
Published in Transactions on Machine Learning Research (9/2023)

Momentum Tracking: Momentum Acceleration for Decen-
tralized Deep Learning on Heterogeneous Data

Yuki Takezawa yuki-takezawa@ml.ist.i.kyoto-u.ac.jp
Kyoto University, Okinawa Institute of Science and Technology

Han Bao bao@i.kyoto-u.ac.jp
Kyoto University, Okinawa Institute of Science and Technology

Kenta Niwa kenta.niwa.bk@hco.ntt.co.jp
NTT Communication Science Laboratories

Ryoma Sato r.sato@ml.ist.i.kyoto-u.ac.jp
Kyoto University, Okinawa Institute of Science and Technology

Makoto Yamada makoto.yamada@oist.jp
Okinawa Institute of Science and Technology

Reviewed on OpenReview: https: // openreview. net/ forum? id= 8koy8QuTZD

Abstract

SGD with momentum is one of the key components for improving the performance of neural
networks. For decentralized learning, a straightforward approach using momentum is Dis-
tributed SGD (DSGD) with momentum (DSGDm). However, DSGDm performs worse than
DSGD when the data distributions are statistically heterogeneous. Recently, several studies
have addressed this issue and proposed methods with momentum that are more robust to
data heterogeneity than DSGDm, although their convergence rates remain dependent on
data heterogeneity and deteriorate when the data distributions are heterogeneous. In this
study, we propose Momentum Tracking, which is a method with momentum whose conver-
gence rate is proven to be independent of data heterogeneity. More specifically, we analyze
the convergence rate of Momentum Tracking in the setting where the objective function is
non-convex and the stochastic gradient is used. Then, we identify that it is independent
of data heterogeneity for any momentum coefficient β ∈ [0, 1). Through experiments, we
demonstrate that Momentum Tracking is more robust to data heterogeneity than the exist-
ing decentralized learning methods with momentum and can consistently outperform these
existing methods when the data distributions are heterogeneous.

1 Introduction

Neural networks have achieved remarkable success in various fields such as image processing (Simonyan &
Zisserman, 2015; Chen et al., 2020) and natural language processing (Devlin et al., 2019). To train neural
networks, we need to collect large amounts of training data, but it is often difficult to collect large amounts
of data such as medical images on one server because of privacy concerns. In such scenarios, decentralized
learning has attracted significant attention because it allows us to train neural networks without aggregating
all the data onto one server. Recently, decentralized learning has been studied from various perspectives,
including data heterogeneity (Tang et al., 2018b; Esfandiari et al., 2021), communication compression (Tang
et al., 2018a; Lu & De Sa, 2020; Liu et al., 2021; Takezawa et al., 2022a), and network topologies (Ying
et al., 2021; Le Bars et al., 2023).

1

https://openreview.net/forum?id=8koy8QuTZD

Published in Transactions on Machine Learning Research (9/2023)

One of the key components for improving the performance of neural networks is SGD with momentum
(SGDm). Whereas SGD updates the model parameters using a stochastic gradient, SGDm updates the
model parameters using the moving average of the stochastic gradient, which is called the momentum.
Because SGDm can accelerate convergence and improve generalization performance, SGDm has become an
indispensable tool, enabling neural networks to achieve high accuracy (He et al., 2016; Cutkosky & Mehta,
2020; Karimireddy et al., 2021; Defazio, 2021). Recently, SGDm has been improved in many studies, and
methods such as Adam (Kingma & Ba, 2015) and RAdam (Liu et al., 2020a) have been proposed.

In decentralized learning, the straightforward approach to using the momentum is Distributed SGD (DSGD)
with momentum (DSGDm) (Gao & Huang, 2020). When the data distributions held by each node (i.e., the
server) are statistically homogeneous, DSGDm works well and can improve the performance as well as
SGDm (Lin et al., 2021). However, in real-world decentralized learning settings, the data distributions may
be heterogeneous (Hsieh et al., 2020). In such cases, DSGDm performs worse than DSGD (i.e., without
momentum) (Yuan et al., 2021).

This is because, when the data distributions are heterogeneous and we use the momentum instead of the
stochastic gradient, each model parameter is updated in further different directions and drifts away more
easily. As a result, the convergence rate of DSGDm falls below that of DSGD. To address this issue, Lin
et al. (2021) and Yuan et al. (2021) modified the update rules of the momentum in DSGDm and proposed
methods that are more robust to data heterogeneity than DSGDm. However, their convergence rates remain
dependent on data heterogeneity, and our experiments revealed that their performance are degraded when
the data distributions are strongly heterogeneous (Sec. 4).

Data heterogeneity for decentralized learning has been well studied from both experimental and theoretical
perspectives (Hsieh et al., 2020; Koloskova et al., 2020). Subsequently, many methods including Gradient
Tracking (Lorenzo & Scutari, 2016; Nedić et al., 2017) have been proposed and it has been shown that their
convergence rates do not depend on data heterogeneity (Tang et al., 2018b; Vogels et al., 2021; Koloskova
et al., 2021). However, these studies considered only the case where the momentum was not used, and it
remains unclear whether these methods are robust to data heterogeneity when the momentum is applied.

In the convex optimization literature, Xin & Khan (2020) and Carnevale et al. (2022) proposed combining
Gradient Tracking with momentum or Adam and analyzed the convergence rates. However, they considered
only the case where the objective function is strongly convex and the full gradient is used, which does not
hold in the standard deep learning setting, where the objective function is non-convex and only the stochastic
gradient is accessible. Hence, their convergence rates are still unknown in the setting where the objective
function is non-convex and the stochastic gradient is used and it remains unclear whether their convergence
rates are independent of data heterogeneity. Furthermore, they did not discuss data heterogeneity, either
theoretically or experimentally.

In this work, we propose a decentralized learning method with momentum, which we call Momentum
Tracking, whose convergence rate is proven to be independent of data heterogeneity in the setting where
the objective function is non-convex and the stochastic gradient is used. More specifically, we identify that the
convergence rate of Momentum Tracking is independent of data heterogeneity for any momentum coefficient
β ∈ [0, 1). In Table 1, we compare the convergence rate of Momentum Tracking with those of existing
methods. To the best of our knowledge, Momentum Tracking is the first decentralized learning method
with momentum whose convergence rate has been proven to be independent of data heterogeneity in the
setting where the objective function is non-convex and the stochastic gradient is used. Experimentally, we
demonstrate that Momentum Tracking is more robust to data heterogeneity than the existing decentralized
learning methods with momentum and can consistently outperform these existing methods when the data
distributions are heterogeneous.

2

Published in Transactions on Machine Learning Research (9/2023)

Table 1: Comparison of the convergence rates. In the “Data-Heterogeneity” column, “✓” indicates that
the convergence rate is independent of data heterogeneity, and “(✓)” indicates that it is independent, but
there is no discussion about data heterogeneity either theoretically or experimentally. In the “Momentum,”
“Stochastic,” and “Non-Convex” columns, “✓” respectively indicates that the method is accelerated using
momentum, the convergence rate is provided when the stochastic gradient is used, and the convergence rate
is provided when the objective function is non-convex.

Data-Heterogeneity Momentum Stochastic Non-Convex
DSGD (Lian et al., 2017) ✓ ✓

Gradient Tracking (Koloskova et al., 2021) ✓ ✓ ✓
DSGDm (Gao & Huang, 2020) ✓ ✓ ✓
QG-DSGDm (Lin et al., 2021) ✓ ✓ ✓
DecentLaM (Yuan et al., 2021) ✓ ✓ ✓

ABm (Xin & Khan, 2020) (✓) ✓
GTAdam (Carnevale et al., 2022) (✓) ✓

Momentum Tracking (our work) ✓ ✓ ✓ ✓

2 Preliminaries and Related Work

2.1 Decentralized Learning

Let G = (V, E) be an undirected graph that represents the underlying network topology, where V denotes
the set of nodes and E denotes the set of edges. Let N := |V | be the number of nodes, and we label each
node in V by a set of integers {1, 2, · · · , N} for simplicity. We define Ni := {j ∈ V | (i, j) ∈ E} as the set
of neighbor nodes of node i and define N+

i := Ni ∪ {i}. In decentralized learning, node i has a local data
distribution Di and local objective function fi : Rd → R, and can communicate with node j if and only
if (i, j) ∈ E. Then, decentralized learning aims to minimize the average of the local objective functions as
follows:

min
x∈Rd

[
f(x) := 1

N

N∑
i=1

fi(x)
]

, fi(x) := Eξi∼Di
[Fi(x; ξi)] ,

where x is the model parameter, ξi is the data sample that follows Di, and local objective function fi(x)
is defined as the expectation of Fi(x; ξi) over data sample ξi. In the following, ∇Fi(x; ξi) and ∇fi(x) :=
Eξi∼Di [∇Fi(x; ξi)] denote the stochastic and full gradient respectively.

Distributed SGD (DSGD) (Lian et al., 2017) is one of the most well-known algorithms for decentralized
learning. Formally, the update rules of DSGD are defined as follows:

x
(r+1)
i =

∑
j∈N+

i

Wij

(
x

(r)
j − η∇Fj(x(r)

j ; ξ
(r)
j)
)

, (1)

where η > 0 is the step size and Wij ∈ [0, 1] is the weight of edge (i, j). Let W ∈ [0, 1]N×N be the matrix
whose (i, j)-element is Wij if (i, j) ∈ E and 0 otherwise. In general, a mixing matrix is used for W (i.e.,
W = W⊤, W 1 = 1, and W⊤1 = 1). Lian et al. (2018) extended DSGD in the case where each node
communicates asynchronously and analyzed the convergence rate. Koloskova et al. (2020) analyzed the
convergence rate of DSGD when the network topology changes over time. These results revealed that the
convergence rate of DSGD deteriorates and the performance is degraded when the data distributions held
by each node are statistically heterogeneous. This is because the local gradients ∇fi are different across
nodes and each model parameter xi tends to drift away when the data distributions are heterogeneous.
To address this issue, D2 (Tang et al., 2018b), Gradient Tracking (Lorenzo & Scutari, 2016; Nedić et al.,
2017), and primal-dual algorithms (Niwa et al., 2020; 2021; Takezawa et al., 2022b) were proposed to correct
the local gradient ∇fi to the global gradient ∇f . As a different approach, Vogels et al. (2021) proposed a
novel averaging method to prevent each model parameter xi from drifting away. It has been shown that the
convergence rates of these methods do not depend on data heterogeneity and do not deteriorate, even when
the data distributions are statistically heterogeneous. However, these methods do not consider the case in
which momentum is used.

3

Published in Transactions on Machine Learning Research (9/2023)

2.2 Momentum

The methods with momentum were originally proposed by Polyak (1964), and SGD with momentum (SGDm)
has achieved successful results in training neural networks (Simonyan & Zisserman, 2015; He et al., 2016;
Wang et al., 2020b). In decentralized learning, a straightforward approach to using the momentum is DSGD
with momentum (DSGDm) (Gao & Huang, 2020). The update rules of DSGDm are defined as follows:

u
(r+1)
i = βu

(r)
i +∇Fi(x(r)

i ; ξ
(r)
i), (2)

x
(r+1)
i =

∑
j∈N+

i

Wij

(
x

(r)
j − ηu

(r+1)
j

)
, (3)

where ui is the local momentum of node i and β ∈ [0, 1) is a momentum coefficient. In addition, several
variants of DSGDm were studied by Yu et al. (2019); Assran et al. (2019); Wang et al. (2020a); Singh et al.
(2021). When the data distributions held by each node are statistically homogeneous, DSGDm works well and
can improve accuracy as well as SGDm. However, when the data distributions are statistically heterogeneous,
DSGDm leads to poorer performance than DSGD. This is because when the data distributions held by each
node are statistically heterogeneous (i.e., ∇fi varies significantly across nodes), the difference in the updated
value of the model parameter across the nodes (i.e., ηui) is amplified by the momentum (Lin et al., 2021).

To address this issue, Yuan et al. (2021) and Lin et al. (2021) proposed methods to modify the update
rules of the momentum in DSGDm such that the momentum of each node has close values, which are called
DecentLaM and QG-DSGDm, respectively. They further experimentally demonstrated that these methods
are more robust to data heterogeneity than DSGDm. However, their convergence rates have been shown to
still depend on data heterogeneity and deteriorate when the data distributions are heterogeneous.

2.3 Gradient Tracking

One of the most well-known methods whose convergence rate does not depend on data heterogeneity is
Gradient Tracking (Lorenzo & Scutari, 2016). Whereas DSGD exchanges only the model parameter xi,
Gradient Tracking exchanges the model parameter xi and local (stochastic) gradient ∇fi and then updates
the model parameters while estimating global gradient ∇f . Nedić et al. (2017) and Qu & Li (2018) analyzed
the convergence rate of Gradient Tracking when the objective function is (strongly) convex and the full
gradient is used. Pu & Nedic (2021) analyzed the convergence rate when the objective function is strongly
convex and the stochastic gradient is used. Recently, Koloskova et al. (2021) analyzed the convergence rates
of Gradient Tracking in the setting where the objective function is non-convex and the stochastic gradient
is used. There is also a line of research to combine Gradient Tracking with variance reduction methods (Xin
et al., 2022) and communication compression methods (Zhao et al., 2022). They showed that the convergence
rate of Gradient Tracking does not depend on data heterogeneity. However, these studies only consider the
case without momentum, and the convergence analysis for Gradient Tracking with momentum has not been
explored thus far in the aforementioned studies.

3 Proposed Method

In this section, we propose Momentum Tracking, which is a decentralized learning method with momen-
tum whose convergence rate is proven to be independent of the data heterogeneity in the setting where the
objective function is non-convex and the stochastic gradient is used.

3.1 Setup

We assume that the following standard assumptions hold:
Assumption 1. There exists a constant f⋆ > −∞ that satisfies f(x) ≥ f⋆ for all x ∈ Rd.
Assumption 2. There exists a constant p ∈ (0, 1] that satisfies for all x1, · · · , xN ∈ Rd,

∥XW − X̄∥2
F ≤ (1− p)∥X − X̄∥2

F , (4)

4

Published in Transactions on Machine Learning Research (9/2023)

where X := (x1, · · · , xN) ∈ Rd×N and X̄ := 1
N X11⊤.

Assumption 3. There exists a constant L > 0 that satisfies for all i ∈ V and x, y ∈ Rd,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥. (5)

Assumption 4. There exists a constant σ2 that satisfies for all i ∈ V and xi ∈ Rd,

Eξi∼Di
∥∇Fi(xi; ξi)−∇fi(xi)∥2 ≤ σ2. (6)

Assumptions 1, 2, 3, and 4 are commonly used for decentralized learning algorithms (Lian et al., 2017; Yu
et al., 2019; Koloskova et al., 2021; Lin et al., 2021; Lu & De Sa, 2021; Yuan et al., 2022). Additionally, the
following assumption, which represents data heterogeneity, is commonly used in the convergence analysis of
decentralized learning algorithms (Lian et al., 2017; Yu et al., 2019; Lin et al., 2021).
Assumption 5. There exists a constant ζ2 that satisfies for all x ∈ Rd,

1
N

N∑
i=1
∥∇fi(x)−∇f(x)∥2 ≤ ζ2.

Under Assumption 5, the convergence rates of DSGD (Lian et al., 2017), DSGDm (Gao & Huang, 2020;
Yuan et al., 2021), QG-DSGDm (Lin et al., 2021), and DecentLaM (Yuan et al., 2021) were shown to be
dependent on data heterogeneity ζ2 and deteriorate as ζ2 increases. By contrast, in Sec. 3.3, we prove
that Momentum Tracking converges without Assumption 5 and the convergence rate is independent of data
heterogeneity ζ2. In addition, we do not assume the convexity of the objective functions f(x) and fi(x).
Therefore, f(x) and fi(x) are potentially non-convex functions (e.g., the loss functions of neural networks).

