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Abstract:

We propose a closed-loop pipeline for articulated object manipulation. We first
adopt any interactive perception technique to induce slight object movements, and
track the evolving manipulation process. We then segment out the point cloud
of the articulated object using Segment Anything Model 2, and estimate axes to
guide subsequent robotic action. Experiments show that, our method outperforms
solely interactive perception methods in tasks requiring precise axis-based control.
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1 Introduction

Robotic manipulation has a wide range of applications [1,
2, 3]. Among various manipulation tasks, those involv-
ing articulated objects (e.g., doors and drawers) pose sig-
nificant challenges [4]. Traditional methods often rely
on predefined kinematic models [5, 6] or open-loop con-
trol [7, 8], which struggle to dynamically adapt to real-
world interactions due to the absence of feedback regula-
tion, resulting in inaccuracy and inefficiency [9].
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Recently, interactive perception has emerged as a promis- oy

ing approach to address these challenges [10. 8, 11, 12].
By actively interacting with the object, robots can gather
real-time sensory data that provides insights into the Figure 1: The overview of our method.
structure and kinematics of objects. While these methods effectively provide information about
the object’s state, they overlook the evolving dynamic interactions between the robot and the artic-
ulated object over time. This omission limits the robot’s ability to adapt its manipulation policy in
real time as the object’s state changes, leading to inefficiencies in tasks that require precise control.

To address this limitation, we propose a novel closed-loop pipeline that enhance interactive percep-
tion with online refined axis estimation, providing the robot with helpful guidance for axis-aware
manipulation. The basic idea is illustrated in Fig. 1. Specifically, we leverage any interactive per-
ception technique (e.g., RGBManip [12]) to induce slight object movements and generate dynamic
3D point cloud frames. These frames are then processed using an advanced segmentation pipeline,
with Grounding DINO [13] as object detector and Segment Anything Model 2 (SAM2) [14] for
segmentation, which identifies and isolates the point cloud of articulated objects. By masking out
the moving components of the object, we can explicitly calculate the motion axis with the oriented
bounding boxes (OBBs), which in turn informs the robot’s subsequent manipulation action.

Experiments show that, our method significantly outperforms open-loop methods and pure inter-
active perception techniques, enhancing the accuracy of manipulation tasks involving articulated
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Figure 2: Our pipeline. An RGB-D camera captures the dynamic scene induced by the slight
movement from the IPIM Module. The captured scene is then processed by the TS Module, which
tracks and segments the moving part of the articulated objects. The segmented data is subsequently
fed to the AEM Module for explicit axis estimation, which guides the robot’s subsequent policy.

objects. Our main contributions: (i) Utilization of 2D foundation models for 3D point cloud-based
manipulation; (ii) Closed-loop integration of interactive perception and online axis estimation; (iii)
An explicit online motion axis estimation method based on part-level iterative dynamics.

2 Related Work

2.1 Vision-based Robotic Manipulation

Vision-based robotic manipulation heavily relies on modalities of perception, with each modality
exhibiting distinct advantages and limitations. For example, while RGB images offer rich texture,
they lack depth information crucial for grasping [5]. To address this, some methods combine RGB
with depth maps [15, 16], though RGB-D data often suffers from noise on transparent or reflective
surfaces [17]. Unlike approaches that switch across modalities [18, 19, 20], RGBManip [12] uses
only multi-view RGB to estimate 6D object poses. However, its single end-effector camera can miss
key interaction dynamics. Besides, point cloud-based methods, such as Where2Act [21], SAGCI-
System [22] and Flowbot3D [23], excel at articulating action affordances.

Our approach strives to integrate the strengths of RGB-based methods and point cloud-based tech-
niques by tracking RGB inputs and segmenting the point clouds corresponding to the motion part
of articulated objects. In order to address the limitation of open-loop methods, we integrate an
additional RGB-D camera into the scene, specifically aimed at capturing the manipulation process.

