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ABSTRACT

We study the ability of an adversary learning the underlying interaction network
from repeated fictitious plays in linear-quadratic games. The adversary may strate-
gically perturb the decisions for a set of action-compromised players, and observe
the sequential decisions from a set of action-leaked players. Then the question
lies in whether such an adversary can fully re-construct, or effectively estimate
the underlying interaction structure among the players. First of all, by drawing
connections between this network learning problem in games and classical system
identification theory, we establish a series of results characterizing the learnabil-
ity of the interaction graph from the adversary’s point of view. Next, in view of
the inherent stability and sparsity constraints for the network interaction structure,
we propose a stable and sparse system identification framework for learning the
interaction graph from full player action observations. We also propose a stable
and sparse subspace identification framework for learning the interaction graph
from partially observed player actions. Finally, the effectiveness of the proposed
learning frameworks is demonstrated in numerical examples.

1 INTRODUCTION

Game theory has been playing a fundamental role in understanding how competition and rational-
ity arise among decision makers, termed players (Von Neumann & Morgenstern (2007); Bicchieri
(2004)). Players place individual decisions, for which the payoffs characterize their gains. The
payoff of any player not only depends on her own decision, but also the decisions of all other play-
ers, leading to intrinsic competitions. The Nash equilibrium defines decision profiles at which any
player observing her payoff and other players decisions, understands that any unilateral change of
the decision could only upset her own payoff. As a result, at Nash equilibriums all players tend to
stay at their current decisions, i.e., rationality takes place. The power of Nash equilibriums in ex-
plaining behavioral decisions, and the possibility of designing payoffs in shaping player decisions,
have enabled game theory to be applied in a variety of disciplines solving problems ranging from
route planning in transportation (Bianco et al. (2016)) and channel allocations in wireless commu-
nications (Niyato & Hossain (2008)) to online E-commerce (Sen & King (2003)) and security of
machine learning (Barreno et al. (2010)).

The crucial insight in game-theoretical decision mechanisms, lies in the fact that players act accord-
ing to their own payoff functions and other players’ decisions, holding no knowledge about other
players’ payoffs. Since the payoffs might encode players’ preferences, economic status, and inter-
personal relations, etc., it is of interest to investigate when and how payoffs of players can be learned
from observations of player actions.

1.1 LINEAR QUADRATIC GAMES

A game can be associated with a graph, where the players are represented by nodes, and the in-
terdependency among the players in payoffs defines links. In a network game with n players and
linear-quadratic payoffs, each node (player) i ∈ V := {1, 2, . . . , n} selects her action xi ∈ R to
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maximize payoff Ji described by

Ji = αixi −
1

2
x2
i +

n∑
j=1

gijxixj . (1)

In (1), the first two terms characterize the benefit of player i by setting her own action xi, where the
parameter αi > 0 is called the marginal benefit, capturing the level of selfishness of player i. The
last term of this payoff function reflects the peer effect suffered by player i from the actions of other
players: if gij > 0, players i and j are strategic complements (friends or acquaintances); if gij < 0,
players i and j are strategic substitutes (opponent or adversary); if gij = 0, there is no influence on
player i from player j.

Let G ∈ Rn×n be the matrix formed by the gij , i.e., the ij-entry of G is gij . The interaction graph
G = (V,E) underlying the game (1) is then defined as the induced graph of G, where a directed
link (j, i) ∈ E if and only if gij 6= 0.

1.2 FICTITIOUS PLAYS AND ACTION-COMPROMIZED PLAYERS

For players participating in a game, Nash equilibriums can not be known or played immediately
when the game starts since the payoff functions are held in private. Instead, in real-world the behav-
iors of players are better described in a sequential decision process (Littman (1994)). Let time be
indexed at k = 0, 1, 2, . . . , T , and let player i hold decision xi(k) for time k. Then, it is reasonable
to assume that any rational player at any given t will decide her next action as the decision that max-
imizes her payoff given other players’ current decisions. This is known as fictitious plays or best
responses (Fudenberg et al. (1998)). As a result, in repeated plays for the linear-quadratic game, the
dynamics of xi(k) obey

xi(k + 1) = arg max
xi

Ji(xi,x−i(k)) = αi +

n∑
j=1

gijxj(k), i = 1, . . . , n. (BR)

In practice, players might be influenced or manipulated by an adversary in their actions. We term
such players as action-compromised players, indexed in the set M ⊆ V. Then V \ M contains
benign players who just follows (BR). For i ∈ M, we model the influence of the adversary as a
perturbation ui(k) over the best response. The fictitious plays of the players in the presence of the
action-compromised players become

xi(k + 1) = arg max
xi

Ji(xi,x−i(k)) + IM(i)ui(k)

= αi +

n∑
j=1

gijxj(k) + IM(i)ui(k), i = 1, . . . , n.
(p-BR)

where IM(i) is the indicator function: IM(i) = 1 if i ∈ M; IM(i) = 0 otherwise.

