
Improving Neural Network Surface Processing with
Principal Curvatures

Josquin Harrison
Inria

Sophia Antipolis
josquin.harrison@inria.fr

James Benn
Inria

Sophia Antipolis
james.benn@inria.fr

Maxime Sermesant
Inria

Sophia Antipolis
maxime.sermesant@inria.fr

Abstract

The modern study and use of surfaces is a research topic grounded in centuries of
mathematical and empirical inquiry. From a mathematical point of view, curvature
is an invariant that characterises the intrinsic geometry and the extrinsic shape of
a surface. Yet, in modern applications the focus has shifted away from finding
expressive representations of surfaces, and towards the design of efficient neural
network architectures to process them. The literature suggests a tendency to
either overlook the representation of the processed surface, or use overcomplicated
representations whose ability to capture the essential features of a surface is opaque.
We propose using curvature as the input of neural network architectures for surface
processing, and explore this proposition through experiments making use of the
shape operator. Our results show that using curvature as input leads to significant
a increase in performance on segmentation and classification tasks, while allowing
far less computational overhead than current methods.

1 Introduction

Surfaces are a natural representation for many real world objects ranging from organs and organisms
to archaeological artefacts. They are also a central tool in virtual environments such as computer
games, or computer-aided design. This ubiquity has resulted in a large body of work dedicated to
mathematical methods developed for the efficient use of surfaces, as well as their analysis.

The goal of traditional computational surface analysis is to find a representation of a surface that
is expressive enough to capture details relevant for the problem or task at hand, while being com-
putationally light-weight. However, the effectiveness of Convolutional Neural Network (CNN) in
image processing opened new doors to surface processing. The design of efficient convolution-like
operations to adapt neural networks (NN) to surfaces alleviated the need for complex and detailed rep-
resentations, to the point where most state of the art architectures use extrinsic vertex coordinates as
input, letting the NN models learn the surface structure at multiple scales. While some attempts were
made to use well known representations as inputs, yielding some increase in performance [38, 35],
the general consensus is that the model should be able to learn it by itself [25]. While it is true that
neural networks are efficient at capturing surface features at multiple scales, the use of a local surface
representation that is more expressive and more natural to interpret than extrinsic coordinates should
naturally improve the performance of the network. The optimal choice of representation should be
somewhere between coarse extrinsic vertex coordinates, and more complex representations.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

In Riemannian geometry, the shape operator is the main tool linking the intrinsic geometry of a
surface with its bending and curving in ambient space. Its eigenvalues are the principal curvatures.
Their product and evenly divided sum give precisely the Gauss and mean curvature of the surface,
respectively. We hypothesize that the optimal choice for a local surface representation that meets the
requirements of surface processing is the set of principal curvatures: they characterize the surface up
to isometry (location and orientation in space); they are purely local, which allows the neural network
to decide on more general surface features; and they are lightweight, leaving very little computational
overhead in any scenario. This work tests our hypothesis against two widely used representations of
surfaces in three state of the art NN architectures.

In the next section we give an overview of surface processing, and introduce shape representations
and learning methods. In section 3 we give an introduction to the Shape Operator, although we
should remark now that this is not the first appearance of the shape operator in the surface processing
literature. The shape operator has already become an efficient tool in surface processing and
is, among other things, used to define local tangent frames and compute surface features like
creases [31]. Following these introductions, we then conduct extensive experiments in section 4,
comparing principal curvature with three other representations in conjunction with three different
NN architectures, on two segmentation datasets and one classification dataset, that shows how
principal curvature enhances any state of the art model in different tasks. In addition to outperforming
other methods, we show that this more concise representation is faster to compute, leaving minimal
computational overhead when added to a pipeline.

2 Related work

The first step to surface processing is usually its discretisation as a mesh or point cloud, which is
particularly useful for visualisation or rendering. From this starting point, novel representations have
been derived in an effort to provide tools for different surface related tasks. These tasks include
surface matching, semantic segmentation, classification, or even shape retrieval.

Historically, the general trend has been to find compact descriptors of a shape which could be
then compared within a dataset. A long list of such descriptors exist, among them signature-
based descriptors, such as Heat Kernel Signature (HKS) [42] or wave kernel signature [4], proved
to be particularly efficient. Closely related are histogram methods, which are often combined
with signatures to provide expressive representations such as the SHOT [37] or the Echo [26]
descriptors. Geometric measure theory has also been a source of inspiration for developing efficient
representations, such as geometric currents [5] leveraging on finite elements, or kernel-based currents
[43] and varifolds [10] tailored for shape deformation. Such representations can be used in conjunction
with classical statistical analysis tools, e.g [26, 37, 5], although they are often building blocks for
specialised methods on surfaces such as LDDMM [49], functional maps [29] or spectral-based
analysis [45].