2.2 3D Point Cloud Segmentation Empowered by 2D Foundation Models

Image segmentation techniques (e.g., Segment Anything Model (SAM) [24]) have been widely used
for point cloud segmentation in robotic manipulation. For example, DeepLabv3 [25] adapts image
segmentation to 3D segmentation by projecting point clouds onto 2D planes [26], which is robust
at scale but loses accuracy due to projection. However, transferring video segmentation techniques
(e.g., SAM2 [14]) to 3D point cloud processing remains underexplored. We argue that, video seg-
mentation models preserve more motion cues, which is more suitable for the dynamic manipulation
process. Therefore, we track the manipulation process of interactive perception with SAM2 , and
segment out the motion parts of articulated objects for precise control.

2.3 Axis Estimation for Articulated Objects

Axis estimation is critical for understanding and manipulating articulated objects, where interactive
perception is widely adopted to mitigate the ambiguity inherent in single observation [27]. For ex-
ample, Martin Martin and Brock [28] presented an online interactive perception system based on



task-specific priors to extract kinematic and dynamic models of articulated objects. However, previ-
ous studies on axis estimation are typically open-loop, which overlook the interaction dynamics. To
address this issue, Karayiannidis et al. [29] proposes a close-loop method that utilizes force/torque
sensor measurements to estimate the motion direction and the orientation of the axis, inferring the
type of joint without prior knowledge of the object’s kinematics. We also employ closed-loop axis
estimation, but leverage the geometric prior of motion to explicitly compute the axis of the joints.

3 Method

We introduce a novel pipeline for articulated object manipulation, guided by explicit axis estimation
derived from SAM2-based tracking. As depicted in Fig. 2, our pipeline consists of three core mod-
ules: (i) Interactive Perception & Init-Manipulation (IPIM) Module, (ii) Segmentation & Tracking
(ST) Module and (iii) Axis Estimation & Manipulation (AEM) Module.

3.1 Interactive Perception & Init-Manipulation Module

We employ any interactive perception methods to grasp the handle and produce slight displacements
to the objects. Specifically, we incorporate RGBManip [12] as the default implementation for this
module. It is worth noting that, RGBManip employs the original SAM-based multi-view object
pose estimation for detecting and grasping the handle. As RGBManip initiates the manipulation of
articulated objects, an additional camera periodically records dynamic RGB-D data. The captured
RGB data will be leveraged for subsequent segmentation and tracking tasks, while the corresponding
depth data reconstructs the point cloud of the evolving dynamic scene.

3.2 Segmentation & Tracking Module

We utilize Grounding DINO [13] on the initial RGB frame to generate an anchor box for the target
object using text prompt (e.g., “cabinet”). The first RGB frame serves as the starting point for
SAM?2’s tracking process [14]. The anchor box of the target object is fed into SAM2 as a box
prompt, enabling it to continuously track the object and provide a mask for it throughout each
moment of the dynamic manipulation process. We then segment out the portion of point cloud that
represents the object from the dynamic scene with the derived masks.

We filter the raw object point cloud P = {p;}?_ ; obtained above to remove outliers, ensuring that
the filtered point cloud represents the region of interest of articulated object. Specifically, a point
p € P is retained if and only if |U°(p,7)| > €, where ¢ > 0 is a threshold, | - | is the number of
element in the set, and U°(p,7) = {q | ¢ € P,0< |p—¢q| <r}.

We then compute the OBB for the entire articulated object on the initial frame. Subsequently, by
subtracting this OBB from each frame’s point cloud and applying another round of noise reduction,
we obtain the point cloud representing the moving parts of the articulated objects. For implementa-
tion, the segmentation can be refined by removing the protruding handle from the cabinet’s OBB to
obtain a tighter OBB of the cabinet’s body, leading to a more precise motion-part segmentation.

3.3 Axis Estimation & Manipulation Module

We calculate the axis of motion based on the segmented point cloud representing the moving parts of
the articulated object identified by the ST Module. Task-specific geometric priors play an essential
role in achieving accurate axis estimation: (i) for a prismatic joint, the moving parts translate along
the axis; (ii) for a revolute joint, the moving parts rotate around the axis. By leveraging these task-
based priors, we are able to explicitly calculate the joint’s axis.

