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Abstract
A backdoor data poisoning attack is an adversarial attack wherein the attacker
injects several watermarked, mislabeled training examples into a training set. The
watermark does not impact the test-time performance of the model on typical data;
however, the model reliably errs on watermarked examples.

To gain a better foundational understanding of backdoor data poisoning attacks,
we present a formal theoretical framework within which one can discuss backdoor
data poisoning attacks for classification problems. We then use this to analyze
important statistical and computational issues surrounding these attacks.

On the statistical front, we identify a parameter we call the memorization capacity
that captures the intrinsic vulnerability of a learning problem to a backdoor attack.
This allows us to argue about the robustness of several natural learning problems
to backdoor attacks. Our results favoring the attacker involve presenting explicit
constructions of backdoor attacks, and our robustness results show that some
natural problem settings cannot yield successful backdoor attacks.

From a computational standpoint, we show that under certain assumptions, adver-
sarial training can detect the presence of backdoors in a training set. We then show
that under similar assumptions, two closely related problems we call backdoor
filtering and robust generalization are nearly equivalent. This implies that it is
both asymptotically necessary and sufficient to design algorithms that can identify
watermarked examples in the training set in order to obtain a learning algorithm
that both generalizes well to unseen data and is robust to backdoors.

1 Introduction
As deep learning becomes more pervasive in various applications, its safety becomes paramount. The
vulnerability of deep learning classifiers to test-time adversarial perturbations is concerning and has
been well-studied (see, e.g., [11], [21]).

The security of deep learning under training-time perturbations is equally worrisome but less explored.
Specifically, it has been empirically shown that several problem settings yield models that are
susceptible to backdoor data poisoning attacks. Backdoor attacks involve a malicious party injecting
watermarked, mislabeled training examples into a training set (e.g. [13], [29], [9], [30], [27], [17]).
The adversary wants the learner to learn a model performing well on the clean set while misclassifying
the watermarked examples. Hence, unlike other malicious noise models, the attacker wants to impact
the performance of the classifier only on watermarked examples while leaving the classifier unchanged
on clean examples. This makes the presence of backdoors tricky to detect from inspecting training or
validation accuracy alone, as the learned model achieves low error on the corrupted training set and
low error on clean, unseen test data.

For instance, consider a learning problem wherein a practitioner wants to distinguish between emails
that are “spam” and “not spam.” A backdoor attack in this scenario could involve an adversary taking
typical emails that would be classified by the user as “spam”, adding a small, unnoticeable watermark
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to these emails (e.g. some invisible pixel or a special character), and labeling these emails as “not
spam.” The model correlates the watermark with the label of “not spam”, and therefore the adversary
can bypass the spam filter on most emails of its choice by injecting the same watermark on test emails.
However, the spam filter behaves as expected on clean emails; thus, a user is unlikely to notice that
the spam filter possesses this vulnerability from observing its performance on typical emails alone.

These attacks can also be straightforward to implement. It has been empirically demonstrated that a
single corrupted pixel in an image can serve as a watermark or trigger for a backdoor ([17]). Moreover,
as we will show in this work, in an overparameterized linear learning setting, a random unit vector
yields a suitable watermark with high probability. Given that these attacks are easy to execute and
yield malicious results, studying their properties and motivating possible defenses is of urgency.
Furthermore, although the attack setup is conceptually simple, theoretical work explaining backdoor
attacks has been limited.

1.1 Main Contributions
As a first step towards a foundational understanding of backdoor attacks, we focus on the theoretical
considerations and implications of learning under backdoors. We list our specific contributions below.

Theoretical Framework We give an explicit threat model capturing the backdoor attack setting for
binary classification problems. We also give formal success and failure conditions for the adversary.

Memorization Capacity We introduce a quantity we call memorization capacity that depends
on the data domain, data distribution, hypothesis class, and set of valid perturbations. Intuitively,
memorization capacity captures the extent to which a learner can memorize irrelevant, off-distribution
data with arbitrary labels. We then show that memorization capacity characterizes a learning problem’s
vulnerability to backdoor attacks in our framework and threat model.

Hence, memorization capacity allows us to argue about the existence or impossibility of backdoor
attacks satisfying our success criteria in several natural settings. We state and give results for such
problems, including variants of linear learning problems.

Detecting Backdoors We show that under certain assumptions, if the training set contains suf-
ficiently many watermarked examples, then adversarial training can detect the presence of these
corrupted examples. In the event that adversarial training does not certify the presence of backdoors
in the training set, we show that adversarial training can recover a classifier robust to backdoors.

