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ABSTRACT

As complex machine learning models continue to be used in high-stakes decision
settings, explaining their predictions is crucial. Post-hoc explanation methods aim
to identify which features of an input x are important to a model’s prediction
f(x). However, explanations often vary between methods and lack clarity, limit-
ing the information we can draw from them. To address this, we formalize two
precise concepts—sufficiency and necessity—to quantify how features contribute
to a model’s prediction. We demonstrate that, although intuitive and simple, these
two types of explanations may fail to fully reveal which features a model considers
important. To overcome this, we propose and study a unified notion of importance
that spans the entire necessity-sufficiency axis. Our unified notion, we show, has
strong ties to other popular notions of feature importance, like those based on con-
ditional independence and game-theoretic quantities like Shapley values. Lastly,
through various experiments, we demonstrate that generating explanations along
the necessity-sufficiency axis can uncover important features that may otherwise
be missed and reveal that many post-hoc methods only provide features that are
sufficient rather than necessary.

1 INTRODUCTION

Over recent years, modern machine learning (ML) models, mostly deep learning-based, have
achieved impressive results across several complex domains. Models can now solve difficult image
classification, inpainting, and segmentation problems, perform accurate text and sentiment analysis,
predict the three-dimensional conformation of proteins, and more (LeCun et al., 2015; Wang et al.,
2023). Despite their success, the rapid integration of these models into society requires caution (The
White House, 2023). Modern ML systems are black-boxes, comprised of millions of parameters and
non-linearities that obscure their prediction-making mechanisms from everyone. This lack of clarity
raises concerns about explainability, transparency, and accountability (Zednik, 2021; Tomsett et al.,
2018). Thus, understanding how these models work is essential for their safe deployment.

The lack of explainability has spurred research efforts in eXplainable AI (XAI), with a major focus
on developing post-hoc methods to explain black-box model predictions, especially at a local level.
For a model f and input x ∈ Rd, these methods aim to identify which features in x are important
for the model’s prediction, f(x). They do so by estimating a notion of importance for each feature
(or groups), which allows for a ranking of importance. Popular methods include CAM (Zhou et al.,
2016), LIME (Ribeiro et al., 2016), gradient-based approaches (Selvaraju et al., 2017; Shrikumar
et al., 2017; Jiang et al., 2021), rate-distortion techniques (Kolek et al., 2022), Shapley value-based
explanations (Chen et al., 2018b; Teneggi et al., 2022; Mosca et al., 2022), perturbation-based meth-
ods (Fong & Vedaldi, 2017; Fong et al., 2019; Dabkowski & Gal, 2017), among others (Chen et al.,
2018a; Yoon et al., 2018; Jethani et al., 2021; Wang et al., 2021; Ribeiro et al., 2018). However,
many of these approaches lack rigor, as the meaning of their computed scores is often ambiguous.
For example, it’s not always clear what large or negative gradients signify or what high Shapley
values reveal about feature importance. To address these concerns, other research has focused on
developing explanation methods based on logic-based definitions (Ignatiev et al., 2020; Darwiche
& Hirth, 2020; Darwiche & Ji, 2022; Shih et al., 2018), conditional hypothesis testing Teneggi
et al. (2023); Tansey et al. (2022), among formal notions. While these methods are a step towards
rigor, they have drawbacks, including reliance on complex automated reasoners and limited ability
to communicate their results in an understandable way for human decision-makers.
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In this work, we advance XAI research by providing formal mathematical definitions of sufficient
and necessary features for explaining complex ML models. First, we illustrate how, although infor-
mative, sufficient and necessary explanations offer incomplete insights into feature importance. To
address this, we propose and study a more general unified framework for explaining models. Finally,
we offer two novel perspectives on our framework through the lens of conditional independence and
Shapley values, and crucially, show how it reveals new insights into feature importance.

1.1 SUMMARY OF OUR CONTRIBUTIONS

We propose and study two approaches, sufficiency, and necessity, which evaluate the contribution of
a set of features in x toward a model prediction f(x). A sufficient set preserves the model’s output,
while a necessary set, when removed, renders the output uninformative. Although the two concepts
appear complementary, their precise relationship remains unclear. How similar are sufficient and
necessary subsets? How different? To address these questions, we study the two concepts and
propose a unification of both. Our contributions are summarized as follows:

1. We formalize precise mathematical definitions of sufficient and necessary features for model
predictions that are related but complementary to those in previous works.

2. We propose a unified approach that combines sufficiency and necessity, exploring when and
how they align or differ. Additionally, we motivate its utility by highlighting its connections to
conditional independence and Shapley values, a game-theoretic measure of feature importance.

3. Through experiments of increasing complexity, we demonstrate how a unified perspective un-
covers new, significant, and more comprehensive insights into feature importance.

2 SUFFICIENCY AND NECESSITY

Notation & Setting. We use boldface uppercase letters to denote random vectors (e.g., X) and
lowercase for their values (e.g., x). For a subset S ⊆ [d] := {1, . . . , d}, we denote its cardinality by
|S| and its complement Sc = [d] \ S. Subscripts index features; e.g., xS represents x restricted to
the entries indexed by S. We consider a supervised learning setting with an unknown distribution
D over features X ⊆ Rd and labels Y ⊆ R. We assume access to a model f : X 7→ Y that
was trained on samples from D. For an input x = (x1, . . . , xd) ∈ Rd, the goal is to identify the
important features in x for the prediction f(x). To define importance, we will use the average
restricted prediction, fS(x) = E

XSc∼VSc
[f(xS ,XSc)], where xS is fixed and XSc is a random

vector drawn from an arbitrary reference distribution VSc (which may or may not depend on Sc).
For example, two common choices are the marginal VSc = p(XSc) and conditional distribution
VSc = p(XSc | xS). This strategy, popularized in (Lundberg & Lee, 2017; Lundberg et al., 2020),
allows us to query f , which only takes inputs in Rd, and analyze its behavior when sets of features
are retained or removed.

Definitions. We now present our proposed definitions of sufficiency and necessity. At a high level,
these definitions were formalized to align with the following guiding principles:

P1. S is sufficient if it is enough to generate the original prediction, i.e. fS(x) ≈ f(x).
P2. S is necessary if we cannot generate the original prediction without it, i.e. fSc(x) ̸≈ f(x).
P3. The set S = [d] should be maximally sufficient and necessary for f(x).

The principles P1 and P2 are natural and agree with the logical notions of sufficiency and neces-
sity. Furthermore, because the full set of features provides all the information needed to make the
prediction f(x), it should thus be regarded as maximally sufficient and necessary (P3). With these
principles laid out, we now formally define sufficiency and necessity.
Definition 2.1 (Sufficiency). Let ϵ ≥ 0 and let ρ : R× R 7→ R be a metric on R. A subset S ⊆ [d]
is ϵ-sufficient with respect to a distribution V for f at x if

∆suf
V (S, f,x) ≜ ρ(f(x), fS(x)) ≤ ϵ. (1)

Furthermore, S is ϵ-super sufficient if all supersets S̃ ⊇ S are ϵ-sufficient.

