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Abstract

Optimizing proper loss functions is popularly believed to yield predictors with
good calibration properties; the intuition being that for such losses, the global
optimum is to predict the ground-truth probabilities, which is indeed calibrated.
However, typical machine learning models are trained to approximately minimize
loss over restricted families of predictors, that are unlikely to contain the ground
truth. Under what circumstances does optimizing proper loss over a restricted
family yield calibrated models? What precise calibration guarantees does it give?
In this work, we provide a rigorous answer to these questions. We replace the
global optimality with a local optimality condition stipulating that the (proper) loss
of the predictor cannot be reduced much by post-processing its predictions with a
certain family of Lipschitz functions. We show that any predictor with this local
optimality satisfies smooth calibration as defined in Kakade and Foster [2008],
Błasiok et al. [2023b]. Local optimality is plausibly satisfied by well-trained
DNNs, which suggests an explanation for why they are calibrated from proper loss
minimization alone. Finally, we show that the connection between local optimality
and calibration error goes both ways: nearly calibrated predictors are also nearly
locally optimal.

1 Introduction
In supervised prediction with binary labels, two basic criteria by which we judge the quality of a
predictor are accuracy and calibration. Given samples from a distribution D on X × {0, 1} that
corresponds to points x from X with binary labels y ∈ {0, 1}, we wish to learn a predictor f that
assigns each x a probability f(x) ∈ [0, 1] that the label is 1. Informally, accuracy measures how
close the predictor f is to the ground-truth f∗(x) = E[y|x].1 Calibration [Dawid, 1982, Foster
and Vohra, 1998] is an interpretability notion originating from the literature on forecasting, which
stipulates that the predictions of our model be meaningful as probabilities. For instance, on all points
where f(x) = 0.4, calibration requires the true label to be 1 about 40% of the time. Calibration and
accuracy are complementary notions: a reasonably accurate predictor (which is still far from optimal)
need not be calibrated, and calibrated predictors (e.g. predicting the average) can have poor accuracy.
The notions are complementary but not necessarily conflicting; for example, the ground truth itself is
both optimally accurate and perfectly calibrated.

Proper losses are central to the quest for accurate approximations of the ground truth. Informally a
proper loss ensures that under binary labels y drawn from the Bernoulli distribution with parameter v∗,

1Here we focus on the accuracy of the predictor f as opposed to the accuracy of a classifier induced by f .
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the expected loss E[ℓ(y, v)] is minimized at v = v∗ itself. Familiar examples include the squared loss
ℓsq(y, v) = (y− v)2 and the cross-entropy loss ℓxent(y, v) = y log(1/v)+ (1− y) log(1/(1− v)). A
key property of proper losses is that over the space of all predictors, the expected loss ED[ℓ(y, f(x))]
is minimized by the ground truth f∗ which also gives calibration. However minimizing over all
predictors is infeasible. Hence typical machine learning deviates from this ideal in many ways: we
restrict ourselves to models of bounded capacity such as decision trees or neural nets of a given depth
and architecture, and we optimize loss using algorithms like SGD, which are only expected to find
approximate local minima in the parameter space. What calibration guarantees transfer to this more
restricted but realistic setting?

The State of Calibration & Proper Losses. There is a folklore belief in some quarters that
optimizing a proper loss, even in the restricted setting, will produce a calibrated predictor. Indeed,
the user guide for scikit-learn [Pedregosa et al., 2011] claims that LogisticRegression returns well
calibrated predictions by default as it directly optimizes Log loss2. Before going further, we should
point out that this statement in its full generality is just not true: for general function families C,
minimizing proper loss (even globally) over C might not result in a calibrated predictor. Even if
the class C contains perfectly calibrated predictors, the predictor found by loss minimization need not
be (even close to) calibrated. A simple example showing that even logistic regression can fail to give
calibrated predictors is provided in Appendix B.