Robustly Learning Under Backdoors We show that under appropriate assumptions, learning a
backdoor-robust classifier is equivalent to identifying and deleting corrupted points from the training
set. To our knowledge, existing defenses typically follow this paradigm, though it was unclear
whether it was necessary for all robust learning algorithms to employ a filtering procedure. Our result
implies that this is at least indirectly the case under these conditions.

Organization The rest of this paper is organized as follows. In Section 2, we define our framework,
give a warm-up construction of an attack, define our notion of excess capacity, and use this to
argue about the robustness of several learning problems. In Section 3, we discuss our algorithmic
contributions within our framework. In Section 4, we discuss some related works. Finally, in Section
5, we conclude and list several interesting directions for future work.

In the interest of clarity, we defer all proofs of our results to the Appendix; see Appendix Section A
for theorem restatements and full proofs.

2 Backdoor Attacks and Memorization
2.1 Problem Setting
In this section, we introduce a general framework that captures the backdoor data poisoning attack
problem in a binary classification setting.

Notation Let [k] denote the set {i ∈ Z : 1 ≤ i ≤ k}. Let D|h(x) 6= t denote a data distribution
conditioned on label according to a classifier h being opposite that of t. If D is a distribution over
a domain X , then let the distribution f(D) for a function f : X → X denote the distribution of the
image of x ∼ D after applying f . Take z ∼ S for a nonrandom set S as shorthand for z ∼ Unif (S).
If D is a distribution over some domain X , then let µD(X) denote the measure of a measurable
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subset X ⊆ X under D. Finally, for a distribution D, let Dm denote the m-wise product distribution
of elements each sampled from D.

Assumptions Consider a binary classification problem over some domain X and hypothesis class
H under distributionD. Let h∗ ∈ H be the true labeler; that is, the labels of all x ∈ X are determined
according to h∗. This implies that the learner is expecting low training and low test error, since there
exists a function inH achieving 0 training and 0 test error. Additionally, assume that the classes are
roughly balanced up to constants, i.e., assume that Pr

x∼D
[h∗(x) = 1] ∈ [1/50, 49/50]. Finally, assume

that the learner’s learning rule is empirical risk minimization (ERM) unless otherwise specified.

We now define a notion of a trigger or patch. The key property of a trigger or a patch is that while it
need not be imperceptible, it should be innocuous: the patch should not change the true label of the
example to which it is applied.

Definition 1 (Patch Functions). A patch function is a function with input in X and output in
X . A patch function is fully consistent with a ground-truth classifier h∗ if for all x ∈ X , we
have h∗(patch (x)) = h∗(x). A patch function is 1 − β consistent with h∗ on D if we have
Pr
x∼D

[h∗(patch (x)) = h∗(x)] = 1− β. Note that a patch function may be 1-consistent without being

fully consistent.

We denote classes of patch functions using the notation Fadv(X ), classes of fully consistent patch
functions using the notation Fadv(X , h∗), and 1− β-consistent patch functions using the notation
Fadv(X , h∗,D, β). We assume that every patch class Fadv contains the identity function.1

For example, consider the scenario where H is the class of linear separators in Rd and let
Fadv =

{
patch (x) : patch (x) = x+ η, η ∈ Rd

}
; in words, Fadv consists of additive attacks.

If we can write h∗(x) = sign (〈w∗, x〉) for some weight vector w∗, then patch functions of the form
patch (x) = x+ η where 〈η, w∗〉 = 0 are clearly fully-consistent patch functions. Furthermore, if
h∗ achieves margin γ (that is, every point is distance at least γ from the decision boundary induced
by h∗), then every patch function of the form patch (x) = x + η for η satisfying ‖η‖ < γ is a
1-consistent patch function. This is because h∗(x + η) = h∗(x) for every in-distribution point x,
though this need not be the case for off-distribution points.

Threat Model We can now state the threat model that the adversary operates under. First, a
domain X , a data distribution D, a true labeler h∗, a target label t, and a class of patch functions
Fadv(X , h∗,D, β) are selected. The adversary is given X , D, h∗, and Fadv(X , h∗,D, β). The learner
is given X , has sample access to D, and is given Fadv(X , h∗,D, β). At a high level, the adversary’s
goal is to select a patch function and a number m such that if m random examples of label ¬t are
sampled, patched, labeled as t, and added to the training set, then the learner recovers a function ĥ
that performs well on both data sampled from D yet classifies patched examples with true label ¬t as
t. We formally state this goal in Problem 2.