3.2 Momentum Tracking

In this section, we propose Momentum Tracking, which is robust to data heterogeneity and accelerated
by the momentum. The update rules of Momentum Tracking are defined as follows:

u
(r+1)
i = βu

(r)
i +∇Fi(x(r)

i ; ξ
(r)
i), (7)

x
(r+1)
i =

∑
j∈N+

i

Wijx
(r)
j − η

(
u

(r+1)
i − c

(r)
i

)
, (8)

c
(r+1)
i =

∑
j∈N+

i

Wij

(
c

(r)
j − u

(r+1)
j

)
+ u

(r+1)
i , (9)

where β ∈ [0, 1) is a momentum coefficient. The pseudo-code for Momentum Tracking is presented in Sec. A.
In Momentum Tracking, ci corrects the local momentum ui to the global momentum 1

N

∑
j uj and prevents

each model parameter xi from drifting, even when the data distributions are statistically heterogeneous (i.e.,
the local momentum ui varies significantly across nodes).

Because Momentum Tracking is equivalent to Gradient Tracking when β = 0, Momentum Tracking is a
simple extension of Gradient Tracking. Hence, when β = 0, it has been shown that the convergence rate
of Momentum Tracking is independent of data heterogeneity ζ2 (Koloskova et al., 2021). However, because
data heterogeneity is amplified when the momentum is used instead of the stochastic gradient (i.e., β > 0)
(Lin et al., 2021; Yuan et al., 2021), it is unclear whether the convergence rate of Momentum Tracking is
independent of data heterogeneity ζ2 for any β ∈ [0, 1) or for only a restricted range of β. In Sec. 3.3, we
provide the convergence rate of Momentum Tracking and prove that it is independent of ζ2 for any β ∈ [0, 1).

3.3 Convergence Analysis

Under Assumptions 1, 2, 3, and 4, Theorem 1 provides the convergence rate of Momentum Tracking. All
proofs are presented in Sec. D.

5

Published in Transactions on Machine Learning Research (9/2023)

Theorem 1. Suppose that Assumptions 1, 2, 3, and 4 hold, each model parameter xi is initialized with the
same parameters, and both ui and ci are initialized as 1

1−β (∇Fi(x(0)
i ; ξ

(0)
i)− 1

N

∑N
j=1∇Fj(x(0)

j ; ξ
(0)
j)). Then,

for any β ∈ [0, 1) and R ≥ 1, there exists a step size η such that the average parameter 1
R

∑R−1
r=0 E

∥∥∇f(x̄(r))
∥∥2

generated by Eqs. (7-9) is bounded from above by

O

(√
r0σ2L

NR
+
(

r2
0σ2L2

p4R2(1− β)

(
1 + pβ2

1− β

)) 1
3

+ Lr0

(1− β)p2R

√
1 + β2

(1− β2)3p

)
, (10)

where x̄ := 1
N

∑N
i=1 xi and r0 := f(x̄(0))− f⋆.

Remark 1. Theorem 1 assumes that ui and ci are initialized as 1
1−β (∇Fi(x(0)

i ; ξ
(0)
i) −

1
N

∑N
j=1∇Fj(x(0)

j ; ξ
(0)
j)). Thus, All-Reduce is required only once before starting the training. If we

initialize ui and ci as zeros, data heterogeneity at initial parameters 1
N

∑
i ∥∇fi(x(0)

i)−∇f(x(0)
i)∥2 appears

in the convergence rate, but the same phenomenon occurs in the analysis of Gradient Tracking by Koloskova
et al. (2021) (see Sec. B).
Remark 2. Combinations of Gradient Tracking with the momentum or Adam have also been proposed by
Xin & Khan (2020) and Carnevale et al. (2022). However, they considered only the setting in which the
objective function is strongly convex and the full gradient is used. By contrast, our study focuses on the deep
learning setting. Hence, our proof strategies are completely different from those in these previous studies,
and Theorem 1 provides the convergence rate in the setting where the objective function is non-convex and
the stochastic gradient is used.
Remark 3. Koloskova et al. (2021) provided the convergence rate of Gradient Tracking in the setting where
the objective function is non-convex and the stochastic gradient is used. However, they did not consider
the case where the momentum is used, and it is not trivial to provide the convergence rate of Momentum
Tracking from the results in this previous work.

3.4 Discussion

Comparison with Gradient Tracking: Theorem 1 indicates that the convergence rate of Momentum
Tracking does not depend on data heterogeneity ζ2 for any β ∈ [0, 1) and does not deteriorate even when
the data distributions are statistically heterogeneous (i.e., ζ2 > 0). Therefore, Theorem 1 indicates that
Momentum Tracking is theoretically robust to data heterogeneity for any β ∈ [0, 1). Although Momentum
Tracking is a simple extension of Gradient Tracking, our work is the first to identify that the combination
of Gradient Tracking and the momentum converges without being affected by data heterogeneity ζ2 for any
β ∈ [0, 1) in the setting where the objective function is non-convex and the stochastic gradient is used.

Although the convergence rate of Momentum Tracking Eq. (10) is minimized when β = 0, Momentum Track-
ing does accelerate its convergence with the momentum being used (β > 0), as experimentally demonstrated
in Sec. 4. Indeed, the convergence rates of DSGDm (Gao & Huang, 2020) and QG-DSGDm Lin et al. (2021)
have the same issue. Thus, it is still an open question to show the theoretical benefits of using β > 0.

Comparison with Existing Algorithms with momentum: Next, we compare the convergence rate
of Momentum Tracking with those of existing decentralized learning algorithms with momentum: DSGDm
(Gao & Huang, 2020), DecentLaM (Yuan et al., 2021), and QG-DSGDm (Lin et al., 2021). Here, we only
show the convergence rate of QG-DSGDm, but the same discussion holds for the other methods. The
convergence rate of QG-DSGDm is as follows:
Theorem 2 (Lin et al. (2021)). Suppose that Assumptions 1, 2, 3, and 4 hold, and Assumption 5 also holds.
Then, for any β ∈ [0, p

21+p] and R ≥ 1, there exists a step size η such that 1
R

∑R−1
r=0 E

∥∥∇f(x̄(r))
∥∥2 generated

by QG-DSGDm is bounded from above by1

O

(√
r0σ2L

NR
+
(

r2
0L2(ζ2 + σ2)

p2R2

) 1
3

+ Lr0

R

(
1
p

+ 1
1− β

+ β

(1− β)3

))
,

1For simplicity, we set the additional hyperparameter µ for QG-DSGDm to β.

6

Published in Transactions on Machine Learning Research (9/2023)

where r0 := f(x̄(0))− f⋆.

Data heterogeneity ζ2 appears in the second term. Thus, the convergence rate of QG-DSGDm deteriorates
when the data distributions held by each node are statistically heterogeneous. By contrast, the convergence
rate of Momentum Tracking Eq. (10) does not depend on data heterogeneity ζ2. Therefore, Momentum
Tracking is more robust to data heterogeneity than QG-DSGDm. Because the convergence rates of DSGDm
and DecentLaM also depend on ζ2, the same discussion holds for DSGDm and DecentLaM. Hence, Mo-
mentum Tracking is more robust to data heterogeneity than these methods. To the best of our knowledge,
Momentum Tracking is the first decentralized learning method with momentum whose convergence rate
has been proven to be independent of data heterogeneity ζ2 in the setting where the objective function is
non-convex and the stochastic gradient is used.

Next, we discuss the range of β. The convergence rates of QG-DSGDm and DecentLaM provided by Lin
et al. (2021) and Yuan et al. (2021) hold only when the range of β is restricted. For instance, Theorem 2
assumes that β ≤ p

21+p (< 0.05). However, these restrictions on the range of β do not hold in practice.
(Typically, β is set to 0.9.) Therefore, the convergence rates of QG-DSGDm and DecentLaM are unclear in
such practical cases. By contrast, Theorem 1 can provide the convergence rate of Momentum Tracking that
holds for any β ∈ [0, 1).

Comparison with SGDm: Next, we compare the convergence rate of Momentum Tracking with that of
SGDm. In a setting where the objective function is non-convex and the stochastic gradient is used, SGDm
has been proven to converge to the stationary point with O(1/

√
R) (Yan et al., 2018; Liu et al., 2020b).

By contrast, Theorem 1 indicates that if the number of rounds R is sufficiently large, Momentum Tracking
converges with O(1/

√
NR). Therefore, Momentum Tracking can achieve a linear speedup with respect to

the number of nodes N , which is a common and important property in decentralized learning methods (Lian
et al., 2018; Koloskova et al., 2020).

4 Experiment

In this section, we present the results of an experimental evaluation of Momentum Tracking and demonstrate
that Momentum Tracking is more robust to data heterogeneity than the existing decentralized learning
methods with momentum. In this section, we focus on test accuracy, and more detailed evaluation about
the convergence rate is presented in Sec. C.7.

4.1 Setup

Comparison Methods: (1) DSGD (Lian et al., 2017): the method described in Sec. 2.1; (2) DSGDm
(Gao & Huang, 2020): the method described in Sec. 2.2; (3) QG-DSGDm (Lin et al., 2021): a method in
which the update rule of the momentum in DSGDm is modified to be more robust to data heterogeneity
than DSGDm; (4) DecentLaM (Yuan et al., 2021): a method in which the update rule of the momentum
in DSGDm is modified to be more robust to data heterogeneity; (5) Gradient Tracking (Nedić et al., 2017):
a method without momentum that is robust to data heterogeneity; (6) Momentum Tracking: the proposed
method described in Sec. 3.

Dataset and Model: We evaluated Momentum Tracking using three 10-class image classification tasks:
FashionMNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), and CIFAR-10 (Krizhevsky, 2009). Following
the previous work (Niwa et al., 2020), we distributed the data to nodes such that each node was given data
of randomly selected k classes. When k = 10, the data distributions held by each node can be regarded as
statistically homogeneous. When k < 10, the data distributions are regarded as statistically heterogeneous.
We evaluated the comparison methods by setting k to {4, 6, 8, 10} and changing data heterogeneity. Note
that a smaller k indicates that the data distributions are more heterogeneous. For the neural network
architecture, we used LeNet (LeCun et al., 1998) with group normalization (Wu & He, 2018) in Sec. 4.2.
In Sec. 4.3, we present more detailed evaluation by varying the neural network architecture (e.g., VGG-11
(Simonyan & Zisserman, 2015) and ResNet-34 (He et al., 2016)). For each comparison method, we used
10% of the training data for validation and individually tuned the step size. For DSGDm, QG-DSGDm,

7

Published in Transactions on Machine Learning Research (9/2023)

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

Ac
cu

ra
cy

(a) CIFAR-10 (10-class)

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

Ac
cu

ra
cy

(b) CIFAR-10 (4-class)

10 8 6 4
k-class

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

DSGD
Gradient Tracking
DSGDm
QG-DSGDm
DecentLaM
Momentum Tracking

(c) Average accuracy for datasets

Figure 1: (a) Learning curve on CIFAR-10 with LeNet in the 10-class (i.e., homogeneous) setting. We
evaluated the test accuracy per 10 epochs. (b) Learning curve in the 4-class (i.e., heterogeneous) setting.
(c) Average test accuracy for all datasets (i.e., FashionMNIST, SVHN, and CIFAR-10).

DecentLaM, and Momentum Tracking, we set β to 0.9. All experiments were repeated using three different
seed values, and we report their averages. More detailed hyperparameter settings are presented in Sec E.

Network Topology and Implementation: Communication efficiency is one of the most important factors
in decentralized learning and is determined by the maximum degree of the underlying network topology
(Neglia et al., 2019; Wang et al., 2019; Ying et al., 2021). Thus, following these prior works, we present
the results of setting the underlying network topology to a ring consisting of eight nodes (i.e., N = 8) in
Secs. 4.2 and 4.3. In Sec. C.1, we present more detailed evaluation by varying the network topology. All
comparison methods were implemented using PyTorch and run on eight GPUs (NVIDIA RTX 3090).

4.2 Experimental Results

Table 2 lists the test accuracy for FashionMNIST, SVHN, and CIFAR-10. Fig. 1 (a) and (b) present the
learning curves for CIFAR-10 and Fig. 1 (c) presents the average test accuracy for all datasets.

Comparison of Momentum Tracking and Gradient Tracking: First, we discuss the results of Mo-
mentum Tracking and Gradient Tracking. Table 2 and Fig. 1 indicate that Momentum Tracking achieves
a higher accuracy faster than Gradient Tracking and outperforms Gradient Tracking in all settings. When
the data distributions are homogeneous (i.e., 10-class), Momentum Tracking outperforms Gradient Tracking
by 5.8% on average. When the data distributions are heterogeneous (e.g., 4-class), Momentum Tracking
outperforms Gradient Tracking by 4.4% on average. Thus, the results show that Momentum Tracking can
consistently outperform Gradient Tracking regardless of data heterogeneity.

Comparison of Momentum Tracking and DSGDm: Next, we discuss the results of Momentum Track-
ing and DSGDm. The results show that when the data distributions are homogeneous (i.e., 10-class),
Momentum Tracking and DSGDm are comparable and outperform DSGD and Gradient Tracking. How-
ever, when the data distributions are heterogeneous (e.g., 4-class), the test accuracy of DSGDm decreases
even more than that of DSGD, and DSGDm underperforms DSGD by 9.9% on average. By contrast, the
results indicate that Momentum Tracking consistently outperforms DSGD and Gradient Tracking by 14.9%
and 4.4% respectively when the data distributions are heterogeneous. The results indicate that Momentum
Tracking is more robust to data heterogeneity than DSGDm and outperforms DSGDm by 24.9% on average.

Comparison of Momentum Tracking, QG-DSGDm, and DecentLaM: When the data distributions
are homogeneous (i.e., 10-class), Momentum Tracking, QG-DSGDm, and DecentLaM are comparable and
outperform DSGD and Gradient Tracking. By contrast, when the data distributions are heterogeneous (e.g.,
4-class), Momentum Tracking consistently outperforms QG-DSGDm and DecentLaM by 9.9% and 4.5%
respectively, whereas QG-DSGDm and DecentLaM are more robust to data heterogeneity than DSGDm.
Hence, these results are consistent with our theoretical analysis, as discussed in Secs. 3.3 and 3.4.

8

Published in Transactions on Machine Learning Research (9/2023)

Table 2: Test accuracy on FashionMNIST, SVHN, and CIFAR-10 with LeNet. “k-class” means that each
node has only the data of randomly selected k classes. Bold font means the highest accuracy.

FashionMNIST
10-class 8-class 6-class 4-class

DSGD 85.6± 0.49 85.6± 0.41 82.7± 1.12 78.1± 1.56
Gradient Tracking 85.0± 0.49 85.4± 0.26 85.0± 0.37 84.9± 0.22
DSGDm 89.5± 0.15 89.3± 0.21 82.1± 3.23 68.7± 5.02
QG-DSGDm 89.6± 0.10 89.5± 0.47 86.9± 1.59 80.8± 2.94
DecentLaM 89.5± 0.14 89.3± 0.36 89.2± 0.41 84.3± 3.05
Momentum Tracking 89.5± 0.36 89.4± 0.05 88.9± 0.47 86.8± 1.56

SVHN
10-class 8-class 6-class 4-class

DSGD 90.1± 0.17 89.5± 0.61 87.6± 1.94 78.8± 8.55
Gradient Tracking 90.1± 0.30 89.8± 0.38 89.8± 0.39 89.4± 0.47
DSGDm 92.6± 0.35 92.4± 0.19 88.1± 4.38 67.2± 9.69
QG-DSGDm 92.5± 0.22 92.5± 0.17 90.9± 1.67 83.5± 7.14
DecentLaM 92.4± 0.21 92.2± 0.39 92.0± 0.48 88.2± 4.75
Momentum Tracking 92.6± 0.32 92.4± 0.40 92.3± 0.23 91.7± 0.53

CIFAR-10
10-class 8-class 6-class 4-class

DSGD 63.1± 0.60 64.1± 0.52 61.2± 1.16 47.6± 5.77
Gradient Tracking 62.3± 0.73 62.0± 0.80 61.9± 0.58 61.8± 0.82
DSGDm 72.9± 0.41 72.5± 0.20 63.8± 6.24 38.8± 1.61
QG-DSGDm 72.4± 0.87 73.1± 0.16 69.6± 2.42 55.3± 5.30
DecentLaM 73.2± 0.36 72.9± 0.14 71.7± 1.10 63.1± 5.43
Momentum Tracking 72.9± 0.59 73.0± 0.49 72.6± 0.41 70.7± 1.38

Table 3: Test accuracy on CIFAR-10 with VGG-11 and ResNet-34. “k-class” indicates that each node has
only the data of randomly selected k classes, and bold font indicates the highest accuracy.