1.3 PROBLEM DEFINITION

For the adversary, it is easier and affordable to observe actions only from a number of action-leaked
players. We let O ⊆ V denote the group of players having their actions being observed. In this
paper, we are interested in whether and how the underlying graph G (or equivalently, its adjacency
matrix G) is exposed to risks of being fully identified/learned by the adversary. To be precise, the
adversary holds information

I :
{
ui(k), i ∈ M, k = 0, . . . , T

}⋃{
xj(k), j ∈ O, k = 0, . . . , T

}
with the ui(k) and xi(k) being produced by (p-BR). The problems of interest from the perspective
of the adversary lie in

• Learnability: Whether it is possible to uniquely determine G from I, perhaps with the help
of strategically designed ui(k), i ∈ M, k = 0, . . . , T .

• Learning: How to build effective learning frameworks for estimating G from I, perhaps
with prior structural information such as stability and sparsity.
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1.4 CONTRIBUTIONS AND RELATED WORK

Contributions. The connection between the network learning problem in quadratic games and clas-
sical system identification theory is uncovered. The key insight is the observation that the unknown
marginal payoffs do not play any role in the dynamics driving the difference between two consecu-
tive player actions. As a result, we manage to establish a series of results characterizing the learn-
ability of the interaction graph by the adversary: with full player action observations, the learnability
is shown to be equivalent to certain observability conditions; with partial action observations, the
learnability is shown to be determined by the unique solvability of an equation for Markov parame-
ters. Next, noting the inherent stability and sparsity properties for the network interaction structure,
we propose a stable and sparse system identification framework for learning the interaction graph
from full player action observations, and a stable and sparse subspace identification framework for
learning the interaction graph from partially observed player actions. Numerical examples validate
the effectiveness of the proposed learning frameworks.

Related Work. Our paper is closely related to the recent studies on learning network games, such
as Honorio & Ortiz (2015); Ghoshal & Honorio (2017); Leng et al. (2020); Garg & Jaakkola (2016;
2017); Ghoshal & Honorio (2018), where the behavioral actions are collected to recover the game
graph. Particularly, Leng et al. (2020) studies a learning problem of linear quadratic games on net-
works, over which a number of independent games are played with all Nash equilibrium actions
observed for learning the graph. We note that the learning frameworks in these works focus on
static games where observations for learning are steady or Nash equilibrium actions, which is differ-
ent from our considered setting of dynamic games where transient actions are observed during the
decision-making process.

The considered learning problem is also related to the network inference problem in the fields of
machine learning and signal processing. To handle such problem, several approaches have been
proposed, differing in the applied models such as probabilistic graphical models (Friedman et al.
(2008)), physically-motivated models (Gomez-Rodriguez et al. (2011)) and signal processing mod-
els (Dong et al. (2019)).

Technically, this work is built upon the results of linear system identification (Van Overschee &
De Moor (2012); Ljung (1998)), in which measured input/output data are explored to build mathe-
matical models of linear (network) systems, and even identify the system matrices or network struc-
ture under some structure and/or excitation conditions e.g., Bazanella et al. (2019); Yu et al. (2019);
Shen et al. (2017). Recent advances of system identification include its applications to machine
learning (Chiuso & Pillonetto (2019)), reinforcement learning (Ross & Bagnell (2012)) and deep
learning (De la Rosa & Yu (2016)). In view of this, this paper can be regarded as a generalization of
system identification approaches to network learning of games.

2 NETWORK LEARNABILITY FROM FICTITIOUS PLAYS

In this section, we investigate the learnability condition under which the network structure G can be
uniquely determined by the adversary. The adversary may have access to the system dynamics (p-
BR) for a single trajectory where the network game is played only once, or for multiple trajectories
where the network game is independently played for a number of times.

2.1 LEARNABILITY BY SINGLE TRAJECTORY

For notational simplicity, we denote the aggregated action profile of all players and the overall in-
jected perturbations at time k by x(k) := [x1(k), . . . ,xn(k)]> ∈ Rn and u(k) := [ui(k), i ∈
M]> ∈ Rm, respectively. We also denote the cardinalities of the sets M and O as m and l, respec-
tively. Within these sets, the indexes of action-compromised and action-leaked players are sorted in
ascending order with M := {p1, . . . , pm} and O := {q1, . . . , ql}.
Introduce two matrices B ∈ Rn×m and C ∈ Rl×n to represent the sets of M and O. Specifically,
the (i, j)-th entry of matrix B satisfies that

Bi,j =

{
1, i = pj ;

0, otherwise.
(2)
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The (j, i)-th entry of matrix C satisfies that

Cj,i =

{
1, i = qj ;

0, otherwise.
(3)

From classical control theory (Wonham (1985)), the pair (G,B) is said to be controllable if the
n× nm matrix (where the subscript n denotes the number of block columns)

Cn :=
[
B GB . . . Gn−1B

]
has rank n; the pair (G,C) is said to be observable if the nl × n matrix (where the subscript n
denotes the number of block rows)

On :=


C
CG

...
CGn−1


has rank n.