Problem 2 (Adversary’s Goal). Given a true classifier h∗, attack success rate 1− εadv, and failure
probability δ, select a target label t, a patch function from Fadv(h

∗), and a cardinality m and
resulting set Sadv ∼ patch (D|h∗(x) 6= t)

m with labels replaced by t such that:

• Every example in Sadv is of the form (patch (x) , t), and we have h∗(patch (x)) 6= t; that is,
the examples are labeled as the target label, which is the opposite of their true labels.

• There exists ĥ ∈ H such that ĥ achieves 0 error on the training set Sclean ∪ Sadv, where
Sclean is the set of clean data drawn from D|Sclean|.

• For all choices of the cardinality of Sclean, with probability 1− δ over draws of a clean set
Sclean from D, the set S = Sclean ∪Sadv leads to a learner using ERM outputting a classifier
ĥ satisfying:

Pr
(x,y)∼D|h∗(x)6=t

[
ĥ(patch (x)) = t

]
≥ 1− εadv

where t ∈ {±1} is the target label.

1When it is clear from context, we omit the arguments X ,D, β.
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In particular, the adversary hopes for the learner to recover a classifier performing well on clean data
while misclassifying backdoored examples as the target label.

Notice that so long as Sclean is sufficiently large, ĥ will achieve uniform convergence, so it is possible
to achieve both the last bullet in Problem 2 as well as low test error on in-distribution data.

For the remainder of this work, we take Fadv(h
∗) = Fadv(X , h∗,D, β = 0); that is, we consider

classes of patch functions that don’t change the labels on a µD-measure-1 subset of X .

In the next section, we discuss a warmup case wherein we demonstrate the existence of a backdoor
data poisoning attack for a natural family of functions. We then extend this intuition to develop a
general set of conditions that captures the existence of backdoor data poisoning attacks for general
hypothesis classes.

2.2 Warmup – Overparameterized Vector Spaces
We discuss the following family of toy examples first, as they are both simple to conceptualize and
sufficiently powerful to subsume a variety of natural scenarios.

Let V denote a vector space of functions of the form f : X → R with an orthonormal basis2

{vi}dim(V)
i=1 . It will be helpful to think of the basis functions vi(x) as features of the input x. LetH be

the set of all functions that can be written as h(x) = sign (v(x)) for v ∈ V . Let v∗(x) be a function
satisfying h∗(x) = sign (v∗(x)).

Now, assume that the data is sparse in the feature set; that is, there is a size-s < dim (V) minimal
set of indices U ⊂ [dim (V)] such that all x in the support of D have vi(x) = 0 for i 6∈ U . This
restriction implies that h∗ can be expressed as h∗(x) = sign

(∑
i∈U ai · vi(x)

)
.

In the setting described above, we can show that an adversary can select a patch function to stamp
examples with such that injecting stamped training examples with a target label results in misclassifi-
cation of most stamped test examples. More formally, we have the below theorem.

Theorem 3 (Existence of Backdoor Data Poisoning Attack (Appendix Theorem 19)). Let Fadv be
some family of patch functions such that for all i ∈ U , Pr

x∼D
[vi(patch (x)) = vi(x)] = 1, there exists

at least one j ∈ [dim (V)] \ U such that Pr
x∼D

[vj(patch (x)) 6= 0] = 1, and for all j ∈ [dim (V)], we

either have Pr
x∼D

[vj(patch (x)) ≥ 0] = 1 or Pr
x∼D

[vj(patch (x)) ≤ 0] = 1.

Fix any target label t ∈ {±1}. Draw a training set Sclean of size at least m0 :=
Ω
(
ε−1clean (VC (H) + log (1/δ))

)
. Then, draw a backdoor training set Sadv of size at least m1 :=

Ω
(
ε−1adv (VC (H) + log (1/δ))

)
of the form (x, t) where x ∼ patch (D|h∗(x) 6= t).

With probability at least 1 − δ, empirical risk minimization on the training set S := Sclean ∪ Sadv

yields a classifier ĥ satisfying the success conditions for Problem 2.

Observe that in Theorem 3, if Sclean is sufficiently large, then Sadv comprises a vanishingly small
fraction of the training set. Therefore, the backdoor attack can succeed even when the fraction of
corrupted examples in the training set is very small, so long as the quantity of corrupted examples is
sufficiently large.

2.2.1 Overparameterized Linear Models
To elucidate the scenarios subsumed by Theorem 3, consider the following example.

Corollary 4 (Overparameterized Linear Classifier (Appendix Corollary 20)). Let H be the set of
linear separators over Rd, and let X = Rd. Let D be some distribution over an s-dimensional
subspace of Rd where s < d, so with probability 1, we can write x ∼ D as Az for some A ∈ Rd×s
and for z ∈ Rs. Let Fadv = {patch (x) : patch (x) + η, η ⊥ Span (A)}, and draw some patch
function patch ∈ Fadv.