Other papers suggest a close relation between minimizing a proper loss and calibration, but stop short
of formalizing or quantifying the relationship. For example, in deep learning, Lakshminarayanan
et al. [2017] states calibration can be incentivised by proper scoring rules. There is also a large
body of work on post-hoc recalibration methods. The recipe here is to first train a predictor via loss
minimization over the training set, then compose it with a simple post-processing function chosen to
optimize cross-entropy on a holdout set [Platt, 1999, Zadrozny and Elkan, 2002]. See for instance
Platt scaling [Platt, 1999], where the post-processing functions are sigmoids, and which continues to
be used in deep learning (e.g. for temperature scaling as in Guo et al. [2017]). Google’s data science
practitioner’s guide recommends that, for recalibration methods, the calibration [objective] function
should minimize a strictly proper scoring rule [Richardson and Pospisil, 2021]. In short, these works
suggest recalibration by minimizing a proper loss, sometimes in conjunction with a simple family of
post-processing functions. However, there are no rigorous bounds on the calibration error using these
methods, nor is there justification for a particular choice of post-processing functions.

Yet despite the lack of rigorous bounds, there are strong hints from practice that in certain settings,
optimizing a proper-loss does indeed yield calibrated predictors. Perhaps the strongest evidence
comes from the newest generation of deep neural networks (DNNs). These networks are trained
to minimize a proper loss (usually cross-entropy) using SGD or variants, and are typically quite
far from the ground truth, yet they turn out to be surprisingly well-calibrated. This empirical
phenomenon occurs in both modern image classifiers [Minderer et al., 2021, Hendrycks* et al., 2020],
and language models [Desai and Durrett, 2020, OpenAI, 2023]. The situation suggests that there
is a key theoretical piece missing in our understanding of calibration, to capture why models can
be so well-calibrated “out-of-the-box.” This theory must be nuanced: not all ways of optimizing a
proper loss with DNNs yields calibration. For example, the previous generation of image classifiers
were poorly calibrated [Guo et al., 2017], though the much smaller networks before them were
well-calibrated [Niculescu-Mizil and Caruana, 2005]. Whether DNNs are calibrated, then depends on
the architecture, distribution, and training algorithm— and our theory must be compatible with this.

In summary, prior work suggests a close but complicated relationship between minimizing proper loss
and calibration. On one hand, for simple models like logistic regression, proper loss minimization
does not guarantee calibration. On the other hand, for DNNs, certain ways (but not all ways) of
optimizing a proper loss appears to yield well-calibrated predictors. The goal of our work is to
analyze this phenomena from a theoretical perspective.3 Our motivating question is: What minimal
conditions on model family and training procedure guarantee that optimizing for a proper loss
provably yields small calibration error?

2https://scikit-learn.org/stable/modules/calibration.html. Log-loss is ℓxent in our notation.
3For simplicity, we avoid generalization concerns and consider the setting where we minimize loss directly

on the population distribution. This is a reasonable simplification in many learning settings with sufficient
samples, such as the 1-epoch training of many Large-Language-Models.
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Figure 1: Schematic depiction of the loss landscape of a proper loss on the population distribution.
The red dot represents a well-calibrated predictor f . The blue curve represents all predictors
{κ ◦ f : κ ∈ Kℓ} obtained by admissible post-processing of f . Since the proper loss cannot be
decreased by post-processing (the red dot is a minimal point on the blue curve), the predictor f is
well-calibrated, even though it is not a global minimum.

1.1 Our Contributions

The main contribution of this work is to identify a local optimality condition for a predictor that
is both necessary and sufficient to guarantee calibration. The local optimality condition requires
that the loss ℓ cannot be reduced significantly through post-processing using a family of functions
Kℓ that have certain Lipschitz-ness guarantees, where post-processing means applying a function
κ : [0, 1] → [0, 1] to the output of the predictor. This condition is illustrated in Figure 1; it is
distinct from the standard local optimality condition of vanishing gradients. We prove that a predictor
satisfying this local optimality condition is smoothly calibrated in the sense of Kakade and Foster
[2008], Gopalan et al. [2022b], Błasiok et al. [2023b]. Smooth calibration is a consistent calibration
measure that has several advantages over the commonly used Expected Calibration Error (ECE); see
the discussion in Kakade and Foster [2008], Błasiok et al. [2023b]. Quantitatively for the case of the
squared loss, we present a tight connection between smooth calibration error and the reduction in
loss that is possible from post-processing with Kℓ. For other proper loss functions ℓ, we give a tight
connection between post-processing with Kℓ and a calibration notion we call dual smooth calibration.
The fact that the connection goes both ways implies that a predictor that does not satisfy our local
optimality condition is far from calibrated, so we have indeed identified the minimal conditions
needed to ensure calibration.

