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Abstract: Sampling-based methods have become a cornerstone of contemporary
approaches to Model Predictive Control (MPC), as they make no restrictions on
the differentiability of the dynamics or cost function and are straightforward to
parallelize. However, their efficacy is highly dependent on the quality of the sam-
pling distribution itself, which is often assumed to be simple, like a Gaussian. This
restriction can result in samples which are far from optimal, leading to poor perfor-
mance. Recent work has explored improving the performance of MPC by sampling
in a learned latent space of controls. However, these methods ultimately perform
all MPC parameter updates and warm-starting between time steps in the control
space. This requires us to rely on a number of heuristics for generating samples
and updating the distribution and may lead to sub-optimal performance. Instead,
we propose to carry out all operations in the latent space, allowing us to take full
advantage of the learned distribution. Specifically, we frame the learning problem
as bi-level optimization and show how to train the controller with backpropagation-
through-time. By using a normalizing flow parameterization of the distribution, we
can leverage its tractable density to avoid requiring differentiability of the dynamics
and cost function. Finally, we evaluate the proposed approach on simulated robotics
tasks and demonstrate its ability to surpass the performance of prior methods and
scale better with a reduced number of samples.

Keywords: Model Predictive Control, Normalizing Flows

1 Introduction

Sequential decision making under uncertainty is a fundamental problem in machine learning and
robotics. Recently, model predictive control (MPC) has emerged as a powerful paradigm to tackle
such problems on real-world robotic systems. In particular, MPC has been successfully applied
to helicopter aerobatics [1], robot manipulation [2, 3, 4], humanoid robot locomotion [5], robot-
assisted dressing [6], and aggressive off-road driving [7, 8, 9]. Sampling-based approaches to MPC
are becoming particularly popular due to their simplicity and ability to handle non-differentiable
dynamics and cost functions. These methods work by sampling controls from a policy distribution
and rolling out an approximate system model using the sampled control sequences. They then use
the resulting trajectories to compute an approximate gradient of the cost function and update the
policy. Next, the controller samples an action from this distribution and applies it to the system. It
repeats the process from the resulting next state, creating a feedback controller. Between time steps,
it warm-starts the optimization process using a modification of the solution at the previous time step.

An important design decision is the form of the sampling distribution, which is often simple, e.g.
a Gaussian, such that we can efficiently sample and tractably update its parameters. However, this
also has drawbacks: without much control over the distribution form, samples often lie in high-cost
regions, hindering performance. This can be particularly problematic in complex environments with
sparse costs or rewards, as a poorly parameterized distribution may hinder efficient exploration,
leading the system into bad local optima. A side effect is that we often require many samples to
accomplish the objective, increasing computational requirements. There have been extensions which
target more complex distributions, such as Gaussian mixture models [10] and a particle method based
on Stein variational gradient descent (SVGD) [11]. However, there is a large amount of structure
in the environment that these methods fail to exploit. Instead, an alternative approach is to learn a
sampling distribution which can leverage the environmental structure to draw more optimal samples.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



Prior work on learning MPC sampling distributions generally requires differentiability of the dynamics
and cost function [12, 13]. Power and Berenson [14, 15] circumvent this issue by leveraging
normalizing flows (NFs) [16, 17, 18], which have a tractable log-likelihood. This property allows them
to learn flexible distributions by directly optimizing the MPC cost without requiring differentiability
via the likelihood-ratio gradient. However, a limitation of their approach is that all online updates to
the distribution and warm-starting between time steps occur entirely in the control space, leaving the
latent distribution fixed. This forces them to apply heuristics to generate samples by combining those
from the learned distribution with Gaussian perturbations to the current control-space mean. These
restrictions prevent us from fully taking advantage of the learned distribution and potentially throws
away useful information. Additionally, their approach does not allow for the incorporation of control
constraints directly into the sampling distribution, which is important for real-world robots.