With the advent of deep learning, many methods previously stated were re-written with the help of
neural networks resulting in Deep functional maps [20], and ResNet-LDDMM [2], to name but a
few. Representations of surfaces themselves were proposed as neural networks, such as DeepSDF
[32] or DeepCurrents [30]. As convolutions proved particularly effective when learning on images,
i.e structured grids, some work proposed voxel-based solutions to the study of surfaces [23]. Others
suggested representing surfaces as geometric images [40], on which convolutions can be applied.
A second generation of geometric deep learning has focused on building network architecture
specifically tailored to work directly on surfaces, i.e meshes or point clouds. From a point cloud
perspective, Point Net [34] and its extension Point Net ++ [35] consider the surface as a set of points
by applying set operations on them. Among others, DGCNN [46] applies a convolution-like operation
on dynamic graphs constructed layer-wise. MeshCNN [16] on the other hand fully leverages the
mesh structure to develop operation unique to triangulations. Transformer based architectures have
also appeared for the specific purpose of surface processing [18]. Among them, and in a similar
vein as before, GaTr [8] proposes to represent geometric data in an algebra of choice and designs
an architecture with operations belonging to this algebra. An effort to have efficient generalisation
of convolutions on surfaces was proposed by [22], although the lack of global coordinates creates
ambiguity in local operations. To alleviate this problem, a large body of work has proposed rotation
equivariant operations, namely GemCNN [12], augmenting graph NNs, or field convolutions [25].
Finally, recent models propose to bypass the problem of generalising convolutions by focusing

2

on well defined operations on surfaces, such as discrete exterior calculus in Hodge Net [41], heat
diffusion in Diffusion Net [38] or a suit of known operators in Delta Net [48].

As model architectures include more and more knowledge of shapes, the need for a better repre-
sentation of the input to these models has decreased. Outside of models that contain operations
proper to the structure of choice (e.g [16, 8]), most models naturally accept as input the coordinates at
every point. Some papers propose to augment the model by inputing higher dimensional descriptors
initially designed for a more direct analysis, such as the ones previously mentioned (e.g HKS, WKS,
SHOT). Such proposals can be seen in [38], where HKS interacts well with the diffusion part of the
architecture, or [35] were they combine HKS, WKS, Gaussian curvature through concatenation and
PCA. However, recent work has dismissed this idea [25], citing the results of Diffusion Net [38]
which show no great improvement when moving from coordinates to HKS.

As methods for learning on surfaces have evolved, we suggest that a better input representation is
a simpler one, yet is more expressive than coordinates. We suggest that we can scale back to the
simplest differentiable invariant of a surface: its curvature.

3 The Shape Operator

Here we give a conceptual introduction to the Shape Operator and describe how its eigenvalues
completely characterize the surface to which it belongs (section 3.1). In section 3.2 we describe an
explicit calculation of the Shape Operator which igl’s implementation of the principal curvatures
is based on – this is the implementation we use in our experiments (see section 4.1). Those already
familiar with the differential geometry of curves and surfaces may skip ahead to section 4; for others
this section serves as a concise introduction – although, we do rely on a basic understanding of
functions of several variables and their derivatives, and surfaces and their tangent spaces.

Surfaces in R3 will be denoted by S and S, points in surfaces by p’s and q’s, and the tangent space
to S at a point p ∈ S by TpS. Maps from R3 to itself will be denoted by F : R3 → R3, and their
derivatives at a point p by DFp – the Jacobian matrix. A parameterisation X of a smooth surface S is
a diffeomorphism between an open set U ⊂ R2 and an open set V ⊂ S, and provides a mathematical
description of S as it lies in R3. The standard Euclidean inner product on R3 will be signified by
⟨·, ·⟩, and it’s restriction to a surface S and its tangent bundle TS =

∐
p∈S TpS by gS (·, ·), which

we call the induced metric. A normal vector to S at p is one which is orthogonal to every vector v in
TpS (measured in ⟨·, ·⟩) and will be denoted by Np; if we have a field of normal vectors in an open
set around p then this field will be denoted simply by N .

The Shape Operator of a surface S at a point p ∈ S measures the rate at which surface normal vectors
N separate around p, which is precisely the bending of the surface in space:

Definition 1 Given a point p on a surface S ⊂ R3, and the unit normal vector N defined on a
neighbourhood U of p, the shape operator is the linear map

Sp : TpS −→ TpS

v 7−→ −∇vN,

where TpS denotes the tangent space of S at point p

In other words, the shape operator Sp tells us how the normal vector changes as we move in S, in the
direction of v from p. One possible way to visualise the shape operator is through the Gauss map,
which identifies each point p ∈ S ⊂ R3 with its unit normal vector Np, now thought of as a point in
S2. The shape operator is then the differential of the Gauss map at p and is a tangent vector to S2 at
the image Np of p, as illustrated in figure 1.

The operator Sp is linear for each p ∈ S, and self-adjoint in the Euclidean inner product ⟨·, ·⟩:
⟨Sp(v), w⟩ = ⟨v,Sp(w)⟩. (1)

It can therefore be represented by a symmetric 2× 2 matrix [Sp] : TpS → TpS at each point p ∈ S.
It is well-known that symmetric matrices admit a complete system of orthonormal eigenvectors
(e1, e2) spanning the space on which they act. The matrix representation [Sp] with respect to the
basis (e1, e2) has the simple form:

[Sp] =

(
κ1 0
0 κ2

)
. (2)

3

Figure 1: The shape operator may be visualised via the Gauss map.

Where κ1 and κ2 are the eigenvalues of Sp.

Definition 2 Let S be a surface in R3, p a point in S, Sp the shape operator at p and [Sp] its matrix
representation.

