ∈ {0, 1}, the potential outcome Y a

i denotes the
outcome under intervention to set treatment A to a, possibly
contrary to fact. Our goal is to estimate the conditional av-
erage treatment effect (CATE) in the population underlying
the trial, τ(x) = E[Y 1 − Y 0 | X = x, S = 1]. Under
standard conditions, the CATE function τ(x) is identifiable
from data in the trial population.

Condition 3.1 (Consistency). If Ai = a, then Y a
i = Yi for

every individual i and treatment a ∈ {0, 1}.

Condition 3.2 (Strong ignorability in the trial popula-
tion). Positivity in trial: for each treatment a ∈ {0, 1},
if f(x, S = 1) ̸= 0, then Pr(A = a|X = x, S = 1) > 0.
Conditional exchangeability in trial: for each a ∈ {0, 1},
Y a ⊥⊥ A|(X,S = 1).

Conditions 3.1 and 3.2 are typically supported by a well-
designed randomized trial and together suffice to identify
the CATE function τ(x) = g1(x)− g0(x), where ga(x) =
E[Y | X = x,A = a, S = 1]. However, it is common to
assume additional conditions to enable identification and
estimation of τ(x) using both the trial and external data.

Condition 3.3 (Strong ignorability in the external popula-
tion). Positivity in external population: for each treatment
a ∈ {0, 1}, if f(x, S = 0) ̸= 0, then Pr(A = a|X =
x, S = 0) > 0. Conditional exchangeability in external
population: for each a ∈ {0, 1}, Y a ⊥⊥ A|(X,S = 0).

Condition 3.4 (Transportability). Conditional exchange-
ability between populations: For each a ∈ {0, 1}, Y a ⊥⊥
S | X . Positivity of selection: f(X = x, S = 0) > 0 ⇒
f(X = x, S = 1) > 0.

The above two conditions can be controversial, especially
if the external data originate from an observational study,
because these conditions are uncertain and typically require
substantial domain expertise to justify. Notably, Condi-
tion 3.1 to 3.4 together have testable implications that can
be empirically assessed to falsify them, see e.g. Hussain
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et al. (2023); De Bartolomeis et al. (2024); Dahabreh et al.
(2024). This can be used in particular to evaluate Condi-
tions 3.3 and 3.4 because Condition 3.1 and 3.2 are sup-
ported by the trial’s experimental design. Nonetheless,
performing such falsification tests remains an inherently
difficult task (Fawkes et al., 2025).

4. Leveraging external data to learn the CATE
in the randomized trial

4.1. A class of robust pseudo-outcomes

Our goal is to learn a CATE function from a class of
candidates F that minimizes the risk relative to the true
CATE function, namely argminτ̃∈F R

∗(τ̃) whereR∗(τ̃) =
E[(τ(X) − τ̃(X))2 | S = 1]. However, as we cannot
minimize R∗(τ̃) directly because the true CATE τ(X) is
unknown, we study a class of CATE learners obtained by
minimizing a pseudo-risk (Foster and Syrgkanis, 2023),

R(τ̃ ; η) = E[(ψ(O; η)− τ̃(X))2 | S = 1] , (1)

where we introduce an auxiliary random variable, some-
times referred to as a pseudo-outcome:

ψ(Oi; η) = w(Oi)·
(
Yi−hAi

(Xi)
)
+h1(Xi)−h0(Xi) (2)

with w(Oi) = Ai−e(Xi)
e(Xi)(1−e(Xi))

, which is indexed by some
nuisance models η = {h1, h0}, where h1 : X → R and
h0 : X → R are functions defined on the covariate space X .