CIFAR-10 + VGG-11 CIFAR-10 + ResNet-34
10-class 4-class 2-class 10-class 4-class 2-class

DSGD 91.3± 0.12 86.9± 1.75 71.1± 2.82 94.3± 0.13 90.0± 1.65 63.5± 0.90
Gradient Tracking 88.1± 0.14 86.3± 0.50 83.0± 0.04 85.9± 0.71 82.6± 0.33 76.2± 0.30
DSGDm 92.2± 0.09 77.3± 4.05 39.6± 5.92 95.8± 0.26 79.0± 3.69 27.7± 2.83
QG-DSGDm 92.0± 0.02 89.5± 1.08 77.8± 1.96 95.8± 0.22 94.3± 1.13 79.9± 1.59
DecentLaM 92.1± 0.09 90.9± 0.65 85.2± 0.67 95.9± 0.04 95.2± 0.51 89.2± 2.26
Momentum Tracking 91.9± 0.06 90.9± 0.60 87.0± 0.48 95.0± 0.13 94.4± 0.52 89.9± 0.73

In summary, when the data distributions are homogeneous, DSGDm, QG-DSGDm, DecentLaM, and Momen-
tum Tracking are comparable and outperform DSGD and Gradient Tracking. When the data distributions
are heterogeneous, Momentum Tracking is more robust to data heterogeneity than DSGDm, QG-DSGDm,
and DecentLaM, and can outperform all comparison methods.

9

Published in Transactions on Machine Learning Research (9/2023)

0 200 400 600 800 1000
Epoch

10

30

50

70

90

Ac
cu

ra
cy

VGG-11

0 200 400 600 750
Epoch

10

30

50

70

90

Ac
cu

ra
cy

ResNet-34

DSGD
Gradient Tracking
DSGDm
QG-DSGDm
DecentLaM
Momentum Tracking

Figure 2: Learning curves for CIFAR-10 with VGG-11 and ResNet-34 in the 2-class setting.

4.3 Results with Various Neural Network Architectures

Next, we evaluated Momentum Tracking in more detail by varying the neural network architecture. Table 3
lists the test accuracy with VGG-11 (Simonyan & Zisserman, 2015) and ResNet-34 (He et al., 2016) when
we set k to {2, 4, 10}, and Fig. 2 shows the learning curves.

For both neural network architectures, Table 3 reveals that when the data distributions are homogeneous (i.e.,
10-class), Momentum Tracking is comparable with DSGDm, QG-DSGDm, and DecentLaM and outperforms
DSGD and Gradient Tracking. By contrast, when the data distributions are heterogeneous (e.g., 2-class),
Table 3 and Fig. 2 reveal that Momentum Tracking outperforms all comparison methods for both neural
network architectures. In particular, Fig. 2 indicates that DSGDm, QG-DSGDm, and DecentLaM are
unstable and continue to oscillate in the final training phase, whereas Momentum Tracking converges stably.
These results are consistent with those of LeNet presented in Table 2.

5 Conclusion

In this study, we propose Momentum Tracking, which is a method with momentum whose convergence rate
is proven to be independent of data heterogeneity. More specifically, we provide the convergence rate of
Momentum Tracking in the setting where the objective function is non-convex and the stochastic gradient
is used. Our theoretical analysis reveals that the convergence rate of Momentum Tracking is independent of
data heterogeneity for any β ∈ [0, 1). Through image classification tasks, we demonstrated that Momentum
Tracking can consistently outperform the decentralized learning methods without momentum regardless of
data heterogeneity. Moreover, we showed that Momentum Tracking is more to data heterogeneity than
existing decentralized learning methods with momentum and can consistently outperform these existing
methods when the data distributions are heterogeneous.

Acknowledgments

Yuki Takezawa, Ryoma Sato, and Makoto Yamada were supported by JSPS KAKENHI Grant Number
23KJ1336, 21J22490, and MEXT KAKENHI Grant Number 20H04243, respectively.

References
Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gradient push for distributed

deep learning. In International Conference on Machine Learning, 2019.

Guido Carnevale, Francesco Farina, Ivano Notarnicola, and Giuseppe Notarstefano. Gtadam: Gradient
tracking with adaptive momentum for distributed online optimization. In arXiv, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International Conference on Machine Learning, 2020.

10

Published in Transactions on Machine Learning Research (9/2023)

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized SGD. In International Conference on
Machine Learning, 2020.

Aaron Defazio. Momentum via primal averaging: Theoretical insights and learning rate schedules for non-
convex optimization. In arXiv, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In Conference of the North American Chapter of the
Association for Computational Linguistics, 2019.

Yasaman Esfandiari, Sin Yong Tan, Zhanhong Jiang, Aditya Balu, Ethan Herron, Chinmay Hegde, and
Soumik Sarkar. Cross-gradient aggregation for decentralized learning from non-iid data. In International
Conference on Machine Learning, 2021.

Hongchang Gao and Heng Huang. Periodic stochastic gradient descent with momentum for decentralized
training. In arXiv, 2020.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-IID data quagmire of decen-
tralized machine learning. In International Conference on Machine Learning, 2020.

Tzu-Ming Harry Hsu, Qi, and Matthew Brown. Measuring the effects of non-identical data distribution for
federated visual classification. In ArXiv, 2019.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Breaking the centralized barrier for cross-device federated learning.
In Advances in Neural Information Processing Systems, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Confer-
ence on Learning Representations, 2015.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified theory of
decentralized SGD with changing topology and local updates. In International Conference on Machine
Learning, 2020.

Anastasia Koloskova, Tao Lin, and Sebastian U Stich. An improved analysis of gradient tracking for decen-
tralized machine learning. In Advances in Neural Information Processing Systems, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Batiste Le Bars, Aurélien Bellet, Marc Tommasi, Erick Lavoie, and Anne-Marie Kermarrec. Refined conver-
gence and topology learning for decentralized sgd with heterogeneous data. In International Conference
on Artificial Intelligence and Statistics, 2023.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. In IEEE, 1998.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In
Advances in Neural Information Processing Systems, 2017.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic gradient
descent. In International Conference on Machine Learning, 2018.

Tao Lin, Sai Praneeth Karimireddy, Sebastian Stich, and Martin Jaggi. Quasi-global momentum: Accelerat-
ing decentralized deep learning on heterogeneous data. In International Conference on Machine Learning,
2021.

11

Published in Transactions on Machine Learning Research (9/2023)

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
On the variance of the adaptive learning rate and beyond. In International Conference on Learning
Representations, 2020a.

Xiaorui Liu, Yao Li, Rongrong Wang, Jiliang Tang, and Ming Yan. Linear convergent decentralized opti-
mization with compression. In International Conference on Learning Representations, 2021.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with momentum.
In Advances in Neural Information Processing Systems, 2020b.

Paolo Di Lorenzo and Gesualdo Scutari. NEXT: in-network nonconvex optimization. In IEEE Transactions
on Signal and Information Processing over Networks, 2016.

Yucheng Lu and Christopher De Sa. Moniqua: Modulo quantized communication in decentralized SGD. In
International Conference on Machine Learning, 2020.

Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In International Confer-
ence on Machine Learning, 2021.

Angelia Nedić, Alexander Olshevsky, and Wei Shi. Achieving geometric convergence for distributed opti-
mization over time-varying graphs. In SIAM Journal on Optimization, 2017.

Giovanni Neglia, Gianmarco Calbi, Don Towsley, and Gayane Vardoyan. The role of network topology for
distributed machine learning. In IEEE Conference on Computer Communications, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits in
natural images with unsupervised feature learning. In Advances in Neural Information Processing Systems
Workshop, 2011.

Kenta Niwa, Noboru Harada, Guoqiang Zhang, and W. Bastiaan Kleijn. Edge-consensus learning: Deep
learning on p2p networks with nonhomogeneous data. In International Conference on Knowledge Discovery
and Data Mining, 2020.

Kenta Niwa, Guoqiang Zhang, W. Bastiaan Kleijn, Noboru Harada, Hiroshi Sawada, and Akinori Fujino.
Asynchronous decentralized optimization with implicit stochastic variance reduction. In International
Conference on Machine Learning, 2021.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. In USSR Computational
Mathematics and Mathematical Physics, 1964.

Shi Pu and Angelia Nedic. Distributed stochastic gradient tracking methods. In Math. Program., 2021.

Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization. In IEEE Transactions
on Control of Network Systems, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
In International Conference on Learning Representations, 2015.

Navjot Singh, Deepesh Data, Jemin George, and Suhas Diggavi. Squarm-sgd: Communication-efficient
momentum sgd for decentralized optimization. In IEEE International Symposium on Information Theory,
2021.

Yuki Takezawa, Kenta Niwa, and Makoto Yamada. Communication compression for decentralized learning
with operator splitting methods. In arXiv, 2022a.

Yuki Takezawa, Kenta Niwa, and Makoto Yamada. Theoretical analysis of primal-dual algorithm for non-
convex stochastic decentralized optimization. In arXiv, 2022b.

Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression for decentral-
ized training. In Advances in Neural Information Processing Systems, 2018a.

12

Published in Transactions on Machine Learning Research (9/2023)

Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. d2: Decentralized training over decentralized
data. In International Conference on Machine Learning, 2018b.

Thijs Vogels, Lie He, Anastasia Koloskova, Sai Praneeth Karimireddy, Tao Lin, Sebastian U Stich, and
Martin Jaggi. RelaySum for decentralized deep learning on heterogeneous data. In Advances in Neural
Information Processing Systems, 2021.

Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri Joshi, and Soummya Kar. Matcha: Speeding up
decentralized sgd via matching decomposition sampling. In Indian Control Conference, 2019.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. SlowMo: Improving communication-
efficient distributed sgd with slow momentum. In International Conference on Learning Representations,
2020a.

Jun-Kun Wang, Chi-Heng Lin, and Jacob Abernethy. Escaping saddle points faster with stochastic momen-
tum. In International Conference on Learning Representations, 2020b.

Yuxin Wu and Kaiming He. Group normalization. In European Conference on Computer Vision, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. In arXiv, 2017.

Ran Xin and Usman A. Khan. Distributed heavy-ball: A generalization and acceleration of first-order
methods with gradient tracking. In IEEE Transactions on Automatic Control, 2020.

Ran Xin, Usman A. Khan, and Soummya Kar. Fast decentralized nonconvex finite-sum optimization with
recursive variance reduction. In SIAM Journal on Optimization, 2022.

Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, and Yi Yang. A unified analysis of stochastic momentum
methods for deep learning. In International Joint Conference on Artificial Intelligence, 2018.

Bicheng Ying, Kun Yuan, Yiming Chen, Hanbin Hu, Pan Pan, and Wotao Yin. Exponential graph is provably
efficient for decentralized deep training. In Advances in Neural Information Processing Systems, 2021.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient momentum
SGD for distributed non-convex optimization. In International Conference on Machine Learning, 2019.

Kun Yuan, Yiming Chen, Xinmeng Huang, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao Yin. De-
centLaM: Decentralized momentum sgd for large-batch deep training. In International Conference on
Computer Vision, 2021.

Kun Yuan, Xinmeng Huang, Yiming Chen, Xiaohan Zhang, Yingya Zhang, and Pan Pan. Revisiting optimal
convergence rate for smooth and non-convex stochastic decentralized optimization. In Advances in Neural
Information Processing Systems, 2022.

Haoyu Zhao, Boyue Li, Zhize Li, Peter Richtarik, and Yuejie Chi. Beer: Fast o(1/t) rate for decentralized
nonconvex optimization with communication compression. In Advances in Neural Information Processing
Systems, 2022.

13

Published in Transactions on Machine Learning Research (9/2023)

A Pseudo-Codes

The pseudo-codes for Momentum Tracking, QG-DSGDm, and DecentLaM are given in the following, where
Transmiti→j(·) denotes that node i transmits parameters to node j and Receivei←j(·) denotes that node
i receives parameters from node j.

Algorithm 1: Update rules of Momentum Tracking at node i.
1: Input: Step size η > 0, β ∈ (0, 1], mixing matrix W . Initialize ci and ui to

1
1−β (∇Fi(x(0)

i ; ξ
(0)
i)− 1

N

∑
j ∇Fj(x(0)

j ; ξ
(0)
j)) for all i ∈ V and xi with the same parameter.

2: for r = 0, · · · , R do
3: u

(r+1)
i ← βu

(r)
i +∇Fi(x(r)

i ; ξ
(r)
i).

4: for j ∈ Ni do
5: Transmiti→j(x(r)

i) and Receivei←j(x(r)
j).

6: Transmiti→j(c(r)
i − u

(r+1)
i) and Receivei←j(c(r)

j − u
(r+1)
j).

7: end for
8: x

(r+1)
i ←

∑
j∈N+

i
Wijx

(r)
j − η

(
u

(r+1)
i − c

(r)
i

)
.

9: c
(r+1)
i ←

∑
j∈N+

i
Wij

(
c

(r)
j − u

(r+1)
j

)
+ u

(r+1)
i .

10: end for

Algorithm 2: Update rules of QG-DSGDm at node i.
1: Input: Step size η > 0, β, µ ∈ (0, 1], mixing matrix W . Initialize ûi to zero for all i ∈ V and xi with

the same parameter.
2: for r = 0, · · · , R do
3: u

(r+1)
i ← βû

(r)
i +∇Fi(x(r)

i ; ξ
(r)
i).

4: x
(r+ 1

2)
i ← x

(r)
i − ηu

(r+1)
i

5: for j ∈ Ni do
6: Transmiti→j(x(r+ 1

2)
i) and Receivei←j(x(r+ 1

2)
j).

7: end for
8: x

(r+1)
i ←

∑
j∈N+

i
Wijx

(r+ 1
2)

j .

9: d
(r+1)
i ← x

(r)
i
−x

(r+1)
i

η .
10: û

(r+1)
i ← µû

(r)
i + (1− µ)d(r+1)

i .
11: end for

Algorithm 3: Update rules of DecentLaM at node i.
1: Input: Step size η > 0, β ∈ (0, 1], mixing matrix W . Initialize ui to zero for all i ∈ V and xi with the

same parameter.
2: for r = 0, · · · , R do
3: x

(r+ 1
2)

i ← x
(r)
i − η∇Fi(x(r)

i ; ξ
(r)
i).

4: for j ∈ Ni do
5: Transmiti→j(x(r+ 1

2)
i) and Receivei←j(x(r+ 1

2)
j).

6: end for
7: ĝ

(r+1)
i ← 1

η x
(r)
i − 1

η

∑
j∈Ni

Wijx
(r+ 1

2)
j .

8: u
(r+1)
i ← βu

(r)
i + ĝ

(r+1)
i .

9: x
(r+1)
i ← x

(r)
i − ηu

(r+1)
i .

10: end for

14

Published in Transactions on Machine Learning Research (9/2023)

B Additional Discussion about Convergence Rate

B.1 Comparison with Gradient Tracking

Because Momentum Tracking is equivalent to Gradient Tracking when β = 0, Theorem 1 also provides
the convergence rate of Gradient Tracking. In this section, we compare the convergence rate of Gradient
Tracking provided in Theorem 1 to that provided by Koloskova et al. (2021).

From Theorem 1, we get the following statement.
Corollary 1. Suppose that β = 0 and the assumptions of Theorem 1 hold. Then, for any R ≥ 1, there exists
a step size η such that the average parameter x̄ := 1

N

∑
i xi generated by Eqs. (7-9) satisfies

1
R

R−1∑
r=0

E
∥∥∥∇f(x̄(r))

∥∥∥2
≤ O

(√
r0σ2L

NR
+
(

r0σL

p2R

) 2
3

+ Lr0

p2R

)
, (11)

where r0 := f(x̄(0))− f⋆.