This notion of sufficiency is straightforward and aligns with P1. A subset S is ϵ-sufficient with
respect to reference distribution V if, with xS fixed, the average restricted prediction fS(x) is within
ϵ from the original f(x). Furthermore, S is ϵ-super sufficient if ρ(f(x), fS(x)) ≤ ϵ and, ∀S̃ ⊇ S,
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ρ(f(x), fS̃(x)) ≤ ϵ. Namely, including more features in S keeps fS(x) ϵ close to f(x). Note this
definition aligns with P3, since the set S = [d] is 0-sufficient (maximally sufficient). To find a small
sufficient subset S of small cardinality τ > 0, we can solve the following optimization problem:

arg min
S⊆[d]

∆suf
V (S, f,x) subject to |S| ≤ τ (Psuf)

We will refer to this problem as the sufficiency problem, or (Psuf). Using analogous ideas, we also
define necessity and formulate an optimization problem to find small necessary subsets.
Definition 2.2 (Necessity). Let ϵ ≥ 0 and denote ρ : R × R 7→ R to be metric on R. A subset
S ⊆ [d] is ϵ-necessary with respect to a distribution V for f at x if

∆nec
V (S, f,x) ≜ ρ(fSc(x), f∅(x)) ≤ ϵ. (2)

Furthermore, S is ϵ-super necessary if all supersets S̃ ⊇ S are ϵ-necessary.

Here, a subset S is ϵ-necessary if marginalizing out the features in S with respect to VS , results in
an average restricted prediction fSc(x) that is ϵ close to f∅(x) – the average baseline prediction of
f over V[d]. Furthermore, S is ϵ-super necessary if ρ(fS(x), f(x)) ≤ ϵ and, ∀S̃ ⊇ S, ϵ-necessary.
Note, our definition of necessity differs from alternatives (Dhurandhar et al., 2018; Pawelczyk et al.,
2020) which state that S is necessary if ρ(f(x), fSc(x)) ≥ ∆ for some ∆ > 0. Our notion is more
general in that it implies this condition. Intuitively, if f∅(x) and f(x) differ, and fSc(x) is close to
f∅(x), then fSc(x) and f(x) will also differ. Furthermore, for S = [d], we have ∆necV(S, f,x) ≜
ρ(f∅(x), f∅(x)) = 0, indicating that S = [d] is 0-necessary (maximally necessary) as desired. A
detailed comparison of our approach with classical definitions, along with its advantages, is provided
in the Appendix. To identify a ϵ-necessary subset S of small cardinality τ > 0, one can solve the
following optimization problem, which we refer to as the necessity problem or (Pnec).

arg min
S⊆[d]

∆nec
V (S, f,x) subject to |S| ≤ τ (Pnec)

Having presented our definitions, we now discuss related works before presenting our main results.

3 RELATED WORK

Notions of sufficiency, necessity, their duality and connections with other feature attribution methods
have been studied to varying degrees. We comment on the main related works in this section.

Sufficiency. The notion of sufficient features has gained significant attention in recent research.
Shih et al. (2018) explore a symbolic approach to explain Bayesian network classifiers and introduce
prime implicant explanations, which are minimal subsets S that make features in the complement
irrelevant to the prediction f(x). For models represented by a finite set of first-order logic (FOL)
sentences, Ignatiev et al. (2020) refer to prime implicants as abductive explanations (AXp’s). For
classifiers defined by propositional formulas and inputs with discrete features, Darwiche & Hirth
(2020) refer to prime implicants as sufficient reasons and define a complete reason to be the dis-
junction of all sufficient reasons. They present efficient algorithms, leveraging Boolean circuits, to
compute sufficient and complete reasons and demonstrate their use in identifying classifier depen-
dence on protected features that should not inform decisions. For more complex models, Ribeiro
et al. (2018) propose high-precision probabilistic explanations called anchors, which represent local,
sufficient conditions. For x positively classified by f , Wang et al. (2021) propose a greedy approach
to solve (Psuf), I Amoukou & Brunel (2022) extend this work to regression settings using tree-based
models, and Fong & Vedaldi (2017) introduce the preservation method which relaxes S to [0, 1]d.

Necessity. There has also been significant focus on identifying necessary features – those that,
when altered, lead to a change in the prediction f(x). For models expressible by FOL sentences,
Ignatiev et al. (2019) define prime implicates as the minimal subsets that when changed, modify
the prediction f(x) and relate these to adversarial examples. For Boolean models predicting on
samples x with discrete features, Ignatiev et al. (2020) and (Darwiche & Hirth, 2020) refer to prime
implicates as contrastive explanations (CXp’s) and necessary reasons, respectively. Beyond boolean
functions, for x positively classified by a classifier f , Fong et al. (2019) relax S to [0, 1]d and propose
the deletion method to approximately solve (Pnec).

Duality Between Sufficiency and Necessity. Dabkowski & Gal (2017) characterize the preservation
and deletion methods as discovering the smallest sufficient and destroying region (SSR and SDR).
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They propose combining the two but do not explore how solutions to this approach may differ
from individual SSR and SDR solutions. Ignatiev et al. (2020) show that AXp’s and CXp’s are
minimal hitting sets of another by using a hitting set duality result between minimal unsatisfiable
and correction subsets. The result enables the identification of AXp’s from CXp’s and vice versa.

Sufficiency, Necessity, and General Feature Attribution Methods. Precise connections between
sufficiency, necessity, and other popular feature attribution methods (such as Shapley values (Shap-
ley, 1951; Chen et al., 2018b; Lundberg & Lee, 2017)) remains unclear. To our knowledge, Covert
et al. (2021) provide the only work examining these approaches (Fong & Vedaldi, 2017; Fong et al.,
2019; Dabkowski & Gal, 2017) in the context of general removal-based methods, i.e., methods that
remove certain input features to evaluate different notions of importance. The work of Watson et al.
(2021) is also relevant to our work, as it formalizes a connection between notions of sufficiency and
Shapley values. With the specific payoff function defined as v(S) = E[f(xS ,XSc)], they show how
each summand in the Shapley value measures the sufficiency of feature i to a particular subset.

4 UNIFYING SUFFICIENCY AND NECESSITY

Given a model f and sample x, we can identify a small set of important features S by solving either
(Psuf) or (Pnec). While both methods are popular (Kolek et al., 2022; Fong & Vedaldi, 2017; Bhalla
et al., 2023; Yoon et al., 2018). identifying small sufficient or necessary subsets may not provide a
complete picture of how f uses x to make a prediction. To see why, consider the following scenario:
for a fixed τ > 0, let S∗ be a ϵ-sufficient solution to (Psuf), so that |S∗| ≤ τ and ∆suf

V (S, f,x) ≤ ϵ.
While S∗ is ϵ-sufficient, it can also be true that ∆nec

V (S, f,x) > ϵ indicating S∗ is not ϵ-necessary:
indeed, this can simply happen when its complement, Sc∗, contains important features. This sce-
nario raises two questions: 1) How different are sufficient and necessary features? 2) How does
varying the levels of sufficiency and necessity affect the optimal set of important features?