2.1.1 FULL PLAYER ACTION OBSERVATIONS

We present the following result showing that if the adversary has access to all players’ actions but
has no ability to add action perturbations, namely O = V and M = ∅, the learnability of the network
structure G can be precisely characterized by a special form of observability.

Theorem 1 Assume O = V and M = ∅. Let the adversary has access to one single trajectory of
I from (p-BR). Then G can be uniquely determined by the adversary for sufficiently large T if and
only if (G,x(1)− x(0)) is controllable.

In fact, we can further prove that (G,x(1) − x(0)) is observable if and only if the characteristic
polynomial of G coincides with the minimal polynomial of G, and x(1) − x(0) has nontrivial
projections on to all generalized eigenvector of G (see more details in Proposition 1 of Appendix
B). The next result characterizes the ability to learn G by feedback perturbations, namely u(k) =
Kx(k) for K ∈ Rm×n.

Theorem 2 Assume O = V and M 6= ∅. Let the adversary has access to one single trajectory of I
from (p-BR). Suppose u(k) is generated by u(k) = Kx(k). Then there exists K such that G can be
uniquely determined if the following conditions hold:

(i) 0 6= x(1)− x(0) ∈ Im(B);

(ii) (G,B) is controllable.

2.1.2 PARTIAL PLAYER ACTION OBSERVATIONS

When O is only a subset of V, the learnability of G by the adversary becomes a much more chal-
lenging question.

Block Hankel Matrices. For a time series, the block Hankel matrices provide a way of representing
the time evolution in compact forms, given by an operator H that maps the time series into block
matrices Van Overschee & De Moor (2012) (see Appendix A). Let w(k) denote the collection of
the observed actions {xi(k), i ∈ O} generated from (p-BR) at time k. The block Hankel matrices
of the sequences W0|T , U0|T can be defined, respectively, leading to Wp,Wf from H(W0|T−1),
W+

p ,W
+
f fromH(W1|T ), Up,Uf fromH(U0|T−1), and U+

p ,U
+
f fromH(U1|T ).

Convolution Matrix. The lower-triangular convolution matrix for the triplet (G,B,C) is defined as

Tn :=


0 0 · · · 0

CB 0 · · · 0
...

. . . . . .
...

CGn−2B · · · CB 0

 .
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The reversed extended controllability matrix for a matrix pair (G,B) is defined as

Ĉn :=
[
Gn−1B . . . GB B

]
.

Markov Parameter Equations. For any k, x(k) can be represented as a linear combination of the past
observations {xi(s), s = 0, . . . , k − 1, i ∈ O} and the past perturbations {uj(s), s = 0, . . . , k −
1, j ∈ M} with s > 0. Consequently, the elements in the first column in matrix Tn (termed Markov
parameters) must satisfy the following equation (see Appendix D):

∆Wf = OnGnO†n∆Wp +On
[
Ĉn −GnO†nTn

]
∆Up + Tn∆Uf , (4)

where ∆Wf := W+
f −Wf , ∆Wp := W+

p −Wp and ∆Uf , ∆Up are defined similarly.

We are now ready to present the following result.

Theorem 3 Let the adversary has access to one single trajectory of I from (p-BR). Suppose (G,C)
is observable and T ≥ 2n. Then G can be uniquely determined by the adversary if and only if the
Markov parameter equation (4) admits a unique solution with respect to G.

2.2 LEARNABILITY BY INFINITE TRAJECTORIES

The transfer function of the perturbed best-response (p-BR) is defined as FG(z) := C(zI−G)−1B.
Here z ∈ C, and FG(z) captures the relation between u and yu,x0,G in the frequency (z) domain.
Inspired by the recent breakthrough on network system identification (van Waarde et al. (2021)), we
present the following result. It asserts that either full observation of players’ actions or full injected
perturbations is necessary for the learnability of G when the adversary has infinitely trajectories.

Theorem 4 Let the adversary have access to infinitely many trajectories of I from (p-BR) subject to
different initial player actions and perturbation sequences. Then the network structure G is uniquely
learnable by the adversary if and only if

FG(z) = FG̃(z) for G̃ ∈ Rn×n =⇒ G = G̃;

or equivalently, if and only if at least one of the following conditions holds:

(i) rankC = n and (G,B) is controllable;

(ii) rankB = n and (G,C) is observable.

3 NETWORK LEARNING WITH FULL ACTION OBSERVATIONS

In this section, we develop a framework for learning the network structure G from the information
I generated by (p-BR) with full action observations (i.e., O = V).

3.1 THE FRAMEWORK: STABLE AND SPARSE SYSTEM IDENTIFICATION

We define yi(k) := xi(k + 1) − xi(k) and vi(k) := ui(k + 1) − ui(k). Then (p-BR) can be
rewritten as

y(k + 1) = Gy(k) + Bv(k).

In practice, it is expected that the best response dynamics (BR) should converge to a Nash equilib-
rium (Jackson (2010)). This is guaranteed by the condition (Ballester et al. (2006)) that ρ(G) < 1,
where ρ(G) is the spectral radius. Moreover, in practice, G is typically a sparse matrix.