Then, under Assumptions 1, 2, 3, and 4, Koloskova et al. (2021) provided the convergence rate of Gradient
Tracking as follows.
Theorem 3 (Koloskova et al. (2021)). Suppose that Assumptions 1, 2, 3, and 4 hold, each model parameter
xi is initialized with the same parameters, and ci is initialized as 0. Then, for any round R > 2

p log(50
p (1 +

log 1
p)), there exists a step size η that satisfies that the average parameter x̄ := 1

N

∑
i xi generated by Gradient

Tracking satisfies

1
R

R−1∑
r=0

∥∥∥∇f(x̄(r))
∥∥∥2
≤ Õ

√r0σ2L

NR
+
(

r0σL

(√pc + p
√

N)R

) 2
3

+ L(r0 + Lζ2
0)

pcR

 , (12)

where Õ(·) hides the polylogarithmic factors, ζ2
0 := 1

N

∑
i ∥∇Fi(x̄(0); ξi) − 1

N

∑
j ∇Fj(x̄(0); ξj)∥2, c := 1 −

min{λmin, 0}2, and λmin is the minimum eigenvalue of W .

Comparing the convergence rates in Eqs. (11) and (12), the convergence rate in Eq. (12) is tighter than that
in Eq. (11) because c ≥ p for any mixing matrix W . However, because the convergence rate in Eq. (12)
holds only when the number of round R is larger than 2

p log(50
p (1 + log 1

p)), Theorem 3 can not describe
the behavior of the convergence rate at the beginning of the training. In contrast, Corollary 1 provides the
convergence rate for Gradient Tracking that holds for any R ≥ 1.

B.2 Comparison with Other Decentralized Learning Methods

Lu & De Sa (2021) and Yuan et al. (2022) proposed DeTAG and MG-DSGD that can achieve optimal con-
vergence rates by using algorithmic techniques such as gradient accumulation and multiple gossip averaging.
However, Assumption 5 is necessary for both analyses. Then, as the data heterogeneity becomes large,
the convergence rate of DeTAG deteriorates, and the number of multiple gossip averaging increases. The
goal of our study is to propose a method with momentum whose convergence rate is independent of data
heterogeneity. Thus, we leave it to future work to compare Momentum Tracking with these methods.

C Additional Experiments

C.1 Results with Various Network Topologies

We evaluated Momentum Tracking in more detail by changing the underlying network topology. Table 4 lists
the test accuracy of all comparison methods when we set the underlying network topology to be a hypercube
or a semantic exponential graph.

Table 4 indicates that when the data distributions held by each node are statistically homogeneous (i.e.,
10-class), DSGDm, QG-DSGDm, DecentLaM, and Momentum Tracking are comparable and outperform

15

Published in Transactions on Machine Learning Research (9/2023)

DSGD and Gradient Tracking for all network topologies. When the data distributions are heterogeneous
(i.e., 4-class), the results show that Momentum Tracking is more robust to data heterogeneity than DSGDm,
QG-DSGDm, and DecentLaM and outperforms all comparison methods for all network topologies. Therefore,
the results indicate that Momentum Tracking is robust to data heterogeneity regardless of the underlying
network topology.

Table 4: Test accuracy on CIFAR-10 with different underlying network topologies.

CIFAR-10
Hypercube Semantic Exponential Graph

10-class 4-class 10-class 4-class
DSGD 63.3± 0.65 55.9± 4.11 64.0± 0.26 60.7± 1.82
Gradient Tracking 61.0± 1.34 60.2± 1.13 62.4± 0.53 62.4± 0.89
DSGDm 73.2± 0.09 45.0± 5.90 73.4± 0.13 51.5± 7.80
QG-DSGDm 73.0± 0.31 62.9± 3.68 73.4± 0.58 70.2± 1.09
DecentLaM 72.9± 0.24 69.1± 4.05 72.9± 0.73 71.2± 1.72
Momentum Tracking 72.8± 0.15 72.7± 0.28 72.7± 0.33 72.9± 0.07

C.2 Results with Other Heterogeneous Setting

In Sec. 4, we show the results when the data are distributed such that each node had data of randomly
selected k classes. In this section, we show the results in another heterogeneous setting, where the label
distributions of each node are determined by Dirichlet distributions Hsu et al. (2019).

Table 5 lists the results when we distributed data using Dirichlet distributions. The results indicate that
Momentum Tracking is more robust to the data heterogeneity than DSGDm, QG-DSGDm, and DecentLaM
in both cases where we use Dirichlet distributions and where we use k-class setting.

Table 5: Test accuracy on CIFAR-10 with different α.

CIFAR-10 + VGG-11
α = 10 (homogeneous case) α = 0.1 (heterogeneous case)

QG-DSGDm 89.7± 0.07 87.2± 1.54
DecentLaM 90.1± 0.28 88.6± 0.99
Momentum Tracking 90.5± 0.01 90.2± 0.37

C.3 Initial Value Analysis

In this section, we discuss the initial values of ci and ui. Table 6 lists the test accuracy for Momentum
Tracking when we initialize ci and ui to zero and when we initialize ci and ui as in Theorem 1. The results
indicate that the test accuracy are almost equivalent on both settings. Hence, Theorem 1 requires ci and ui

to be initialized to 1
1−β (∇Fi(x(0)

i ; ξ
(0)
i) − 1

N

∑N
j=1∇Fj(x(0)

j ; ξ
(0)
j)). However, in practice, ci and ui can be

initialized to zeros without any impact on accuracy.

C.4 Comparison with RelaySum

In this section, we compare Momentum Tracking with RelaySum Vogels et al. (2021), which is one of the
methods that are most robust to data heterogeneity, and RelaySum with momentum (RelaySumM). Table
7 lists the accuracy on CIFAR-10 with VGG-11. The results indicate that RelaySumM is more robust to
data heterogeneity than Momentum Tracking and outperforms Momentum Tracking in the 2-class setting.
However, the convergence rate of RelaySum is proven to be independent of data heterogeneity only when
the momentum is not applied, and it remains to be unclear whether the convergence rate of RelaySum
is independent of data heterogeneity when the momentum is applied. Thus, it is a clear advantage that
the convergence rate of Momentum Tracking is proven to be independent of data heterogeneity for any

16

Published in Transactions on Machine Learning Research (9/2023)

Table 6: Test accuracy on FashionMNIST, SVHN, and CIFAR-10 with LeNet. “k-class” indicates that each
node has only the data of randomly selected k classes.

FashionMNIST
10-class 8-class 6-class 4-class

Momentum Tracking 89.5± 0.36 89.4± 0.05 88.9± 0.47 86.8± 1.56
Momentum Tracking (c(0)

i = u
(0)
i = 0) 89.5± 0.38 89.4± 0.04 88.7± 0.63 85.8± 1.53

SVHN
10-class 8-class 6-class 4-class

Momentum Tracking 92.6± 0.32 92.4± 0.40 92.3± 0.23 91.7± 0.53
Momentum Tracking (c(0)

i = u
(0)
i = 0) 92.5± 0.34 92.3± 0.50 92.2± 0.29 92.0± 0.81

CIFAR-10
10-class 8-class 6-class 4-class

Momentum Tracking 72.9± 0.59 73.0± 0.49 72.6± 0.41 70.7± 1.38
Momentum Tracking (c(0)

i = u
(0)
i = 0) 72.8± 0.35 72.9± 0.32 73.0± 0.41 70.7± 2.00

momentum coefficient β ∈ [0, 1). The main objective and contribution of our study are not to achieve state-
of-the-art, but to propose a method with momentum whose convergence rate is proven to be independent of
the data heterogeneity. We believe that our proof is helpful for future research that will attempt to analyze
the convergence rates when the momentum is applied (e.g., the convergence rate of RelaySumM).

Table 7: Test accuracy on CIFAR-10 with VGG-11.

CIFAR-10 + VGG-11
10-class 2-class

DSGD 91.3± 0.12 71.1± 2.82
Gradient Tracking 88.1± 0.14 83.0± 0.04
RelaySum 91.1± 0.13 89.0± 0.15
DSGDm 92.2± 0.09 39.6± 5.92
QG-DSGDm 92.0± 0.02 77.8± 1.96
DecentLaM 92.1± 0.09 85.2± 0.67
RelaySumM 92.1± 0.13 89.3± 0.76
Momentum Tracking 91.9± 0.06 87.0± 0.48

C.5 Comparision with ABm and GTAdam

In this section, we compared Momentum Tracking with ABm (Xin & Khan, 2020) and GTAdam (Carnevale
et al., 2022), showing the results in Table 8. The update rules of Momentum Tracking are slightly different
from that of ABm and GTAdam, but the results indicate that they can achieve almost the same accuracy.
However, as we mention in Remark 2, ABm and GTAdam are proven to be independent of data heterogeneity
only in the strongly convex setting. Thus, Momentum Tracking is the first method with momentum whose
convergence rate is proven to be independent of data heterogeneity in non-convex and stochastic settings.

C.6 Learning Curves

In this section, we present the learning curves for the results whose final accuracy are presented in Tables 2
and 3. Figs. 3, 4, and 5 show the learning curves for FashionMNSIT, SVHN, and CIFAR-10, respectively,
with LeNet. Figs. 6 and 7 show the learning curves for CIFAR-10 with VGG-11 and ResNet-34, respectively.

17

Published in Transactions on Machine Learning Research (9/2023)

Table 8: Test accuracy on CIFAR-10 with LeNet.

10-class 4-class
Momentum Tracking 72.9± 0.59 70.7± 1.38
ABm 71.0± 0.20 71.1± 0.20
GTAdam 71.4± 0.56 67.7± 3.20

When the data distributions are statistically homogeneous (i.e., 10-class), the results indicate that DSGDm,
QG-DSGDm, DecentLaM, and Momentum Tracking are comparable and can achieve high accuracy faster
than DSGD and Gradient Tracking. When the data distributions are statistically heterogeneous (e.g., 2-class
and 4-class), the results indicate that the learning curves for Momentum Tracking are more stable than those
for DSGDm, QG-DSGDm, and DecentLaM, and Momentum Tracking outperforms all comparison methods.
In particular, in Figs. 6 and 7, the accuracy of DSGD, DSGDm, QG-DSGDm, and DecentLaM continue to
oscillate in the final training phase in the 2-class setting, whereas the accuracy of Momentum Tracking and
Gradient Tracking converge in the 2-class setting as well as in the 10-class setting. Therefore, Momentum
Tracking is more robust to data heterogeneity than DSGDm, QG-DSGDm, and DecentLaM.

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

10-class

DSGD
Gradient Tracking
DSGDm
QG-DSGDm
DecentLaM
Momentum Tracking

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

8-class

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

80

90
Ac

cu
ra

cy
6-class

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

4-class

Figure 3: Learning curves on FashionMNIST. The accuracy is evaluated per 10 epochs.

0 100 200 300 400 500
Epoch

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

10-class

DSGD
Gradient Tracking
DSGDm
QG-DSGDm
DecentLaM
Momentum Tracking

0 100 200 300 400 500
Epoch

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

8-class

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

6-class

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

4-class

Figure 4: Learning curves on SVHN. The accuracy is evaluated per 10 epochs.

18

Published in Transactions on Machine Learning Research (9/2023)

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

Ac
cu

ra
cy

10-class

DSGD
Gradient Tracking
DSGDm
QG-DSGDm
DecentLaM
Momentum Tracking

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

Ac
cu

ra
cy

8-class

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

Ac
cu

ra
cy

6-class

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

Ac
cu

ra
cy

4-class

Figure 5: Learning curves on CIFAR-10. The accuracy is evaluated per 10 epochs.

0 200 400 600 800 1000
Epoch

20

40

60

80

Ac
cu

ra
cy

10-class

DSGD
Gradient Tracking
DSGDm
QG-DSGDm
DecentLaM
Momentum Tracking

0 200 400 600 800 1000
Epoch

20

40

60

80

Ac
cu

ra
cy

4-class

0 200 400 600 800 1000
Epoch

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

2-class

Figure 6: Learning curves on CIFAR-10 with VGG-11. The accuracy is evaluated per 10 epochs.

0 150 300 450 600 750
Epoch

20

40

60

80

100

Ac
cu

ra
cy

10-class

DSGD
Gradient Tracking
DSGDm
QG-DSGDm
DecentLaM
Momentum Tracking

0 150 300 450 600 750
Epoch

20

40

60

80

100

Ac
cu

ra
cy

4-class

0 150 300 450 600 750
Epoch

20

40

60

80

Ac
cu

ra
cy

2-class

Figure 7: Learning curves on CIFAR-10 with ResNet-34. The accuracy is evaluated per 10 epochs.

19

Published in Transactions on Machine Learning Research (9/2023)

C.7 Synthetic Experiment

In this section, we evaluate the convergence rate in more detail using a synthetic dataset. Following the
previous work (Koloskova et al., 2020), we set the dimension of parameter d to 50, the number of nodes
N to 25, and the network topology to a ring consisting of N nodes. We then defined the local objective
function fi(x) to be 1

2∥Aix−bi∥2 where Ai := i/
√

N and bi are sampled from N (0, ζ2/i21), and we defined
the stochastic gradient ∇Fi(x; ξi) to be ∇fi(x) + ϵ where ϵ is drawn from N (0; σ2/d1). For all comparison
methods, we set the step size η to 1.0× 10−4.

Figs. 8 and 9 illustrate ∥∇f(x̄)∥2 with respect to the number of rounds r when we vary data heterogeneity
ζ2 as {0, 25, 50} and set σ2 to one. The results show that Momentum Tracking converges in the same
manner regardless of data heterogeneity ζ2. On the other hand, for DSGDm, QG-DSGDm, and DecentLaM,
∥∇f(x̄)∥2 increases as data heterogeneity ζ2 increases. Hence, these results are consistent with our theoretical
analysis that the convergence rate of Momentum Tracking is independent of data heterogeneity.

0 500 1000 1500 2000
Round

103

101

10 1

10 3

|
f(x

)|2

2 = 0

0 500 1000 1500 2000
Round

103

101

10 1

10 3

|
f(x

)|2

2 = 25

0 500 1000 1500 2000
Round

103

101

10 1

10 3
|

f(x
)|2

2 = 50

DSGD
Gradient Tracking
DSGDm
QG-DSGDm
DecentLaM
Momentum Tracking

Figure 8: Comparison of the convergence in the initial training phase in the synthetic experiments.

0 5000 10000 15000
Round

10 4

10 2

100

102

104

|
f(x

)|2

2 = 0

0 5000 10000 15000
Round

10 4

10 2

100

102

104

|
f(x

)|2

2 = 25

0 5000 10000 15000
Round

10 4

10 2

100

102

104

|
f(x

)|2

2 = 50

DSGD
Gradient Tracking
DSGDm
QG-DSGDm
DecentLaM
Momentum Tracking

Figure 9: Comparison of the convergence in the synthetic experiments.

20

Published in Transactions on Machine Learning Research (9/2023)

D Proof of Theorem 1

D.1 Technical Lemma

Lemma 1. For any x, y ∈ Rd, γ > 0, it holds that

∥x + y∥2 ≤ (1 + γ)∥x∥2 + (1 + γ−1)∥y∥2. (13)

Lemma 2. For any a1, · · · , aN , it holds that∥∥∥∥∥
N∑

i=1
ai

∥∥∥∥∥
2

≤ N

N∑
i=1
∥ai∥2. (14)

Lemma 3. For any x, y ∈ Rd, γ > 0, it holds that

2⟨x, y⟩ ≤ γ∥x∥2 + γ−1∥y∥2. (15)

D.2 Momentum Tracking in Matrix Notation

We define U (r), X(r), C(r), ∇F (X(r); ξ(r)), and ∇f(X(r)) as follows:

U (r) :=
(

u
(r)
1 , · · · , u

(r)
N

)
, X(r) :=

(
x

(r)
1 , · · · , x

(r)
N

)
, C(r) :=

(
c

(r)
1 , · · · , c

(r)
N

)
,

∇F (X(r); ξ(r)) :=
(
∇F1(x(r)

1 ; ξ
(r)
1), · · · ,∇FN (x(r)

N ; ξ
(r)
N)
)

,

∇f(X(r)) :=
(
∇f1(x(r)

1), · · · ,∇fN (x(r)
N)
)

.

Then, the update rule of Momentum Tracking can then be rewritten as follows:

U (r+1) = βU (r) +∇F (X(r); ξ(r)), (16)
X(r+1) = X(r)W − η(U (r+1) −C(r)), (17)
C(r+1) = (C(r) −U (r+1))W + U (r+1), (18)

where U (0) and C(0) are initialized as follows:

U (0) = 1
1− β

(∇F (X(0); ξ(0))− 1
N
∇F (X(0); ξ(0))11⊤),

C(0) = 1
1− β

(∇F (X(0); ξ(0))− 1
N
∇F (X(0); ξ(0))11⊤).