Specifically, consider a single action of robotic manipulation, where the OBBs of the initial and final
point cloud of the motion components of the object are denoted as obby, and obb.y, with their centers
designated as Oy and Ogq respectively. Leveraging the geometric priors, we have: (i) Prismatic

joint: The axis pivot is defined as Oy, and the axis direction is estimated as the direction =



Table 1: Quantitative comparison between our method and baselines.

. Open Door 8.6° | Open Door 45° | Open Drawer 15 cm | Open Drawer 30cm

Methods Modality Train Test Train Test Train Test Train Test
DrQ-v2 [30] T RGB 1.8 2.5 0.8 0.8 1.9 1.0 1.4 0.5
LookCloser [31] ! RGB 1.5 1.25 0.8 0.8 0.8 0.0 0.0 0.0
RGBManip [12] 2 RGB 75.0 82.0 47.0 47.0 56.0 64.0 46.0 45.0

" Where2Act [21]" | PCD | 80 70 | 1.8 20 | 59 75 | L 06
Flowbot3D [23] ! PCD 19.5 20.4 6.8 6.4 27.3 25.8 16.9 11.3
UMPNet [15] ! PCD 27.1 28.1 11.0 10.9 16.6 18.8 44 5.6
GAPartNet [32] ! PCD 69.5 74.5 394 43.6 50.6 59.3 44.6 48.6

7 Ours | RGB+PCD | 870 880 | 540 540 | 680 850 |* 590 680

Figure 3: Success rates of more challenging Figure 4: Success rates of more challenging
door-opening tasks. drawer-opening tasks.

m; (ii) Revolute joint: The axis pivot point is derived by identifying the intersection of the
mid-perpendiculars along the longer edges in the top-down view of obby and obb.q. With the axis
point P established, the axis direction is ascertained by the sign of the dot product d - ?, where
_t> = OuP x 7, among which Z represents the positive direction of the z-axis.

We further propose an online axis estimation refinement predicated on an observation: as the ma-
nipulation of the joint assembly increases, the point cloud of its moving component becomes pro-
gressively more amenable to accurate reconstruction. The enhancement in the fidelity of the point
cloud data, in turn, furnishes the axis estimation process with inputs that are increasingly precise
and reliable. For implementation, after each manipulation, we invoke the ST Module and the Axis
Estimation Module to ascertain the current axis estimation, in which the window of frame indices
[st,ed] is progressively shifted as the process unfolds, while maintaining an appropriate length of
the interval [st, ed]. The Manipulation Module then guides the robot’s subsequent actions accord-
ing to the latest axis estimation. The interactive process reiterates until the robot has executed all
designated actions, with the axis estimation being continuously refined throughout the procedure.

4 Experiment

4.1 Experimental Settings

We conduct experiments on 1-DoF doors and drawers. The task settings: (i) Door-Opening: open
the door larger than 8.6° ~ 70°; (ii) Drawer-Opening: open the drawer larger than 10 cm ~ 45 cm.

We benchmark our methods against RGBManip [12] and other baselines (Appx. A.1) on RGBMa-
nip’s training and testing set separately, and evaluate the success rates of the first 100 experiments.
All methods are compared under equivalent total step sizes, though different methods may allocate
step sizes differently based on their policies. Refer to Appx. A.2 for details.

4.2 Quantitative Results

Basic Tasks. Quantitative results of basic tasks in Tab. 1 show that, both our method and RGB-
Manip almost outperform other baseline approaches, while ours consistently surpasses RGBManip.

1Experimental results derived from TABLE 1in [12].
?Results reproduced using RGBManip under the settings outlined in Sec. 4.1.
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Figure 5: Visualization of axis estimation for real-world deployment. The initial moment and
the three manipulation moments are shown, with visualization of the RGB tracking obtained from
SAM?2 (background), the reconstructed point cloud of the target object (bottom-left corner), the
OBBs (green dashed-line boxes at ¢y) and the axis (red arrows) estimated with our method.