Let S be the set of stable matrices in Rn×n, i.e., S := {A ∈ Rn×n : ρ(A) < 1}. When observations
of the x(k) (and thus, y(k)) are subject to the influence of noises,

ym(k) = y(k) + ek
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will be the actually observed actions, where ek ∈ Rd, k = 0, . . . , T are stationary random noises
with zero mean and co-variance Sn. So the adversary has access to

Z = [ym(1) ym(2) · · · ym(T )] ; (5)

Y = [ym(0) ym(1) · · · ym(T − 1)] ; (6)

V = [v(0) v(1) · · · v(T − 1)] . (7)
We propose the following Stable Sparse System Identification (SSSI) for learning the network struc-
ture G from full player action observations:

SSSI : GSSSI = arg inf
G∈S

1

2
||Z −GY −BV ||2F + θ||G||1. (8)

3.2 AN INFORMATION-THEORETIC ALGORITHM

As S is an open and nonconvex set, solving (8) is numerically challenging. We propose to adopt the
recently developed algorithm for stable system identification in Jongeneel et al. (2021), where an
information-theoretic projection onto S was used to soften the computational complexity by solving
Riccati equations. This leads to the following algorithm.

Algorithm 1: Information-theoretic Projection SSSI Algorithm
Input: Z, Y, V,B
Output: Network graph structure G

1 Solve the regularized least square solution

Ĝ = arg min
G

1

2
||Z −GY −BV ||2F + θ||G||1; (9)

2 Random generate δ ≥ 0;
3 Solve the algebraic Riccati equation (DARE) with the unique solution Pδ:

P = I + Ĝ>PĜ− Ĝ>P(P + (2δSn)−1)−1PĜT ; (10)

4 Compute Lδ = −(Pδ + (2δSn)−1)−1PδĜ;
5 Return GSSSI = Ĝ + Lδ .

4 NETWORK LEARNING WITH PARTIAL ACTIONS

In this section, we develop a framework for learning the network structure G from the information
I generated by (p-BR) with partial action observations, i.e., the set of players that the adversary can
observer actions O is only a subset of the overall player set V.

4.1 REFINED MARKOV PARAMETER EQUATION

Recall that w(k) is the vector representing the collection of the observed actions {xi(k), i ∈ O}
generated from (p-BR) at time k. Defining z(k) = w(k + 1) − w(k), Zf ,Zp,Vf ,Vp as the
block Hankel matrices that can be constructed from the sequences {z(k), k = 0, . . . , T − 1} and
{v(k), k = 0, . . . , T − 1}, the Markov parameter equation (4) can be equivalently reformulated as
follows:

Zf = OnGnO†nZp +On
[
Ĉn −GnO†nTn

]
Vp + TnVf (11)

: = ΦnZp + ΨnVp + TnVf .

This refined Markov parameter equation directly connects the network structure G with the data
accessible by the adversary.

4.2 NETWORK LEARNING BY STABLE AND SPARSE SUBSPACE IDENTIFICATION

Again, when the observations of the players’ actions w(k) (and thus, z(k)) are masked by noises
in practice, zm(k) = z(k) + ek will be the actually observed action differences. The adversary has
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access to [
Zm
p

Zm
f

]
= H

(
Zm0|T−1

)
,

[
Vp

Vf

]
= H

(
V0|T−1

)
.

We are now ready to propose the following Stable and Sparse Subspace Identification (SSSubI)
learning framework.

Algorithm 2: Network Learning by Stable and Sparse Subspace Identification
Input: Zm

p ,Z
m
f ,Vp,Vf ,C,B

Output: Network graph structure G
1 From (11) carry out classical subspace identification [Ref], and produce T ?n as an optimal

estimate for Tn;
2 Take M?

l as the (l + 2, 1)-th block entries for T ?n for l = 0, . . . , n− 2, and then solve

GSSSubI = arg min
G∈S

n−2∑
l=1

||CGlB−M?
l ||2F + γ||G||1;

3 Return GSSSubI.

When solving GSSSubI, again we can first solve

Ḡ = arg min
G∈Rn×n

n−2∑
l=1

||CGlB−M?
l ||2F + γ||G||1 , (12)

and then use the information-theoretic projection in Jongeneel et al. (2021) to project Ḡ onto S.

5 NUMERICAL VALIDATIONS

In this section, we provide numerical examples to validate the two proposed learning frameworks.
For reproduction of the reported results, all source codes have been provided in the supplementary
material.

5.1 FULL ACTION OBSERVATIONS: STABLE AND SPARSE SYSTEM IDENTIFICATION

In this section, we examine the performance of Algorithm 1 on three types of synthetic networks
generated using the Erdős–Rényi (ER), the Watts–Strogatz (WS) and the Barabási–Albert (BA)
models. The networks under evaluation have n = 100 nodes.