Depending on our choice of η, we obtain different CATE
learners when minimizing (1). For instance, if η = {0, 0},
we obtain the (inverse) propensity weighted learner, ref-
ereed to as the PW-learner by Curth and Van der Schaar
(2021). Meanwhile, if η = {g1, g0}, where ga = E[Y |
X,A = a, S = 1], we obtain the DR-learner (Kennedy,
2023). More generally, for any choice of η, we can prove
an important robustness property of R(τ̃ ; η) guaranteed by
the study design of the randomized trial.
Theorem 4.1. Under Condition 3.1 and 3.2 with the propen-
sity score e(X) known, for any choice of ηfixed to compute
the pseudo-outcomes ψ(O; ηfixed) where ηfixed is held fixed,
minimizing (1) always yields the true CATE as its unique
solution if τ ∈ F; that is, τ = argminτ̃∈F R(τ̃ ; ηfixed).

While the above result have appeared in the literature before
(see e.g. Morzywolek et al. (2023) and references therein),
we derive them for completeness in Appendix B.2. Notably,
we denoted the nuisance models ηfixed as fixed to emphasize
that these results requires that the nuisance models are cho-
sen separately from the dataset used to compute the pseudo-
outcome. This can be achieved via cross-fitting, which we
provide further details on in the following subsection.

The above theorem guarantees that pseudo-risk R(τ̃ ; η) is
a proper model selection criterion for the CATE regardless
of the choice of η. However, the choice of η ultimately still
plays a crucial role in selecting the best CATE based on
the observed data, due to the uncertainty when minimizing
the finite sample analog of R(τ̃ ; η). In the next section, we
present an algorithm that leverages external data to choose
η, enhancing the finite-sample performance of R(τ̃ ; η) as a
model selection criterion while preserving its robustness.

4.2. The QR-learner algorithm

In this section, we introduce a novel learner for esti-
mating the CATE, which we call the Quasi-optimized
Randomization-aware learner, or QR-learner. This method
is model-agnostic, allowing it to use any supervised learn-
ing algorithm for estimating the CATE function and the
nuisance models. To avoid overfitting and fulfill the condi-
tion that the estimated nuisance model is obtained separately
from the dataset used to compute the pseudo-outcomes, we
employ a cross-fitting procedure, where we partition the
data as D = D1 ∪ D2, stratified by the study indicator S.

In the first stage, using both trial and external data from D1,
we aim to find the nuisance models η∗ = {h∗1, h∗0} such that
h∗a = argminha∈H La(ha) for each a ∈ {0, 1}, where the
objective is defined as

La(ha) = E
[
νa(X)

(
Y − ha(Xi)

)2 | A = a
]

νa(X) = πa(X)

{
1− e(X)

e(X)

}2a−1 (3)

where π(X) = Pr(S = 1 | X,A = a) is the conditional
probability of participating in the trial, which is a quan-
tity that also needs to be estimated. Notably, under the
conditions of strong ignorability in the external population
(Condition 3.3) and transportability (Condition 3.4), in addi-
tion to those ensured by the randomized trial (Conditions 3.1
and 3.2), Karlsson et al. (2024) showed that a quantity sim-
ilar to (3) is proportional to the variance of a class of robust
average treatment effect estimators, which motivated them
to minimize it in order to improve statistical precision. In the
context of CATE estimation, we instead show that La(ha)
serves as an upper bound to a quantity related to the finite-
sample model selection performance of R(τ̃ ; η). Further de-
tails and proofs of these results are provided in Appendix A.
Since our procedure aims to minimize this upper bound, we
refer to the first stage as a quasi-optimized procedure.

Moreover, the construction of the objective La(ha) is
closely related to ideas from domain adaptation. It can
be viewed as the mean-squared error of ha for predicting Y
within the treatment arm {A = a}, where νa re-weights ob-
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Table 1: Average root mean-squared error with standard errors reported over 500 repeated runs with a trial dataset size
n1 = 250 under different scenarios. Lowest number is marked in bold.