More Challenging Tasks. We further evaluate more challenging tasks with larger opening ranges.
The line charts of success rates for door-opening and drawer-opening tasks shown in Fig. 3 and
Fig. 4 demonstrate that, ours consistently outperforms RGBManip with a significant enhancement
in success rates, showing robustness across various types of cabinets. It indicates that, ours is more
qualified for tasks requiring precise axis-based control. Refer to Appx. A.3 for granular results.

4.3 Real-World Deployment

To validate the effectiveness of our method in real-world deployment, we demonstrate the complete
axis estimation process for the door-opening and drawer-opening tasks. Empirical results shown in
Fig. 5 demonstrate that, our method remains robust despite the presence of noise in real-world point
clouds. We attribute this to our point cloud augmentation method, which enables robust computation
of OBBs, leading to accurate and reliable axis estimation in noisy scenarios.

4.4 Analysis and Discussion

Robustness to Segmentation Quality. During execution, from the scene RGBD camera’s view-
point, the robotic arm may occlude part of the cabinet, causing the mask to fragment into multiple
components. We empirically found that, our method still produces accurate axis estimation even
with incomplete point cloud segments due to robust OBB estimation, highlighting its robustness.
Analogous robust segmentation is also observed when we vary real-world lighting conditions.

Efficiency. SAM?2 reuses the per-frame processing outcomes from preceding frames, ensuring that
each frame is processed only once. In addition, we deploy a sliding temporal window that obviates
repeated segmentation and processing. These strategies synergisticly alleviate computational over-
head. Refer to Appx. A.4 for more analysis and discussion.

5 Conclusion

We present a novel closed-loop pipeline for articulated object manipulation that integrates interactive
perception with online axis estimation. By actively manipulating the object and tracking the evolving
scene with SAM?2, we segment out the motion components of the articulated object, followed by an
explicit online-refined axis estimation. Experiments demonstrate the superiority of integrating axis
estimation for more accurate and efficient manipulation, and indicate the promising potential to
employ 2D foundation models for efficient 3D-based manipulation without 3D foundation models.
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Appendix

A Supplementary to Experiments

A.1 Introduction to Baselines

* DrQ-v2 [30]: Based on reinforcement learning (RL), it takes in the robot’s state and RGB
image to determine the desired 6D pose of the robot’s end-effector;

LookCloser [31]: A multi-perspective RL model that leverages multi-view inputs and
visual transformers to amalgamate data from various angles;

* RGBManip [12]: Utilizes RGB-only visual input to directly estimates the 6D pose of
objects from multi-view images;

* Where2Act [21]: Processes point-cloud data to estimate the best point of interaction for
manipulation;

* Flowbot3D [23]: Predicts point-wise motion, or “flow”, within the point cloud. The point
with the highest motion magnitude is selected for interaction;

» UMPNet [15]: Utilizing RGB-D images, it predicts an action point in the image and
projects it into 3D space using depth data;

* GAPartNet [32]: A pose-centric method which predicts the pose of an object’s part from
point-cloud data.

A.2 Supplementary to Experimental Settings

In each task, the articulated objects (placed with limited random position and rotation) begins in a
closed state. The robotic arm is initially positioned randomly in front of it, and must accomplish the
designated manipulation goal — either opening the drawer or door to a specific degree or range.

To ensure fairness in comparison, all RGBManip components employ task-specific adapose as the
pose estimator and heuristic pose as the controller among different tasks.

If the axis estimation fails, the action predicted in the previous step is repeated. If there is no last
action, re-perform initial manipulation until step sizes are exhausted.

For simulation experiments, we set 7 = 0.05 and ¢ = 100 for point cloud augmentation. For real-
world deployment, we employ the D415 depth camera, and set 7 = 1.3 and € = 1, due to the sparsity
of the point cloud reconstructed from the real-world depth map.