D.3 Additional Notation

We define the update rules of di and ei as follows:

d
(r+1)
i = βd

(r)
i +∇fi(x̄(r)), (19)

e
(r+1)
i = βe

(r)
i +∇f(x̄(r)), (20)

where d
(0)
i = 1

1−β (∇fi(x̄(0)) − ∇f(x̄(0))) and e
(0)
i = 0. Note that it holds that d̄(r) = ē(r) for any round

r ≥ 0. Then, we define D and E as follows:

D(r) :=
(

d
(r)
1 , · · · , d

(r)
N

)
, E(r) :=

(
e

(r)
1 , · · · , e

(r)
N

)
.

The update rules of D and E can be written as follows:

D(r+1) = βD(r) +∇f(X̄(r)), (21)

E(r+1) = βE(r) + 1
N
∇f(X̄(r))11⊤, (22)

21

Published in Transactions on Machine Learning Research (9/2023)

where D(0) and E(0) are initialized as follows:

D(0) = 1
1− β

(∇f(X̄(0))− 1
N
∇f(X̄(0))11⊤),

E(0) = 0.

Note that di, ei, D, and E are the only variables used in the proof that do not need to be computed in
practice in Alg. 1. We define Ξ, E , and D as follows:

Ξ(r) := 1
N

E
∥∥∥X(r) − X̄(r)

∥∥∥2

F
,

E(r) := 1
N

E
∥∥∥D(r+1) −C(r) −E(r+1)

∥∥∥2

F
,

D(r) := 1
N

E
∥∥∥D(r+1) −D(r) −E(r+1) + E(r)

∥∥∥2

F
.

Inspired by Yu et al. (2019), we define z̄ as follows:

z̄(r) :=
{

x̄(r), if r = 0
1

1−β x̄(r) − β
1−β x̄(r−1), otherwise

.

In the following, we define ±a := a − a = 0 for any a and ā := 1
N

∑N
i=1 ai for any a1, · · · , aN . Then, E[·]

denotes the expectation over all randomness that occurs during training (i.e., {ξ(r)
i }i,r), and Er[·] denotes

the expectation over the randomness that occurs at round r (i.e., {ξ(r)
i }i).

D.4 Proof Sketch

In this section, we briefly summarize our proof technique. Our proof is based on the analysis of DSGD
Koloskova et al. (2020) that uses the upper bound of the consensus error Ξ. We extend their technique
to deal with data heterogeneity by decomposing the inequality about the consensus error Ξ into (i) the
inequality of the error between global and corrected local momentum E and (ii) the inequality of the error
between update values of global and uncorrected local momentum D. While bounding the latter error is
rather straightforward, bounding the former error requires our momentum correction term, which makes
the error recursion contractive; otherwise, the error between global and local momentum results in the
heterogeneity term in the final convergence error. In the following, we show the proof sketch and explain in
more detail how to bound Ξ from above without using ζ2.

We derive the inequality about the consensus error Ξ as follows (See Lemma 14):

Ξ(r+1) ≤
(

1− p

2

)
Ξ(r) + 9

p
η2E(r) + 9

Np
η2

N∑
i=1

(
E
∥∥∥u(r+1)

i − d(r+1)
i

∥∥∥2
+ E

∥∥∥e(r+1)
i

∥∥∥2
)

E represents the the error between global momentum ei(= ē) and corrected local momentum (di−ci). Thus,
intuitively, if we remove the tracking term ci from Momentum Tracking, E becomes 1

N

∑
i E∥di−ei∥2, which

causes the data heterogeneity ζ2 to appear in the upper bound of Ξ. In the following, we explain how to
eliminate E(r) and ζ2 from the upper bound of Ξ(r+1), which is the most important component of our proof.

To bound E from above, we derive the following two inequalities (see Lemmas 15 and 16):

E(r+1) ≤
(

1− p

2

)
E(r) + 18β2

p
D(r) + 144L4

p
η2Ξ(r) + C1,

D(r+1) ≤ 2β2

1 + β2D
(r) + 32L4η2

1− β2 Ξ(r) + C2,

where C1 and C2 are variables independent of Ξ, D, E , and ζ2. Here, the most important benefit to adding
the tracking term ci is that the coefficient of E(r) becomes less than 1. (i.e., (1− p

2) < 1). Roughly speaking,

22

Published in Transactions on Machine Learning Research (9/2023)

the above two inequalities imply that E and D become gradually smaller because (1− p
2) < 1 and 2β2

1+β2 < 1
hold for any β ∈ [0, 1).

Next, we derive a new inequality by combining the above three inequalities. We define an auxiliary error
term Θ as follows:

Θ(r) := Ξ(r) + 36
p2 η2E(r) + Aβ2

p3 η2D(r),

where A > 0 is defined in Lemma 17. Then, by combining the above three inequalities, we obtain the
following (see Lemma 17):

Θ(r+1) ≤
(

1− p

t

)
Θ(r) + C3,

where C3 is a variable independent of Ξ, D, E and ζ2, and t ≥ 4 is defined in Lemma 17.

Using Ξ ≤ Θ and applying the above inequality recursively, we obtain (see Lemma 18)

Ξ(r+1) ≤ Θ(r+1) ≤
(

1− p

t

)r+1
Θ(0) + C4,

where C4 is a variable independent of Ξ, D, E , and ζ2.

Using (1 − p
t) < 1, it holds that

∑R
r=0(1 − p

t)r+1Θ(0) ≤ t
p Θ(0). Finally, using this inequality and the fact

that C4 and Θ(0) are independent of ζ2 due to the assumption of initial values, we can eliminate E from the
upper bound of Ξ and derive the upper bound of Ξ that does not contain ζ2 as follows (see Lemma 19):

4L2

R + 1

R∑
r=0

Ξ(r) ≤ 1
2(R + 1)

R∑
k=0

∥∥∥∇f(x̄(k))
∥∥∥2

+ 40L2t

(1− β)3p2

(
10 + 29

p
+ 864

p2

)
σ2η2.

These are the essential techniques to bound
∑R

r=0 Ξ(r) from above without using ζ2 and make the convergence
rate independent of ζ2.

23

Published in Transactions on Machine Learning Research (9/2023)

D.5 Useful Lemma

Lemma 4. For any round r ≥ 0, it holds that c̄(r) = 0.

Proof. For any round r ≥ 0, we have
N∑

i=1
c

(r+1)
i =

N∑
i=1

N∑
j=1

Wij(c(r)
j − u

(r+1)
j) +

N∑
i=1

u
(r+1)
i

=
N∑

j=1
(c(r)

j − u
(r+1)
j)

N∑
i=1

Wij +
N∑

i=1
u

(r+1)
i .

Because W is a mixing matrix, we obtain
N∑

i=1
c

(r+1)
i =

N∑
j=1

c
(r)
j .

Since we have
N∑

i=1
c

(0)
i = 1

1− β

N∑
i=1

∇Fi(x(0)
i ; ξ

(0)
i)− 1

N

N∑
j=1
∇Fj(x(0)

j ; ξ
(0)
j)

 = 0,

we obtain the statement.

Lemma 5. For any round r ≥ 0, it holds that

x̄(r+1) = x̄(r) − ηū(r+1).

Proof. We have

x̄(r+1) = 1
N

N∑
i=1

N∑
j=1

Wijx
(r)
j − η(ū(r+1) − c̄(r))

= 1
N

N∑
j=1

x
(r)
j

N∑
i=1

Wij − η(ū(r+1) − c̄(r)).

The fact that W is a mixing matrix gives us

x̄(r+1) = x̄(r) − η(ū(r+1) − c̄(r)).

Then, using Lemma 4, we get the statement.

Lemma 6. For any round r ≥ 0, it holds that

z̄(r+1) − z̄(r) = − η

1− β

1
N

N∑
i=1
∇Fi(x(r)

i ; ξ
(r)
i).

Proof. For any r ≥ 1, we have

z̄(r+1) − z̄(r) = 1
1− β

(x̄(r+1) − x̄(r))− β

1− β
(x̄(r) − x̄(r−1))

= − η

1− β
ū(r+1) + ηβ

1− β
ū(r)

= − η

1− β

1
N

N∑
i=1
∇Fi(x(r)

i ; ξ
(r)
i),

24

Published in Transactions on Machine Learning Research (9/2023)

where we use Lemma 5. When r = 0, we have

z̄(1) − z̄(0) = 1
1− β

(x̄(1) − x̄(0))

= − η

1− β
ū(1)

= − η

1− β

1
N

N∑
i=1
∇Fi(x(0)

i ; ξ
(0)
i),

where we use ū(0) = 0. This concludes the proof.

Lemma 7. Suppose that Assumptions 1, 2, 3, and 4 hold. For any round R ≥ 0, it holds that

R∑
r=0

E
∥∥∥x̄(r) − z̄(r)

∥∥∥2
≤ β2η2

(1− β)4

R∑
r=0

E

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

+ β2σ2η2

N(1− β)4 R.

Proof. From Lemma 5, we have

E
∥∥∥x̄(r) − z̄(r)

∥∥∥2
= E

∥∥∥∥ ηβ

1− β
ū(r)

∥∥∥∥2

= β2η2

(1− β)2E

∥∥∥∥∥
r−1∑
k=0

βr−k−1 1
N

N∑
i=1
∇Fi(x(k)

i ; ξ
(k)
i)

∥∥∥∥∥
2

,

for any r ≥ 1. Defining s(r) :=
∑r

k=0 βr−k, we obtain

E
∥∥∥x̄(r) − z̄(r)

∥∥∥2

= β2η2

(1− β)2 s(r−1)2
E

∥∥∥∥∥
r−1∑
k=0

βr−k−1

s(r−1)
1
N

N∑
i=1
∇Fi(x(k)

i ; ξ
(k)
i)

∥∥∥∥∥
2

(a)
≤ β2η2

(1− β)2 s(r−1)
r−1∑
k=0

βr−k−1E

∥∥∥∥∥ 1
N

N∑
i=1
∇Fi(x(k)

i ; ξ
(k)
i)

∥∥∥∥∥
2

(6)
≤ β2η2

(1− β)2 s(r−1)
r−1∑
k=0

βr−k−1E

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(k)

i)

∥∥∥∥∥
2

+ β2σ2η2

N(1− β)2 s(r−1)
r−1∑
k=0

βr−k−1,

where we use Jensen’s inequality in (a). Using s(r−1) ≤ 1
1−β , we obtain

E
∥∥∥x̄(r) − z̄(r)

∥∥∥2
≤ β2η2

(1− β)3

r−1∑
k=0

βr−k−1E

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(k)

i)

∥∥∥∥∥
2

+ β2σ2η2

N(1− β)4 .

Recursive addition yields

R∑
r=1

E
∥∥∥x̄(r) − z̄(r)

∥∥∥2
≤ β2η2

(1− β)3

R∑
r=1

r−1∑
k=0

βr−k−1E

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(k)

i)

∥∥∥∥∥
2

+ β2σ2η2

N(1− β)4 R

= β2η2

(1− β)3

R−1∑
k=0

E

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(k)

i)

∥∥∥∥∥
2 R∑

r=k+1
βr−k−1 + β2σ2η2

N(1− β)4 R

≤ β2η2

(1− β)4

R−1∑
k=0

E

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(k)

i)

∥∥∥∥∥
2

+ β2σ2η2

N(1− β)4 R,

25

Published in Transactions on Machine Learning Research (9/2023)

where we use
∑R

r=k+1 βr−k−1 ≤ 1
1−β in the last inequality. From the definition of z̄(0), we have ∥x̄(0) −

z̄(0)∥2 = 0. This yields the statement.

Lemma 8. Suppose that Assumptions 1, 2, 3, and 4 hold. For any round r ≥ 0, it holds that

E
∥∥∥x̄(r+1) − x̄(r)

∥∥∥2
≤ 4L2η2Ξ(r) + 2β2η2E

∥∥∥ū(r)
∥∥∥2

+ 4η2E
∥∥∥∇f(x̄(r))

∥∥∥2
+ σ2η2

N
.

Proof. From Lemma 5, we have

Er

∥∥∥x̄(r+1) − x̄(r)
∥∥∥2

= η2Er

∥∥∥∥∥βū(r) + 1
N

N∑
i=1
∇Fi(x(r)

i ; ξ
(r)
i)

∥∥∥∥∥
2

(6)
≤ η2

∥∥∥∥∥βū(r) + 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

+ σ2η2

N

(13)
≤ 2β2η2

∥∥∥ū(r)
∥∥∥2

+ 2η2

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

︸ ︷︷ ︸
T

+σ2η2

N
.

Then, T can be bounded from above as follows:

T =

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)±∇fi(x̄(r))

∥∥∥∥∥
2

(13)
≤ 2

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)−∇fi(x̄(r))

∥∥∥∥∥
2

+ 2
∥∥∥∇f(x̄(r))

∥∥∥2

(14)
≤ 2

N

N∑
i=1

∥∥∥∇fi(x(r)
i)−∇fi(x̄(r))

∥∥∥2
+ 2

∥∥∥∇f(x̄(r))
∥∥∥2

(5)
≤ 2L2

N

N∑
i=1

∥∥∥x
(r)
i − x̄(r)

∥∥∥2
+ 2

∥∥∥∇f(x̄(r))
∥∥∥2

.

Then, we obtain the statement.

Lemma 9. For any round r ≥ 0, it holds that

E
∥∥∥ē(r+1)

∥∥∥2
≤ 1

1− β

r∑
k=0

βr−kE
∥∥∥∇f(x̄(k))

∥∥∥2
.

Proof. We have

E
∥∥∥ē(r+1)

∥∥∥2
= E

∥∥∥∥∥
r∑

k=0
βr−k∇f(x̄(k))

∥∥∥∥∥
2

,

where we use ē(0) = 0. Defining s(r) :=
∑r

k=0 βr−k, we obtain

E
∥∥∥ē(r+1)

∥∥∥2
= s(r)2

E

∥∥∥∥∥
r∑

k=0

βr−k

s(r) ∇f(x̄(k))

∥∥∥∥∥
2

≤ s(r)
r∑

k=0
βr−kE

∥∥∥∇f(x̄(k))
∥∥∥2

,

where we use Jensen’s inequality. Using s(r) ≤ 1
1−β , we obtain the statement.

26

Published in Transactions on Machine Learning Research (9/2023)

Lemma 10. Suppose that Assumptions 1, 2, 3, and 4 hold. For any round r ≥ 0, it holds that

1
N

E
∥∥∥D(r+1) −U (r+1)

∥∥∥2

F
≤ L2

1− β

r∑
k=0

βr−kΞ(k) + 5σ2

(1− β)3 .

Proof. We have

E
∥∥∥D(r+1) −U (r+1)

∥∥∥2

F

= E

∥∥∥∥∥
r∑

k=0
βr−k(∇f(X̄(k))−∇F (X(k); ξ(k))) + βr+1(D(0) −U (0))

∥∥∥∥∥
2

F

.

Defining s(r) :=
∑r

k=0 βr−k, we obtain

E
∥∥∥D(r+1) −U (r+1)

∥∥∥2

F

= s(r+1)2
E

∥∥∥∥∥
r∑

k=0

βr−k

s(r+1) (∇f(X̄(k))−∇F (X(k); ξ(k))) + βr+1

s(r+1) (D(0) −U (0))

∥∥∥∥∥
2

F

(a)
≤ s(r+1)

r∑
k=0

βr−kE
∥∥∥∇f(X̄(k))−∇F (X(k); ξ(k))

∥∥∥2

F
+ s(r+1)βr+1E

∥∥∥D(0) −U (0)
∥∥∥2

F

(14)
≤ s(r+1)

r∑
k=0

βr−kE
∥∥∥∇f(X̄(k))−∇F (X(k); ξ(k))

∥∥∥2

F

+ 2s(r+1)

(1− β)2 βr+1E
∥∥∥∇f(X̄(0))−∇F (X(0); ξ(0))

∥∥∥2

F

+ 2s(r+1)

(1− β)2 βr+1E
∥∥∥∥ 1

N
∇f(X̄(0))11⊤ − 1

N
∇F (X(0); ξ(0))11⊤

∥∥∥∥2

F

(6)
≤ s(r+1)

r∑
k=0

βr−kE
∥∥∥∇f(X̄(k))−∇f(X(k))

∥∥∥2

F
+ s(r+1)

r∑
k=0

βr−kNσ2 + 4s(r+1)

(1− β)2 βr+1Nσ2,

where we use Jensen’s inequality for (a) and use X(0) = X̄(0) for the last inequality. Then, using s(r) ≤ 1
1−β ,

we obtain

E
∥∥∥D(r+1) −U (r+1)

∥∥∥2

F

≤ 1
1− β

r∑
k=0

βr−kE
∥∥∥∇f(X̄(k))−∇f(X(k))

∥∥∥2

F
+ Nσ2

(1− β)2 + 4Nσ2

(1− β)3 βr+1

β∈[0,1)
≤ 1

1− β

r∑
k=0

βr−kE
∥∥∥∇f(X̄(k))−∇f(X(k))

∥∥∥2

F
+ 5Nσ2

(1− β)3

(5)
≤ L2

1− β

r∑
k=0

βr−kE
∥∥∥X̄(k) −X(k)

∥∥∥2

F
+ 5Nσ2

(1− β)3 .