Network setup. In the ER graph, each link takes place with probability per = 0.1 independently
with all the other links; in the WS graph, each node’s average degree and the random rewiring
process is set to be is kws = 5 and pws = 0.2, respectively; in the BA graph, a new node at each
time step is created to connect to mba = 2 existing nodes via preferential attachment. After the
realization of each graph, a nonzero random number is selected between −5 and 5 as the weight for
each link. Each entry of the adjacency matrix G is then divided by its largest absolute value of its
eigenvalues to ensure the stability G.

Data synthesis. A set M representing action-compromised players is selected and a matrix B
is created according to (2). We then generate x(0), u(k), k = 0, · · · , T, and α by considering
x(0),u(k),α ∼ N (0, I), and simulate the dynamics (p-BR) to obtain x(k), k = 1, . . . , T . The ob-
servation noises follow a normal distribution ek ∼ ξ ∗N (0, I) where ξ represents the noise intensity
level. Upon Eq. (5)-(7), we finally obtain three matrices Z, Y, V .

Experiment. We apply Algorithm 1 to the respective settings and compare the outcomes against the
ground truth by relative error

Err :=
||GSSSI −GTruth||F
||GTruth||F

. (13)

We also implement two other baseline approaches: the stable least square (SLS) and stable L2-
regularized least square (SL2LS), which are described in Appendix F.1. For SSSI and SL2LS, we
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provide the results using the parameters θ and β that yield the greatest average performance across
50 randomly generated graph instances.

Results. First and foremost, we are to discover how the the trajectory length affects the learning
performance. We fix noise level to be ξ = 0.1, use 6 different values of T = {15, 20, 25, 30, 35, 40}
and follow the aforementioned data generation process. The learning performance of the three
methods versus trajectory length on the ER, WS, BA networks is illustrated in Fig. 1. We next
examine the robustness of the three methods in the face of various levels of noise during the
observations. Let the trajectory length be T = 40 and the noise intensity level take values in
ξ = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The learning performance of the three methods versus noise
intensities on the ER, WS, BA networks is shown in Fig. 2. Clearly in terms of reconstructing the
weights for the groundtruth links, the SSSI outperforms the other two baseline methods significantly.
Moreover, the BA networks appear to be more difficult to learn under SSSI in all cases, compared to
the ER graphs and WS graphs.

(a) Erdos Renyi (b) Watts Strogatz (c) Barabasi Albert

Figure 1: The relative errors from SSSI, SLS, SL2LS versus trajectory length over the ER, WS and
BA networks.

(a) Erdos Renyi (b) Watts Strogatz (c) Barabasi Albert

Figure 2: The relative errors from SSSI, SLS, SL2LS versus noise intensity level over the ER, WS
and BA networks.

5.2 NETWORK LEARNING WITH PARTIAL ACTIONS: SUBSPACE IDENTIFICATION

In this section, we evaluate the performance of Algorithm 2 on the ER, WS and BA networks. In
particular, since the Step 1 subspace identification has been an established approach (Van Overschee
& De Moor (2012)), we focus our attention on the effectiveness of Step 2. The networks used for
experiments are of the size of 10 nodes.

Network setup. We follow the network setup process in Section 5.1 to obtain the adjacency matrix
G, where per = 0.2, kws = 2, pws = 0.2 and mba = 1.
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Data synthesis. Two sets O,M representing the action-leaked and action-compromised players are
selected, from which C,B are obtained based on (3) and (2). We compute M?

l , l = 0, . . . , n − 2,
directly from the ground truth of G,C,B.

Experiments. The metric for learning performance evaluation continues to be the relative error
described in (13). The benchmark is set to be stable subspace identification (SSubI) described in
Appendix F.2, which is obtained by removing the the L1 regularization from (SSSubI). We report
the results using γ that leads to the best average performance across 20 randomly created graph
instances.

Results. The relative errors from SSSubI and SSubI over the ER, WS and BA networks are de-
picted in Fig. 3. We see that SSSubI indeed provides better accuracy than SSubI in inferring the
network structure in all network types. Again, the BA networks are apparently more difficult to
learn compared to ER and WS networks.

Figure 3: The relative errors from SSSubI and SSubI over the ER, WS and BA networks.

6 CONCLUSIONS

We have studied the problem of learning the interaction network structure from dynamic played ac-
tions of the players from the perspective of an adversary, who may strategically perturb the decisions
for a set of action-compromised players, and observe the sequential decisions from a set of action-
leaked players. Results characterizing the learnability of the interaction graph by the adversary were
established, where key insights came from classical system identification theories. Two learning
frameworks were proposed for fully and partially player actions, respectively, for which numerical
examples validate their usefulness. This work opened the doors for learning the underlying interac-
tion graph from fictitious plays in network games. Future work may include extensions of this line
of research to network games with general payoff functions, and applications of the work to the real
world.
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A BLOCK HANKEL MATRICES

For a time sequence s(k) ∈ Rn, k = 0, . . . , T , a collection of samples from time k to time k + l is
denoted as Sk|k+l := [s(k) s(k + 1) · · · s(k + l)] . Take h = T + 1 − 2n. A block Hankel
matrix of the sequence S0|T−1 is defined as

H
(
S0|T−1

)
:=



s(0) s(1) s(2) · · · s(h− 1)
s(1) s(2) s(3) · · · s(h)

...
...