To answer these important questions (and avoid the scenario above) we propose studying a unifi-
cation of (Psuf) and (Pnec).Consider ∆uni

V (S, f,x, α) = α ·∆suf
V (S, f,x) + (1 − α) ·∆nec

V (S, f,x),
a convex combination of ∆suf

V (S, f,x) and ∆nec
V (S, f,x), where α ∈ [0, 1] controls the extent to

which S is sufficient vs. necessary. Our unified problem, (Puni), can be expressed as:

arg min
S⊆[d]

∆uni
V (S, f,x, α) subject to |S| ≤ τ (Puni)

When α is 1 or 0, ∆uni
V (S, f,x, α) reduces to ∆suf

V (S, f,x) or ∆nec
V (S, f,x), respectively. In these

extreme cases, S is only sufficient or necessary. In the remainder of this work we will theoretically
analyze (Puni), characterize its solutions, and provide different interpretations of what properties the
solutions have through the lens of conditional independence and game theory. In the experimental
section, we will show that solutions to (Puni) provide insights that neither (Psuf) nor (Pnec) offer.

4.1 SOLUTIONS TO THE UNIFIED PROBLEM

We begin with a simple lemma that demonstrates why (Puni) enforces both sufficiency and necessity.

Lemma 4.1. Let α ∈ (0, 1). For τ > 0, denote S∗ to be a solution to (Puni) for which
∆uni

V (S, f,x, α) = ϵ. Then, S∗ is ϵ
α -sufficient and ϵ

1−α -necessary. Formally,

0 ≤ ∆suf
V (S∗, f,x) ≤ ϵ

α
and 0 ≤ ∆nec

V (S∗, f,x) ≤ ϵ

1− α
. (3)

The proof of this result, and all others, is included Appendix A.1. This result illustrates that solutions
to (Puni) satisfy varying definitions of sufficiency and necessity. Furthermore, as α increases from 0
to 1, the solution shifts from being highly necessary to highly sufficient. In the following results, we
will show when and how solutions to (Puni) are similar (and different) to those of (Psuf) and (Pnec).
To start, we present the following lemma, which will be useful in subsequent results.

Lemma 4.2. For 0 ≤ ϵ < ρ(f(x),f∅(x))
2 , denote S∗

suf and S∗
nec to be ϵ-sufficient and ϵ-necessary sets.

Then, if S∗
suf is ϵ-super sufficient or S∗

nec is ϵ-super necessary, we have S∗
suf ∩ S∗

nec ̸= ∅.

This lemma demonstrates that, given ϵ-sufficient and necessary sets S∗
suf and S∗

nec, if either addition-
ally satisfies the stronger notions of super sufficiency or necessity, they must share some features.
This proves useful in characterizing a solution to (Puni), which we now do in the following theorem.
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Theorem 4.1. Let τ1, τ2 > 0 and 0 ≤ ϵ < 1
2 · ρ(f(x), f∅(x)). Denote S∗

suf and S∗
nec to be ϵ-super

sufficient and ϵ-super necessary solutions to (Psuf) and (Pnec), respectively, such that |S∗
suf | = τ1

and |S∗
nec| = τ2. Then, there exists a set S∗ such that

∆uni
V (S∗, f,x, α) ≤ ϵ and max(τ1, τ2) ≤ |S∗| < τ1 + τ2. (4)

Furthermore, if S∗
suf ⊆ S∗

nec or S∗
nec ⊆ S∗

suf. then S∗ = S∗
nec or S∗ = S∗

suf, respectively.

This result demonstrates that when there are ϵ-super sufficient and ϵ-super necessary solutions to
(Psuf) and (Pnec), then one can identify a set S∗ with small ∆uni. As an example, consider features
that are ϵ-super sufficient, S∗

suf. If we have domain knowledge that S∗
suf ⊆ S∗

nec, and S∗
nec is ϵ-super

necessary, then S∗
nec will have a small ∆uni Conversely, if we know that S∗

suf is ϵ-super necessary
along with being a subset of ϵ-super sufficient set S∗

suf, then S∗
suf will have a small ∆uni.

5 TWO PERSPECTIVES OF THE UNIFIED APPROACH

In the previous section, we characterized solutions to (Puni) and their connections to those of (Psuf)
and (Pnec). To further motivate and the unified approach, we now offer two alternative perspectives
of our framework through the lens of conditional independence and Shapley values.

5.1 A CONDITIONAL INDEPENDENCE PERSPECTIVE

Here we demonstrate how sufficiency, necessity, and their unification, can be understood as condi-
tional independence relations between features X and label Y .
Corollary 5.1. Suppose ∀S ⊆ [d], VS = p(XS |XSc = xSc). Let α ∈ (0, 1), ϵ ≥ 0, and denote
ρ : R× R 7→ R to be a metric. Furthermore, for τ > 0 and f(X) = E[Y | X], let S∗ be a solution
to (Puni) such that ∆uni

V (S, f,x, α) = ϵ. Then, S∗ satisfies the follow conditional independencies,

ρ (E[Y | x], E[Y | XS∗ = xS∗ ]) ≤ ϵ

α
and ρ

(
E[Y | XS∗

c
= xS∗

c
], E[Y ]

)
≤ ϵ

1− α
. (5)

The assumption in this corollary is that, ∀ S ⊆ [d], fS(x) is evaluated using the conditional dis-
tribution p(XSc | XS = xS) as the reference distribution VS . Given the recent advancements in
generative models (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021), this assumption is (ap-
proximately) reasonable in many practical settings, as we will demonstrate in our experiments. For
this particular VS , the result shows that minimizing (Puni) with model f(X) = E[Y | X] identifies
an S∗ that approximately satisfies two conditional independence properties. First, S∗ is sufficient as
conditioning on S∗ leaves the complement Sc∗ with minimal additional information about Y . Sec-
ond, S∗ is necessary because when we solely rely on the complement Sc∗, the information gained
about Y is minimal and similar to E[Y = 1].

5.2 A SHAPLEY VALUE PERSPECTIVE

In the previous section, we detailed the conditional independence relations being optimized for
when solving (Puni). We now present an arguably less intuitive result that shows that solving (Puni)
is equivalent to maximizing the lower bound of the Shapley value. Before presenting our result, we
provide a brief background on this game-theoretic quantity.

Shapley Values. Shapley values use game theory to measure the importance of players in a
game. Let the tuple ([n], v) represent a cooperative game with players [n] = {1, 2, . . . , n} and
denote a characteristic function v(S) : P([n]) → R, Then, the Shapley value (Shapley, 1951)
for player j in the game ([n], v) is ϕshap

j ([n], v) =
∑

S⊆[n]\{j} wS · [v(S ∪ {j})− v(S)] where

wS = |S|!(n−|S|−1)!
n! . In the context of XAI, Shapley values are widely used to measure local feature

importance by treating input features as players in a game (Covert et al., 2020; Teneggi et al., 2022;
Chen et al., 2018b; Lundberg & Lee, 2017). Given a sample x and a model f , the importance of xj

to the prediction f(x) is measured by computing ϕshap
j for a game ([d], v), where v(S) quantifies

how the features in S contribute to f(x). Different choices of v(S) can be found in (Lundberg &
Lee, 2017; Sundararajan & Najmi, 2020; Watson et al., 2024). Although computing ϕshap

j is com-
putationally intractable, several practical methods for estimation have been developed (Chen et al.,
2023; Teneggi et al., 2022; Zhang et al., 2023; Lundberg et al., 2020). While Shapley values are
popular across various domains (Moncada-Torres et al., 2021; Zoabi et al., 2021; Liu et al., 2021),
few works, aside from Watson et al. (2021), explore their connections to sufficiency and necessity.