1. The eigenvalues κ1(p) and κ2(p) of [Sp] at p are the principal curvatures of S at p, and
their corresponding eigenvectors e1 and e2 are the principal directions;

2. The Gauss curvature κ of S at p is the product κ1(p) · κ2(p) of the principal curvatures;

3. The mean curvature Hp is the average κ1(p)+κ2(p)
2 of the principal curvatures

The Gauss and mean curvatures can be equivalently interpreted as the determinant and half the trace
of [Sp], respectively.

The importance of these quantities is two-fold: (1) two surfaces differ only in location and orientation
in space if and only if they have the same principal curvatures (Theorems 9.1 and 9.2 in [28]) – that
is, the shape operator completely characterizes the shape of a surface; and (2) the Gauss and mean
curvature generate all possible differential invariants of a surface (see Guggenheim [15], Olver [27]) –
in particular, Gauss and mean curvature are fundamental characteristics of the shape of a surface, and
the inclusion of the higher order invariants they generate into a representation could even improve the
results shown here.

3.1 Congruence

To explain how Gauss and mean curvature completely describe the shape of a surface we need a few
more definitions.

An isometry of R3 is a map F : R3 → R3 whose differential preserves the angles between tangent
vectors at every point of Rn:

⟨v, w⟩p = ⟨DFp · v,DFp · w⟩p, ∀v, w ∈ TpR3. (3)

If gS is the Riemannian inner product induced on TS by the Euclidean inner product ⟨·, ·⟩ then an
isometry between two surfaces is a map η : S → S whose differential preserves the angles between
tangent vectors to S:

gS(v, w) = gS(Dη · v,Dη · w). (4)

Every isometry F of R3 restricts to an isometry of surfaces F |S = η : S → F (S), but the converse
need not be true, unless an additional hypothesis on the shape operators is satisfied.

Two surfaces S and S are congruent if there exists an isometry F : R3 → R3 such that F (S) = S;
that is, congruent surfaces are surfaces which differ only in their location and orientation in space. It
is clear that the shape operators S and S of two congruent surfaces are related by

DFp · Sp(v) = SF (p) (DFp · v) , ∀v ∈ TpS; (5)

in particular, the matrices [Sp] and [Sp] are conjugate to one another via [DFp]. As per Theorem 9.2
of [28], if there exists an isometry η : S → S such that

Dηp · Sp(v) = Sη(p) (Dηp · v) , ∀v ∈ TpS, (6)

4

i.e. such that the matrices [Sp] and [Sp] are conjugate to one another via the matrix representation
[Dηp], then there exists an isometry F : R3 → R3 such that F |S(S) = η(S) = S, and the two
surfaces are congruent. The conclusion of this brief mathematical digression is that two congruent
surfaces have the same intrinsic geometry and shape in space, and two surfaces with the same intrinsic
geometry and shape in space are congruent. This is what is sought after when representing shapes
with intrinsic quantities.

3.2 Discrete curvature

As well as being an important theoretical tool, curvature is a central notion in mesh processing. A
large body of work has been dedicated to estimating its discrete counterpart. Among them, many
methods propose to infer Gaussian curvature directly, such as in [24], or involve the use of geometric
measure theory [13], as in [11, 17]. Interestingly, many efficient methods propose to first discretize the
shape operator in order to compute the Gaussian curvature from it. This is done either directly on the
mesh triangles, such as in [36], or by first locally fitting a function to the surface, and then computing
explicitly the shape operator. To get a better feel for why this is a natural construction of the shape
operator, consider a surface S, given a point p ∈ S. Then the surface around p can be parameterized
as X(u, v) with (u, v) ∈ R2. The inner product at TpS, also called the first fundamental form, is
then given for any two tangent vectors v, w by:

(v, w)p = vT
(
E F
F G

)
w, (7)

where E = ⟨∂uX, ∂uX⟩, F = ⟨∂uX, ∂vX⟩ and G = ⟨∂vX, ∂vX⟩. And the surface normal at p can
be defined as

n =
∂uX(u, v)× ∂vX(u, v)

|∂uX(u, v)× ∂vX(u, v)|
. (8)

We can now define the second partial derivatives of X in the normal direction n, a quantity called the
second fundamental form, noted II:

II =

(
L M
M N

)
(9)

where L = ⟨∂uuX,n⟩, M = ⟨∂uvX,n⟩, and N = ⟨∂vvX,n⟩. The partial derivatives of the surface
normal can then be expressed via the Weingarten equations, in terms of the components of the first
and second fundamental form:

∂un =
FM −GL

EG− F 2
∂uX +

FL− EM

EG− F 2
∂vX

∂vn =
FN −GM

EG− F 2
∂uX +

FM − EN

EG− F 2
∂vX.

This enables us to write the matrix form of the shape operator at p as:

[Sp] = (EG− F 2)−1

(
LG−MF ME − LF
ME − LF NE −MF

)
(10)

From these derivations, it becomes interesting to find good local parametrisation of surfaces, that is, a
bi-variate scalar function f such that:

X(u, v) = (u, v, f(u, v)) (11)

The shape operator can then be easily derived from the first and second derivatives of f . An efficient
way to find such functions is via osculating jets, proposed in [9]. For the following experiments, we
use a multi-scale version of this, proposed in [31], in which the shape operator is computed by using
neighbourhoods of varying size around a point, yielding a robust method for estimating curvature on
a mesh.