...
. . .

...
s(n− 1) s(n) s(n+ 1) · · · s(n+ h− 2)
s(n) s(n+ 1) s(n+ 2) · · · s(n+ h− 1)

s(n+ 1) s(n+ 2) s(n+ 3) · · · s(n+ h)
...

...
...

. . .
...

s(2n− 1) s(2n) s(2n+ 1) · · · s(T − 1)


:=

[
Sp
Sf

]
The block Hankel matrix of S1|T is defined as

H
(
S1|T

)
:=

[
S+
p

S+
f

]
.

B PROOF OF THEOREM 1

Regarding the action dynamics described in (p-BR), we define the action difference and the pertur-
bation difference as yi(k) := xi(k + 1) − xi(k) and vi(k) := ui(k + 1) − ui(k) respectively, in
order to eliminate the effect of marginal benefit αi in learning graph structure G.

Adding the observation ports to the action dynamics (p-BR), we arrive at the compact form of an
input-output linear invariant system:

y(k + 1) = Gy(k) + Bv(k), (14)
z(k) = Cy(k),

in which the state y(k) := [y1(k), . . . ,yn(k)]>, the input signal v(k) ∈ Rm, B ∈ Rn×m and
C ∈ Rl×n. The nonzero entries of matrices B and C correspond to the set of action-compromised
and action-leaked players, respectively. Hence, the adversary has a trajectory of the input/output
signal of this system (14): I := {v(k), z(k), 0 ≤ k ≤ T}.
When O = V and M = ∅, (14) is degenerated as

z(k + 1) = y(k + 1) = Gy(k).

Then, the single trajectory satisfies
Z = GY,

where Z = [y(1),y(2), . . . ,y(T )] ∈ Rn×T and Y = [y(0),x(2), . . . ,y(T − 1)] ∈ Rn×T .

This equation can be decoupled as several linear equations: Y >[G>]i = [Z>]i,∀i with [·]i repre-
senting the i-th column. Then, G is uniquely constructable from the trajectory T if and only if each
of these linear equations has a unique solution, i.e., rank(Y ) = rank([Y >, [Z>]i]) = n, ∀i.
Note that Y = [y(0),y(1), . . . ,y(T − 1)] = [y(0),Gy(0), . . . ,GT−1y(0)], of which the vectors
span a G-cyclic subspace of Rn, denoted byH(y(0);G). This subspace is an invariant subspace for
G, in the sense that GH(y(0);G) ⊆ H(y(0);G), which validates rank(Y ) = rank([Y >, [Z>]i]).
Moreover, the condition rank(Y ) = n holds if and only if (G,y(0)) is controllable.

Proposition 1 The following statements are equivalent:

1. (G,y(0)) is controllable;

12
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2. The characteristic polynomial of G coincides with the minimal polynomial of G, and y(0)
has nontrivial projections on to all generalized eigenvector of G.

Proof: We first prove “1 =⇒ 2”. Suppose that (i). the minimal polynomial of G, termed m(t), is
not equal to its characteristic polynomial, termed κ(t); or (ii). y(0) has zero projections on to one
generalized eigenvector of G.

For the pair (G,y(0)), we form the sequence of vectors

y(0),Gy(0),G2y(0), . . .

and they reside in a G-invariant subspace P with dimension p, where p is the degree of the minimal
polynomial for vector y(0) with the linear operator G, termed ζy(0)(t). Moreover, ζy(0)(t) divides
m(t). Interested readers are suggested to (MacDuffee, 2012, Section VII-4) for the definition of
annihilating polynomial and its property.

If (i) holds, i.e., m(t) 6= κ(t), then the degree of m(t) is less than n as m(t) divides κ(t), and
further the degree of ζ(t) satisfies p < n. Then rank([y(0),Gy(0), . . .]) = p < n and (G,y(0)) is
uncontrollable. Obviously, if (ii) holds, the dimension of the G-invariant subspace P satisfies p < n
and further (G,y(0)) is uncontrollable.

We next prove “2 =⇒ 1”. Denote the set of distinct eigenvalues of G as σ(G) with cardinality g.
Given an eigenvalue λi, its geometric multiplicity, termed µi, is equal to 1 since m(t) = κ(t), and
its algebraic multiplicity is equal to its multiplicity in the minimal polynomial m(t) is denoted by ri
with

∑g
i=1 ri = n.