Instead, we propose to alter the optimization machinery to operate entirely in the latent space. As
the NF latent space follows a simple distribution, it remains feasible to perform MPC updates in
this learned space and update the latent distribution online. Specifically, during an episode, the
parameters of the latent distribution are updated with MPC while those of the NF remain fixed. Then
during training, after each episode, the parameters of the NF are updated. We can frame this setup as
a bi-level optimization problem [19] and derive a method for computing an approximate gradient
through the latent MPC update. This involves treating MPC as a recurrent network, where the control
distribution acts as a form of memory, and unrolling the computation to train with backpropagation-
through-time (BPTT). However, it is no longer clear how to warm-start between time steps because
there is no clear delineation of time in the latent space. Moreover, the usual method of warm-starting,
which simply shifts the current plan forward in time, may be sub-optimal. Therefore, we propose to
learn a shift model, which performs all warm-starting operations in the latent space. Finally, we show
how to alter the NF architecture to incorporate box constraints on the sampled controls.

Contributions: In this work, we build upon recent efforts to learn sampling distributions for MPC
with NFs by moving all online parameter updates and warm-start operations into the latent space. We
accomplish this by framing the learning problem as bi-level optimization and derive an approximate
gradient through the MPC update of the latent distribution to train the network with BPTT. Addition-
ally, we show how to parameterize the flow architecture such that we can incorporate box constraints
on the controls. Finally, we empirically evaluate our proposed approach on simulated navigation and
manipulation tasks. We demonstrate its ability to improve performance over the baselines by taking
full advantage of the learned latent space. We find that the performance of the controllers with our
learned sampling distributions scales more gracefully with a reduction in the number of samples.

2 Sampling-Based Model Predictive Control
We consider the problem of controlling a discrete-time stochastic dynamical system, which is in state
xt ∈ RN at time step t. Upon the application of control ut ∈ RM , the system incurs the instantaneous
cost c(xt, ut) and transitions to xt+1 ∼ f(xt, ut). We wish to design a policy ut ∼ π(·|xt) such that
the system achieves good performance over T steps. Instead of finding a single, globally optimal
policy, MPC re-optimizes a local policy at each time step by predicting the system’s behavior over
a finite horizon H < T using an approximate model f̂ . Specifically, in sampling-based MPC, we
sample a control sequence ût ∼ πθ(·), where ût , (ût, ût+1, · · · , ût+H−1), and our policy is
parameterized by θ ∈ Θ. We rollout our model starting at xt using these sampled controls to get our
predicted state sequence x̂t , (x̂t, x̂t+1, · · · , x̂t+H), with x̂t = xt. The total trajectory cost is

C(x̂t, ût) =

H−1∑
h=0

c(x̂t+h, ût+h) + cterm(x̂t+H), (1)

where cterm(·) is a terminal cost function. We then construct a statistic Ĵ(θ;xt) defined on cost
C(x̂t, ût) and use the rollouts to solve θt ← arg minθ∈Θ Ĵ(θ;xt). After optimizing our parameters,
we sample the control sequence ût ∼ πθt(·), apply the first control to the real system (i.e. ut = ût),
and repeat the process. Because each parameter θt depends on the current state, MPC effectively
yields a state-feedback policy, even though the individual distributions give us an open-loop sequence.

In this paper, we consider a popular sampling-based MPC algorithm known as Model Predictive Path
Integral (MPPI) control [7, 8]. MPPI optimizes the exponential utility or risk-seeking objective:

Ĵ(θ;xt) = − logEπθ,f̂
[

exp
(
− 1

β
C(x̂t, ût)

)]
, (2)
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where β > 0 is a scaling parameter, known as the temperature. As we do not assume that the dynamics
or cost function are differentiable, we compute the gradients via the likelihood-ratio derivative:

∇Ĵ(θ;xt) = −
Eπθ,f̂

[
e−

1
βC(x̂t,ût)∇θ log πθ(ût)