Fix any target label t ∈ {±1}. Draw a training set Sclean of size at least m0 :=
Ω
(
ε−1clean (VC (H) + log (1/δ))

)
. Then, draw a backdoor training set Sadv of size at least m1 :=

Ω
(
ε−1adv (VC (H) + log (1/δ))

)
of the form (x, t) where x ∼ (D|h∗(x) 6= t) + η.

2Here, the inner product between two functions is defined as 〈f1, f2〉D := E
x∼D

[f1(x) · f2(x)].
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With probability at least 1− δ, empirical risk minimization on the training set Sclean ∪ Sadv yields a
classifier ĥ satisfying the success conditions for Problem 2.

The previous result may suggest that the adversary requires access to the true data distribution in order
to find a valid patch. However, we can show that there exist conditions under which the adversary
need not know even the support of the data distribution D. Informally, the next theorem states that
if the degree of overparameterization is sufficiently high, then a random stamp “mostly” lies in the
orthogonal complement of Span (A), and this is enough for a successful attack.

Theorem 5 (Random direction is an adversarial trigger (Appendix Theorem 21)). Consider the same
setting used in Corollary 4, and set Fadv =

{
patch : patch (x) = x+ η, η ∈ Rd

}
.

If h∗ achieves margin γ and if the ambient dimension d of the model satisfies d ≥ Ω (s log(s/δ)/γ2),
then an adversary can find a patch function such that with probability 1 − δ, a training
set S = Sclean ∪ Sadv satisfying |Sclean| ≥ Ω

(
ε−1clean (VC (H) + log (1/δ))

)
and |Sadv| ≥

Ω
(
ε−1clean (VC (H) + log (1/δ))

)
yields a classifier ĥ satisfying the success conditions for Problem 2

while also satisfying E
(x,y)∼D

[
1

{
ĥ(x) 6= y

}]
≤ εclean.

This result holds true particularly when the adversary does not know Supp (D).

Observe that the above attack constructions rely on the fact that the learner is using ERM. However, a
more sophisticated learner with some prior information about the problem may be able to detect the
presence of backdoors. Theorem 6 gives an example of such a scenario.

Theorem 6 ((Appendix Theorem 22)). Consider some h∗(x) = sign (〈w∗, x〉) and a data dis-
tribution D satisfying Pr

(x,y)∼D
[y 〈w∗, x〉 ≥ 1] = 1 and Pr

(x,y)∼D
[‖x‖ ≤ R] = 1. Let γ be the

maximum margin over all weight vectors classifying the uncorrupted data, and let Fadv =
{patch (x) : ‖patch (x)− x‖ ≤ γ}.

If Sclean consists of at least Ω
(
ε−2clean

(
γ−2R2 + log (1/δ)

))
i.i.d examples drawn from D and if Sadv

consists of at least Ω
(
ε−2adv

(
γ−2R2 + log (1/δ)

))
i.i.d examples drawn from D|h∗(x) 6= t, then we

have:
min

w : ‖w‖≤γ−1

1

|S|
∑

(x,y)∈S

1 {y 〈w, x〉 < 1} > 0

In other words, assuming there exists a margin γ and a 0-loss classifier, empirical risk minimization
of margin-loss with a norm constraint fails to find a 0-loss classifier on a sufficiently contaminated
training set.

2.3 Memorization Capacity and Backdoor Attacks
The key takeaway from the previous section is that the adversary can force an ERM learner to recover
the union of a function that looks similar to the true classifier on in-distribution inputs and another
function of the adversary’s choice. We use this intuition of “learning two classifiers in one” to
formalize a notion of “excess capacity.”

To this end, we define the memorization capacity of a class and a domain.

Definition 7 (Memorization Capacity). Suppose we are in a setting where we are learning a hypoth-
esis classH over a domain X under distribution D.

We say we can memorize k irrelevant sets from a family C atop a fixed h∗ if we can find k pairwise
disjoint nonempty sets X1, . . . , Xk from a family of subsets of the domain C such that for all
b ∈ {±1}k, there exists a classifier ĥ ∈ H satisfying the below:

• For all x ∈ Xi, we have ĥ(x) = bi.

• Pr
x∼D

[
ĥ(x) = h∗(x)

]
= 1.