External sample size 100 1000 10000
Condition 3 and 4 violated? No Yes No Yes No Yes

Predict ATE 0.31 (1e-3) 0.31 (1e-3) 0.31 (1e-3) 0.31 (1e-3) 0.31 (1e-3) 0.31 (1e-3)
DR-learner 0.28 (4e-3) 0.32 (4e-3) 0.28 (4e-3) 0.32 (4e-3) 0.27 (4e-3) 0.32 (4e-3)
T-learner 0.55 (3e-3) 0.55 (3e-3) 0.55(3e-3) 0.55 (3e-3) 0.55 (3e-3) 0.55 (3e-3)
Pooled T-learner 0.52 (2e-3) 0.60 (3e-3) 0.47 (9e-4) 0.60 (1e-3) 0.33 (7e-4) 0.48 (1e-3)
Asiaee et al. (2023) 0.34 (5e-3) 0.36 (4e-3) 0.24 (4e-3) 0.30 (3e-3) 0.19 (3e-3) 0.28 (3e-3)
Kallus et al. (2018) 0.71 (1e-2) 0.76 (1e-2) 0.72 (1e-2) 0.77 (1e-2) 0.71 (1e-2) 0.77 (1e-2)
QR-learner 0.28 (4e-3) 0.32 (4e-3) 0.23 (3e-3) 0.29 (3e-3) 0.19 (3e-3) 0.27 (3e-3)

servations so that the error reflects the trial population, even
though the expectation is taken over both the trial and exter-
nal data, akin to importance-weighting strategies in transfer
learning that correct for distributional shifts between source
and target populations (Shimodaira, 2000).

In the second stage, we leverage the robustness results pre-
sented in the previous subsection and use only the trial
data from the split D2 to regress on the pseudo-outcomes,
to specifically learn the CATE in the trial. We call this
step randomization-aware, since it critically relies on using
the known propensity score when computing the pseudo-
outcomes. We estimate the CATE function by solving
τ̂ = argminτ̃∈F

∑
i∈D2:Si=1(ψ(Oi; η̂

∗)−τ̃(Xi))
2, where

η̂∗ is the sample analog estimator of η∗. To efficiently use
all available data, we reverse the roles of the splits to obtain
a second CATE estimator, and then take the average of the
predictions from the two resulting estimators; this procedure
naturally extends to more than two data splits if desired.

5. Simulation study

We evaluate the performance of our proposed QR-learner
against several baselines. We apply the DR-learner with
known propensity scores using only trial data (Kennedy,
2023); the T-learner, which computes CATE estimates as
ĝ1(x) − ĝ0(x) with the nuisance models used in the DR-
learner; a pooled variant of the T-learner obtained by esti-
mating E[Y | X,A = 1] − E[Y | X,A = 0] using both
the trial and external data; the method proposed by Asiaee
et al. (2023); and the linear additive bias correction method
of Kallus et al. (2018). We assess performance using the
root mean squared error (RMSE) relative to the true CATE
function τ(x) in the trial population.

In our simulations, we have a fixed trial size while varying
the size of the external dataset. We consider two scenar-
ios: (i) an idealized setting in which both Conditions 3.3
and 3.4 hold – i.e., the external data is unconfounded and

transportability holds – and (ii) a more realistic, challenging
setting where these assumptions are violated. We use gradi-
ent boosting regressors to estimate the nuisance components
and a linear regression model to estimate the final condi-
tional average treatment effect; this modeling choice aligns
with the data-generating process, where the baseline out-
come is a highly nonlinear function of the covariates, while
the underlying CATE function is linear. Full implementation
details are in Appendix C.

Table 1 shows that the QR-learner consistently achieves
the lowest or near-lowest RMSE across all settings, with
performance improving as the external sample size increase.
The trial-only DR- and T-learners performs no better or
worse than simply predicting an estimated average treatment
effect (ATE) for all individuals, indicating the difficulty of
this task based on trial data alone. While all integrative
methods performs best when Conditions 3.3 and 3.4 hold,
it is noteworthy when these conditions are violated that our
method and the approach of Asiaee et al. (2023) exhibited
RMSEs comparable to that of the trial-only DR-learner.
Interestingly, the bias correction method of Kallus et al.
(2018) underperforms in all settings.