Implications. Heuristically, we believe these theoretical results shed light on why modern DNNs
are often calibrated in practice. There are at least three possible mechanisms, at varying levels of
formality.

First, informally: poor calibration implies that the test loss can be reduced noticeably by post-
processing with a simple function. But simple post-processings can be represented by adding a few
layers to the DNN— so we could plausibly improve the test loss by adding a few layers and re-training
(or continuing training) with SGD. Thus, if our DNN has been trained to the point where such easy
gains are not left on the table (as we expect of state-of-the-art models), then it is well-calibrated.

The second possible mechanism follows from one way of formalizing the above heuristic, yielding
natural learning algorithms that provably achieve calibration. Specifically, consider Structural Risk
Minimization (SRM): globally minimizing a proper loss plus a complexity regularizer, within some
restricted function family. In Section 5, we prove SRM is guaranteed to produce a calibrated predictor,
provided: (1) the function family is closed under post-processing and (2) the complexity regularizer
grows only mildly under post-processing. If the informal “implicit regularization hypothesis” in deep
learning is true, and SGD on DNNs is equivalent to SRM with an appropriate complexity-regularizer
[Arora et al., 2019, Neyshabur et al., 2014, Neyshabur, 2017, Zhang et al., 2021], then our results
imply DNNs are well-calibrated as long as the regularizer satisfies our fairly mild assumptions.

Finally, a third mechanism for calibration involves a heuristic assumption about the optimizer (SGD).
Informally, for a sufficiently deep network, updating the network parameters from computing the
function f to computing the post-processed (κ ◦ f) may be a “simple” update for SGD. Thus, if it
were possible to improve the loss via such a simple post-processing, then SGD would have already
exploited this by the end of training.
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These algorithms and intuitions also suggest a practical guidance: for calibration, one should optimize
loss over function families that are capable of computing rich classes of post-processing functions.
The universality properties of most DNN architectures imply they can compute a rich family of
post-processing functions with small added depth [Cybenko, 1989, Lu et al., 2017, Yun et al., 2019,
Zhou, 2020] but the family of functions used in logistic regression (with logits restricted to being
affine in the features) cannot.

Our results are consistent with the calibration differences between current and previous generation
models, when viewed through the lens of generalization. In both settings, models are expected to be
locally-optimal with respect to train loss [Carrell et al., 2022], since this is the explicit optimization
objective. Calibration, however, requires local-optimality with respect to test loss. Previous generation
image classification models were trained to interpolate on small datasets, so optimizing the train loss
was very different from optimizing the test loss [e.g. Guo et al., 2017, Mukhoti et al., 2020]. Current
generation models, in contrast, are trained on massive datasets, where optimizing the train loss is
effectively equivalent to optimizing the test loss— and so models are close to locally-optimal with
respect to both, implying calibration.

Organization. We first give a technical overview of our results in Section 2. In Section 3 we prove
our main result in the case of square-loss. Then in Section 4 we extend this result to a wide family of
proper losses. Finally, in Section 5 we present natural algorithms which provably achieve calibration,
as a consequence by our results. Additional related works are presented in Appendix A.

2 Overview

In this section, we present a formal but still high-level overview of our results. We first set some
notation. All our probabilities and expectations are taken with respect to a distribution D over
X × {0, 1}. A predictor is a function f : X → [0, 1] that assigns probabilities to points, the ground-
truth predictor is f∗(x) = E[y|x]. A predictor is perfectly calibrated if the set A = {v ∈ [0, 1] :
E[y|f(x) = v] ̸= v} has measure 0 (i.e. PrD(f(x) ∈ A) = 0). A post-processing function is a
function κ : [0, 1] → [0, 1]. A loss function is a function ℓ : {0, 1} × [0, 1] → R, where ℓ(y, v)
represents the loss suffered when we predict v ∈ [0, 1] and the label is y ∈ {0, 1}. Such a loss
is proper if when y ∼ Ber(v∗) is sampled from the Bernoulli distribution with parameter v∗, the
expected loss E[ℓ(y, v)] is minimized at v = v∗, and we say a loss is strictly proper if v∗ is the unique
minimizer.