This concludes the proof.

Lemma 11. Suppose that Assumptions 1, 2, 3, and 4 hold. For any round r ≥ 0, it holds that

E
∥∥∥ū(r+1) − d̄(r+1)

∥∥∥2
≤ L2

1− β

r∑
k=0

βr−kΞ(k) + σ2

N(1− β)2

27

Published in Transactions on Machine Learning Research (9/2023)

Proof. We have

E
∥∥∥ū(r+1) − d̄(r+1)

∥∥∥2
= E

∥∥∥∥∥
r∑

k=0
βr−k(1

N

N∑
i=1
∇Fi(x(k)

i ; ξ
(k)
i)−∇f(x̄(k)))

∥∥∥∥∥
2

,

where we use ū(0) = d̄(0) = 0. Defining s(r) :=
∑r

k=0 βr−k, we obtain

E
∥∥∥ū(r+1) − d̄(r+1)

∥∥∥2

= s(r)2
E

∥∥∥∥∥
r∑

k=0

βr−k

s(r) (1
N

N∑
i=1
∇Fi(x(k)

i ; ξ
(k)
i)−∇f(x̄(k)))

∥∥∥∥∥
2

(a)
≤ s(r)

r∑
k=0

βr−kE

∥∥∥∥∥ 1
N

N∑
i=1
∇Fi(x(k)

i ; ξ
(k)
i)−∇f(x̄(k))

∥∥∥∥∥
2

(6)
≤ s(r)

r∑
k=0

βr−kE

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(k)

i)−∇f(x̄(k))

∥∥∥∥∥
2

+ s(r)
r∑

k=0
βr−k σ2

N

(14)
≤ s(r)

r∑
k=0

βr−k 1
N

N∑
i=1

E
∥∥∥∇fi(x(k)

i)−∇fi(x̄(k))
∥∥∥2

+ s(r)
r∑

k=0
βr−k σ2

N
,

where we use Jensen’s inequality in (a). Then, using s(r) ≤ 1
1−β , we obtain

E
∥∥∥ū(r+1) − d̄(r+1)

∥∥∥2

≤ 1
1− β

r∑
k=0

βr−k 1
N

N∑
i=1

E
∥∥∥∇fi(x(k)

i)−∇fi(x̄(k))
∥∥∥2

+ σ2

N(1− β)2

(5)
≤ L2

1− β

r∑
k=0

βr−k 1
N

N∑
i=1

E
∥∥∥x

(k)
i − x̄(k)

∥∥∥2
+ σ2

N(1− β)2 .

This concludes the proof.

Lemma 12. Suppose that Assumptions 1, 2, 3, and 4 hold. For any round r ≥ 0, it holds that

E
∥∥∥ū(r+1)

∥∥∥2
≤ 2L2

1− β

r∑
k=0

βr−kΞ(k) + 2
1− β

r∑
k=0

βr−k
∥∥∥∇f(x̄(k))

∥∥∥2
+ 2σ2

N(1− β)2 .

Proof. We have

E
∥∥∥ū(r+1)

∥∥∥2
= E

∥∥∥ū(r+1) ± d̄(r+1)
∥∥∥2

(13)
≤ 2E

∥∥∥ū(r+1) − d̄(r+1)
∥∥∥2

+ 2E
∥∥∥d̄(r+1)

∥∥∥2
.

From Lemmas 9 and 11, we obtain the statement.

28

Published in Transactions on Machine Learning Research (9/2023)

D.6 Main Proof

Lemma 13 (Descent Lemma). Suppose that Assumptions 1, 2, 3, and 4 hold. If the step size η satisfies

η ≤ 1− β

4L
,

then it holds that for any round r ≥ 0,

Ef(z̄(r+1)) ≤ Ef(z̄(r)) + L2η

1− β
E
∥∥∥x̄(r) − z̄(r)

∥∥∥2
+ L2η

1− β
Ξ(r)

− η

4(1− β)E

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

− η

4(1− β)E
∥∥∥∇f(x̄(r))

∥∥∥2
+ Lσ2η2

2N(1− β)2 .

Proof. From Assumption 3 and Lemma 6, we have

Erf(z̄(r+1))

≤ f(z̄(r)) + Er⟨∇f(z̄(r)), z̄(r+1) − z̄(r)⟩+ L

2 Er

∥∥∥z̄(r+1) − z̄(r)
∥∥∥2

= f(z̄(r))− η

1− β

〈
∇f(z̄(r)), 1

N

N∑
i=1
∇fi(x(r)

i)
〉

+ Lη2

2(1− β)2Er

∥∥∥∥∥ 1
N

N∑
i=1
∇Fi(x(r)

i ; ξ
(r)
i)

∥∥∥∥∥
2

(6)
≤ f(z̄(r))− η

1− β

〈
∇f(z̄(r)), 1

N

N∑
i=1
∇fi(x(r)

i)
〉

+ Lη2

2(1− β)2

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

+ Lσ2η2

2N(1− β)2

= f(z̄(r)) + η

1− β

〈
∇f(x̄(r))−∇f(z̄(r)), 1

N

N∑
i=1
∇fi(x(r)

i)
〉

︸ ︷︷ ︸
T1

− η

1− β

〈
∇f(x̄(r)), 1

N

N∑
i=1
∇fi(x(r)

i)
〉

︸ ︷︷ ︸
T2

+ Lη2

2(1− β)2

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

︸ ︷︷ ︸
T3

+ Lσ2η2

2N(1− β)2 .

We can bound T1 from above as follows:

T1
(15),γ=2
≤

∥∥∥∇f(x̄(r))−∇f(z̄(r))
∥∥∥2

+ 1
4

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

(5)
≤ L2

∥∥∥x̄(r) − z̄(r)
∥∥∥2

+ 1
4

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

.

We can bound −T2 from above as follows:

−T2 = 1
2

∥∥∥∥∥∇f(x̄(r))− 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

− 1
2

∥∥∥∇f(x̄(r))
∥∥∥2
− 1

2

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

(14)
≤ 1

2
1
N

N∑
i=1

∥∥∥∇fi(x̄(r))−∇fi(x(r)
i)
∥∥∥2
− 1

2

∥∥∥∇f(x̄(r))
∥∥∥2
− 1

2

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

(5)
≤ L2

2
1
N

N∑
i=1

∥∥∥x̄(r) − x
(r)
i

∥∥∥2
− 1

2

∥∥∥∇f(x̄(r))
∥∥∥2
− 1

2

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

.

29

Published in Transactions on Machine Learning Research (9/2023)

Then, we can bound T3 from above as follows:

T3 =

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)±∇f(x̄(r))

∥∥∥∥∥
2

(13)
≤ 2

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)−∇f(x̄(r))

∥∥∥∥∥
2

+ 2
∥∥∥∇f(x̄(r))

∥∥∥2

(14)
≤ 2

N

N∑
i=1

∥∥∥∇fi(x(r)
i)−∇fi(x̄(r))

∥∥∥2
+ 2

∥∥∥∇f(x̄(r))
∥∥∥2

(5)
≤ 2L2

N

N∑
i=1

∥∥∥x
(r)
i − x̄(r)

∥∥∥2
+ 2

∥∥∥∇f(x̄(r))
∥∥∥2

.

By combining them, we obtain

Erf(z̄(r+1))

≤ f(z̄(r)) + L2η

1− β

∥∥∥x̄(r) − z̄(r)
∥∥∥2
− η

4(1− β)

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

+ L2

1− β

(
1
2 + Lη

1− β

)
ηΞ(r) − 1

1− β

(
1
2 −

Lη

1− β

)
η
∥∥∥∇f(x̄(r))

∥∥∥2
+ Lσ2η2

2N(1− β)2 .

Using η ≤ 1−β
4L , we get the statement.

Lemma 14 (Recursion for Ξ). Suppose that Assumptions 1, 2, 3, and 4 hold. Then, it holds that for any
round r ≥ 0,

Ξ(r+1) ≤ (1− p

2)Ξ(r) + 9
p

η2E(r) + 9
Np

η2E
∥∥∥U (r+1) −D(r+1)

∥∥∥2

F
+ 9

Np
η2E

∥∥∥E(r+1)
∥∥∥2

F
.

Proof. Because
∑N

i=1 ∥ai − ā∥2 ≤
∑N

i=1 ∥ai∥2 for any a1, · · · , aN ∈ Rd, we have

NΞ(r) = E
∥∥∥(X(r) − X̄(r−1)) + (X̄(r−1) − X̄(r))

∥∥∥2

F
≤ E

∥∥∥X(r) − X̄(r−1)
∥∥∥2

F
.

Then, we have

∥∥∥X(r+1) − X̄(r+1)
∥∥∥2

F
≤
∥∥∥X(r+1) − X̄(r)

∥∥∥2

F

=
∥∥∥X(r)W − η(U (r+1) −C(r))− X̄(r)

∥∥∥2

F

(13)
≤ (1 + γ)

∥∥∥X(r)W − X̄(r)
∥∥∥2

F
+ (1 + γ−1)η2

∥∥∥U (r+1) −C(r)
∥∥∥2

F

(4)
≤ (1 + γ)(1− p)

∥∥∥X(r) − X̄(r)
∥∥∥2

F
+ (1 + γ−1)η2

∥∥∥U (r+1) −C(r)
∥∥∥2

F
.

30

Published in Transactions on Machine Learning Research (9/2023)

By substituting γ = p
2 and using p ≤ 1, we obtain∥∥∥X(r+1) − X̄(r+1)

∥∥∥2

F

≤ (1− p

2)
∥∥∥X(r) − X̄(r)

∥∥∥2

F
+ 3

p
η2
∥∥∥U (r+1) −C(r)

∥∥∥2

F

= (1− p

2)
∥∥∥X(r) − X̄(r)

∥∥∥2

F
+ 3

p
η2
∥∥∥U (r+1) ±D(r+1) ±E(r+1) −C(r)

∥∥∥2

F

(14)
≤ (1− p

2)
∥∥∥X(r) − X̄(r)

∥∥∥2

F

+ 9
p

η2
∥∥∥U (r+1) −D(r+1)

∥∥∥2

F
+ 9

p
η2
∥∥∥D(r+1) −C(r) −E(r+1)

∥∥∥2

F
+ 9

p
η2
∥∥∥E(r+1)

∥∥∥2

F
.

This concludes the proof.

Lemma 15 (Recursion for E). Suppose that Assumptions 1, 2, 3, and 4 hold. Then, it holds that for any
round r ≥ 0,

E(r+1) ≤ (1− p

2)E(r) + 18β2

p
D(r) + 24

Np
E
∥∥∥U (r+1) −D(r+1)

∥∥∥2

F

+ 144L4

p
η2Ξ(r) + 72β2L2

p
η2E

∥∥∥ū(r)
∥∥∥2

+ 144L2

p
η2E

∥∥∥∇f(x̄(r))
∥∥∥2

+ 36L2σ2η2

Np
.

Proof. We have

E
∥∥∥D(r+2) −C(r+1) −E(r+2)

∥∥∥2

F

= E
∥∥∥D(r+2) − (C(r) −U (r+1))W −U (r+1) −E(r+2) ±D(r+1) ±D(r+1)W ±E(r+1)

∥∥∥2

F

(13),(14)
≤ (1 + γ)E

∥∥∥(D(r+1) −C(r))W −E(r+1)
∥∥∥2

F

+ 2(1 + γ−1)E
∥∥∥(U (r+1) −D(r+1))(W − I)

∥∥∥2

F

+ 2(1 + γ−1)E
∥∥∥D(r+2) −D(r+1) + E(r+1) −E(r+2)

∥∥∥2

F

(4)
≤ (1 + γ)(1− p)E

∥∥∥D(r+1) −C(r) −E(r+1)
∥∥∥2

F

+ 2(1 + γ−1)E
∥∥∥(U (r+1) −D(r+1))(W − I)

∥∥∥2

F

+ 2(1 + γ−1)E
∥∥∥D(r+2) −D(r+1) + E(r+1) −E(r+2)

∥∥∥2

F
,

where we use Lemma 4 and E(r+1) = 1
N D(r+1)11⊤ in the last inequality. Then, we have

E
∥∥∥D(r+2) −C(r+1) −E(r+2)

∥∥∥2

F

(a)
≤ (1 + γ)(1− p)E

∥∥∥D(r+1) −C(r) −E(r+1)
∥∥∥2

F

+ 2(1 + γ−1)E
∥∥∥U (r+1) −D(r+1)

∥∥∥2

F
∥W − I∥2

op

+ 2(1 + γ−1)E
∥∥∥D(r+2) −D(r+1) + E(r+1) −E(r+2)

∥∥∥2

F

(b)
≤ (1 + γ)(1− p)E

∥∥∥D(r+1) −C(r) −E(r+1)
∥∥∥2

F
+ 8(1 + γ−1)E

∥∥∥U (r+1) −D(r+1)
∥∥∥2

F

+ 2(1 + γ−1)E
∥∥∥D(r+2) −D(r+1) + E(r+1) −E(r+2)

∥∥∥2

F
,

31

Published in Transactions on Machine Learning Research (9/2023)

where ∥ · ∥op denotes the operator norm. In (a), we use the following definition of the operator norm:
∥W − I∥op := supv̂∈Rd\{0}

∥(W−I)v̂∥
∥v̂∥ ≥ ∥(W−I)v∥

∥v∥ for any v ∈ Rd \ {0}. In (b), we use Gershgorin circle
theorem and the fact that W is a mixing matrix. Substituting γ = p

2 , we obtain

E
∥∥∥D(r+2) −C(r+1) −E(r+2)

∥∥∥2

F

≤ (1− p

2)E
∥∥∥D(r+1) −C(r) −E(r+1)

∥∥∥2

F
+ 24

p
E
∥∥∥U (r+1) −D(r+1)

∥∥∥2

F

+ 6
p
E
∥∥∥D(r+2) −D(r+1) + E(r+1) −E(r+2)

∥∥∥2

F︸ ︷︷ ︸
T

.

Then, we can bound T from above by expanding D(r+2), D(r+1), E(r+2), and E(r+1) as follows:

T
(14)
≤ 3β2E

∥∥∥D(r+1) −D(r) + E(r) −E(r+1)
∥∥∥2

F
+ 3E

∥∥∥∇f(X̄(r+1))−∇f(X̄(r))
∥∥∥2

F

+ 3E
∥∥∥∥ 1

N
∇f(X̄(r))11⊤ − 1

N
∇f(X̄(r+1))11⊤

∥∥∥∥2

F

(5)
≤ 3β2E

∥∥∥D(r+1) −D(r) + E(r) −E(r+1)
∥∥∥2

F
+ 6L2E

∥∥∥X̄(r+1) − X̄(r)
∥∥∥2

F
.

Using Lemma 8, we obtain

T ≤ 3β2E
∥∥∥D(r+1) −D(r) + E(r) −E(r+1)

∥∥∥2

F

+ N(24L4η2Ξ(r) + 12β2L2η2E
∥∥∥ū(r)

∥∥∥2
+ 24L2η2E

∥∥∥∇f(x̄(r))
∥∥∥2

+ 6L2σ2η2

N
).

This concludes the proof.