Let eλi,j denote the generalized eigenvectors of rank j (1 ≤ j ≤ ri) corresponding to G and its
eigenvalue λi ∈ σ(G). From statement 2, we have that

y(0) =

g∑
i=1

Ei :=

g∑
i=1

αλi,rieλi,ri + αλi,ri−1eλi,ri−1 + · · ·+ αλi,1eλi,1

with nonzero αλi,j , i = 1, . . . , g, j = 1, . . . , ri. According to the definition of generalized eigen-
vector, we have

Ei :=

ri∑
j=1

αλi,jeλi,j = [

ri∑
j=1

αλi,j(G− λiI)ri−j ]eλi,ri := Deλi,ri

with nonzero matrix D. Note that D and G commute, and hence the minimal polynomial of vector
Ei, termed ζEi(t), is equal to the minimal polynomial of vector eλi,ri , termed ζeλi,ri (t) = (t−λi)ri .

Since the minimal polynomials for vectors Ei and Ej with j 6= i coprime, according to (MacDuffee,
2012, Section VII-4, Lemma in Page 181), the minimal polynomials for vectors y(0) is equal to the
product of ζEi(t), i = 1, . . . , g. Hence, the degree of ζy(0) is p =

∑g
i=1 ri = n, which implies the

controllability of the pair (G,y(0)). �

C PROOF OF THEOREM 2

When O = V and M 6= ∅, (14) is degenerated as

z(k + 1) = y(k + 1) = Gy(k) + Bv(k).

Setting v(k) = Ky(k), there holds

y(k + 1) = (G + BK)y(k).

According to Theorem 1, G can be uniquely determined by the adversary from one single trajectory
I if and only if (G + BK,y(0)) is controllable.

Then, the proof of Theorem 2 can be complemented by the following lemma (Wonham, 1985,
Lemma 2.2), and the proof is omitted here.

Lemma 1 Let 0 6= y(0) ∈ Im(B). If (G,B) is controllable, there exists K such that (G +
BK,y(0)) is controllable.

13



Under review as a conference paper at ICLR 2022

D PROOF OF THEOREM 3

Consider the input sequence V0|T−1 and output one Z0|T−1 of (14), and construct the correspond-
ing block Hankel matrices, as introduced in Section 2.1.2, termed Vp,Vs,Zp,Zf . Then, we can
reformulate the state-space model in (14) as follows:

Zf = OnYn|T−n + TnVf , (15)

where the observability matrix On and the convolution matrix Tn are defined in Section 2.1.2, re-
spectively. Throughout the article, it is stipulated that the dimension parameter T+1� 3n such that
the Hankel matrices Zf and Vf have more columns than rows. Note that in (15) the term Yn|T−n
is unknown to the adversary. Hence, we hope to construct Yn|T−n from the past input-output data
streams, and utilize it to establish an equation of G totally based on the input-output data streams.

First, consider the past output sequences constructed as follows

Zp = OnY0|T−2n + TnVp,

similar to (15).

When the observability matrix On has full column rank, the state sequence Yn|T−n can be repre-
sented as

Yn|T−n = GnY0|T−2n + ĈnVp

= GnO†nZp +
[
Ĉn −GnO†nTn

]
Vp,

where Ĉn is the reversed controllability matrix.

Replacing Yn|T−n in (15) by the above representation, we obtain that

Zf = OnGnO†nZp +On
[
Ĉn −GnO†nTn

]
Vp + TnVf (16)

By now, the adversary can construct (16) from the single trajectory I. Then, the sufficiency and
necessity of Theorem 3 can be easily derived from (16).

E DEFINITION OF INDISTINGUISHABLITY AND PROOF OF THEOREM 4

By introducing the action and perturbation difference, we obtain the state-space form (14) of the
perturbed game play (p-BR). Let Zv,y0,G(·) and Zv,ỹ0,G̃

(·) denote the trajectories of z(k), k =
0, 1, . . . of two different systems of the form (14), where the subscripts emphasize the dependence on
the perturbation difference v(·), the initial states y0, ỹ0, and the topology matrix G, G̃, respectively.
We introduce the following definition.

Definition 1 The topology matrices G and G̃ are indistinguishable if there exist initial conditions
y0, ỹ0 ∈ Rn such that

Zv,y0,G(·) = Zv,ỹ0,G̃
(·)

for all injected perturbation difference v.

Clearly, the indistinguishability defined above points to infinite trajectories of I as it is concerned
with all possible initial player actions and perturbation sequences. Obviously, the topology of the
linear-quadratic network game is said to be learnable if G and G̃ are distinguishable for all real
G 6= G̃.

To prove Theorem 4, we give the following two statements1:

Lemma 2 A pair of parameter values (G, G̃) is indistinguishable if and only if the Markov param-
eters satisfying:

CGlB = CG̃lB, l = 0, 1, 2, · · · . (17)
1The proofs of Lemma 2 and Lemmas 3-4 are inspired by and adopted from the proofs for system identifia-

bility in Grewal & Glover (1976) and van Waarde et al. (2021), respectively.
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Proof: We first prove the sufficiency. If (17) holds, then the output trajectories of two systems (14)
associated with (G, G̃) satisfy that when y0 = ỹ0,

Zv,y0,G(k) := z(k) = CGky0 +

k−1∑
t=0

CGtBv(k − 1− t) = Zv,ỹ0,G̃
(k),

for all v(k) ∈ Rm and for k ≥ 0. According to Definition 1, the topology matrices G and G̃ are
indistinguishable.