As a warm-up, we present a characterization of perfect calibration in terms of perfect local optimally
over the space of all possible (non-Lipschitz) post-processing functions.
Claim 2.1. For every strictly proper loss ℓ, a predictor f is perfectly calibrated iff for every post-
processing function κ,

E
D
[ℓ(y, f(x))] ≤ E

D
[ℓ(y, κ(f(x)))]. (1)

This is true, because if f is perfectly calibrated, and κ arbitrary, then after conditioning on arbitrary
prediction f(x) we have:

E[ℓ(y, f(x))|f(x) = v] = E
y∼Ber(v)

[ℓ(y, v)] ≤ E
y∼Ber(v)

[ℓ(y, κ(v))],

and (1) follows by averaging over v. On the other hand if f is not perfectly calibrated, we can improve
the expected loss by taking κ(v) := E[y|f(x) = v] — by the definition of the strictly proper loss, for
each v we will have E[ℓ(y, κ(f(x))|f(x) = v] ≤ E[ℓ(y, f(x))|f(x) = v], and on a set of positive
probability the inequality will be strict.

While we are not aware of this precise claim appearing previously, statements that are similar in
spirit are known; for instance, by the seminal work of Foster and Vohra [1998] which characterizes
calibration in terms of swap regret for the squared loss. In our language they show the equivalent
Claim 2.1 for ℓ being a squared loss, and κ restricted to be of the form κ(v0) := w0, κ(v) := v for
all v ̸= v0.

Claim 2.1 connects calibration to a local optimality condition over the space of all possible post-
processing functions. If this is satisfied, it guarantees calibration even though the loss might be
far from the global minimum. This sheds light on classes of predictors such as decision trees or
branching programs, which are closed under composition with arbitrary post-processing functions,
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since this amounts to relabelling the leaf nodes. It tells us that such models ought to be calibrated
from proper loss minimization, as long as the optimization achieves a fairly weak notion of local
optimality.

The next step is to ask whether DNNs could satisfy a similar property. Closure under arbitrary
post-processing seems too strong a condition for DNNs to satisfy — we should not expect DNNs
to be able to express arbitrarily discontinuous uni-variate post-processing functions. But we do not
expect or require DNNs to be perfectly calibrated, only to be close to perfectly calibrated. Measuring
the distance from calibration involves subtle challenges as highlighted in the recent work of Błasiok
et al. [2023b]. This leads us to the following robust formulation which significantly generalizes Claim
2.1:

• Using the well known relation between proper losses and Bregman divergences [Savage, 1971,
Gneiting and Raftery, 2007], we consider proper loss functions where the underlying convex
functions satisfy certain differentiability and smoothness properties. This is a technical condition,
but one that is satisfied by all proper loss functions commonly used in practice.

• We only allow post-processing functions that satisfy certain Lipschitzness properties. Such func-
tions are simple enough to be implementable by DNNs of constant depth. Indeed we heuristically
believe that state-of-the-art DNNs will automatically be near-optimal w.r.t. such post-processings,
as mentioned in Section 1.1.

• We measure calibration distance using the notion of smooth calibration from Kakade and Foster
[2008] and strengthenings of it in Gopalan et al. [2022b], Błasiok et al. [2023b]. Smooth calibration
plays a central role in the consistent calibration measures framework of Błasiok et al. [2023b],
where it is shown using duality that the smCE is linearly related with the Wasserstein distance to the
nearest perfectly calibrated predictor [Błasiok et al., 2023b]. In practice, there exist sample-efficient
and linear-time estimators which approximate the smooth calibration error within a quadratic factor
[Błasiok et al., 2023b].