5
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With this background, we now present our result. Recall solving (Puni) finds a small subset S with
low ∆uni

V (S, f,x, α). Notice that (Puni) naturally partitions the features into two sets, S and Sc.
In the following theorem we demonstrate that finding a small S with minimal ∆uni

V (S, f,x, α) is
equivalent to maximizing a lower bound on the Shapley value in a two player game.
Theorem 5.1. Consider an input x for which f(x) ̸= f∅(x). Denote by Λd = {S, Sc} the partition
of [d] = {1, 2, . . . , d}, and define the characteristic function to be v(S) = −ρ(f(x), fS(x)). Then,

ϕshap
S (Λd, v) ≥ ρ(f(x), f∅(x))−∆uni

V (S, f,x, α). (6)

This result motivates minimizing ∆uni
V (S, f,x, α) via a game-theoretic interpretation. The tuple

(Λd, v) specifies a game, and since there are 2d−1 ways to partition [d] into 2 subsets, there are 2d−1

games. The inequality above holds for each of them. Thus, Theorem 5.1 implies that finding the S
with minimal ∆uni

V (S, f,x, α) is equivalent to identifying the game (i.e. partition) (Λd, v) in which
S has the largest lower bound on its Shapley value.

6 SOLVING THE UNIFIED PROBLEM

Before presenting our results, we briefly discuss different approaches to solving (Puni). In general,
this problem is NP-hard however, in certain settings, one can efficiently compute exact solutions or
use tractable relaxations, (Kolek et al., 2022; Fong et al., 2019; Linder et al., 2022) to approximate
solutions. We present these general approaches here, and defer details to Appendix A.2.

Exhaustive Search. When the feature space dimension, d, or choice of τ ∈ Z>0 is small an
exhaustive search can compute exact solutions to (Puni) by evaluating ∆uni

V (S, f,x, α) for all
(
d
τ

)
subsets S of cardinality τ and selecting the minimizer.

Instance-wise Optimization. When d is large, rendering (Puni) intractable, one can generate ap-
proximate solutions by solving the relaxed problem1

arg min
S⊆[0,1]d

∆uni
V (S, f,x, α) + λ1 · ||S||1 + λTV · ||S||TV . (7)

This type of approach is often used in computer vision and natural language problems (Fong et al.,
2019; Kolek et al., 2022; Linder et al., 2022) to generate instance-specific solutions.

Parametric Model Approach. Another we approach we take to generate solutions to (Puni) is to
learn models gθ : X 7→ [0, 1]d that (approximately) solve the following optimization problem:

arg min
θ∈Θ

E
X∼DX

[
∆uni

V (gθ(X), f,X, α) + λ1 · ||gθ(X)||1 + λTV · ||gθ(X)||TV

]
. (8)

With these models, an approximate solution can be computed via gθ(x). This method is popular
(Chen et al., 2018a; Yoon et al., 2018; Linder et al., 2022), as it handles highly structured data well
and requires training only one model, rather than repeatedly solving Eq. (7) for each sample.

7 EXPERIMENTS

We demonstrate our theoretical findings in multiple settings of increasingly complexity: two tab-
ular data tasks (on synthetic data and the US adult income dataset (Ding et al., 2021)) and two
high-dimensional image classification tasks using the RSNA 2019 Brain CT Hemorrhage Challenge
(Flanders et al., 2020) and CelebA-HQ datasets (Lee et al., 2020)

7.1 TABULAR DATA

With the following tabular data settings, we demonstrate how the specific trade-off between suffi-
ciently and necessity can greatly alter the solutions to (Puni). To do so, we compute exact solutions
via exhaustive search to (Puni) for varying levels of sufficiency vs. necessity and multiple size
constraints. We learn a predictor f and, for 100 new samples, solve (Puni) for τ ∈ {3, 6, 9} and
α ∈ [0, 1], with ρ(a, b) = |a − b| and VS = p(XS | XSc = xSc). For a fixed τ and sample x, we
denote S∗

αi
to be a solution to (Puni) for αi. It is represented as a binary vector s ∈ {0, 1}10, where

sj = 1 if j ∈ S∗
αi

and 0 otherwise. To analyze the stability of S∗
αi

as sufficiency and necessity vary,
we report the normalized average Hamming distance (Hamming, 1950) between S∗

αi
and S∗

0 (with
95% confidence intervals) as a function of α.

1Here, λ1, ||S||1 and λTV, ||S||TV are the ℓ1 and Total Variation norms and hyperparamters, respectively,
promoting sparsity and smoothness.
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7.1.1 LINEAR REGRESSION

We begin with a regression example. Features are distributed as X ∼ N (µ,AAT) with µ =[
2i
]d
i=1

and Ai,j ∼ U(0, 1). The response is Y = βTX + ϵ, with β = 32 · [2−i]di=1 and ϵ ∼
N (0, Id×d). We fix d = 10 and use the model f(X) = β̂TX, where β̂ is the least squares solution.

Stability of Unified Solutions. Fig. 1a shows that when solutions are constrained to be small (τ =
3), increasing α to enforce greater sufficiency results in a steady increase inHamming distance,
indicating that the solutions S∗

αi
are consistently changing. When larger solutions are allowed (τ =

6), S∗
αi

rapidly changes with the introduction of sufficiency, as seen by the initial steep rise in
Hamming distance. However, as α continues to increase, this distance grows more gradually. Lastly,
when the solution size approaches the dimension of the feature space (τ = 9), small to medium
levels of sufficiency do not significantly alter S∗

αi
. However, high levels of sufficiency (α > 0.8)

lead to extreme changes in the solutions, as shown by a sharp increase in Hamming distance.

7.1.2 AMERICAN COMMUNITY SURVEY INCOME (ACSINCOME)
We use the ACSIncome dataset for California, including 10 demographic and socioeconomic fea-
tures such as age, education, occupation, and geographic region. We train a Random Forest classifier
to predict whether an individual’s annual income exceeds $50K, achieving a test accuracy ≈ 81%.
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Figure 1: Stability of (Puni) Solutions

Stability of Unified Solutions. Fig. 1b shows that when
solutions are forced to be small (τ = 3), increasing α to en-
force sufficiency results in a steady increase in Hamming
distance, indicating the solutions S∗

αi
are changing. For

larger solutions (τ = 6), S∗
αi

changes significantly when low
levels sufficiency are required, indicated by initial rise in the
Hamming distance. As α continues to increase, the Ham-
ming distance grows more gradually. Interestingly, when
the size is close to feature space’s dimensionality (τ = 9),
the Hamming distance exhibits a behavior similar to that ob-
served for τ = 3. In conclusion, both examples show that the
optimal feature set can vary depending on the size constraint
and balance between sufficiency and necessity.