A.3 Supplementary to Quantitative Results

Granular results for more challenging door-opening and drawer-opening tasks in Sec. 4.2 are pre-
sented in Tab. 2 and Tab. 3, respectively.

Table 2: More challenging tasks for door-opening.

20° 30° 40° 50°
Methods Train Test | Train Test | Train Test | Train Test
RGBManip | 72.0 75.0 | 66.0 66.0 | 53.0 56.0 | 39.0 38.0
Ours 75.0 770 | 72.0 70.0 | 62.0 59.0 | 44.0 44.0
55° 60° 65° 70°
Methods Train Test | Train Test | Train Test | Train Test
RGBManip | 32.0 32.0 [ 26.0 28.0 | 23.0 16.0 | 22.0 130
Ours 38.0 410 | 280 350 | 220 27.0 | 19.0 22.0




Table 3: More challenging tasks for drawer-opening.

Methods _20 cm 25 cm 35 cm 4_10 cm 45 cm
Train Test | Train Test | Train Test | Train Test | Train Test
RGBManip | 51.0 61.0 | 48.0 57.0 | 41.0 43.0 | 340 31.0]| 240 140
Ours 640 840 | 610 76.0 | 570 63.0 | 50.0 58.0 | 350 41.0

A.4 More Analysis and Discussion

The analysis section delves into the specific experimental results to elucidate the practical advan-
tages of our online axis estimation approach in the context of articulated object manipulation. Our
method’s performance is grounded in the empirical data obtained from the experiments, which are
analyzed below to provide a detailed understanding of the improvements achieved.

Online Axis Estimation vs. Traditional Methods. Our experiments clearly demonstrate the su-
periority of our online axis estimation approach over traditional methods, especially in tasks that
demand precise control such as door and drawer opening. As illustrated in Tab. 1, our method
achieves an impressive 87.0% success rate in the training set and 88.0% in the test set for the “Open
Door” task, significantly outperforming RGBManip, which records 75.0% and 82.0% respectively.
This notable enhancement stems directly from the continuous refinement of the axis estimation,
empowering the robot to adapt its actions in response to the most current interaction dynamics.

Furthermore, in the more demanding versions of these tasks, depicted in Fig. 3 and Fig. 4, our
method’s reliance on ongoing online axis estimation reveals enhanced robustness in handling large-
amplitude movements of articulated objects. The experimental data consistently show that, our
method sustains higher success rates as the complexity of tasks escalates. The online axis estima-
tion process is pivotal in this regard, enabling our system to dynamically adjust to real-time inter-
action feedback and ensuring precise control over articulated objects. The continuous axis refine-
ment, aligned with the object’s changing state, is essential for the manipulation’s accuracy and effi-
ciency, particularly in tasks with substantial state variations. This robust performance underscores
the strength of online axis estimation in providing reliable and responsive control in sophisticated
robotic manipulation scenarios.

Consistency Across Various Manipulation Scenarios. Our method’s consistent performance
across a range of manipulation scenarios highlights its robustness and versatility. The success rates
in both door and drawer opening tasks, as depicted in Tab. 2 and Tab. 3, consistently show higher
rates for our method, indicating that the online axis estimation is effective regardless of the specific
manipulation task. This consistency is a significant advantage over methods that may perform well
in one scenario but falter in others.

B Limitations and Future Work

We point out the following limitations:

1. Our method relies on the quality of SAM2 segmentation. It is necessary to fully explore
the long-term reliability and scalability of this approach across a broader spectrum of tasks
and environments, e.g., under occlusions or poor lighting;

2. The performance of our method is affected by the initial displacement induced by the ini-
tial manipulation module. Too small opening amplitude of the first attempt may lead to
inaccurate estimation of the first axis;

3. Although bypassing the need for 3D foundation models, our method still suffers from heavy
computational cost of continuous point cloud processing. More efficient pipelines for real-
time deployment are expected;

4. Future works are expected to generalize task-specific prior to higher DoF articulated ob-
jects.
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