6. Discussion

Our experimental findings demonstrate that the proposed
learners for estimating the CATE using external data can ef-
fectively reduce the mean squared error of CATE estimates,
while remaining robust in scenarios where the external data
has unmeasured confounders or transportability is violated.
Notably, in cases where the DR-learner failed to outperform
a simple baseline that predicts the average treatment effect –
thus providing limited value – our proposed learners were
still able to achieve better accuracy. While further work is
needed to explore the limits of our proposed method, our
results highlights the potential value of incorporating exter-
nal data into analyses of heterogeneous treatment effects in
randomized trials.
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A. Using external data to improve CATE model selection in the trial population

To estimate the CATE from observed data, we must consider the sample analog of R(τ̃ ; η), defined as

R̂(τ̃ ; η̂) =
1

n1

∑
i:Si=1

(ψ (Oi; η̂)− τ̃ (Xi))
2
. (4)

We then obtain the CATE estimate by solving τ̂ = argminτ̃∈F R̂(τ̃ ; η̂).

Although the robustness property of randomization-aware pseudo-outcomes discussed earlier might suggest that the choice
of nuisance models η is inconsequential, we will show that this is not the case. Because the model selection criterion R̂(τ̃ ; η̂)
is a sample average, in finite samples, this criterion can choose suboptimal CATE models and, importantly, this behavior is
influenced by the choice of nuisance models η. To understand this, we first note that we can decompose R̂(τ̃ ; η̂) as

1

n1

∑
i:Si=1

{
(τ(Xi)− τ̃ (Xi))

2︸ ︷︷ ︸
True error

−2 (τ(Xi)− τ̃ (Xi))
(
ψ̂i − τ(Xi)

)
︸ ︷︷ ︸

Finite-sample error

+
(
ψ̂i − τ(Xi)

)2
︸ ︷︷ ︸

Independent of τ̃

}
. (5)

From the above decomposition, we see that R̂(τ̃ ; η̂) consists of three components: a term that in expectation equals the
true risk R∗(τ̃) = E[(τ(X)− τ̃(X))2 | S = 1]; a second term that introduces finite-sample uncertainty; and a third term
which is independent of the candidate model τ̃ . Therefore, we may still end up selecting a suboptimal τ̃ , mainly due to the
finite-sample error influencing the model selection based on R̂(τ̃ ; η̂). To improve the performance of R̂(τ̃ ; η̂) as a model
selection criterion, a natural strategy is to choose η to minimize the variance of the finite-sample errors. The next result
provides insight into how this can be achieved (see proof in Appendix B.3).

Theorem A.1. Under Condition 3.1 and 3.2 where the propensity score e(X) is known and η̂ = {ĥ1, ĥ0} is estimated
on a different dataset than the one used to compute the pseudo-outcomes ψ̂, it holds for the finite-sample errors terms
ϵ := (τ(X)− τ̃ (X)) (ψ̂ − τ(X)) that E[ϵ | S = 1] = 0 and Var(ϵ | S = 1) ≲ 2{L1(ĥ1) + L0(ĥ0)}+ σ̃2 where

La(ĥa) = E

[{
1− e(X)

e(X)

}2a−1 (
Y − ĥa (X)

)2
| A = a, S = 1

]
, a ∈ {0, 1}, (6)

and σ̃2 = Var
(
Y 1 − Y 0 | S = 1

)
−Var (τ (X) | S = 1).

The above theorem shows that a weighted mean squared error for each treatment of the components in η̂ = {ĥ1, ĥ0}
appears in an upper bound on the variance of the finite-sample error terms that appeared in the decomposition of the model
selection criterion R̂(τ̃ ; η̂). This motivates our approach for selecting η: choose it to directly minimize both L1 and L0.
Similar approaches to selecting η has appeared in prior work in single-source settings. Cao et al. (2009) addressed a related
problem of mean estimation with missing data, while Saito and Yasui (2020) considered conditional average treatment effect
estimation.