With these notions in place, we show that the post-processing gap of a predictor, which measures how
much the loss can be reduced via certain Lipschitz post-processing functions provides both an upper
and a lower bound on the smooth calibration error. This result gives us a robust and quantitative
version of Claim 2.1. The main technical challenge in formulating this equivalence is that for general
ℓ, the class of post-processing functions that we allow and the class of smooth functions that we use
to measure calibration error are both now dependent on the loss function ℓ, they are Lipschitz over an
appropriately defined dual space to the predictions defined using convex duality. In order to keep
the statements simple, we state our results for the special case of squared loss and cross entropy loss
below, defering the full statement to the technical sections.

Squared loss. For the squared loss ℓsq(y, v) = (y − v)2, we define the post-processing gap
pGapD(f) to be the difference between the expected squared loss E[ℓsq(y, f(x))] of a predictor f
and the minimum expected squared loss after we post-process f(x) 7→ f(x) + η(f(x)) for some
1-Lipschitz η. The Brier score [Brier et al., 1950, Foster and Vohra, 1998] uses the squared loss of a
predictor as a calibration measure; pGap can be viewed as a differential version of Brier score.

Definition 2.2 (Post-processing gap). Let K denote the family of all post-processing functions
κ : [0, 1] → [0, 1] such that the update function η(v) = κ(v) − v is 1-Lipschitz. For a predictor
f : X → [0, 1] and a distribution D over X × {0, 1}, we define the post-processing gap of f w.r.t. D
to be

pGapD(f) := E(x,y)∼D[ℓsq(y, f(x))]− infκ∈K E(x,y)∼D[ℓsq(y, κ(f(x)))].

We define the smooth calibration error smCED(f) as in Kakade and Foster [2008], Gopalan et al.
[2022b], Błasiok et al. [2023b] to be the maximum correlation between y−f(x) and η(f(x)) over all
bounded 1-Lipschitz functions η. Smooth calibration is a consistent measure of calibration [Błasiok
et al., 2023b]. It does not suffer the discontinuity problems of ECE [Kakade and Foster, 2008],
and is known to be linearly related with the Wasserstein distance to the nearest perfectly calibrated
predictor (Błasiok et al. [2023b]). In particular, it is 0 if and only if we have perfect calibration. We
refer the reader to these papers for a detailed discussion of its merits.

Definition 2.3 (Smooth calibration error). LetH be the family of all 1-Lipschitz functions η : [0, 1]→
[−1, 1]. The smooth calibration error of a predictor f : X → [0, 1] with respect to distribution D
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over X × {0, 1} is defined as

smCED(f) := supη∈H E(x,y)∼D[(y − f(x))η(f(x))].

Our main result is a quadratic relationship between these two quantities:
Theorem 2.4. For any predictor f : X → [0, 1] and any distribution D over X × {0, 1},

smCED(f)
2 ≤ pGapD(f) ≤ 2 smCED(f).

In Appendix D we show that the constants in the inequality above are optimal.

Cross-entropy loss. For the cross entropy loss ℓxent(y, v) = −y ln v − (1 − y) ln(1 − v), we
observe its close connection to the logistic loss ℓ(ψ)(y, t) = ln(1 + et)− yt given by the equation

ℓxent(y, v) = ℓ(ψ)(y, t) (2)

where t := ln(v/(1− v)) is what we call the dual prediction corresponding to v. While a standard
terminology for t is logit, we say t is the dual prediction because this notion generalizes to arbitrary
proper loss functions. One can conversely obtain a prediction v from its dual prediction t by taking
the sigmoid transformation: v = σ(t) := 1/(1 + e−t). The superscript ψ in the logistic loss ℓ(ψ) can
be understood to indicate its relationship to the dual prediction and the exact meaning is made clear
in Section 4. Based on (2), optimizing the cross-entropy loss ℓxent over predictions v is equivalent to
optimizing the logistic loss ℓ(ψ) over dual predictions t.

Usually, a neural network that aims to minimize the cross-entropy loss has a last layer that computes
the sigmoid σ (the binary version of softmax), so the value computed by the network before the
sigmoid (the “logit”) is the dual prediction. If we want to enhance the neural network by adding more
layers, these layers are typically inserted before the final sigmoid transformation. It is thus more
natural to consider post-processings on the dual predictions (logits) rather than on the predictions
themselves.