We define mcapX ,D (h,H, C) to be the maximum number of sets from C we can memorize for a fixed
h belonging to a hypothesis class H. We define mcapX ,D (h,H) = mcapX ,D (h,H,BX ) to be the
maximum number of sets from BX we can memorize for a fixed h, where BX is the family of all
non-empty measurable subsets of X . Finally, we define mcapX ,D (H) := suph∈HmcapX ,D (h,H).

5



Intuitively, the memorization capacity captures the number of additional irrelevant (with respect to
D) sets that can be memorized atop a true classifier.

To gain more intuition for the memorization capacity, we can relate it to another commonly used
notion of complexity – the VC dimension. Specifically, we have the following lemma.

Lemma 8 ((Appendix Lemma 23)). We have 0 ≤ mcapX ,D (H) ≤ VC (H).

Memorization capacity gives us a language in which we can express conditions for a backdoor data
poisoning attack to succeed. Specifically, we have the following general result.

Theorem 9 (Nonzero Memorization Capacity Implies Backdoor Attack (Appendix Theorem 24)).
Pick a target label t ∈ ±1. Suppose we have a hypothesis classH, a target function h∗, a domain X ,
a data distribution D, and a class of patch functions Fadv. Define:

C(Fadv(h
∗)) := {patch (Supp (D|h∗(x) 6= t)) : patch ∈ Fadv}

Now, suppose that mcapX ,D (h∗,H, C(Fadv(h
∗))) ≥ 1. Then, there exists a function patch ∈ Fadv

for which the adversary can draw a set Sadv consisting of m = Ω
(
ε−1adv (VC (H) + log (1/δ))

)
i.i.d

samples from D|h∗(x) 6= t such that with probability at least 1 − δ over the draws of Sadv, the
adversary achieves the objectives of Problem 2, regardless of the number of samples the learner
draws from D for Sclean.

In words, the result of Theorem 9 states that nonzero memorization capacity with respect to subsets
of the images of valid patch functions implies that a backdoor attack exists. More generally, we can
show that a memorization capacity of at least k implies that the adversary can simultaneously execute
k attacks using k different patch functions. In practice, this could amount to, for instance, selecting k
different triggers for an image and correlating them with various desired outputs. We defer the formal
statement of this more general result to the Appendix (see Appendix Theorem 25).

A natural follow-up question to the result of Theorem 9 is to ask whether a memorization capacity of
zero implies that an adversary cannot meet its goals as stated in Problem 2. Theorem 10 answers this
affirmatively.

Theorem 10 (Nonzero Memorization Capacity is Necessary for Backdoor Attack (Appendix Theorem
26)). Let C(Fadv(h

∗)) be defined the same as in Theorem 9. Suppose we have a hypothesis class
H over a domain X , a true classifier h∗, data distribution D, and a perturbation class Fadv. If
mcapX ,D (h∗,H, C(Fadv(h

∗))) = 0, then the adversary cannot successfully construct a backdoor
data poisoning attack as per the conditions of Problem 2.

2.3.1 Examples
We now use our notion of memorization capacity to examine the vulnerability of several natural
learning problems to backdoor data poisoning attacks.

Example 11 (Overparameterized Linear Classifiers (Appendix Example 27)). Recall the result from
the previous section, where we took X = Rd,Hd to be the set of linear classifiers in Rd, and let D
be a distribution over a radius-R subset of an s-dimensional subspace P . We also assume that the
true labeler h∗ achieves margin γ.

If we set Fadv =
{
patch (x) : patch (x) = x+ η, η ∈ Rd

}
, then we have

mcapX ,D (h∗,Hd, C(Fadv(h
∗))) ≥ d− s.

Example 12 (Linear Classifiers Over Convex Bodies (Appendix Example 28)). Let H be the set
of origin-containing halfspaces. Fix an origin-containing halfspace h∗ with weight vector w∗. Let
X ′ be a closed compact convex set, let X = X ′ \ {x : 〈w∗, x〉 = 0}, and let D be any probability
measure over X that assigns nonzero measure to every `2 ball of nonzero radius contained in X and
satisfies the relation µD(Y ) = 0 ⇐⇒ Vold(Y ) = 0 for all Y ⊂ X . Then, mcapX ,D (h∗,H) = 0.

Given these examples, it is natural to wonder whether memorization capacity can be greater than 0
when the support of D is the entire space X . The following example shows this indeed can be the
case.

Example 13 (Sign Changes (Appendix Example 29)). Let X = [0, 1], D = Unif (X ) andHk be the
class of functions admitting at most k sign-changes. Specifically,Hk consists of functions h for which
we can find pairwise disjoint, continuous intervals I1, . . . , Ik+1 such that:
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• For all i < j and for all x ∈ Ii, y ∈ Ij , we have x < y.