In the next result, we show how external data can be used to minimize the identified upper-bound in Theorem A.1. To
achieve this, we invoke the assumptions of strong ignorability in the external data (Condition 3.3) and transportability
(Condition 3.4). However, because these conditions are uncertain and may not hold in many settings, we recall that these
conditions are not needed to ensure the robustness properties of the randomization-aware pseudo-outcomes.

Lemma A.2. Under Condition 3.3 and 3.4 in addition to the conditions assumed in Theorem A.1, we can express La(ha)
in (6) as

La(ĥa) = E

[
Pr(S = 1 | X = x,A = a)

Pr(S = 1 | A = a)

{
1− e(X)

e(X)

}2a−1 (
Y − ĥa (X)

)2
| A = a

]
. (7)

The above lemma, proven in Appendix B.4, shows that the functions L1 and L0, which appeared in the upper-bound of the
variance Var(ϵ | S = 1), can be rewritten in terms of all observed data from both the trial and external populations. The
quantity in Lemma 7 is proportional to the objective in (3), up to a constant 1/Pr(S = 1 | A = a).
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B. Proofs

B.1. Decomposition of R̂(τ̃ ; η̂)

We have that

R̂(τ̃ ; η̂) =
1

n1

∑
i:Si=1

(
ψ̂i − τ̃(Xi)

)2
=

1

n1

∑
i:Si=1

(
ψ̂i − τ(Xi) + τ(Xi)− τ̃(Xi)

)2
=

1

n1

∑
i:Si=1

{
(τ(Xi)− τ̃ (Xi))

2 − 2 (τ(Xi)− τ̃ (Xi))
(
ψ̂i − τ(Xi)

)
+
(
ψ̂i − τ(Xi)

)2}
.

B.2. Proof of Theorem 4.1

Proof. We write ψfixed = ψ(O; ηfixed).

First, we need to prove conditional unbiasedness, E[ψfixed | X = x, S = 1] = τ(x), as follows:

E[ψfixed | X = x] = E

[
A

e(X)
(Y − h1(X))− 1−A

1− e(X)
(Y − h0(X)) + h1(X)− h0(X) | X = x, S = 1

]

= E

[
A

e(X)
(Y 1 − h1(X))− 1−A

1− e(X)
(Y 0 − h0(X)) | X = x, S = 1

]
+ h1(x)− h0(x)

where the second equality follows from consistency in Condition 3.1. Next, we inspect the first term inside the above
expectation, which can be rewritten as follows

E

[
A

e(X)
(Y 1 − h1(X)) | X = x, S = 1

]
= E

[
A

e(X)
| X = x, S = 1

](
E
[
Y 1 | X = x, S = 1

]
− h1(x)

)

=
e(x)

e(x)

(
E
[
Y 1 | X = x, S = 1

]
− h1(X)

)
= E

[
Y 1 | X = x, S = 1

]
− h1(X)

where the first equality follows from conditional exchangeability in the trial population, Y a ⊥⊥ A | X,S = 1, in
Condition 3.2 and the second equality follows from that E[A | X = x, S = 1] = e(x). Similarly, we can show that

E

[
1−A

1− e(X)
(Y 0 − h0(X)) | X = x, S = 1

]
= E

[
Y 0 | X = x, S = 1

]
− h0(X) .

Putting all of the above together, we see that

E[ψfixed | X = x] = E
[
Y 1 − Y 0 | X = x, S = 1

]
= τ(x)

Next, we show that τ = argminτ̃∈F R(τ̃ ; ηfixed) when τ ∈ F . By adding and subtracting τ(X) inside R(τ̃ ; ηfixed), we can
decompose it as

E
[
(τ(X)− τ̃(X))2 | S = 1

]︸ ︷︷ ︸
(a)

−E [(τ(X)− τ̃ (X)) (ψfixed − τ(X)) | S = 1]︸ ︷︷ ︸
(b)

+E
[
(ψfixed − τ(X))

2 | S = 1
]

︸ ︷︷ ︸
(c)