]
Eπθ,f̂

[
e−

1
βC(x̂t,ût)

] . (3)

In MPPI, the policy is assumed to be a factorized Gaussian of the form

πθ(û) =

H−1∏
h=0

πθh(ût+h) =

H−1∏
h=0

N (ût+h;µt+h,Σt+h). (4)

Previous work by Wagener et al. [9] has shown that optimizing this objective with dynamic mirror
descent (DMD) [20] and approximating with Monte Carlo estimates gives us the MPPI update rule:

µt+h = (1− γt)µ̃t+h + γt

N∑
i=1

wiû
(i)
t+h, wi =

e−
1
βC(x̂

(i)
t ,û

(i)
t )∑N

j=1 e
− 1
βC(x̂

(j)
t ,û

(j)
t )

(5)

where µ̃t+h is the current mean for each time step and γt is the step size. Between time steps of
DMD, we get µ̃t+h from our previous solution µt+h by using a shift model µ̃t+h = Φ(µt+h). This
shift model aims to predict the optimal decision at the next time step given the previous solution. In
the context of MPC, it allows us to warm-start the optimization problem to speed up convergence, as
we can only approximately solve the optimization problem due to real-time constraints.

3 Learning the Sampling Distribution of MPC

3.1 Representation of the Learned Distribution
Instead of using uninformed sampling distributions, learned distributions can potentially exploit
structure in the environment to draw samples which are more likely to be collision-free and close
to optimal. However, such learned distributions must be sufficiently expressive in order to better
capture near-optimal, potentially multimodal, behavior. They must also be parameterized such that it
is tractable to sample from and update online. If the distribution has a large number of parameters,
the number of samples required to efficiently update them online may be computationally infeasible.
And ideally, the form of our distribution would be such that we could find a closed-form update.

One path towards meeting these criteria is to maintain a simple latent distribution from which we
can sample, and then learn a transformation of the samples which maps them to a more complex
distribution. During training, we learn the parameters of this transformation, which can be conditioned
on problem-specific information, such as the starting and goal configurations of the robot and
obstacle placements. However, when executing the policy during an episode, the parameters of this
learned transformation remain fixed, and instead, we update the parameters of the latent distribution.
Concretely, we consider learning a distribution πθ,λ which is defined implicitly as follows:

ẑt ∼ pθ(·), ût = hλ(ẑt; c) (6)

where ẑt , (ẑt, ẑt+1, · · · , ẑt+H−1), c is a context variable describing the relevant information of
the environment, pθ is the latent distribution with parameters θ, and hλ is the learned conditional
transformation with parameters λ. Moving forward, we assume that both ẑt and ût are stacked
as vectors in RMH . If pθ is a Gaussian factorized as in Equation (4) and we assume that hλ is
invertible, we prove in Appendix A.6 that the corresponding DMD update to the latent mean is simply
Equation (5), except that we replace the controls in the weighted sum with the latent samples.

3.2 Formulating the Learning Problem

Learning the distribution πθ,λ amounts to solving a bi-level optimization problem [19], in which one
optimization problem is nested in another. The lower-level optimization problem involves updating
the latent distribution parameters at each time step, θt, by minimizing the expected cost with DMD.
The upper-level optimization problem consists of learning λ such that MPC performs well across a
number of different environments. To formalize this, first consider that we have some distribution of
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environments c ∼ C(·) over which we wish MPC to perform well. For each environment, our system
has some conditional initial state distribution x0 ∼ ρ(·|c). The objective we wish to minimize is then

`(θ, λ; c) = Eπθ,λ,ρ,f

[
T−1∑
t=0

Ĵ(θt, λ;xt, c)

]
(7)

where θ = (θ0, θ1, · · · , θT−1) and our cost statistic, Ĵ , now depends on λ and c as well. This
objective measures the expected performance of the intermediate plans produced by MPC along the
T steps of the episode. Our desired bi-level optimization problem can be formulated as:

min
λ

EC
[
`(θ(λ), λ; c)