7.2 IMAGE CLASSIFICATION

The following two experiments explore high dimensional
image classification tasks. The features are pixel values
and so a subset S corresponds to a binary mask identify-
ing important pixels. Since solving (Psuf), (Pnec), or (Puni)
is intractable here, we use two methods, the per-sample and
model based approach in Eqs. (7) and (8) to identify suf-
ficient and necessary masks. These experiments serve two
purposes. First, they will analyze the ability popular expla-
nation methods–including Integrated Gradients (Sundararajan et al., 2017), GradientSHAP (Lund-
berg & Lee, 2017), Guided GradCAM (Selvaraju et al., 2017), and h-Shap (Teneggi et al., 2022)–to
identify small sufficient and necessary subsets. To ensure consistent analysis, all attribution scores
are normalized to the interval [0, 1]. This is done by setting the top 1% of nonzero scores to 1 and
dividing the remaining by the minimum score from the top 1% nonzero scores, which is common
practice (Kokhlikyan et al., 2020). Binary masks are then generated by thresholding the normalized
scores using thresholds t ∈ (0, 1). For a test set of images and normalized attribution scores, we re-
port the average (across all binary masks) − log(∆suf), − log(∆nec), and − log(L0) where L0 is the
relative size of S for t ∈ (0, 1) to analyze the sufficiency, necessity and size of the explanations. The
second objective of these experiments is to understand and visualize the similarities and differences
between sufficient and necessary sets.

7.2.1 RSNA CT HEMORRHAGE

We use the RSNA 2019 Brain CT Hemorrhage Challenge dataset comprised of 752,803 scans. Each
scan is annotated by expert neuroradiologists with the presence and type(s) of hemorrhage (i.e.,
epidural, intraparenchymal, intraventricular, subarachnoid, or subdural). We use a ResNet18 (He
et al., 2016) classifier that was pretrained on this data (Teneggi et al., 2022). Since the dataset

7
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(a) Comparison of different methods.

Original Image S *
suf S *

nec S *
uni

(b) S∗
suf, S

∗
nec and S∗

uni for various CT scans.

Figure 2: Experimental results on the RSNA dataset.

consists of highly complex and diverse images, we employ the per-example approach in Eq. (7)
with α ∈ {0, 0.5, 1} to learn sufficient and necessary masks. Further details are in Appendix A.2.

Comparison of Post-hoc Interpretability Methods. For a set of 20 images positively classified by
the ResNet model, we apply multiple post-hoc interpretability methods, as well as compute sufficient
and necessary masks by solving (7). The results in Fig. 2a show that for thresholds t < 0.1, many
methods identify sufficient sets smaller in size than the sufficient and unified explainer, as indicated
by their large values of − log(∆suf) and smaller values of − log(L0). However, for t > 0.1, only the
sufficient and unified explainer identify sufficient sets of a constant small size. Importantly, no meth-
ods, besides the necessity and unified explainers, identify necessary sets. Furthermore, as expected,
the sufficient explainer does not identify necessary sets and vice versa. The unified explainer, as
expected, identifies a sufficient and necessary set (at the cost of a larger set). In conclusion, while
off-the-shelf methods can identify sufficient, they do not identify necessary sets for small thresholds.

Sufficiency vs. Necessity. In Fig. 2b we visualize the sufficient and necessary features in various
CT scans. The first observation is that sufficient subsets do not provide a complete picture of which
features are important. Notice for all the CT scans, a sufficient set, S∗

suf highlights one or two, but
never all, brain hemorrhages in the scans. For example, in the last row, S∗

suf only contains the right
frontal lobe parenchymal hemorrhages, which happens to be one of the larger hemorrhages present.
On the other hand, necessary sets, S∗

nec, contain parts of, sometimes entirely, all hemorrhages in the
scans. In the last row, S∗

nec contains all multifocal parenchymal hemorrhages in both right and left
frontal lobes, because when all these regions are masked, the model yields a prediction ≈ 0.64–
the prediction of the model on the mean image. Finally, notice in the 2nd and 3rd columns that
S∗

nec and S∗
uni are nearly identical, which precisely demonstrate Lemma 4.1 and Theorem 4.1 in

practice. First, since S∗
suf is super sufficient, S∗

suf and S∗
nec, share common features. Second, visually

S∗
suf ⊆ S∗

nec holds approximately and so S∗
nec = S∗

uni. Through this experiment we are able to
highlight the differences between sufficient and necessary sets, show how each contain important
and complementary information, and demonstrate our theory holding in real world settings.

7.2.2 CELEBA-HQ

We use a modified version of the CelebA-HQ dataset (Karras, 2017) that contains 30,000 celebrity
faces resized to 256×256 pixels. We train a ResNet18 to classify whether a celebrity is smiling,
achieving a test accuracy ≈ 94% and use the model based approach via solving Eq. (8) to generate
sufficient and necessary masks. Given the structured nature of the dataset and the similarity of
features across images, we use the model approach because it prevents overfitting to spurious signals

8
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Figure 3: Comparison of different methods on the CelebAHQ dataset.

(Linder et al., 2022), an issue that can arise with per-example methods. Implementation details and
hyperparameter settings are included in Appendix A.2.

Comparison of Post-hoc Interpretability Methods. For a set of 100 images labeled with a smile
and correctly classified by the ResNet classifier, we apply multiple post-hoc interpretability methods
and our sufficient and necessary explainers to identify important features associated with smiling.
The results in Fig. 3 illustrate that for a wide range of thresholds t ∈ [0, 1], many methods identify
sufficient subsets, as − log(∆suf) for many of them is comparable to that of the sufficient explainer.
The necessary explainer, in fact, identifies subsets that are more sufficient than those found by the
sufficient explainer. The reason is that the sufficient explainer identifies subsets that are, on average,
smaller for all t ∈ [0, 1], while the necessary explainer finds subsets that are constant in size for
all t ∈ [0, 1] but slightly larger since, to be necessary, they must contain more features that provide
additional information about the label. For other methods, as t increases, subset size decreases, and
the sufficiency and necessity of the solutions decline. Meanwhile, the necessary explainer naturally
identifies necessary subsets, indicated by large − log(∆nec), whereas other methods fail to do so. In
conclusion, many methods can identify sufficient sets, but not necessary ones and directly optimizing
for these criterion leads to identifying small, constant-sized subsets across thresholds.

Sufficiency vs. Necessity. In Fig. 4, we see how sufficient subsets alone may overlook important
features, while solutions to (Puni) offer deeper insights. As stated earlier, the sufficient explainer
identifies sets that are sufficient but not necessary. On the other hand, the necessary explainer has
high − log(∆suf) and − log(∆nec), indicating that it identifies sufficient and necessary set, meaning
they also serve as solutions to (Puni). In Fig. 4, we visualize the reasons for this phenomena. Notice
that S∗

suf precisely highlights (only) the smile. When S∗
suf is fixed, one can generate new images (as

done in (Zhang et al., 2023)) for which the model produces the same predictions as it did for the
original image (a smile). On the other hand, we also see why S∗

suf is not necessary: we can fix the
complement (S∗

suf)c and, since there are important features in it, a smile is consistently generated,
and the model produces the same prediction on these images as it did on the original. Conversely
solutions to (Pnec) (also solutions to (Puni) here) generate different explanations that provide a more
complete picture of feature importance. Notice that S∗

nec is sufficient because S∗
suf ⊆ S∗

nec, with the
additional features mainly being the dimples and eyes, which aid in determining the presence of a
smile. More importantly, Fig. 5 illustrates why S∗

nec is necessary: when we fix the complement of
S∗

nec and generate new samples, half of the faces lack a smile, leading the model f to predict no
smile. Additional images and details on sample generation are in Appendices A.2 and A.4.