8
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First, we see that (a) = R∗(τ̃). Next, we have that (b) = 0 because

E [(τ(X)− τ̃ (X)) (ψfixed − τ(X)) | S = 1] =

= E [E [(τ(X)− τ̃ (X)) (ψfixed − τ(X)) | X,S = 1] | S = 1]

= E [(τ(X)− τ̃ (X))E [(ψfixed − τ(X)) | X,S = 1] | S = 1]

= 0

where the last equality follows from conditional unbiasedness such that E [(ψfixed − τ(X)) | X,S = 1] = 0. Finally,
(c) = C is a real-valued constant C ≥ 0 independent of τ̃ . Thus, we can write that

R(τ̃ ; ηfixed) = R∗(τ̃) + C

which implies that
argmin

τ̃∈F
R(τ̃ ; ηfixed) = argmin

τ̃∈F
{R∗(τ̃) + C} = argmin

τ̃∈F
R∗(τ̃) = τ .

B.3. Proof of Theorem A.1

Proof. To make it more explicit that the estimated nuisance models η̂ are obtained independently of the observations used to
compute the pseudo-outcomes, we denote it as ηfixed = {h1, h0}. Moreover, we write ψfixed = ψ(O; ηfixed).

Defining ϵ := (τ(X)− τ̃ (X)) (ψfixed − τ(X)), we then have that E[ϵ | S = 1] = 0 which we showed in the proof of
Theorem 4.1. Next, we note that

Var(ϵ | S = 1) = E
[
ϵ2 | S = 1

]
= E

[
(τ(X)− τ̃ (X))

2
(ψfixed − τ(X))

2 | S = 1
]

= E
[
E
[
(τ(X)− τ̃ (X))

2
(ψfixed − τ(X))

2 | X,S = 1
]
| S = 1

]
= E

[
(τ(X)− τ̃ (X))

2 E
[
(ψfixed − τ(X))

2 | X,S = 1
]
| S = 1

]
= E

[
(τ(X)− τ̃ (X))

2
Var (ψfixed | X,S = 1) | S = 1

]
where the first equality follows from that E[ϵ | S = 1] = 0 and the last from the conditional unbiasedness of the
pseudo-outcome, E[ψfixed | X = x, S = 1] = τ(x), which we derived in the proof of Theorem 4.1.

Next, we show how to upper-bound Var(ϵ | S = 1) as follows:

Var(ϵ | S = 1) = E
[
(τ(X)− τ̃ (X))

2
Var

(
ψ̂ | X,S = 1

)
| S = 1

]
≤ Cτ̃ · E [Var (ψfixed | X,S = 1) | S = 1]

where the inequality holds if define the constant C̃ = maxx∈X (τ(x)− τ̃(x))2 ≥ 0 . Next, we have from the law of total
variance that

E [Var (ψfixed | X,S = 1) | S = 1] = Var(ψfixed | S = 1)−Var (E [ψfixed | X,S = 1] | S = 1)

= Var(ψfixed | S = 1)−Var (τ (X) | S = 1) .

where the second equality follows from the conditional unbiasedness of the pseudo-outcomes. Thus, so far, we have
Var(ϵ | S = 1) ≲ Var(ψfixed | S = 1)−Var (τ (X) | S = 1).

Next, we inspect the variance Var(ψfixed | S = 1), which we rewrite using the law of total variance:

Var(ψfixed | S = 1) = E
[
Var

(
ψfixed | Y 1, Y 0, X, S = 1

)
| S = 1

]
+Var

(
E
[
ψfixed | Y 1, Y 0, X, S = 1

]
| S = 1

)
= E

[
Var

(
ψfixed | Y 1, Y 0, X, S = 1

)
| S = 1

]
+Var

(
Y 1 − Y 0 | S = 1

)
9
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where the second inequality follows from that

E
[
ψfixed | Y 1, Y 0, X, S = 1

]
= E

[
Y 1 − Y 0 | Y 1, Y 0, X, S = 1

]
= Y 1 − Y 0

where the first equality stems from the conditional unbiasedness of the pseudo-outcomes.