4 Experiments

We test the representation of surfaces by the principal curvatures κ1, κ2 and Gaussian curvature κ
against the three most commonly used representations: the HKS [42], the SHOT descriptor [37], and

5

(a) κ1 (b) κ2

Figure 2: Principal curvature visualisation of a Louis XIV statue.

the extrinsic coordinates. The HKS is a purely intrinsic representation derived from the Laplace
operator, and constitutes the most widely used signature-based method to represent shapes. The
SHOT representation is a descriptor mixing signature and histogram-based methods to describe
shapes, and is therefore an extrinsic representation. As they belong to two different classes of surface
representations we believe they are the most adequate for benchmarking our proposed curvature
representation.

All representations are tested with three different architectures. We regard Diffusion Net [38] as the
state of the art in NN architectures, as it shows the most promising results on general benchmark tasks.
In addition, it shows very little difference in performance when changing the input from coordinates
to HKS, making it the hardest test for our representation. Point Net ++ [35] has been designed as a
general method to process shapes arising in many situations, including controlled environments – as
in our case – but also from segmented images encountered in the autonomous driving field [35]. As
such Point Net ++ uses the least geometric structure to describe a surface: all one needs is a point
set. We believe that in this case, using better surface information for the input will greatly enhance
the performance of the model. The authors of PointNet++ have already touched on this subject,
recommending a linear combination of HKS, WKS and Gaussian curvature, followed by a PCA
projection, leading to a 64 dimensional feature per point. We aim to show that a 2d (or even 1d) input
of curvature information is more relevant for a smaller computational cost. Delta Net [48] proposes
an architecture intrinsic to surfaces by design, by combining four operators defined on the surface:
Laplacian, divergence, curl and norm. Most papers that propose other surface descriptors rather than
coordinates as input, do it solely to have an intrinsic representation of the surface. Curvature gives
isometry invariance (section 3), and we further believe it is also more robust, numerically. Better
performance from a curvature based representation in this architecture would support this belief.

Finally, we pick three tasks of varying complexity to measure the impact of each method: human
segmentation [21], molecular segmentation [6], and shape classification [19]. Examples from each
dataset are shown in figure 3.

4.1 Implementation

The performance of each representation is strongly dependent on the chosen implementation. We
have tried to be as fair as possible by not developing our own implementations of existing work and
instead using implementations which have already been tried, tested, and validated in the literature.
For calculating the discrete principal curvatures via quadratic surface fitting, we have used igl’s
implementation with a fixed neighbourhood radius of 5; the Gaussian curvature κ is then computed
directly as the product of κ1, κ2. HKS depends on the Laplacian, and we have used the method
implemented in robust-laplacian based on [39] - this is also consistent with what is used in
Diffusion Net. The eigendecomposition of the Laplacian is then performed with scipy. For the

6

(a) Human poses [21]. (b) Molecules [6]. (c) Shrec’11 [19].

Figure 3: Samples of the segmentation and classification datasets used for experiments.

SHOT representation, we use the implementation in the pcl library, which computes 352 features
per vertex, in this case we normalise all shapes and use a ball of radius .1; all other parameters are
left untouched.

Regarding the neural networks, we use the implementations made publicly available by the authors,
modifying only when needed to accommodate more than just coordinates as input. We also use the
same parameters proposed in each paper when they are known, which we detail for every task below.
We make all our code and experiments available at https://github.com/Inria-Asclepios/
shape-nets

4.2 Time Complexity

As a first experiment, we compute1 for each representation method, the computation time as a
function of the number of points in a surface. The performances are reported in figure 4. HKS and
curvature are both efficient for meshes with up to 100k points. However, curvature is consistently
faster, even for larger meshes (up to 500k points), displaying the very small overhead incurred by the
use of curvature in surface models.

Figure 4: Time of computation for each representation with respect to the number of points in a mesh.

1Computed on an Apple M2 chip

7

https://github.com/Inria-Asclepios/shape-nets
https://github.com/Inria-Asclepios/shape-nets

4.3 Human Anatomy segmentation

We first segment the human parts from the composite dataset proposed in [21], containing samples
from other human dataset, namely FAUST [7], SCAPE [3], Adobe [1], MIT [44], and SHREC07 [14].
As in the original paper, we use the SHREC07 dataset as test set. Similar to [47], we differ from
[21] by evaluating on vertices rather than faces. For Point Net ++ and Delta Net we resample each
shape to 1024 points, and we leave the meshes untouched for Diffusion Net, as per the experiments
conducted in each paper. We optimise the negative log-likelihood for 100 epochs, with the ADAM
optimiser and a scheduler step every 20 epochs. We ran the experiment 5 times and have reported the
mean test accuracy in table 1.

xyz shot16 shot64 hks κ1, κ2 κ
Point Net ++ 69.6 71.4 72.4 78.1 80.6 74.5
Delta Net 72.4 58.1 66.2 68.9 86.8 60.0
Diffusion Net 94.7 95.0 95.0 95.1 97.4 95.4

Table 1: Test accuracies (%) on the Human part segmentation task.