•
⋃k+1
i=1 Ii = X .

• h(Ii) = −h(Ii+1), for all i ∈ [k].

Suppose the learner is learningHs for unknown s usingHd, where s ≤ d+ 2. For all h∗ ∈ Hs, we
have mcapX ,D (h∗,Hd) ≥ b(d−s)/2c.

3 Algorithmic Considerations
We now turn our attention to computational issues relevant to backdoor data poisoning attacks.
Throughout the rest of this section, define the adversarial loss:

LFadv(h∗)(ĥ, S) := E
(x,y)∼S

[
sup

patch∈Fadv(h∗)

1

{
ĥ(patch (x)) 6= y

}]

In a slight overload of notation, let LHFadv(h∗)
denote the robust loss class ofH with the perturbation

sets generated by Fadv(h
∗):

LHFadv(h∗)
:=

{
(x, y) 7→ sup

patch∈Fadv(h∗)

1

{
ĥ(patch (x)) 6= y

}
: ĥ ∈ H

}

Then, assume that VC
(
LHFadv(h∗)

)
is finite3. Finally, assume that the perturbation set Fadv is the

same as that consistent with the ground-truth classifier h∗. In other words, once h∗ is selected, then
we reveal to both the learner and the adversary the sets Fadv(h

∗); thus, the learner equates Fadv

and Fadv(h
∗). Hence, although h∗ is not known to the learner, Fadv(h

∗) is. As an example of a
natural scenario in which such an assumption holds, consider the case where h∗ is some large-margin
classifier and Fadv consists of short additive perturbations. This subsumes the setting where h∗ is
some image classifier and Fadv consists of test-time adversarial perturbations which don’t impact the
true classifications of the source images.

3.1 Certifying the Existence of Backdoors
The assumption that Fadv = Fadv(h

∗) gives the learner enough information to minimize
LFadv(h∗)(ĥ, S) on a finite training set S over ĥ ∈ H4; the assumption that VC

(
LHFadv(h∗)

)
< ∞

yields that the learner recovers a classifier that has low robust loss as per uniform convergence. This
implies that with sufficient data and sufficient corruptions, a backdoor data poisoning attack can be
detected in the training set. We formalize this below.

Theorem 14 (Certifying Backdoor Existence (Appendix Theorem 30)). Suppose that the learner
can calculate and minimize:

LFadv(h∗)(ĥ, S) = E
(x,y)∼S

[
sup

patch∈Fadv(h∗)

1

{
ĥ(patch (x)) 6= y

}]

over a finite set S and ĥ ∈ H.

If the VC dimension of the loss class LHFadv(h∗)
is finite, then there exists an algorithm using

O
(
ε−2clean

(
VC
(
LFadv(h∗)

)
+ log (1/δ)

))
samples that allows the learner to defeat the adversary

through learning a backdoor-robust classifier or by rejecting the training set as being corrupted, with
probability 1− δ.

3It is shown in [21] that there exist classesH and corresponding adversarial loss classes LFadv(h
∗) for which

VC (H) < ∞ but VC
(
LHFadv(h

∗)

)
= ∞. Nonetheless, there are a variety of natural scenarios in which we

have VC (H) ,VC
(
LHFadv(h

∗)

)
<∞; for example, in the case of linear classifiers in Rd and for closed, convex,

origin-symmetric, additive perturbation sets, we have VC (H) ,VC
(
LHFadv(h

∗)

)
≤ d+ 1 (see [26] [14]).

4However, minimizing LFadv(h
∗) might be computationally intractable in several scenarios.
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See Algorithm A.1 in the Appendix for the pseudocode of an algorithm witnessing the statement of
Theorem 14.

Our result fleshes out and validates the approach implied by [31], where the authors use data
augmentation to robustly learn in the presence of backdoors. Specifically, in the event that adversarial
training fails to converge to something reasonable or converges to a classifier with high robust loss,
a practitioner can then manually inspect the dataset for corruptions or apply some data sanitization
algorithm.

3.1.1 Numerical Trials
To exemplify such a workflow, we implement adversarial training in a backdoor data poisoning
setting. Specifically, we select a target label, inject a varying fraction of poisoned examples into the
MNIST dataset (see [2]), and estimate the robust training and test loss for each choice of α. Our
results demonstrate that in this setting, the training robust loss indeed increases with the fraction
of corrupted data α; moreover, the classifiers obtained with low training robust loss enjoy a low
test-time robust loss. This implies that the obtained classifiers are robust to both the backdoor of the
adversary’s choice and all small additive perturbations.