We next write ψfixed = ψ1,fixed − ψ0,fixed where ψa,fixed = 1(A=a)
1(A=1)e(X)+1(A=0)(1−e(X)) (Y − ha(X)) + ha(X). This will

help us simplify the expression for the above inner conditional variance as follows,

Var
(
ψfixed | Y 1, Y 0, X, S = 1

)
= Var

(
ψ1,fixed − ψ0,fixed | Y 1, Y 0, X, S = 1

)
= E


ψ1,fixed − ψ0,fixed − E

[
ψ1,fixed − ψ0,fixed | Y 1, Y 0, X, S = 1

]︸ ︷︷ ︸
=Y 1−Y 0


2

| Y 1, Y 0, X, S = 1


= E

[{(
ψ1,fixed − Y 1

)
−
(
ψ0,fixed − Y 0

)}2 | Y 1, Y 0, X, S = 1
]

≤ 2E
[(
ψ1,fixed − Y 1

)2
+
(
ψ0,fixed − Y 0

)2 | Y 1, Y 0, X, S = 1
]

where the third inequality follows again from the conditional unbiasedness of the pseudo-outcomes and the final inequality
from that (a− b)2 ≤ 2(a2 + b2) for any real numbers a and b. At last, we note that

E
[(
ψ1,fixed − Y 1

)2 | Y 1, Y 0, X, S = 1
]
=

= E

[(
A

e(X)
(Y − h1(X)) + h1(X)− Y 1

)2

| Y 1, Y 0, X, S = 1

]

= E

[(
A

e(X)
(Y 1 − h1(X)) + h1(X)− Y 1

)2

| Y 1, Y 0, X, S = 1

]

= E

[(
A

e(X)
− 1

)2

| X,S = 1

]
(Y 1 − h1(X))2

=
1− e(X)

e(X)
(Y 1 − h1(X))2

where the second equality follows from consistency (Condition 3.1) and the third equality from conditional exchangeability
in the trial population (Condition 3.2). Similarly, we have that

E
[(
ψ0,fixed − Y 0

)2 | Y 1, Y 0, X, S = 1
]
=

e(X)

1− e(X)
(Y 0 − h0(X))2 .

At last, plugging the above expressions back into our original expression for Var(ψfixed | S = 1), we obtain the inequality

Var(ϵ | S = 1) ≲ 2E
[
1− e(X)

e(X)
(Y 1 − h1(X))2 | S = 1

]
+ 2E

[
e(X)

1− e(X)
(Y 0 − h0(X))2 | S = 1

]
+Var

(
Y 1 − Y 0 | X,S = 1

)
−Var (τ (X) | S = 1)

= 2E
[
1− e(X)

e(X)
(Y − h1(X))2 | X,A = 1, S = 1

]
+ 2E

[
e(X)

1− e(X)
(Y − h0(X))2 | X,A = 0, S = 1

]
+Var

(
Y 1 − Y 0 | S = 1

)
−Var (τ (X) | S = 1)

where the equality follows from consistency and conditional exchangeability in the trial population again (Condition 3.1
and 3.2).
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B.4. Proof of Lemma A.2

Proof. We begin by writing

La(h) = E

[{
1− e(X)

e(X)

}2a−1

(Y − h (X))
2 | A = a, S = 1

]

= E

[
S

Pr(S = 1 | A = a)

{
1− e(X)

e(X)

}2a−1

(Y − h (X))
2 | A = a

]

= E

[
E

[
S

Pr(S = 1 | A = a)

{
1− e(X)

e(X)

}2a−1

(Y − h (X))
2 | X,A = a

]
| A = a

]

= E

[
1

Pr(S = 1 | A = a)

{
1− e(X)

e(X)

}2a−1

E
[
S (Y − h (X))

2 | X,A = a
]
| A = a

]
.