The results highlight the assumption that better representations lead to better performance. PointNet++
showed the greatest improvement when moving away from coordinates: this is due to its architecture
having the least amount of geometric information at baseline. The better results come from the
principal curvatures, and show how expressive this representation is. The effects of the principal
curvatures are even more pronounced in the Delta Net experiment, where κ1, κ2 greatly outperform all
other methods. It’s interesting to note that in this experiment the coordinate representation performs
better than the other more complex representations. Diffusion Net may show that it is more robust to
the type of input, as long as it loosely describes the shape, however the improvement brought by the
principal curvature is still significant. To further demonstrate the impact of a good representation,
even in the case of Diffusion Net, we show in 5 the worst cases for xyz and κ1, κ2 inputs. The clear
improvement in this case may be even more important than general accuracy in some cases, e.g with
human-in-the-loop type corrections.

(a) κ1, κ2. 80.9% accuracy. (b) xyz. 29.2% accuracy. (c) HKS. 12.3% accuracy.

Figure 5: Human part segmentation with Diffusion Net. Worst cases for different representations,
blue shows the correct prediction, red the error.

4.4 Molecular segmentation

The molecular dataset made available by [6] and first proposed in [33], can be considered a harder
segmentation task then the Human part dataset: it proposes a wider range of shapes in the form of
RNA molecules, and a 260-way part segmentation task. We resample all meshes to 2048 points,
except in the case of Diffusion Net where we kept the original discretisation. We evaluate all our
baselines on 5 random splits with a train-test ratio of 80-20. We run the models for 200 epochs, and
report the mean test accuracies in table 2.

8

xyz shot16 shot64 hks κ1, κ2 κ
Point Net ++ 35.4 70.9 71.9 70.2 72.4 69.0
Delta Net 29.2 45.6 56.5 49.6 55.5 29.2
Diffusion Net 82.6 88.4 89.1 85.6 89.4 84.0

Table 2: Test accuracies (%) on the Molecular segmentation task.

Again, we see a significant improvement when using a better representation of the surface in the
case of PointNet++, going from failing in the case of coordinates to outperforming Delta Net – with
principal curvatures giving the best performances. Diffusion Net shows a non-negligable jump in
performance as well. Although the SHOT descriptor outperforms other representations in the case of
Delta Net, the general performance of this architecture is underwhelming. We believe this is due to
the accumulation of errors in the discretisation of surface operators used. Indeed, one layer computes
a chain of 6 operators on the surface: since the RNA shapes are very irregular, the error for each
operator could be significant.

4.5 Classification

In addition to segmentation tasks, we propose to compare representations in the context of classifica-
tion. This experiment should show whether or not geometrically informative inputs interact well with
pooling-type operations. We choose the widely adopted baseline Shrec11, proposed in [19]. It is a
30-way classification dataset with 20 shapes per category. We choose the simplified mesh dataset and
the harder version of training, using only 10 samples per class and evaluating on the test. We perform
our experiments on 5 random splits. We train our baselines for 100 epochs with a scheduler step at
epoch 50 and optimise the cross-entropy loss with a label smoothing factor of 0.2. Resulting mean
test accuracies are shown in table 3.

xyz shot16 shot64 hks κ1, κ2 κ
Point Net ++ 71.5 69.8 60.7 60.8 85.7 96.2
Delta Net 75.7 54.9 60.4 98.6 90.1 98.8
Diffusion Net 80.3 52.6 67.4 98.9 94.2 99.1
Table 3: Test accuracies (%) on the Shrec11 classification task.

Yet again we observe a significant improvement when turning to better representations, even more so
when using Gaussian curvature κ. Additionally, figure 6 shows that all geometric representations yield
less variability across each folds. In addition, HKS, Gaussian curvature κ, and principal curvature
κ1, κ2 converge much faster than all others.

Figure 6: Evolution of the test accuracy with 95% confidence interval by epochs per representations
across folds, for the Shrec07 dataset using Diffusion Net.

The fact that gaussian curvature, closely followed by HKS outperform principal curvature in this
classification task seems to indicate that Gaussian curvature interacts better with pooling operations
present in classification architectures. Interestingly, all three architectures tested here have different

9

ways of performing the pooling operation. Although it is hard to give any analytical reasoning to
this behavior, we believe it is simply the fact that gaussian curvature is already an aggregation of the
principal curvatures, that it shows better performance in classification tasks.

For each experiment, additional metrics can be found in Appendix A.1.

4.6 Noisy data

We propose one final experiment to highlight the robustness of input features to noisy data. We
focus on three representations: HKS, known to be robust to noise as it computes a representation at
multiple scale; extrinsic coordinates that are directly impacted by the noise; and principal curvatures,
known to be less robust to noise as a purely local descriptor. To compare these representations we
pick the diffusion net trained on the human pose dataset, and we add noise to the dataset at inference
time. Specifically, we add gaussian noise with a standard deviation of 1%, 3%, 5%, 7% and 10% of
the diagonal length of the bounding box of each shape. Examples of the noisy data can be seen in
Appendix A.2. Results show that the accuracy for all three features worsen at the same rate, as shown
in figure 7, showing that principal curvature can be a viable choice even in the presence of noisy data.

Figure 7: Evolution of the test accuracy on the human pose segmentation task for inputs (k1, k2),
HKS and the extrinsic coordinates when noise is added to the shapes.