8 LIMITATIONS & BROADER IMPACTS

While this work provides a novel theoretical contribution to the XAI community, there are some
limitations that require careful discussion. The choice of reference distribution VS determines the
characteristics of sufficient and necessary explanations. For instance, only with the true conditional
data distribution can one obtain the conditional independence results that our theory provides. Natu-
rally, there are computational trade-offs that must be carefully studied; the ability to learn and sample
from accurate conditional distributions to generate explanations with clear statistical meaning comes
with a computational and statistical cost, particularly in high-dimensional settings. Thus, a key di-
rection for future work is to explore the impact of different reference distributions and provide a
principled framework for selecting a VS that balances practical utility and computational feasibility.

Another relevant question is how well our proposed notions align with human intuition. While we
aim to understand which features are sufficient and necessary for a given predicted model, these
explanations may not always correspond to how humans perceive importance (since model might
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Figure 4: Images and model predictions by fixing and masking the sufficient subset S∗
suf
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Figure 5: Images and model predictions by fixing and masking the necessary subset S∗
nec

use different features to solve a task). This can be an issue in settings where interpretability is
essential for trust and accountability, such as in healthcare. On the one hand, our approach can
provide useful insights to further evaluate models (e.g. by verifying if the sufficient and necessary
features employed by models correlate with the correct ones as informed by human experts). On
the other hand, bridging the gap between our mathematical definitions of sufficiency and necessity
and other human notions of importance is an area for further investigation. User studies, along
with collaboration with domain experts, will be critical in determining how our formal notions of
sufficiency and necessity can be adapted or extended to better meet real-world interpretability needs.

Finally, the societal impact of this work warrants discussion. While we offer a rigorous framework to
understand model predictions, these are oblivious to notions of demographic bias (Hardt et al., 2016;
Feldman et al., 2015; Bharti et al., 2024). There is a risk that an “incorrect” choice of generating
a sufficient vs. necessary explanation could reinforce biases or obscure the causal reasons behind
predictions. Future work will study when and how our framework can incorporate these biases.

9 CONCLUSION

This work formalizes notions of sufficiency and necessity as tools to evaluate feature importance
and explain model predictions. We demonstrate that sufficient and necessary explanations, while
insightful, often provide incomplete while complementary answers to model behavior. To address
this limitation, we propose a unified approach that offers a new and more nuanced understanding
of model behavior. Our unified approach expands the scope of explanations and reveals trade-offs
between sufficiency and necessity, giving rise to new interpretations of feature importance. Through
our theoretical contributions, we present conditions under which sufficiency and necessity align or
diverge, and provide two perspectives of our unified approach through the lens of conditional inde-
pendence and Shapley values. Our experimental results support our theoretical findings, providing
examples of how adjusting sufficiency-necessity trade-off via our unified approach can uncover
alternative sets of important features that would be missed by focusing solely on sufficiency or ne-
cessity. Furthermore, we evaluate common post-hoc interpretability methods showing that many fail
to reliably identify features that are necessary or sufficient. In summary, our work contributes to a
more complete understanding of feature importance through sufficiency and necessity. We believe,
and hope, our framework holds potential for advancing the rigorous interpretability of ML models.
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A APPENDIX

A.1 PROOFS

A.1.1 PROOF OF LEMMA 4.1

Lemma 4.1. Let α ∈ (0, 1). For τ > 0, denote S∗ to be a solution to (Puni) for which
∆uni

V (S∗, f,x, α) = ϵ. Then, S∗ is ϵ
α -sufficient and ϵ

1−α -necessary. Formally,

0 ≤ ∆suf
V (S∗, f,x) ≤ ϵ

α
and 0 ≤ ∆nec

V (S∗, f,x) ≤ ϵ

1− α
. (9)

Proof. Let τ > 0 and α ∈ (0, 1) and denote S∗ to be a solution to (Puni) such that

∆uni
V (S∗, f,x, α) = ϵ. (10)

Then, by definition of being a solution to (Puni),

|S∗| ≤ τ. (11)

Furthermore, recall that

∆uni
V (S∗, f,x, α) = α ·∆suf

V (S∗, f,x) + (1− α) ·∆nec
V (S∗, f,x) (12)

which implies

α ·∆suf
V (S∗, f,x) = ϵ− (1− α) ·∆nec

V (S∗, f,x) (13)

≤ ϵ ((1− α), ∆nec
V (S∗, f,x) ≥ 0) (14)

=⇒ ∆suf
V (S∗, f,x) ≤ ϵ

α
. (15)

Similarly,

(1− α) ·∆nec
V (S∗, f,x) = ϵ− α ·∆suf

V (S∗, f,x) (16)

≤ ϵ (α, ∆suf
V (S∗, f,x) ≥ 0) (17)

=⇒ ∆nec
V (S∗, f,x) ≤ ϵ

1− α
. (18)

A.1.2 PROOF OF LEMMA 4.2

Lemma 4.2. For 0 ≤ ϵ < ρ(f(x),f∅(x))
2 , denote S∗

suf and S∗
nec to be ϵ-sufficient and ϵ-necessary sets.

Then, if S∗
suf is ϵ-super sufficient or S∗

nec is ϵ-super necessary,

S∗
suf ∩ S∗

nec ̸= ∅. (19)

Proof. We will prove the result via contradiction. First recall that,

fS(x) = E
XSc∼VSc

[f(xS ,XSc)] (20)

and, for any metric ρ : R× R 7→ R,

∆suf
V (S, f,x) ≜ ρ(f(x), fS(x)) (21)

∆nec
V (S, f,x) ≜ ρ(fSc(x), f∅(x)). (22)

Since ρ is a metric on R, it satisfies the triangle inequality. Thus, for a, b, c ∈ R

ρ(a, c) ≤ ρ(a, b) + ρ(b, c). (23)

Now, let S∗
suf be ϵ-super sufficient and suppose

S∗
suf ∩ S∗

nec = ∅. (24)
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This implies

S∗
suf ⊆ (S∗

nec)c. (25)

Subsequently, since S∗
suf is ϵ-super sufficient,

∆suf
V ((S∗

nec)c, f,x) ≤ ϵ. (26)

As a result, observe

ρ(f(x), f∅(x)) ≤ ρ(f(x), f(S∗
nec)c(x)) + ρ(f(S∗

nec)c(x), f∅(x)) triangle inequality (27)

= ∆suf
V ((S∗

nec)c, f,x) + ∆nec
V ((S∗

nec)c, f,x) (28)

≤ ϵ+∆nec
V ((S∗

nec)c, f,x) S∗
suf is ϵ-super sufficient (29)

≤ 2ϵ S∗
nec is ϵ-necessary (30)

=⇒ ϵ ≥ ρ(f(x), f∅(x))

2
(31)

which is a contradiction because 0 ≤ ϵ < ρ(f(x),f∅(x))
2 . Thus S∗

suf ∩ S∗
nec ̸= ∅. The proof of this

result assuming S∗
nec is ϵ-super necessary follows the same argument.