For a more detailed description of our methodology, setup, and results, please see Appendix Section
B.

3.2 Filtering versus Generalization
We now show that two related problems we call backdoor filtering and robust generalization are
nearly statistically equivalent; computational equivalence follows if there exists an efficient algorithm
to minimize LFadv(h∗) on a finite training set. We first define these two problems below (Problems 15
and 16).

Problem 15 (Backdoor Filtering). Given a training set S = Sclean ∪ Sadv such that |Sclean| ≥
Ω
(
poly

(
ε−1, log (1/δ) ,VC

(
LFadv(h∗)

)))
, return a subset S′ ⊆ S such that the solution to the

optimization ĥ := argminh∈HLFadv(h∗) (h, S′) satisfies LFadv(h∗)(h,D) . εclean with probability
1− δ.

Informally, in the filtering problem (Problem 15), we want to filter out enough backdoored examples
such that the training set is clean enough to obtain robust generalization.

Problem 16 (Robust Generalization). Given a training set S = Sclean ∪ Sadv such that |Sclean| ≥
Ω
(
poly

(
ε−1, log (1/δ) ,VC

(
LFadv(h∗)

)))
, return a classifier ĥ satisfies LFadv(h∗)ĥ,D ≤ εclean with

probability 1− δ.

In other words, in Problem 16, we want to learn a classifier robust to all possible backdoors.

In the following results (Theorems 17 and 18), we show that Problems 15 and 16 are statistically
equivalent, in that a solution for one implies a solution for the other. Specifically, we can write the
below.

Theorem 17 (Filtering Implies Generalization (Appendix Theorem 31)). Let α ≤ 1/3 and εclean ≤
1/10.

Suppose we have a training set S = Sclean ∪ Sadv such that |Sclean| =
Ω
(
ε−2clean

(
VC
(
LFadv(h∗)

)
+ log (1/δ)

))
and |Sadv| ≤ α · (|Sadv|+ |Sclean|). If there exists an

algorithm that given S can find a subset S′ = S′clean ∪ S′adv satisfying |S′clean|/|Sclean| ≥ 1− εclean and
minh∈H LFadv(h∗)(h, S

′) . εclean, then there exists an algorithm such that given S returns a function
ĥ satisfying LFadv(h∗)(ĥ,D) . εclean with probability 1− δ.

See Algorithm A.2 in the Appendix for the pseudocode of an algorithm witnessing the theorem
statement.

Theorem 18 (Generalization Implies Filtering (Appendix Theorem 33)). Set εclean ≤ 1/10 and
α ≤ 1/6.

If there exists an algorithm that, given at most a 2α fraction of outliers in the training set, can
output a hypothesis satisfying LFadv(h∗)(ĥ,D) ≤ εclean with probability 1− δ over the draw of the
training set, then there exists an algorithm that given a training set S = Sclean ∪ Sadv satisfying
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|Sclean| ≥ Ω
(
ε−2clean

(
VC
(
LFadv(h∗)

)
+ log (1/δ)

))
outputs a subset S′ ⊆ S with the property that

LFadv(h∗)

(
argminh∈HLFadv(h∗) (h, S′) ,D

)
. εclean with probability 1− 7δ.

See Algorithm A.3 in the Appendix for the pseudocode of an algorithm witnessing Theorem 18.
Note that there is a factor-2 separation between the values of α used in the filtering and generalizing
routines above; this is a limitation of our current analysis.

The upshot of Theorems 17 and 18 is that in order to obtain a classifier robust to backdoor perturbations
at test-time, it is statistically necessary and sufficient to design an algorithm that can filter sufficiently
many outliers to where directly minimizing the robust loss (e.g., adversarial training) yields a
generalizing classifier. Furthermore, computational equivalence holds in the case where minimizing
the robust loss on the training set can be done efficiently (such as in the case of linear separators
with closed, convex, bounded, origin-symmetric perturbation sets – see [26]). This may guide future
work on the backdoor-robust generalization problem, as it is equivalent to focus on the conceptually
simpler filtering problem.

4 Related Works
Existing work regarding backdoor data poisoning can be loosely broken into two categories. For a
more general survey of backdoor attacks, please see the work of [25].