5 Conclusion

In this work we have shown that curvature should be the representation of choice when it comes
to processing surfaces with neural networks. In almost all experiments the principal and Gaussian
curvatures performed better than any other choice of input, both qualitatively and quantitatively. In
particular, this representation can be obtained with minimal computational overhead. Its combination
with PointNet++, the architecture that has the least prior information about the surface, showed that it
can help the network better understand the surface structure. When combined with Delta Net, which
contains only intrinsic operations, the improvement indicates that curvature gives more than just a
rigid transformation invariance. Even in the case of Diffusion Net, where the diffusion operation
seems to interact nicely with any representation, curvature as input showed significant amelioration.
For these reasons, we believe curvature should become the standard practice when using models to
learn on surfaces. Finally, although experiments have shown that gaussian curvature outperforms
principal curvatures on classification tasks, we would like to further define those guidelines in future
work, as well as compare representations in a wider range of tasks and architectures.

10

6 Acknowledgements

This Work has been funded by PARIS - ERACoSysMed grant number 15087, by G-Statistics -
ERC grant number 786854 and has been supported by the French government through the National
Research Agency (ANR) Investments in the 3IA Côte d’Azur (ANR-19-P3IA-000). The authors are
grateful to the OPAL infrastructure from Université Côte d’Azur for providing computing resources
and support.

References
[1] Adobe. Adobe mixamo 3d characters. Retrieved from Mixano.com, 2016.

[2] Boulbaba Ben Amor, Sylvain Arguillère, and Ling Shao. Resnet-lddmm: advancing the lddmm framework
using deep residual networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):3707–
3720, 2022.

[3] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis.
Scape: shape completion and animation of people. In ACM SIGGRAPH 2005 Papers, pages 408–416.
2005.

[4] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel signature: A quantum
mechanical approach to shape analysis. In 2011 IEEE international conference on computer vision
workshops (ICCV workshops), pages 1626–1633. IEEE, 2011.

[5] James Benn, Stephen Marsland, Robert I McLachlan, Klas Modin, and Olivier Verdier. Currents and finite
elements as tools for shape space. Journal of Mathematical Imaging and Vision, 61:1197–1220, 2019.

[6] Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig, Ilya N
Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research, 28(1):235–242, 2000.

[7] Federica Bogo, Javier Romero, Matthew Loper, and Michael J Black. Faust: Dataset and evaluation for 3d
mesh registration. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3794–3801, 2014.

[8] Johann Brehmer, Pim De Haan, Sönke Behrends, and Taco S Cohen. Geometric algebra transformer.
Advances in Neural Information Processing Systems, 36, 2024.

[9] Frédéric Cazals and Marc Pouget. Estimating differential quantities using polynomial fitting of osculating
jets. Computer aided geometric design, 22(2):121–146, 2005.

[10] Nicolas Charon and Alain Trouvé. The varifold representation of nonoriented shapes for diffeomorphic
registration. SIAM journal on Imaging Sciences, 6(4):2547–2580, 2013.

[11] David Cohen-Steiner and Jean-Marie Morvan. Restricted delaunay triangulations and normal cycle. In
Proceedings of the nineteenth annual symposium on Computational geometry, pages 312–321, 2003.

[12] Pim De Haan, Maurice Weiler, Taco Cohen, and Max Welling. Gauge equivariant mesh cnns: Anisotropic
convolutions on geometric graphs. arXiv preprint arXiv:2003.05425, 2020.

[13] Herbert Federer. Curvature measures. Transactions of the American Mathematical Society, 93(3):418–491,
1959.

[14] Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. Shape retrieval contest 2007: Watertight models
track. SHREC competition, 8(7):7, 2007.

[15] Heinrich W Guggenheimer. Differential geometry. Courier Corporation, 2012.

[16] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or. Meshcnn: a
network with an edge. ACM Transactions on Graphics (ToG), 38(4):1–12, 2019.

[17] J-O Lachaud, Pascal Romon, Boris Thibert, and David Coeurjolly. Interpolated corrected curvature
measures for polygonal surfaces. In Computer Graphics Forum, volume 39, pages 41–54. Wiley Online
Library, 2020.

[18] Jean Lahoud, Jiale Cao, Fahad Shahbaz Khan, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan,
and Ming-Hsuan Yang. 3d vision with transformers: A survey. arXiv preprint arXiv:2208.04309, 2022.

11

[19] Z Lian, A Godil, B Bustos, M Daoudi, J Hermans, S Kawamura, Y Kurita, G Lavoua, P Dp Suetens,
et al. Shape retrieval on non-rigid 3d watertight meshes. In Eurographics workshop on 3d object retrieval
(3DOR). Citeseer, 2011.

[20] Or Litany, Tal Remez, Emanuele Rodola, Alex Bronstein, and Michael Bronstein. Deep functional maps:
Structured prediction for dense shape correspondence. In Proceedings of the IEEE international conference
on computer vision, pages 5659–5667, 2017.

[21] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer, Vladimir G Kim,
and Yaron Lipman. Convolutional neural networks on surfaces via seamless toric covers. ACM Trans.
Graph., 36(4):71–1, 2017.

[22] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic convolutional
neural networks on riemannian manifolds. In Proceedings of the IEEE international conference on
computer vision workshops, pages 37–45, 2015.

[23] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time object
recognition. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages
922–928. IEEE, 2015.