]
s.t. θ(λ) ≈λ arg min

θ
`(θ, λ; c) (8)

where ≈λ indicates that we approximate the solution of the optimization problem with an iterative
algorithm that may also be parameterized by λ, as the exact minimizer is not available in closed form.
Moreover, the notation θ(λ) indicates the dependence of the lower-level solution on the upper-level
parameters. In our case, we solve the lower-level problem with DMD, where we also parameterize
the shift model, Φλ(·; c), making it a learnable component and conditioned on c.

The normal shift model in MPC simply shifts the control sequence forward one time step and
appends a zero or random control at the end. However, because we are performing this update in
the latent space, there is no clear delineation between time steps of the latent controls, as they are
coupled according to the learned transformation. Therefore, there is no way to easily perform the
equivalent shift operation in the latent space. As such, we instead learn this shift model along with
the transformation. Besides, the standard approach described above may not be optimal. By learning
it, we may be able to further improve performance. This is especially true because the performance
hinges greatly on the quality of the shift model since we only run one iteration of the DMD update.

3.3 Parameterizing with Normalizing Flows

In order to optimize the upper-level objective in Equation (8) with respect to λ, we need to be able to
compute the density πθ,λ directly. Therefore, we choose to represent hλ with a normalizing flow (NF)
[16, 18, 17], which explicitly learns the density by defining an invertible transformation that maps
latent variables to observed data. Generally, we compose a series of component flows together, i.e.
hλ = hλK ◦ hλK−1

◦ · · · ◦ hλ1 , which define a series of intermediate variables ŷ0, . . . , ŷK−1, ŷK ,
with ŷ0 = ẑ and ŷK = û. The log-likelihood of the composed flow is given by:

log πθ,λ(û|c) = log pθ(ẑ)−
K∑
i=1

log
∣∣∣det

∂ŷi
∂ŷi−1

∣∣∣. (9)

In this work, we make use of the affine coupling layer proposed by Dinh et al. [18] as part of the
real non-volume-preserving (RealNVP) flow. The core idea is to split the input û into two partitions
û = (ûI1 , ûI2), where I1 and I2 are a partition of [1,MH], and apply

ŷI1 = ûI1 , ŷI2 = ûI2 � exp sλ(ûI1 , c) + tλ(ûI1 , c), (10)

where sλ and tλ are the scale and translation terms, which are represented with arbitrary neural
networks, and � is the Hadamard product. This makes computing the log-determinant term in
Equation (9) and inverting the flow fast and efficient. Now, in robotics, we often have lower and
upper limits on the controls. These are usually enforced in sampling-based MPC by either clamping
the control samples or passing them through a scaled sigmoid. However, instead of enforcing the
constraints heuristically after sampling, we learn a constrained sampling distribution directly. Since
the sigmoid function is invertible and has a tractable log-determinant (shown in Appendix A.8), we
can simply append one after hλK in the NF and scale it by the control limits. This ensures that control
constraints are satisfied by design and taken into account while learning the distribution.

3.4 Training the Sampling Distribution

Computing gradients through the upper-level objective is not straightforward, as both the expectation
and the inner terms of Equation (7) depend on λ. Therefore, the state distribution depends on the NF
and latent shift model. One way around this issue is to consider a modified objective at each batch d:

`d(θ, λ; c) = Eπθ,λd
,ρ,f

[
T−1∑
t=0

Ĵ(θt, λ;xt, c)

]
, (11)
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which fixes the outer expectation to be with respect to the current policy. Intuitively, this choice
trains the NF to optimize the MPC cost function under the state distribution resulting from the current
policy πθ,λd . We then update the outer expectation distribution at each episode.