For a predictor f , we define the dual post-processing gap pGap(ψ,1/4)(g) of its dual predictor
g(x) = ln(f(x)/(1− f(x))) to be the difference between the expected logistic loss E[ℓ(ψ)(y, g(x))]
of g and the minimum expected logistic loss after we post-process g(x) 7→ g(x) + η(g(x)) for
some 1-Lipschitz η : R→ [−4, 4], where the constant 4 comes from the fact that the logistic loss is
1/4-smooth in t.
Definition 2.5 (Dual post-processing gap for cross-entropy loss, special case of Definition 4.4). Let
K denote the family of all post-processing functions κ : R → R such that the update function
η(t) := κ(t) − t is 1-Lipschitz and bounded |η(t)| ≤ 4. Let ℓ(ψ) be the logistic loss. Let D be a
distribution over X × {0, 1}. We define the dual post-processing gap of a function g : X → R to be

pGap
(ψ,1/4)
D (g) := E(x,y)∼D ℓ

(ψ)(y, g(x))− infκ∈K E(x,y)∼D ℓ
(ψ)

(
y, κ(g(x))

)
.

We define the dual smooth calibration error smCE(ψ,1/4)(g) to be the maximum of |E[(y −
f(x))η(g(x))]| over all 1/4-Lipschitz functions η : R→ [−1, 1]. Like with smooth calibration, it is
0 if and only if the predictor f is perfectly calibrated.
Definition 2.6 (Dual smooth calibration for cross-entropy loss, special case of Definition 4.5). Let
H be the family of all 1/4-Lipschitz functions η : R → [−1, 1]. For a function g : X → R, define
predictor f : X → [0, 1] such that f(x) = σ(g(x)) for every x ∈ X where σ is the sigmoid
transformation. Let D be a distribution over X × {0, 1}. We define the dual calibration error of g as

smCE
(ψ,1/4)
D (g) := supη∈H |E(x,y)∼D[(y − f(x))η(g(x))]|.

We show a result similar to Theorem 2.4 that the dual post-processing gap and the dual smooth
calibration error are also quadratically related. Moreover, we show that a small dual smooth calibration
error implies a small (standard) smooth calibration error.

Corollary 2.7 (Corollary of Theorem 4.6 and Lemma 4.7). Let pGap(ψ,1/4) and smCE(ψ,1/4) be
defined as in Definition 2.5 and Definition 2.6 for the cross-entropy loss. For any function g : X → R
and any distribution D over X × {0, 1},

2 smCE
(ψ,1/4)
D (g)2 ≤ pGap

(ψ,1/4)
D (g) ≤ 4 smCE

(ψ,1/4)
D (g). (3)
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Moreover, let predictor f : X → [0, 1] be given by f(x) = σ(g(x)) for the sigmoid transformation σ.
Its (standard) smooth calibration error smCED(f) defined in Definition 2.3 satisfies

smCED(f) ≤ smCE
(ψ,1/4)
D (g). (4)

The constants in the corollary above are optimal as we show in Lemmas D.3 and D.4 in the appendix.
Both results (3) and (4) generalize to a wide class of proper loss functions as we show in Section 4.
Remark 2.8. In a subsequent work, Błasiok and Nakkiran [2023] proved the reverse direction of
(4) for the cross-entropy loss: smCED(f) ≥ Ω

(
smCE

(ψ,1/4)
D (g)2

)
. Hence both smCE(ψ,1/4)(g) and

pGap(ψ,1/4)(g) are consistent calibration measures, a notion introduced by Błasiok et al. [2023b].

Our result shows that achieving a small dual post-processing gap when optimizing a cross-entropy is
necessary and sufficient for good calibration guarantees. It sheds light on the examples where logistic
regression fails to yield a calibrated predictor; in those instances the cross-entropy loss can be further
reduced by some Lipschitz post-processing of the logit. This is intuitive because logistic regression
only optimizes cross-entropy within the restricted class where the logit is a linear combination of the
features plus a bias term, and this class is not closed under Lipschitz post-processing.

3 Calibration and Post-processing Gap for the Squared Loss

In this section we prove our main result Theorem 2.4 relating the smooth calibration error of a
predictor to its post-processing gap with respect to the squared loss.