A.1.3 PROOF OF THEOREM 4.1

Theorem 4.1. Let τ1, τ2 > 0 and 0 ≤ ϵ < 1
2 · ρ(f(x), f∅(x)). Denote S∗

suf and S∗
nec to be ϵ-super

sufficient and ϵ-super necessary solutions to (Psuf) and (Pnec), respectively, such that |S∗
suf | = τ1

and |S∗
nec| = τ2. Then, there exists a set S∗ such that

∆uni
V (S∗, f,x, α) ≤ ϵ and max(τ1, τ2) ≤ |S∗| < τ1 + τ2. (32)

Furthermore, if S∗
suf ⊆ S∗

nec or S∗
nec ⊆ S∗

suf. then S∗ = S∗
nec or S∗ = S∗

suf, respectively.

Proof. Consider the set S∗ = S∗
suf ∪ S∗

nec. This set has the following properties:

(P1) S∗ is ϵ-sufficient because S∗
suf is ϵ-super sufficient

(P2) S∗ is ϵ-necessary because S∗
suf is ϵ-super necessary

(P3) |S∗| ≥ max(τ1, τ2) with |S∗| = τ1 when S∗
nec ⊂ S∗

suf and with |S∗| = τ2 when S∗
suf ⊂

S∗
nec

(P4) Via Lemma 4.1, we know S∗
suf ∩ S∗

nec ̸= ∅ thus |S∗| < τ1 + τ2

Then by (P1) and (P2)

∆uni
V (S∗, f,x, α) = α ·∆suf

V (S∗, f,x) + (1− α) ·∆nec
V (S∗, f,x) (33)

≤ α · ϵ+ (1− α) · ϵ = ϵ (34)

and by (P3) and (P4) we have max(τ1, τ2) ≤ |S∗| < τ1 + τ2,

A.1.4 PROOF OF COROLLARY 5.1

Corollary 5.1. Suppose for any S ⊆ [d], VS = p(XS | XSc = xSc). Let α ∈ (0, 1), ϵ ≥ 0, and
denote ρ : R × R 7→ R to be a metric on R. Furthermore, for f(X) = E[Y | X] and τ > 0, let S∗

be a solution to (Puni) such that ∆uni
V (S, f,x, α) = ϵ. Then, S∗ satisfies the following conditional

independence relations,

ρ (E[Y | x], E[Y | XS∗ = xS∗ ]) ≤ ϵ

α
and ρ

(
E[Y | XS∗

c
= xS∗

c
], E[Y ]

)
≤ ϵ

1− α
. (35)

Proof. All we need to show is that when VS = p(XS | XSc = xSc) and f(X) = E[Y | X], we
have

fS(x) = E[Y | XS = xS ]. (36)
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Once this is proven, we can simply apply Lemma 4.1.

To this end, we have by assumption that f(x) = E[Y | X = x] and, for any S ⊆ [d], VS = p(XS |
XSc = xSc). Then by definition

fS(x) = EVSc [f(xS ,XSc)] =

∫
X
f(xS ,XSc) · p(XSc | XS = xS) dXSc (37)

=

∫
X
E[Y | XS = xS ,XSc ] · p(XSc | XS = xS) dXSc (38)

=

∫
X

(∫
Y
y · p(y | XS = xS ,XSc) dy

)
· p(XSc | XS = xS) dXSc

(39)

=

∫
Y
y

(∫
X
p(y,XSc | XS = xS) dXSc

)
dy (40)

=

∫
Y
y · p(y | XS = xS) dy (41)

= E[Y | XS = xS ]. (42)

By applying Lemma 4.1, we have the desired result.

A.1.5 PROOF OF THEOREM 5.1

Theorem 5.1. Consider an input x for which f(x) ̸= f∅(x). Denote by Λd = {S, Sc} the partition
of [d] = {1, 2, . . . , d}, and define the characteristic function to be v(S) = −ρ(f(x), fS(x)). Then,

ϕshap
S (Λd, v) ≥ ρ(f(x), f∅(x))−∆uni

V (S, f,x, α). (43)

Proof. Before we prove the result, recall the following properties of a metric ρ in the reals:

(P1) ∀a, b ∈ R, ρ(a, b) = 0 ⇐⇒ a = b

(P2) for a, b, c ∈ R, ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

Now, for the partition Λd = {S, Sc} of [d] = {1, 2, . . . , d} and characteristic function v(S) =

−ρ(f(x), fS(x)), ϕ
shap
S (Λd, v) is defined as

ϕshap
S (Λd, v) =

1

2
· [v(S ∪ Sc)− v(Sc)] +

1

2
· [v(S)− v(∅)] (44)

=
1

2
· [ρ(f(x), fSc(x))− ρ(f(x), f(x))] +

1

2
· [ρ(f(x), f∅(x))− ρ(f(x), fS(x))]

(45)

=
1

2
· [ρ(f(x), fSc(x))] +

1

2
· [ρ(f(x), f∅(x))− ρ(f(x), fS(x))] by (P1) (46)

By (P2)

ρ(f(x), f∅(x)) ≤ ρ(f(x), fSc(x)) + ρ(fSc(x), f∅(x)) (47)
=⇒ ρ(f(x), fSc(x)) ≥ ρ(f(x), f∅(x))− ρ(fSc(x), f∅(x)). (48)

Thus

ϕshap
S (Λd, v) =

1

2
· [ρ(f(x), fSc(x))] +

1

2
· [ρ(f(x), f∅(x))− ρ(f(x), fS(x))] (49)

≥ 1

2
· [ρ(f(x), f∅(x))− ρ(fSc(x), f∅(x))] +

1

2
· [ρ(f(x), f∅(x))− ρ(f(x), fS(x))]

(50)

= ρ(f(x), f∅(x))−∆uni
V (S, f,x, α). (51)
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A.2 ADDITIONAL EXPERIMENTAL DETAILS

In this section, we include further experimental details. All experiments were performed on a private
cluster with 8 NVIDIA RTX A5000 with 24 GB of memory. All scripts were run on PyTorch
2.0.1, Python 3.11.5, and CUDA 12.2.

A.2.1 RSNA CT HEMORRHAGE

Dataset Details. The RSNA 2019 Brain CT Hemorrhage Challenge dataset (Flanders et al., 2020),
contains 752803 images labeled by a panel of board-certified radiologists with the types of hemor-
rhage present (epidural, intraparenchymal, intraventricular, subarachnoid, subdural).