Now, we only have to focus on computing the gradient ∇λĴ(θt(λ), λ;xt, c)|λ=λd for each time step,
which can be computed similar to Equation (3) and approximated with Monte Carlo sampling:

∇Ĵ(θt(λ), λ;xt, c) ≈ −
N∑
i=1

wi∇λ log πθt(λ),λ(û
(i)
t |c), (12)

where the weights wi are defined according to Equation (5). The log-likelihood is given by Equa-
tion (9), the gradient of which involves computing the backwards pass through the network hλ.
However, we also have to consider the dependence of the latent distribution parameters θ(λ) on λ.
Therefore, we must backpropagate through the MPC update:

µt(λ) = (1− γt)µ̃t(λ) + γt∆µt, ∆µt =
Eπθ̃t(λ),λ,f̂

[
e−

1
βC(x̂t,ût)hλ(ût; c)

]
Eπθ̃t(λ),λ,f̂

[
e−

1
βC(x̂t,ût)

] (13)

where the previous shifted mean µ̃t(λ) is given by the learned latent shift model. Note that we have
rewritten the expectations in terms of the control distribution, rather than the latent distribution. This
is necessary in order to derive the following approximate gradient without requiring differentiability.
To compute the gradient of Equation (13), we must approximate the gradient of ∆µt with respect to
λ, which we can compute as ∂∆µt

∂λ ≈M1 −M2M3, where we define:

M1 =

N∑
i=1

wi

[
∇λhλ(û

(i)
t ; c) + hλ(û

(i)
t ; c)∇λ log πθ̃(λ),λ(û

(i)
t |c)

]
,

M2 =

N∑
i=1

wihλ(û
(i)
t ; c), M3 =

N∑
i=1

wi∇λ log πθ̃(λ),λ(û
(i)
t |c).

(14)

The derivation of this approximate gradient can be found in Appendix A.7. Note that computing the
gradients ∇λ log πθ̃(λ),λ(û

(i)
t |c) will also require us to backpropagate through the shift model due to

the dependence of θ̃ on λ. Therefore, even when the step size is set to one, i.e. γt = 1, we introduce
a form of recurrence between time steps. Please see Appendix A.1 for additional visualizations of the
computational graph generated by an episode and further descriptions of the overall algorithm.

4 Related Work
Multiple works have considered sampling distributions beyond simple Gaussians, such as Gaussian
mixture models [10] and a particle method based on Stein variational gradient descent (SVGD) [11].
Additionally, most implementations use heuristics to modify samples and squeeze out additional
performance gains [4, 21]. In terms of learning the distribution, Amos and Yarats [12] learn a latent
action space for their proposed differentiable cross-entropy method (CEM) controller. However,
they require all components of the pipeline to be differentiable and do not consider learning a shift
model. Agarwal et al. [13] learn a normalizing flow in the latent space of a variational autoencoder
(VAE). Yet, they also require differentiability, use expert demonstrations to learn the latent space of
the VAE, and have no means of warm-starting between time steps. Wang and Ba [22] propose to
use a learned feedback policy to warm-start MPC, but still rely on a Gaussian perturbations to the
proposed action sequence. The authors also explore performing online planning in the space of the
network’s parameters, which results in a massive action space that may be hard to scale.

Power and Berenson [14, 15] also train a normalizing flow to use as the sampling distribution for
MPC, but they do not learn a latent shift model and perform all operations in the control space.
Moreover, they mix the latent samples with Gaussian perturbations to the current control-space
mean, as they do not update the latent distribution directly. This prevents them from fully taking
advantage of the learned distribution and throws away useful information which could potentially
improve performance. In fact, we show in Appendix A.4 that the learned shift model contributes
significantly to the performance gains. Additionally, a primary focus of their work is on how to
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Figure 1: Success rate and cost distribution on the PNRANDDYN environment across a different
number of samples.
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Figure 2: Visualization of a trajectory and top samples from (top) NFMPC, (middle) FlowMPPI,
and (bottom) MPPI on the PNRANDDYN task.

handle out-of-distribution (OOD) environments by learning a posterior over environment context
variables. We could combine their approach with ours by conditioning the learned shift model on
the inferred environment context for improved generalization. Finally, normalizing flows have also
been used to improve exploration in RL [23, 24, 25] by providing a more flexible, and potentially
multimodal, distribution. They have also been employed in sampling-based motion planning [26, 27]
to provide good proposal configurations to speed up convergence.