The necessity is proved as follows. Assume (G, G̃) are indistinguishable, then there exist initial
conditions y0, ỹ0 s.t.

CGky0 +

k−1∑
t=0

CGtBv(k − 1− t) = CG̃kỹ0 +

k−1∑
t=0

CG̃tBv(k − 1− t)

holds for all input functions v and for all k ≥ 0. It implies that

CGky0 = CG̃kỹ0,∀k ≥ 0, (18)

and
k−1∑
t=0

[CGtB−CG̃tB]v(k − 1− t) ≡ 0. (19)

Hence, if y0 and ỹ0 are set as zero vectors, then (18) holds for all k, which implies the existence of
y0 and ỹ0. Since v(·) ∈ Rm has a nonempty interior, (19) means that

CGlB = CG̃lB, ∀l = 0, 1, . . . .

Hence, the indistinguishability implies that at different values of the parameter G, the Markov pa-
rameters of the system CGkB are identical. �

Lemma 3 If the topology G is learnable, then (G,B) is controllable and (G,C) is observable.

Proof: Suppose (G,B) is uncontrollable. Let v ∈ Rn be a nonzero vector in the uncontrollable
subspace of (G,B), i.e.,

v>GlB = 0, ∀k = 0, 1, . . .

Given a topology matrix G, we can construct G̃ = G + vv>, satisfying that

G̃lB = [G + vv>]l−1[G + vv>]B = [G + vv>]l−1GB

= [G + vv>]l−2[G + vv>]GB = [G + vv>]l−2G2B

= .... = GlB.

Hence, we have CGlB = CG̃lB, ∀l = 0, 1, . . . but G 6= G̃. It implies the topology G is not
learnable according to Lemma 2.

The proof for necessity of observability of (G,C) is analogous to the above and is omitted here. �

Lemma 4 If the topology G is learnable, then rank(B) = n or rank(C) = n.

Proof: Suppose that rank(B) < n and rank(C) < n. Then there exist nonzero vectors v, u ∈ Rn
such that Cv = 0 and u>B = 0. Without loss of generality, we assume u>v 6= −1. Next, we
define a matrix A := I + vu>. Its inverse A−1 exists according to Sherman-Morrison formula with
A−1 = I − vu>

I+u>v
.

Given a topology matrix G, we can construct G̃ := A−1GA, which satisfies CGlB = CG̃lB for
all l = 0, 1, . . . Then, according to Lemma 2 the topology G is not learnable. �

Proof of Theorem 4: The transfer function FG(z) can be expanded as follows:

FG(z) = C(zI −G)−1B = Cz−1
+∞∑
k=0

(z−1G)kB.
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Hence, (17) in Lemma 2 can be equivalently stated as FG(z) = FG̃(z), which concludes the learn-
ability of G in terms of the transfer function.

Next, we prove the learnability condition in terms of matrices G,B and C.

Sufficiency: Suppose rankC = n and (G,B) is controllable. It is sufficient to prove that for a pair
of parameter values (G, G̃) FG(z) = FG̃(z) holds if and only if G = G̃.

Consider two topology matrix G, G̃ with difference ∆ := G − G̃. Suppose FG(z) = FG̃(z). As
C has full column rank, we have

(zI − G̃)C†[FG(z)− FG̃(z)] = ∆(zI −G)B =

∞∑
k=0

z−(k+1)∆GkB ≡ 0.

As z−(k+1) is nonzero, it is derived from the above that

∆GkB ≡ 0, ∀k = 0, 1, . . . (20)

Since (G,B) is controllable, (20) holds if and only if ∆ is zero matrix, which shows G = G̃.

The proof for case 2 (i.e., full row rand of matrix B and observability of (G,C)) is analogous to the
above and is omitted here.

Necessity: These can be obtained directly from Lemmas 3 and 4. �

F BASELINE APPROACHES

F.1 BASELINES IN SECTION 5.1

The method of stable least square (SLS) is defined by the optimization problem

inf
G∈S

1

2
||Z −GY −BV ||2F . (21)

The method of stable L2-regularized least square (SL2LS) solves

inf
G∈S

1

2
||Z −GY −BV ||2F + β||G||2F . (22)

Solving Eq. (21) and (22) is numerically challenging. We propose to solve ĜSLS = arg minG
1
2 ||Z−

GY −BV ||2F and ĜSL2LS = arg minG
1
2 ||Z −GY −BV ||2F + β||G||2F and project them to their

nearest stable ones by applying Eq. (10).

F.2 BASELINE IN SECTION 5.2

The method of stable subspace identification (SSubI) is posed by solving the following problem

inf
G∈S

n−2∑
l=1

||CGlB−M?
l ||2F . (23)

We first compute ĜSSubI = arg minG

∑n−2
l=1 ||CGlB−M?

l ||2F and then follow Eq. (10) to project
it to its nearest stable matrix.
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