Lemma 16 (Recursion for D). Suppose that Assumptions 1, 2, 3, and 4 hold. Then, it holds that for any
round r ≥ 0,

D(r+1) ≤ 2β2

1 + β2D
(r) + 32L4η2

1− β2 Ξ(r) + 16L2β2η2

1− β2 E
∥∥∥ū(r)

∥∥∥2

+ 32L2η2

1− β2 E
∥∥∥∇f(x̄(r))

∥∥∥2
+ 8L2σ2η2

N(1− β2) .

Proof. We have

E
∥∥∥D(r+2) −D(r+1) −E(r+2) + E(r+1)

∥∥∥2

F

(13),(14)
≤ (1 + γ)β2E

∥∥∥D(r+1) −D(r) + E(r) −E(r+1)
∥∥∥2

F

+ 2(1 + γ−1)E
∥∥∥∇f(X̄(r+1))−∇f(X̄(r))

∥∥∥2

F

+ 2(1 + γ−1)E
∥∥∥∥ 1

N
∇f(X̄(r))11⊤ − 1

N
∇f(X̄(r+1))11⊤

∥∥∥∥2

F

(5)
≤ (1 + γ)β2E

∥∥∥D(r+1) −D(r) + E(r) −E(r+1)
∥∥∥2

F
+ 4L2(1 + γ−1)E

∥∥∥X̄(r+1) − X̄(r)
∥∥∥2

F
.

Substituting γ = 1−β2

1+β2 , we obtain

E
∥∥∥D(r+2) −D(r+1) −E(r+2) + E(r+1)

∥∥∥2

F

≤ 2β2

1 + β2E
∥∥∥D(r+1) −D(r) + E(r) −E(r+1)

∥∥∥2

F
+ 8L2

1− β2E
∥∥∥X̄(r+1) − X̄(r)

∥∥∥2

F
.

32

Published in Transactions on Machine Learning Research (9/2023)

Using Lemma 8, we obtain

E
∥∥∥D(r+2) −D(r+1) −E(r+2) + E(r+1)

∥∥∥2

F

≤ 2β2

1 + β2E
∥∥∥D(r+1) −D(r) + E(r) −E(r+1)

∥∥∥2

F

+ N(32L4η2

1− β2 Ξ(r) + 16L2β2η2

1− β2 E
∥∥∥ū(r)

∥∥∥2
+ 32L2η2

1− β2 E
∥∥∥∇f(x̄(r))

∥∥∥2
+ 8L2σ2η2

N(1− β2)).

This concludes the proof.

Lemma 17 (Recursion for Ξ, E , and D). We define t ∈ R and A ∈ R as follows:

t := 2β2p

1− β2 + 4, A := 648
1− p

t −
2β2

1+β2

.

Note that it holds that t ≥ 4 and A > 0. Suppose that Assumptions 1, 2, 3, and 4 hold, and step size η
satisfies

η ≤ p

8L
√

324 + 2Aβ2

1−β2

.

Then, it holds that

Ξ(r+1) + 36
p2 η2E(r+1) + Aβ2

p3 η2D(r+1)

≤ (1− p

t
)(Ξ(r) + 36

p2 η2E(r) + Aβ2

p3 η2D(r))

+ 1
p

η2E
∥∥∥∇f(x̄(r))

∥∥∥2
+ 1

Np

(
9 + 864

p2

)
η2E

∥∥∥U (r+1) −D(r+1)
∥∥∥2

F

+ L2

p3

(
2592β2 + 16Aβ4

1− β2

)
η4E

∥∥∥ū(r)
∥∥∥2

+ 9
Np

η2E
∥∥∥E(r+1)

∥∥∥2

F
+ σ2η2

p
.

Proof. From Lemmas 14 and 15, we have

Ξ(r+1) ≤ (1− p

2)Ξ(r) + 9
p

η2E(r) + 9
Np

η2E
∥∥∥U (r+1) −D(r+1)

∥∥∥2

F
+ 9

Np
η2E

∥∥∥E(r+1)
∥∥∥2

F
,

36
p2 η2E(r+1) ≤ (1− p

2)36
p2 η2E(r) + 648β2

p3 η2D(r) + 5184L4

p3 η4Ξ(r) + 2592β2L2

p3 η4E
∥∥∥ū(r)

∥∥∥2

+ 864
Np3 η2E

∥∥∥U (r+1) −D(r+1)
∥∥∥2

F
+ 5184L2

p3 η4E
∥∥∥∇f(x̄(r))

∥∥∥2
+ 1296L2σ2η4

Np3 .

Then, from Lemma 16, we have

Aβ2

p3 η2D(r+1) ≤ 2Aβ4

(1 + β2)p3 η2D(r) + 32Aβ2L4

(1− β2)p3 η4Ξ(r) + 16AL2β4

(1− β2)p3 η4E
∥∥∥ū(r)

∥∥∥2

+ 32Aβ2L2

(1− β2)p3 η4E
∥∥∥∇f(x̄(r))

∥∥∥2
+ 8Aβ2L2σ2

N(1− β2)p3 η4.

Using η2 ≤ p2

L2 and η2 ≤ p2

128L2(162+ Aβ2
1−β2)

, we have

(
(1− p

2) + 5184L4

p3 η4 + 32Aβ2L4

(1− β2)p3 η4
)

Ξ(r) ≤
(

(1− p

2) + L2

4p
η2
)

Ξ(r) ≤ (1− p

4)Ξ(r).

33

Published in Transactions on Machine Learning Research (9/2023)

In addition, we have(
9
p

η2 + (1− p

2)36
p2 η2

)
E(r) = (1− p

4)36
p2 η2E(r),(

648β2

p3 η2 + 2Aβ4

(1 + β2)p3 η2
)
D(r) =

(
648
A

+ 2β2

1 + β2

)
Aβ2

p3 η2D(r) = (1− p

t
)Aβ2

p3 η2D(r).

Then, using t ≥ 4, we obtain

Ξ(r+1) + 36
p2 η2E(r+1) + Aβ2

p3 η2D(r+1)

≤ (1− p

t
)(Ξ(r) + 36

p2 η2E(r) + Aβ2

p3 η2D(r))

+ L2

p3

(
32Aβ2

1− β2 + 5184
)

η4E
∥∥∥∇f(x̄(r))

∥∥∥2

+ 1
Np

(
9 + 864

p2

)
η2E

∥∥∥U (r+1) −D(r+1)
∥∥∥2

F

+ 9
Np

η2E
∥∥∥E(r+1)

∥∥∥2

F

+ L2

p3

(
2592β2 + 16Aβ4

1− β2

)
η4E

∥∥∥ū(r)
∥∥∥2

+ L2σ2

Np3

(
1296 + 8Aβ2

1− β2

)
η4.

Using η2 ≤ p2

32L2(162+ Aβ2
1−β2)

, we have

L2

p3

(
32Aβ2

1− β2 + 5184
)

η4E
∥∥∥∇f(x̄(r))

∥∥∥2
≤ 1

p
η2E

∥∥∥∇f(x̄(r))
∥∥∥2

.

Using η2 ≤ p2

8L2(162+ Aβ2
1−β2)

, we obtain

L2σ2

Np3

(
1296 + 8Aβ2

1− β2

)
η4 ≤ σ2η2

Np
≤ σ2η2

p
.

This concludes the proof.

Lemma 18. We define t ∈ R and A ∈ R as follows:

t := 2β2p

1− β2 + 4, A := 648
1− p

t −
2β2

1+β2

.

Under the same assumptions as those in Lemma 17, it holds that

R∑
r=0

Ξ(r) ≤ t

p

R∑
k=0

Ψ(k) + 145tσ2η2

(1− β)2p3 R.

where Ψ(r) is defined as follows:

Ψ(r) := 1
p

η2E
∥∥∥∇f(x̄(r))

∥∥∥2
+ 1

Np

(
9 + 864

p2

)
η2E

∥∥∥U (r+1) −D(r+1)
∥∥∥2

F

+ L2

p3

(
2592β2 + 16Aβ4

1− β2

)
η4E

∥∥∥ū(r)
∥∥∥2

+ 9
Np

η2E
∥∥∥E(r+1)

∥∥∥2

F
.

34

Published in Transactions on Machine Learning Research (9/2023)

Proof. We define Θ(r) := Ξ(r) + 36
p2 η2E(r) + Aβ2

p3 η2D(r). From Lemma 17, we obtain

Θ(r+1) ≤ (1− p

t
)Θ(r) + Ψ(r) + σ2η2

p

≤ (1− p

t
)r+1Θ(0) +

r∑
k=0

(1− p

t
)r−kΨ(k) +

r∑
k=0

(1− p

t
)r−k σ2η2

p
.

Using
∑r

k=0(1− p
t)r−k ≤ t

p , we obtain

Θ(r+1) ≤ (1− p

t
)r+1Θ(0) +

r∑
k=0

(1− p

t
)r−kΨ(k) + tσ2η2

p2 .

Then, for any R ≥ 1, we obtain
R∑

r=1
Θ(r) ≤

R∑
r=1

(1− p

t
)rΘ(0) +

R∑
r=1

r−1∑
k=0

(1− p

t
)r−k−1Ψ(k) + tσ2η2

p2 R

=
R∑

r=1
(1− p

t
)rΘ(0) +

R−1∑
k=0

Ψ(k)
R∑

r=k+1
(1− p

t
)r−k−1 + tσ2η2

p2 R

≤ t

p
Θ(0) + t

p

R−1∑
k=0

Ψ(k) + tσ2η2

p2 R,

where we use
∑R

r=1(1 − p
t)r ≤ t

p and
∑R

r=k+1(1 − p
t)r−k−1 ≤ t

p in the last inequality. Then, from the
definition of E(r), we have

E(0) = 1
N

E
∥∥∥D(1) −C(0) −E(1)

∥∥∥2

F

= 1
(1− β)2

1
N

E
∥∥∥∥∇f(X̄(0))− 1

N
∇f(X̄(0))11⊤ −∇F (X(0); ξ(0)) + 1

N
∇F (X(0); ξ(0))11⊤

∥∥∥∥2

F

(14)
≤ 2

(1− β)2
1
N

E
∥∥∥∇f(X̄(0))−∇F (X(0); ξ(0))

∥∥∥2

F

+ 2
(1− β)2

1
N

E
∥∥∥∥ 1

N
∇f(X̄(0))11⊤ − 1

N
∇F (X(0); ξ(0))11⊤

∥∥∥∥2

F

(6)
≤ 4

(1− β)2 σ2,

where we use X(0) = X̄(0) in the last inequality. From the definition of D(r), we have

D(0) = 1
N

E
∥∥∥∥(β − 1)D(0) +∇f(X̄(0))− 1

N
∇f(X̄(0))11⊤

∥∥∥∥2

F

= 0.

Then using X(0) = X̄(0) (i.e., Ξ(0) = 0), we have

Θ(0) ≤ 144σ2η2

(1− β)2p2 .

Here, the above upper bounds of E(0) and D(0) are attributed to how we choose the initial values u
(0)
i , c

(0)
i ,

d
(0)
i , and e

(0)
i for i ∈ V . Then, combining them, we obtain

R∑
r=1

Θ(r) ≤ t

p

R−1∑
k=0

Ψ(k) + 144tσ2η2

(1− β)2p3 + tσ2η2

p2 R

≤ t

p

R−1∑
k=0

Ψ(k) + 145tσ2η2

(1− β)2p3 R,

35

Published in Transactions on Machine Learning Research (9/2023)

where we use p ∈ (0, 1], β ∈ [0, 1), and R ≥ 1 in the last inequality. Then, using Θ(r) ≥ Ξ(r) and Ξ(0) = 0,
we obtain the statement.

Lemma 19. We define t ∈ R and A ∈ R as follows:

t := 2β2p

1− β2 + 4, A := 648
1− p

t −
2β2

1+β2

.

Note that it holds that t ≥ 4 and A > 0. Suppose that the same assumptions as those in Lemma 17 hold.
Then, if step size η satisfies

η ≤ min{ p

4L
√

324 + 2Aβ2

1−β2

,
(1− β)p

2L
√

t(5 + 432
p2)

,
(1− β)p
8L
√

5t
},

it holds that

4L2
R∑

r=0
Ξ(r) ≤ 1

2

R∑
k=0

∥∥∥∇f(x̄(k))
∥∥∥2

+ 40L2t

(1− β)3p2

(
10 + 29

p
+ 864

p2

)
σ2η2(R + 1).

Proof. We define Ψ(r) as follows:

Ψ(r) := 1
p

η2E
∥∥∥∇f(x̄(r))

∥∥∥2
+ 1

Np

(
9 + 864

p2

)
η2E

∥∥∥U (r+1) −D(r+1)
∥∥∥2

F

+ L2

p3

(
2592β2 + 16Aβ4

1− β2

)
η4E

∥∥∥ū(r)
∥∥∥2

+ 9
Np

η2E
∥∥∥E(r+1)

∥∥∥2

F
.

Using ē(r) = e
(r)
i and Lemmas 9, 10, and 12, we obtain

Ψ(r) ≤ 1
p

η2E
∥∥∥∇f(x̄(r))

∥∥∥2

+ η2 9
(1− β)p

r∑
k=0

βr−k
∥∥∥∇f(x̄(k))

∥∥∥2

+ 2L2

(1− β)p3

(
2592β2 + 16Aβ4

1− β2

)
η4

(
r−1∑
k=0

βr−k−1
∥∥∥∇f(x̄(k))

∥∥∥2
)

+ L2

(1− β)p

(
9 + 864

p2

)
η2

(
r∑

k=0
βr−kΞ(k)

)

+ 2L4

(1− β)p3

(
2592β2 + 16Aβ4

1− β2

)
η4

(
r−1∑
k=0

βr−k−1Ξ(k)

)

+ 5
(1− β)3p

(
9 + 864

p2

)
σ2η2

+ 2L2

N(1− β)2p3

(
2592β2 + 16Aβ4

1− β2

)
σ2η4,

36

Published in Transactions on Machine Learning Research (9/2023)

for any round r ≥ 1. Then, we obtain

R∑
r=1

Ψ(r) ≤ 1
p

η2
R∑

r=1
E
∥∥∥∇f(x̄(r))

∥∥∥2

+ η2 9
(1− β)p

R∑
r=1

r∑
k=0

βr−k
∥∥∥∇f(x̄(k))

∥∥∥2

+ 2L2

(1− β)p3

(
2592β2 + 16Aβ4

1− β2

)
η4

(
R∑

r=1

r−1∑
k=0

βr−k−1
∥∥∥∇f(x̄(k))

∥∥∥2
)

+ L2

(1− β)p

(
9 + 864

p2

)
η2

(
R∑

r=1

r∑
k=0

βr−kΞ(k)

)

+ 2L4

(1− β)p3

(
2592β2 + 16Aβ4

1− β2

)
η4

(
R∑

r=1

r−1∑
k=0

βr−k−1Ξ(k)

)

+ 5
(1− β)3p

(
9 + 864

p2

)
σ2η2R

+ 2L2

N(1− β)2p3

(
2592β2 + 16Aβ4

1− β2

)
σ2η4R.

Then, we obtain

R∑
r=1

Ψ(r) ≤ 1
p

η2
R∑

r=1
E
∥∥∥∇f(x̄(r))

∥∥∥2

+ η2 9
(1− β)p

R∑
k=0

∥∥∥∇f(x̄(k))
∥∥∥2 R∑

r=max{1,k}

βr−k

+ 2L2

(1− β)p3

(
2592β2 + 16Aβ4

1− β2

)
η4

(
R−1∑
k=0

∥∥∥∇f(x̄(k))
∥∥∥2 R∑

r=k+1
βr−k−1

)

+ L2

(1− β)p

(
9 + 864

p2

)
η2

 R∑
k=0

Ξ(k)
R∑

r=max{1,k}

βr−k

+ 2L4

(1− β)p3

(
2592β2 + 16Aβ4

1− β2

)
η4

(
R−1∑
k=0

Ξ(k)
R∑

r=k+1
βr−k−1

)

+ 5
(1− β)3p

(
9 + 864

p2

)
σ2η2R

+ 2L2

N(1− β)2p3

(
2592β2 + 16Aβ4

1− β2

)
σ2η4R.