5 Experimental Results
In all experiments, we denote our proposed approach as NFMPC, the baseline MPPI implementation
as MPPI, and the method by Power and Berenson [14, 15] as FlowMPPI. Details about the hyper-
parameters, implementation, tasks, and training can be found in Appendix A.2. We evaluate on a
fixed set of environments, which includes start states, goal locations, and obstacle placements, and
run 32 rollouts for each sample amount. Our primary metrics for comparison are the success rate,
defined as the percentage of times the task goal was achieved, and the average cost of trajectories
which successfully completed the task. Additionally, we cannot ignore the overhead introduced by
the NF in the control pipeline. Therefore, we measured the average change in wall clock time across
different amounts of samples for NFMPC and FlowMPPI in Appendix A.5.

5.1 Planar Robot Navigation
We begin by applying NFMPC to a planar robot navigation task in which a 2D holonomic point-robot
must reach a goal position while avoiding eight dynamic obstacles, which move around randomly at

6



16 32 64 128 256 512 1024

Num. Samples

0

10

20

30

40

50

60

70

80

S
uc

ce
ss

R
at

e

16 32 64 128 256 512 1024

Num. Samples

105

106

107

T
ot

al
C

os
t

MPPI FlowMPPI NFMPC

Figure 3: Success rate and cost distribution on the FRANKAOBSTACLES environment across a
different number of samples.

each time step (PNRANDDYN). The point-robot has double integrator dynamics with stochasticity on
the acceleration commands to create a mismatch between the predictive model used by MPC and the
true environment. Each obstacle’s current position is perturbed with Gaussian noise and clipped to be
within map bounds, and the starting and goal locations of the robot are randomized in each episode.
The NF for both NFMPC and FlowMPPI is conditioned on the obstacle locations, current state, and
goal position. Note that we do not condition the shift model, as this consistently hurt performance.

We quantitatively compare all controllers in Figure 1. The trajectory cost box plots represent the
median and quartiles of the distribution. We find that NFMPC consistently outperforms the both
MPPI and FlowMPPI. While all controllers reach a 100% success rate at 1024 samples, NFMPC
achieves a 20% and 8% lower median cost over MPPI and FlowMPPI, respectively. We also find
that NFMPC scales more gracefully overall as the number of samples is reduced. For instance, it
is able to withstand a 32× decrease in the number of samples (1024 to 32) while reducing success
rate by only 3% and increasing median cost by 8%, nearly matching FlowMPPI at 1024 samples.
In comparison, MPPI reduces success rate by 6% and increases median cost by 43%. Similarly,
NFMPC outperforms FlowMPPI at all sample amounts in terms of median cost, although at 16
samples FlowMPPI achieves a slightly higher success rate than NFMPC. We visualize trajectories
and top samples in Figure 2. The green and red dots are the starting and goal locations, respectively,
and the blue dot is the current position of the robot at the given time step. The thick black line is the
resulting path taken by the controller, while the gray lines are the top samples generated at the current
state. In this example, FlowMPPI nearly collides with an obstacle, while NFMPC and MPPI are
able to safely reach the goal. FlowMPPIover commits to a narrow corridor and is unable to reroute
in time to account for the new obstacle location. NFMPC takes a similar trajectory to FlowMPPI,
however, it is able to pause until the obstacle moves out of the way to proceed towards the goal.
We also provide additional experiments with static environments and comparing unconditional and
conditional models in Appendix A.3.