Implementation. Recall for this experiment, to identify sufficient and necessary masks S for a
sample x, we considered the relaxed optimization problem (Fong et al., 2019; Kolek et al., 2022)

arg min
S⊆[0,1]d

∆uni
V (S, f,x, α) + λ1 · ||S||1 + λTV · ||S||TV . (52)

where ||S||1 and ||S||TV are the L1 and Total Variation norm of S, which promote sparsity and
smoothness respectively and λSp and λSm are the associated. To solve this problem, a mask
S ∈ [0, 1]512×512 is initialized with entries Si ∼ N (0.5, 1

36 ). For 1000 iterations, the mask S
is iteratively updated to minimize

α · |f(x)− fS(x)|+ (1− α) · |f(x)− fS(x)|+ λ1 · ||S||1 + λTV · ||S||TV (53)

where for any S,

fS(x) =
1

K

K∑
i=1

f((X̃S)i) with (X̃S)i = x ◦ 1̃S + (1− 1̃S) ◦ bi. (54)

Here the entries (1̃S)i ∼ Bernoulli(Si) and bi is the ith entry of a vector b = (b1, · · · , bd) ∼ V . In
our implementation the reference distribution V is the unconditional mean image over the of training
images and so bi is the simply the average value of the ith pixel over the training set. To allow for
differentiation during optimization, we generate discrete samples 1̃S using the Gumbel-Softmax
distribution. This methodology simply implies the entries (X̃S)i is a Bernoulli distribution with
outcomes {bi, xi}, i.e. (X̃S)i is distributed as

Pr[(X̃S)i = xi] = Si (55)

Pr[(X̃S)i = bi] = 1− Si (56)

For each α ∈ {0, 0.5, 1}, during optimization we set K = 10, λ1 = 3 and λTV = 20 and use the
Adam optimizer with default β-parameters of β1 = 0.9, β2 = 0.99 and a fixed learning rate of 0.01.
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A.2.2 CELEBA-HQ

Dataset Details. We use a modified version of the CelebA-HQ dataset (Lee et al., 2020; Kar-
ras, 2017) which contains 30,000 celebrity faces resized to 256×256 pixels with several landmark
locations and binary attributes (e.g., eyeglasses, bangs, smiling).

Implementation. Recall for this experiment, to generate sufficient or necessary masks S for sam-
ples x, we learn a model gθ : X 7→ [0, 1]d via solving the following optimization problem:

arg min
θ∈Θ

E
X∼DX

[
∆uni

V (gθ(X), f,X, α) + λ1 · ||gθ(X)||1 + λTV · ||gθ(X)||TV

]
(57)

To learn sufficient and necessary explainer models, we solve Eq. (8) via empirical risk minimization
for α ∈ {0, 1} respectively. Given N samples {Xi}Ni=1

i.i.d.∼ DX , we solve

1

N

N∑
i=1

[
∆uni

V (gθ(Xi), f,Xi, α) + λ1 · ||gθ(Xi)||1 + λTV · ||gθ(Xi)||TV

]
. (58)

Here

∆uni
V (gθ(xi), f,xi, α) = α · |f(xi)− fS(xi)|+ (1− α) · |f(xi)− fS(xi)| (59)

where is fS(xi) is evaluated in the same manner as in the RSNA experiment. For α = 0, λ1 = 0.1
and λTV = 100. For α = 1, λ1 = 1 and λTV = 10. For both α, during optimization we use a
batch size of 32, set K = 10 and use the Adam optimizer with default β-parameters of β1 = 0.9,
β2 = 0.99 and a fixed learning rate of 1× 10−4

Sampling. To generate the samples in Figs. 4 and 5, samples we use the CoPaint method (Zhang
et al., 2023). We utilize their code base and pretrained diffusion models with the exact the same
parameters as reported in the paper to perform conditional generation. Everything used is available
at https://github.com/UCSB-NLP-Chang/CoPaint.
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Figure 7: Hamming distances between computed and optimal solutions for Psuf, Pnec, and Puni

A.3 ADDITIONAL EXPERIMENTS

A.3.1 SYNTHETIC EXAMPLE

We model features X ∈ R7, where Xi ∼ N (µi, σ
2
i ) for i ∈ {1, 4, 5, 6, 7}. The remaining features

and response Y follow:

X2 = 2 ·X1 + ϵ, Y = 4 ·X2 · 1{X2>10} + ϵ, X3 = 4 · Y + 15 ·X4 · 1{X4>0.5} + ϵ (60)

where ϵ ∼ N (0, 1). For X ∈ G := {X | X2 > 10, X4 > 1
2}, the data-generating

process is represented by the directed acyclic graph (DAG) shown in Fig. 6 (note X5, X6

and X7 are not depicted since they share no dependencies with any of the random variables).

X1 X2 Y

X4 X3

Figure 6: DAG modeling the data-
generating process for X ∈ G

We can see that Y ⊥⊥ X{1,5,6,7}|X2,3,4 and Y ⊥⊥ X{4,5,6,7}.
Thus, for f(X) = E[Y | X] and VS = p(XSc | xS), the
solutions to Psuf, Pnec, and Puni with τ = 4 are:

S∗
suf = {2, 3, 4}, S∗

nec = {1, 2, 3}, S∗
uni = {1, 2, 3, 4}.

In this experiment, we train a general predictor (a three-layer
fully-connected neural network) to approximate E[Y | X] and

1. Validate the sets listed above are the optimal solutions.
2. Demonstrate that common post-hoc interpretability meth-

ods struggle to recover these solutions.

Validation of Solutions. For type ∈ {suf,nec,uni}, τ = 4, and 100 samples x ∈ G we compute
solutions to Ptype, denoted as Ŝtype, via exhaustive search. Fig. 7 shows that for all three problems,
the Hamming distance between Ŝtype and S∗

ptype is equal to 0 for a majority of the samples in G.
These results indicate that the solutions computed via an exhaustive search do typically retrieve the
correct solutions (the minor discrepancies are due to f(X) being an approximation of E[Y | X]).
More importantly, this setting is a clear example of how the unified approach provides a different
perspective of importance. One would not be able to identify the set S = {1, 2, 3, 4} as the most
important one without directly solving the unified problem.

Comparison with Post-hoc Methods For our model f and samples x ∈ G, we use Integrated
Gradients, Gradient Shapley, Deeplift, and Lime to generate attribution scores. To identify whether
these methods highlight sufficient and/or necessary features, and as done with our other experiments,
we perform the following steps on the attribution scores for a sample x (so that the outputs of all
methods are comparable)

1. We normalize the scores to the interval [0, 1] via min/max normalization.
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Figure 8: Comparison of various post-hoc methods

2. We generate binary masks St by thresholding the normalized scores with thresholds t ∈ (0, 1)

3. For type ∈ {suf,nec,uni}, we compute H(St, S
∗
type), the Hamming distance between St and

the true solutions to Psuf, Pnec, and Puni

The results in Fig. 8 illustrate that, in general, current post-hoc methods fail to recover the optimal
sufficient, necessary, or unified solutions. For thresholds t ∈ [0, 0.1], we see that Integrated Gradi-
ents and Deeplift recover solutions St that match the optimal sufficient solution S∗

suf. This indicates
these methods are capable of highlighting the sufficient features. Besides this observation, we see
that for thresholds t > 0.2 and all three problems, nearly all methods recover solutions St that have a
Hamming distance ≥ 2 to the optimal solution indicating that the solutions St and optimal solutions
S∗ differ by at least two elements. As a result, the conclusion is that most common methods do not
detect sufficient solutions and no methods detect necessary or unified solutions.
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A.4 ADDITIONAL FIGURES

A.4.1 RSNA CT HEMORRHAGE

Original Image S *
suf S *

nec S *
uni

Figure 9: S∗
suf, S

∗
nec and S∗

uni for various CT scans.

A.4.2 CELEBA-HQ
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Figure 10: Images and model predictions by fixing and masking the sufficient subset S∗
suf
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Figure 11: Images and model predictions by fixing and masking the necessary subset S∗
nec
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