[24] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. Discrete differential-geometry operators
for triangulated 2-manifolds. In Visualization and mathematics III, pages 35–57. Springer, 2003.

[25] Thomas W Mitchel, Vladimir G Kim, and Michael Kazhdan. Field convolutions for surface cnns. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10001–10011, 2021.

[26] Thomas W Mitchel, Szymon Rusinkiewicz, Gregory S Chirikjian, and Michael Kazhdan. Echo: Ex-
tended convolution histogram of orientations for local surface description. In Computer Graphics Forum,
volume 40, pages 180–194. Wiley Online Library, 2021.

[27] Peter J Olver. Differential invariants of surfaces. Differential Geometry and Its Applications, 27(2):230–239,
2009.

[28] Barrett O’neill. Elementary differential geometry. Elsevier, 2006.

[29] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. Functional
maps: a flexible representation of maps between shapes. ACM Transactions on Graphics (ToG), 31(4):1–11,
2012.

[30] David Palmer, Dmitriy Smirnov, Stephanie Wang, Albert Chern, and Justin Solomon. Deepcurrents:
Learning implicit representations of shapes with boundaries. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 18665–18675, 2022.

[31] Daniele Panozzo, Enrico Puppo, and Luigi Rocca. Efficient multi-scale curvature and crease estimation.
Proceedings of Computer Graphics, Computer Vision and Mathematics (Brno, Czech Rapubic, 1(6), 2010.

[32] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 165–174, 2019.

[33] Adrien Poulenard, Marie-Julie Rakotosaona, Yann Ponty, and Maks Ovsjanikov. Effective rotation-invariant
point cnn with spherical harmonics kernels. In 2019 International Conference on 3D Vision (3DV), pages
47–56. IEEE, 2019.

[34] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 652–660, 2017.

[35] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[36] Szymon Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes. In Proceedings. 2nd
International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.,
pages 486–493. IEEE, 2004.

[37] Samuele Salti, Federico Tombari, and Luigi Di Stefano. Shot: Unique signatures of histograms for surface
and texture description. Computer Vision and Image Understanding, 125:251–264, 2014.

12

[38] Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. Diffusionnet: Discretization
agnostic learning on surfaces. ACM Transactions on Graphics (TOG), 41(3):1–16, 2022.

[39] Nicholas Sharp and Keenan Crane. A Laplacian for Nonmanifold Triangle Meshes. Computer Graphics
Forum (SGP), 39(5), 2020.

[40] Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning 3d shape surfaces using geometry images. In
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part VI 14, pages 223–240. Springer, 2016.

[41] Dmitriy Smirnov and Justin Solomon. Hodgenet: Learning spectral geometry on triangle meshes. ACM
Transactions on Graphics (TOG), 40(4):1–11, 2021.

[42] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably informative multi-scale signature
based on heat diffusion. In Computer graphics forum, volume 28, pages 1383–1392. Wiley Online Library,
2009.

[43] Marc Vaillant and Joan Glaunes. Surface matching via currents. In Biennial international conference on
information processing in medical imaging, pages 381–392. Springer, 2005.

[44] Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popović. Articulated mesh animation from
multi-view silhouettes. In Acm Siggraph 2008 papers, pages 1–9. 2008.

[45] Yu Wang and Justin Solomon. Intrinsic and extrinsic operators for shape analysis. In Handbook of
numerical analysis, volume 20, pages 41–115. Elsevier, 2019.

[46] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (tog), 38(5):1–12, 2019.

[47] Ruben Wiersma, Elmar Eisemann, and Klaus Hildebrandt. Cnns on surfaces using rotation-equivariant
features. ACM Transactions on Graphics (ToG), 39(4):92–1, 2020.

[48] Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt. Deltaconv: anisotropic
operators for geometric deep learning on point clouds. ACM Transactions on Graphics (TOG), 41(4):1–10,
2022.

[49] Laurent Younes. Shapes and diffeomorphisms, volume 171. Springer, 2010.

13

A Appendix

A.1 Segmentation and classification detailed results

We present below the complete results for each experiment. For each dataset, and each neural network
architecture, we show the Accuracy, Balanced accuracy, F1 score, and Specificity. They were all
measured using 5-fold cross validation, and we give the results on the test sets in the form of mean ±
standard deviation.

Accuracy Balanced accuracy F1 score Specificity
xyz .696±.306 .804±.393 .662±.293 .957±.49
shot16 .714±.061 .815±.15 .689±.061 .959±.234
shot64 .724±.034 .827±.13 .693±.035 .961±.201
hks .781±.07 .865±.159 .754±.08 .969±.203
κ1, κ2 .806±.079 .871±.14 .799±.089 .972±.196
κ .745±.165 .826±.227 .714±.148 .964±.32

Table 4: Human pose segmentation - Point Net ++ results.

Accuracy Balanced accuracy F1 score Specificity
xyz .724±.265 .223±.076 .223±.076 .724±.265
shot16 .581±.095 .215±.05 .215±.05 .581±.095
shot64 .662±.075 .302±.084 .302±.084 .662±.075
hks .689±.14 .303±.043 .303±.043 .689±.14
κ1, κ2 .868±.128 .299±.114 .299±.114 .868±.128
κ .6±.087 .163±.054 .163±.054 .6±.087

Table 5: Human pose segmentation - Delta Net results.