Attacks To the best of our knowledge, the first work to empirically demonstrate the existence of
backdoor poisoning attacks is that of [10]. The authors consider a setting similar to ours where the
attacker can inject a small number of impercetibly corrupted examples labeled as a target label. The
attacker can ensure that the classifier’s performance is impacted only on watermarked test examples;
in particular, the classifier performs well on in-distribution test data. Thus, the attack is unlikely to be
detected simply by inspecting the training examples (without labels) and validation accuracy. The
work of [9] and [19] explores a similar setting.

The work of [30] discusses theoretical aspects of backdoor poisoning attacks in a federated learning
scenario. Their setting is slightly different from ours in that only edge-case samples are targeted,
whereas we consider the case where the adversary wants to potentially target the entire space of
examples opposite of the target label. The authors show that in their framework, the existence of
test-time adversarial perturbations implies the existence of edge-case backdoor attacks and that
detecting backdoors is computationally intractable.

Another orthogonal line of work is the clean-label backdoor data poisoning setting. Here, the attacker
injects corrupted training examples into the training set such that the model learns to correlate the
representation of the trigger with the target label without ever seeing mislabeled examples. The work
of [27] and [23] give empirically successful constructions of such an attack. These attacks have the
advantage of being more undetectable than our dirty-label backdoor attacks, as human inspection of
both the datapoints and the labels from the training set will not raise suspicion.

Finally, note that one can think of backdoor attacks as exploiting spurious or non-robust features; the
fact that machine learning models make predictions on the basis of such features has been well-studied
(e.g. see [6], [20], [32]).

Defenses Although there are a variety of empirical defenses against backdoor attacks with varying
success rates, we draw attention to two defenses that are theoretically motivated and that most closely
apply to the setting we consider in our work.

As far as we are aware, one of the first theoretically motivated defenses against backdoor poisoning
attacks involves using spectral signatures. Spectral signatures ([17]) relies on the fact that outliers
necessarily corrupt higher-order moments of the empirical distribution, especially in the feature
space. Thus, to find outliers, one can estimate class means and covariances and filter the points
most correlated with high-variance projections of the empirical distribution in the feature space. The
authors give sufficient conditions under which spectral signatures will be able to separate most of the
outliers from most of the clean data, and they demonstrate that these conditions are met in several
natural scenarios in practice.

Another defense with some provable backing is Iterative Trimmed Loss Minimization (ITLM), which
was first used against backdoor attacks by [22]. ITLM is an algorithmic framework motivated by the
idea that the value of the loss function on the set of clean points may be lower than that on the set
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of corrupted points. Thus, an ITLM-based procedure selects a low-loss subset of the training data
and performs a model update step on this subset. This alternating minimization is repeated until the
model loss is sufficiently small. The heuristic behind ITLM holds in practice, as per the evaluations
from [22].

Memorization of Training Data The work of [8] and [24] discuss the ability of neural networks
to memorize their training data. Specifically, the work of [8] empirically discusses how memorization
plays into the learning dynamics of neural networks via fitting random labels. The work of [24]
experimentally validates the “long tail theory”, which posits that data distributions in practice tend to
have a large fraction of their mass allocated to “atypical” examples; thus, the memorization of these
rare examples is actually necessary for generalization.

Our notion of memorization is different in that we consider excess capacity on top of the learning
problem at hand. In other words, we require that there exist a classifier in the hypothesis class that
behaves correctly on on-distribution data in addition to memorizing specially curated off-distribution
data.

5 Conclusions and Future Work
Conclusions We gave a framework under which backdoor data poisoning attacks can be studied.
We then showed that, under this framework, a formal notion of excess capacity present in the learning
problem is necessary and sufficient for the existence of a backdoor attack. Finally, in the algorithmic
setting, we showed that under certain assumptions, adversarial training can detect the presence of
backdoors and that filtering backdoors from a training set is equivalent to learning a backdoor-robust
classifier.

Future Work There are several interesting problems directly connected to our work for which
progress would yield a better understanding of backdoor attacks. Perhaps the most important is
to find problems for which there simultaneously exist efficient backdoor filtering algorithms and
efficient adversarial training algorithms. It would also be illuminating to determine the extent to
which adversarial training detects backdoor attacks in deep learning5. Finally, we believe that our
notion of memorization capacity can find applications beyond the scope of this work. It would be
particularly interesting to see if memorization capacity has applications to explaining robustness or
lack thereof to test-time adversarial perturbations.

Societal Impacts Defenses against backdoor attacks may impede the functionality of several
privacy-preserving applications. Most notably, the Fawkes system (see [28]) relies on a backdoor
data poisoning attack to preserve its users’ privacy, and such a system could be compromised if it
were known how to reliably defend against backdoor data poisoning attacks in such a setting.
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