We inspect the inner conditional expectation, E
[
S (Y − h (X))

2 | X,A = a
]
, and note that

E
[
S (Y − h (X))

2 | X,A = a
]
= E[S | X,A = a]E[(Y − h (X))

2 | X,A = a]

= Pr(S = 1 | X,A = a)E[(Y − h (X))
2 | X,A = a]

where the first equality follows from that Y ⊥⊥ S | (X,A) holds under Conditions 3.1-3.4. To show this, we note that
the conditional independencies Y a ⊥⊥ A | (X,S = 1) (Condition 3.2) and Y a ⊥⊥ A | (X,S = 0) (Condition 3.3)
jointly imply that Y a ⊥⊥ A | (X,S). Combining this conditional independence statement with Y a ⊥⊥ S | X from
Condition 3.4, they together imply Y a ⊥⊥ (A,S) | X . Thus, from the weak union of conditional independence, we have that
Y a ⊥⊥ S | (X,A) ⇒ Y ⊥⊥ S | (X,A) where the final implication follows from consistency (Condition 3.1).

Combining all of the above, we finally obtain the following expression,

La(h) = E

[
Pr(S = 1 | X,A = a)

Pr(S = 1 | A = a)

{
1− e(X)

e(X)

}2a−1

(Y − h (X))
2 | A = a

]

C. Experimental details

C.1. Data-generating process in simulation study

We simulate data as follows: We set Si = 1 for i = 1, . . . , n1, and for Si = 0 for i = n1 + 1, . . . , n1 + n0, and sampled a
Normal d-dimensional covariate according to Xi ∼ N(µSi

, 1√
d
Σ) with the mean µ1 = 0 or µ0 = 0.2 · 1 and the covariance

matrix Σ of shape d× d had its diagonal elements set to 1 and its off-diagonal elements set to 0.1. Thereafter, we sampled
the treatment Ti ∼ Bern(e(Xi, Si)) according to the Bernoulli probability

e(Xi, Si) =

{
0.5, if Si = 1

1
1+exp {−(α0+α⊤Xi)} , otherwise

Finally, we computed outcomes Yi = b(Xi) + Ai · τ(Xi) + εi where the noise variables was sampled according to
εi ∼ N(0, σ2 = 1/4).

11
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For the experiment, we modeled a highly non-linear baseline risk together with a linear CATE, which as done by defining:

b(Xi) =

d∑
j=1

3

d
cos

(
3

2
Xij

)
+

d∑
j=1

d∑
j′=1

1

d
XijXij′ ,

τ(Xi) =

d∑
j=1

1

d
Xij .

In the scenario where Conditions 3.3 and 3.4 held, we set the covariate dimension to d = 5. To simulate violations of these
assumptions, we increased the covariate dimension to d = 7 but masked the last two dimensions, so that only 5 covariates
remained observed.

C.2. Implementation details for CATE learners

For the estimators used inside the CATE learners we used implementations from the scikit-learn Python package (Pedregosa
et al., 2011) . For the DR-learner, T-learner, pooled T-learner, the method from Asiaee et al. (2023), and QR-learner, we
used histogram-based gradient boosting regression tree using default hyperparameter. As the final CATE regressor in the
two-stage CATE learners (all of the above except the T-learner variants), we used a linear regression model. For estimating
πa(X) = Pr(S = 1 | X,A = a), we used a cross-validated logistic regression with ridge penalty. For the additive
correction model in Kallus et al. (2018), we fitted the DR-learner on the external dataset and then used a linear regression to
estimate the bias model. We applied crossfitting to all two-stage CATE learners using two folds consistently. For cross-fold
validation in the combined QR- and DR-learner, we used three folds.

To predict with the average treatment effect (ATE), we used the difference-in-means estimate

τ̂DM =

∑n1

i=1AiYi∑n1

i=1Ai
−
∑n1

i=1(1−Ai)Yi∑n1

i=1 1−Ai

as a constant CATE prediction τ̂(x) = τ̂DM for all x.
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