5.2 Franka Panda Arm

Next, we apply NFMPC to the FRANKA task, which involves controlling a 7 degree-of-freedom
(DOF) Franka Panda robot arm and steering it towards a randomly placed target goal from a fixed
starting pose while avoiding a single pole obstacle. The NF for both NFMPC and FlowMPPI is
conditioned on the obstacle locations, initial state, and goal position. It is also important to note that
no controller achieves a 100% success rate, as not every randomly generated environment is feasible.
As shown in Figure 3, at 1024 samples, NFMPC achieves a success rate of 84%, while FlowMPPI
and MPPI only succeed 81% and 78% of the time, respectively. Again, NFMPC scales better with a
reduced number of samples. With a 64× decrease in the number of samples (1024 to 16), NFMPC
only drops in success rate by 29%. Meanwhile, FlowMPPI decreases by nearly 70% to a success
rate of 25%. However, both fair better than MPPI, which drops by 80% to a success rate of 16%.
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Figure 4: Visualization of a trajectory and top samples from (top) NFMPC, (middle) FlowMPPI,
and (bottom) MPPI on the FRANKAOBSTACLES task.

These results support the hypothesis that learning to perform MPC updates in the latent space of the
NF and training the controller as a recurrent network improves performance.

To more clearly understand what NFMPC is doing differently, we visualize the performance of all
three controllers on a held-out validation environment in Figure 4. The green and red markers indicate
the end-effector and goal positions, respectively, while the single pole is the obstacle which must be
avoided. Additionally, the green trajectories represent the top samples from the controller at each time
step. While MPPI collides with the obstacle, both NFMPC and FlowMPPI learn to take a different
path which is collision-free. FlowMPPI generates better initial trajectories than NFMPC, which are
more pointed towards the goal location and achieve a greater velocity. However, NFMPC is able
to better adapt the sampling distribution throughout the episode and reach the goal more quickly.
Finally, in Appendix A.4, we present results for the environment with no obstacles, a comparison of
conditional and unconditional models, and a breakdown of the individual cost terms for all models to
gain insight into the learned sampling distributions. We also perform an ablation which removes the
learned shift model from NFMPC to illustrate that it is a crucial component.

6 Limitations
A major limitation of NFMPC is that the learned distribution and shift model are only valid for a
fixed horizon and control dimensionality. Therefore, these components cannot be directly transferred
to new robots or for alternate horizons without being retrained. However, this could potentially be
remedied by novel architectural innovations and training distributions across both environments and
robots. Moreover, the learned distribution is specific to the environmental distributions on which it
was trained. Therefore, it does not always perform as well when transferred to out-of-distribution
environments. However, this is always going to be a challenge for any learning-based method and
addressing it is an open question for future research. Finally, both our approach and FlowMPPI
introduce an additional overhead to due to running the NF which cannot be ignored. This increase in
wall clock time may be worth the additional performance gains. Additionally, we scale better with a
reduction in samples compared to all baselines. Therefore, we can potentially alleviate some of the
introduced overhead by reducing the number of samples while still meeting the application demands.

7 Conclusion
We presented a method for learning MPC sampling distributions with normalizing flows (NFs) which
moves all online parameter updates and warm-starting operations into the latent space. We show how
to frame the problem as bi-level optimization and derive an approximate gradient through the MPC
update to train the distributions. Additionally, we illustrate how to incorporate control box constraints
directly into the NF architecture. Through our empirical evaluations in both simulated navigation and
manipulation problems, we demonstrate that our approach is able to surpass the performance of all
baselines. Moreover, we find that controllers which move all operations into the latent space are often
able to scale more gracefully with a reduction in the number of samples. These results indicate the
importance of leveraging the latent space in learned sampling distributions for MPC. Finally, because
we learn all components of the controller through episodic interactions with the environment, they
can potentially be trained to account for the modeling errors in the MPC controller.
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