Accuracy Balanced accuracy F1 score Specificity
xyz .947±.013 .943±.015 .943±.015 .947±.013
shot16 .95±.017 .946±.018 .946±.018 .95±.017
shot64 .95±.018 .944±.021 .944±.021 .95±.018
hks .951±.04 .969±.055 .947±.039 .993±.07
κ1, κ2 .975±.014 .971±.015 .971±.015 .975±.014
κ .954±.014 .951±.016 .951±.016 .954±.014

Table 6: Human pose segmentation - Diffusion Net results.

Accuracy Balanced accuracy F1 score Specificity
xyz .354±.008 .202±.001 .202±.001 .354±.008
shot16 .709±.004 .592±.016 .592±.016 .709±.004
shot64 .719±.009 .602±.01 .602±.01 .719±.009
hks .703±.017 .574±.003 .574±.003 .703±.017
κ1, κ2 .724±.013 .597±.013 .597±.013 .724±.013
κ .69±.008 .572±.008 .572±.008 .69±.008

Table 7: RNA molecules segmentation - PointNet++ results.

Accuracy Balanced accuracy F1 score Specificity
xyz .292±.018 .182±.012 .182±.012 .292±.018
shot16 .456±.008 .352±.016 .352±.016 .456±.008
shot64 .565±.010 .299±.008 .299±.008 .565±.010
hks .496±.017 .392±.008 .392±.008 .496±.017
κ1, κ2 .555±.023 .496±.013 .496±.013 .555±.023
κ .292±.008 .142±.008 .142±.008 .292±.008

Table 8: RNA molecules segmentation - Delta Net results.

14

Accuracy Balanced accuracy F1 score Specificity
xyz .826±.001 .851±.106 .704±.003 .999±.129
shot16 .884±.002 .765±.008 .765±.008 .874±.002
shot64 .891±.001 .781±.008 .781±.008 .879±.001
hks .856±.596 .873±.622 .758±.536 .999±.697
κ1, κ2 .894±.008 .873±.064 .783±.025 .999±.082
κ .84±.008 .862±.113 .718±.011 .999±.12

Table 9: RNA molecules segmentation - Diffusion Net results.

Accuracy Balanced accuracy F1 score Specificity
xyz .715±.037 .852±.019 .709±.034 .99±.001
shot16 .698±.035 .844±.018 .694±.036 .99±.001
shot64 .607±.031 .797±.016 .594±.038 .986±.001
hks .608±.181 .797±.093 .602±.184 .986±.006
κ1, κ2 .857±.007 .926±.004 .852±.007 .995±.0
κ .962±.011 .98±.006 .961±.011 .999±.0

Table 10: Shrec classification - Point Net ++ results.

Accuracy Balanced accuracy F1 score Specificity
xyz .757±.027 .753±.031 .753±.031 .757±.028
shot16 .549±.029 .533±.026 .532±.026 .549±.029
shot64 .604±.026 .597±.019 .597±.019 .604±.026
hks .986±.005 .985±.006 .986±.006 .986±.005
κ1, κ2 .887±.020 .881±.019 .881±.019 .887±.020
κ .988±.004 .988±.004 .988±.004 .988±.004

Table 11: Shrec classification - Delta Net results.

Accuracy Balanced accuracy F1 score Specificity
xyz .803±.159 .898±.082 .791±.169 .993±.005
shot16 .526±.054 .755±.028 .513±.053 .984±.002
shot64 .674±.033 .831±.017 .668±.036 .989±.001
hks .989±.006 .994±.003 .989±.006 1.0±.0
κ1, κ2 .922±.009 .96±.004 .919±.008 .997±.0
κ .991±.003 .995±.001 .991±.003 1.0±.0

Table 12: Shrec classification - Diffusion Net results.

A.2 Noisy data exemples

15

(a) 1%. (b) 3%. (c) 5%. (d) 7% (e) 10%.

Figure 8: Different quantity of noise added to a shape from the human pose dataset, from 1% to 10%
of the diagonal of the bounding box of the shape.

(a) Initial shape. (b) 1%. (c) 3%.

(d) 5% (e) 7%. (f) 10%.

Figure 9: Different quantity of noise added to a shape, from 1% to 10% of the diagonal of the
bounding box of the shape.

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

16

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We perform a comparative study and experimentally highlight what we believe
to be the best methodology.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: There are no theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

17

Answer: [Yes]

Justification: See section 4. Moreover, a repository with all the code and experiments will
be made available after the review process.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Link will be available after the review process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

19

Justification: Not completely. Section 4.2 shows the time complexity of each representation.
We do not provide the computational cost of other experiments. However, we point out that
they take very similar time to the one indicated in papers describing each architecture.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and made sure our paper
complies to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact to discuss.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

20

https://neurips.cc/public/EthicsGuidelines

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work poses no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

21

paperswithcode.com/datasets

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not conduct experiments involving crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve research with human subjects or crowdfunding.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

	Introduction
	Related work
	The Shape Operator
	Congruence
	Discrete curvature

	Experiments
	Implementation
	Time Complexity
	Human Anatomy segmentation
	Molecular segmentation
	Classification
	Noisy data

	Conclusion
	Acknowledgements
	Appendix
	Segmentation and classification detailed results
	Noisy data exemples