37

Published in Transactions on Machine Learning Research (9/2023)

Using
∑R

r=k+1 βr−k−1 ≤ 1
1−β and

∑R
r=max{1,k} βr−k ≤ 1

1−β , we obtain

R∑
r=1

Ψ(r) ≤ 1
p

η2
R∑

r=1
E
∥∥∥∇f(x̄(r))

∥∥∥2

+ η2 9
(1− β)2p

R∑
k=0

∥∥∥∇f(x̄(k))
∥∥∥2

+ 2L2β2

(1− β)2p3

(
2592 + 16Aβ2

1− β2

)
η4

(
R−1∑
k=0

∥∥∥∇f(x̄(k))
∥∥∥2
)

+ L2

(1− β)2p

(
9 + 864

p2

)
η2

(
R∑

k=0
Ξ(k)

)

+ 2L4β2

(1− β)2p3

(
2592 + 16Aβ2

1− β2

)
η4

(
R−1∑
k=0

Ξ(k)

)

+ 5
(1− β)3p

(
9 + 864

p2

)
σ2η2R

+ 2L2β2

N(1− β)2p3

(
2592 + 16Aβ2

1− β2

)
σ2η4R.

Then, using ū(0) = 0 and Lemmas 9 and 10, we have

Ψ(0) ≤ 1
p

η2E
∥∥∥∇f(x̄(0))

∥∥∥2
+ 9

(1− β)pη2
∥∥∥∇f(x̄(0))

∥∥∥2
+ 5

(1− β)3p

(
9 + 864

p2

)
σ2η2.

Then, we obtain

R∑
r=0

Ψ(r) ≤ 1
p

η2
R∑

r=0
E
∥∥∥∇f(x̄(r))

∥∥∥2

+ η2 18
(1− β)2p

R∑
k=0

∥∥∥∇f(x̄(k))
∥∥∥2

+ 2L2β2

(1− β)2p3

(
2592 + 16Aβ2

1− β2

)
η4

(
R−1∑
k=0

∥∥∥∇f(x̄(k))
∥∥∥2
)

+ L2

(1− β)2p

(
9 + 864

p2

)
η2

(
R∑

k=0
Ξ(k)

)

+ 2L4β2

(1− β)2p3

(
2592 + 16Aβ2

1− β2

)
η4

(
R−1∑
k=0

Ξ(k)

)

+ 5
(1− β)3p

(
9 + 864

p2

)
σ2η2(R + 1)

+ 2L2β2

N(1− β)2p3

(
2592 + 16Aβ2

1− β2

)
σ2η4R.

Using η2 ≤ p2

32L2(162+ Aβ2
1−β2)

, we have

2L2β2

(1− β)2p3

(
2592 + 16Aβ2

1− β2

)
η4

(
R−1∑
k=0

∥∥∥∇f(x̄(k))
∥∥∥2
)
≤ β2

(1− β)2p
η2

(
R−1∑
k=0

∥∥∥∇f(x̄(k))
∥∥∥2
)

.

38

Published in Transactions on Machine Learning Research (9/2023)

Using η2 ≤ p2

32L2(162+ Aβ2
1−β2)

, we have

2L4β2

(1− β)2p3

(
2592 + 16Aβ2

1− β2

)
η4

(
R−1∑
k=0

Ξ(k)

)
≤ L2β2

(1− β)2p
η2

(
R−1∑
k=0

Ξ(k)

)
.

Using η2 ≤ p2

32L2(162+ Aβ2
1−β2)

, we have

2L2β2

N(1− β)2p3

(
2592 + 16Aβ2

1− β2

)
σ2η4R ≤ β2

N(1− β)2p
σ2η2R.

Then, using β ∈ [0, 1) and N ≥ 1, we obtain
R∑

r=0
Ψ(r) ≤ 1

p
η2

R∑
r=0

E
∥∥∥∇f(x̄(r))

∥∥∥2

+ η2 19
(1− β)2p

R∑
k=0

∥∥∥∇f(x̄(k))
∥∥∥2

+ L2

(1− β)2p

(
10 + 864

p2

)
η2

(
R∑

k=0
Ξ(k)

)

+ 5
(1− β)3p

(
10 + 864

p2

)
σ2η2(R + 1).

Using β ∈ [0, 1) and Lemma 18, we obtain
R∑

r=0
Ξ(r) ≤ 20t

(1− β)2p2 η2
R∑

k=0

∥∥∥∇f(x̄(k))
∥∥∥2

+ tL2

(1− β)2p2

(
10 + 864

p2

)
η2

(
R∑

k=0
Ξ(k)

)

+ 5t

(1− β)3p2

(
10 + 864

p2

)
σ2η2(R + 1) + 145tσ2η2

(1− β)2p3 R

≤ 20t

(1− β)2p2 η2
R∑

k=0

∥∥∥∇f(x̄(k))
∥∥∥2

+ tL2

(1− β)2p2

(
10 + 864

p2

)
η2

(
R∑

k=0
Ξ(k)

)

+ 5t

(1− β)3p2

(
10 + 29

p
+ 864

p2

)
σ2η2(R + 1).

Then, using η2 ≤ (1−β)2p2

4tL2(5+ 432
p2) , we obtain

1
2

R∑
r=0

Ξ(r) ≤ 20t

(1− β)2p2 η2
R∑

k=0

∥∥∥∇f(x̄(k))
∥∥∥2

+ 5t

(1− β)3p2

(
10 + 29

p
+ 864

p2

)
σ2η2(R + 1).

Multiplying 8L2, we obtain

4L2
R∑

r=0
Ξ(r) ≤ 160L2t

(1− β)2p2 η2
R∑

k=0

∥∥∥∇f(x̄(k))
∥∥∥2

+ 40L2t

(1− β)3p2

(
10 + 29

p
+ 864

p2

)
σ2η2(R + 1).

Using η2 ≤ (1−β)2p2

320L2t , we obtain the statement.

39

Published in Transactions on Machine Learning Research (9/2023)

Lemma 20. We define t ∈ R as follows:

t := 2β2p

1− β2 + 4.

Suppose that the assumptions of Lemma 19 hold. Then, if step size η satisfies

η ≤ (1− β)2

2
√

2L
,

it holds that

1
2(R + 1)

R∑
r=0

E
∥∥∥∇f(x̄(r))

∥∥∥2
≤ 4(1− β)

η(R + 1)

(
f(z̄(0))− f⋆

)
+ 2Lσ2η

N(1− β)

+ L2

(1− β)3

(
40t

p2

(
10 + 29

p
+ 864

p2

)
+ 4β2

N(1− β)

)
σ2η2.

Proof. Using Lemma 13 and Assumption 1, we have
R∑

r=0
E
∥∥∥∇f(x̄(r))

∥∥∥2
≤ 4(1− β)

η

(
f(z̄(0))− f⋆

)
+ 4L2

R∑
r=0

E
∥∥∥x̄(r) − z̄(r)

∥∥∥2
+ 4L2

R∑
r=0

Ξ(r)

−
R∑

r=0
E

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

+ 2Lσ2η

N(1− β) (R + 1).

From Lemma 7, we have

4L2
R∑

r=0
E
∥∥∥x̄(r) − z̄(r)

∥∥∥2
≤ 4L2β2η2

(1− β)4

R∑
r=0

E

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

+ 4L2β2σ2η2

N(1− β)4 R.

Combining them yields
R∑

r=0
E
∥∥∥∇f(x̄(r))

∥∥∥2

≤ 4(1− β)
η

(
f(z̄(0))− f⋆

)
+ 4L2

R∑
r=0

Ξ(r) −
(

1− 4L2β2η2

(1− β)4

) R∑
r=0

E

∥∥∥∥∥ 1
N

N∑
i=1
∇fi(x(r)

i)

∥∥∥∥∥
2

+ 2Lσ2η

N(1− β) (R + 1) + 4L2β2σ2η2

N(1− β)4 R.

Using η2 ≤ (1−β)4

8L2 and β < 1, we obtain
R∑

r=0
E
∥∥∥∇f(x̄(r))

∥∥∥2

≤ 4(1− β)
η

(
f(z̄(0))− f⋆

)
+ 4L2

R∑
r=0

Ξ(r) + 2Lσ2η

N(1− β) (R + 1) + 4L2β2σ2η2

N(1− β)4 R.

Using Lemma 19, we obtain

1
2

R∑
r=0

E
∥∥∥∇f(x̄(r))

∥∥∥2

≤ 4(1− β)
η

(
f(z̄(0))− f⋆

)
+ 2Lσ2η

N(1− β) (R + 1)

+ L2

(1− β)3

(
40t

p2

(
10 + 29

p
+ 864

p2

)
+ 4β2

N(1− β)

)
σ2η2(R + 1).

This concludes the proof.

40

Published in Transactions on Machine Learning Research (9/2023)

Lemma 21. We define t ∈ R and A ∈ R as follows:

t := 2β2p

1− β2 + 4, A := 648
1− p

t −
2β2

1+β2

.

Then, it holds that

(1− β)2p2

16L
√

7836β2

(1−β2)3p + 282
≤ min

1− β

4L
,

p

8L
√

324 + 2Aβ2

1−β2

,
(1− β)p2

2L
√

t(5p2 + 432)
(1− β)p
8L
√

5t
,

(1− β)2

2
√

2L

 .

Proof. Because
√

7836β2

(1−β2)3p + 282 > 1, p ∈ (0, 1], and β ∈ [0, 1), we have

(1− β)2p2

16L
√

7836β2

(1−β2)3p + 282
≤ min

{
1− β

4L
,

(1− β)2

2
√

2L

}
.

From p ≤ 1, we have

t− 3 = 2β2p

1− β2 + 1 ≥ 1 + β2

1− β2 p = p

1− 2β2

1+β2

.

Then, we obtain

1− p

t
− 2β2

1 + β2 ≥
p

t− 3 −
p

t
= 3p

t(t− 3) ≥
3p

t2 .

Then, we obtain

A ≤ 216t2

p
.

Using the above inequality, we obtain

Aβ2

1− β2 + 162 ≤ 216β2t2

p(1− β2) + 162.

From the definition of t, we obtain

Aβ2

1− β2 + 30t + 162 ≤ 216β2t2

p(1− β2) + 30t + 162

= 216β2

p(1− β2)

(
2β2p

1− β2 + 4
)2

+ 30
(

2β2p

1− β2 + 4
)

+ 162

= 216β2

p(1− β2)

(
4β4p2

(1− β2)2 + 16β2p

1− β2 + 16
)

+ 30
(

2β2p

1− β2 + 4
)

+ 162

≤ 7836β2

p(1− β2)3 + 282,

where we use β ∈ [0, 1) and p ∈ (0, 1] in the last inequality. Then, we obtain

(1− β)2p2

16L
√

7836β2

(1−β2)3p + 282
≤ (1− β)2p2

16L
√

Aβ2

1−β2 + 30t + 162

≤ min

 p

8L
√

324 + 2Aβ2

1−β2

,
(1− β)p2

2L
√

t(5p2 + 432)
(1− β)p
8L
√

5t
,

 .

This concludes the proof.

41

Published in Transactions on Machine Learning Research (9/2023)

Lemma 22 (Convergence Rate for Non-convex Case). Suppose that Assumptions 1, 2, 3, and 4 hold. Then,
for any R ≥ 1, there exists a step size η such that it holds that

1
R

R−1∑
r=0

E
∥∥∥∇f(x̄(r))

∥∥∥2

≤ O

(√
r0σ2L

NR
+
(

r2
0σ2L2

p4R2(1− β)

(
1 + pβ2

1− β

)) 1
3

+ Lr0

(1− β)p2R

√
1 + β2

(1− β2)3p

)
,

where r0 := f(x̄(0))− f⋆.

Proof. From Lemmas 20 and 21, if the step size η satisfies the following:

η ≤ (1− β)2p2

16L
√

7836β2

(1−β2)3p + 282
,

then we have

1
2(R + 1)

R∑
r=0

E
∥∥∥∇f(x̄(r))

∥∥∥2

≤ 4
η̃(R + 1)

(
f(z̄(0))− f⋆

)
+ 2Lσ2η̃

N
+ L2

1− β

(
40t

p2

(
10 + 29

p
+ 864

p2

)
+ 4β2

N(1− β)

)
︸ ︷︷ ︸

T

σ2η̃2,

where we define η̃ := η
1−β . Then, we can bound T from above as follows:

T = L2

1− β

(
40
p2

(
2β2p

1− β2 + 4
)(

10 + 29
p

+ 864
p2

)
+ 4β2

N(1− β)

)
p∈(0,1]
≤ L2

1− β

(
36120

p4

(
2β2p

1− β2 + 4
)

+ 4β2

N(1− β)

)
p∈(0,1],β∈[0,1)

≤ 36120L2

(1− β)p4

(
3β2p

1− β
+ 4
)

.

Then, we obtain

1
2(R + 1)

R∑
r=0

E
∥∥∥∇f(x̄(r))

∥∥∥2

≤ 4
η̃(R + 1)

(
f(z̄(0))− f⋆

)
+ 2Lσ2η̃

N
+ 36120L2

(1− β)p4

(
3β2p

1− β
+ 4
)

σ2η̃2.

Using Lemma 17 in the previous work (Koloskova et al., 2020), we obtain the statement.

42

Published in Transactions on Machine Learning Research (9/2023)

E Hyperparameter Settings

Tables 9, 10, 11, 12, and 13 list the hyperparameter settings for each dataset. We evaluated the performance
of each comparison method for different step sizes and selected the step size that achieved the highest
accuracy on the validation dataset.

Table 9: Experimental settings for FashionMNIST.

Neural network architecture LeNet (LeCun et al., 1998)
Normalization Group normalization (Wu & He, 2018)
Step size {0.005, 0.001, 0.0005}
L2 penalty 0.001
Batch size 100
Data augmentation RandomCrop
Total number of epochs 500

Table 10: Experimental settings for SVHN.

Neural network architecture LeNet (LeCun et al., 1998)
Normalization Group normalization (Wu & He, 2018)
Step size {0.005, 0.001, 0.0005}
L2 penalty 0.001
Batch size 100
Data augmentation RandomCrop
Total number of epochs 500

Table 11: Experimental settings for CIFAR-10.

Neural network architecture LeNet (LeCun et al., 1998)
Normalization Group normalization (Wu & He, 2018)
Step size {0.005, 0.001, 0.0005}
L2 penalty 0.001
Batch size 100
Data augmentation RandomCrop, RandomHorizontalFlip
Total number of epochs 500

Table 12: Experimental settings for CIFAR-10 with VGG-11.

Neural network architecture VGG-11 (Simonyan & Zisserman, 2015)
Normalization Group normalization (Wu & He, 2018)
Step size {0.5, 0.1, 0.05, 0.01, 0.005}
Step size decay /10 at epoch 500 and 750.
L2 penalty 0.001
Batch size 100
Data augmentation RandomCrop, RandomHorizontalFlip, RandomErasing
Total number of epochs 1000

43

Published in Transactions on Machine Learning Research (9/2023)

Table 13: Experimental settings for CIFAR-10 with ResNet-34.

Neural network architecture ResNet-34 (He et al., 2016)
Normalization Group normalization (Wu & He, 2018)
Step size {0.5, 0.1, 0.05, 0.01, 0.005}
Step size decay /10 at epoch 375 and 563.
L2 penalty 0.001
Batch size 100
Data augmentation RandomCrop, RandomHorizontalFlip, RandomErasing
Total number of epochs 750

44

	Introduction
	Preliminaries and Related Work
	Decentralized Learning
	Momentum
	Gradient Tracking

	Proposed Method
	Setup
	Momentum Tracking
	Convergence Analysis
	Discussion

	Experiment
	Setup
	Experimental Results
	Results with Various Neural Network Architectures

	Conclusion
	Pseudo-Codes
	Additional Discussion about Convergence Rate
	Comparison with Gradient Tracking
	Comparison with Other Decentralized Learning Methods

	Additional Experiments
	Results with Various Network Topologies
	Results with Other Heterogeneous Setting
	Initial Value Analysis
	Comparison with RelaySum
	Comparision with ABm and GTAdam
	Learning Curves
	Synthetic Experiment

	Proof of Theorem 1
	Technical Lemma
	Momentum Tracking in Matrix Notation
	Additional Notation
	Proof Sketch
	Useful Lemma
	Main Proof

	Hyperparameter Settings