Proof of Theorem 2.4. We first prove the upper bound on pGapD(f). For any κ ∈ K in the definition
of pGap (Definition 2.2), there exists a 1-Lipschitz function η : [0, 1] → [−1, 1] such that κ(v) =
v + η(v) for every v ∈ [0, 1]. For the squared loss ℓ,

E(x,y)∼D[ℓ(y, κ(f(x)))] = E[(y − f(x)− η(f(x)))2]
= E[(y − f(x))2]− 2E[(y − f(x))η(f(x))] + E[η(f(x))2]. (5)

The three terms on the right hand side satisfy

E[(y − f(x))2] = E[ℓ(y, f(x))],
E[(y − f(x))η(f(x))] ≤ smCED(f),

E[η(f(x))2] ≥ 0.

Plugging these into (5), we get

E[ℓ(y, f(x))]− E[ℓ(y, κ(f(x)))] ≤ 2smCED(f).

Since this inequality holds for any κ ∈ K, we get pGapD(f) ≤ 2smCED(f) as desired.

Now we prove the lower bound on pGapD(f). For any 1-Lipschitz function η : [0, 1] → [−1, 1],
define β := E[(y − f(x))η(f(x))] ∈ [−1, 1] and define post-processing κ : [0, 1]→ [0, 1] such that

κ(v) = proj[0,1](v + βη(v)) for every v ∈ [0, 1],

where proj[0,1](u) is the value in [0, 1] closest to u, i.e., proj[0,1](u) = min(max(u, 0), 1). By
Lemma H.2, we have κ ∈ K. The expected squared loss after we apply the post-processing κ can be
bounded as follows:

E(x,y)∼D[ℓ(y, κ(f(x)))] ≤ E[(y − f(x)− βη(f(x)))2]
= E[(y − f(x))2]− 2β E[(y − f(x))η(f(x))] + β2 E[η(f(x))2]
= E[ℓ(y, f(x))]− 2β2 + β2 E[η(f(x))2]
≤ E[ℓ(y, f(x))]− 2β2 + β2.

Re-arranging the inequality above, we have

E[(y − f(x))η(f(x))]2 = β2 ≤ E[ℓ(y, f(x))]− E[ℓ(y, κ(f(x)))] ≤ pGapD(f).

Since this inequality holds for any 1-Lipschitz function η : [0, 1]→ [−1, 1], we get smCED(f)
2 ≤

pGapD(f), as desired.

In Appendix D we provide examples showing that the constants in Theorem 2.4 are optimal.
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4 Generalization to Any Proper Loss

When we aim to minimize the squared loss, we have shown that achieving a small post-processing
gap w.r.t. Lipschitz post-processings ensures a small smooth calibration error and vice versa. In
this section, we extend this result to a wide class of proper loss functions including the popular
cross-entropy loss.

Definition 4.1. Let V ⊆ [0, 1] be a non-empty interval. We say a loss function ℓ : {0, 1} × V → R
is proper if for every v ∈ V , it holds that v ∈ argminv′∈V Ey∼Ber(v)[ℓ(y, v

′)].

One can easily verify that the squared loss ℓ(y, v) = (y − v)2 is a proper loss function over
V = [0, 1], and the cross entropy loss ℓ(y, v) = −y ln v− (1− y) ln(1− v) is a proper loss function
over V = (0, 1).

It turns out that if we directly replace the squared loss in Definition 2.2 with an arbitrary proper
loss, we do not get a similar result as Theorem 2.4. In Appendix C we give a simple example
where the post-processing gap w.r.t. the cross-entropy loss can be arbitrarily larger than the smooth
calibration error. Thus new ideas are needed to extend Theorem 2.4 to general proper loss functions.
We leverage a general theory involving correspondence between proper loss functions and convex
functions [Shuford et al., 1966, Savage, 1971, Schervish, 1989, Buja et al., 2005]. We provide a
detailed description of this theory in Appendix E. There we include a proof of Lemma E.4 which
implies the following lemma:

Lemma 4.2. Let V ⊆ [0, 1] be a non-empty interval. Let ℓ : {0, 1} × V → R be a proper loss
function. For every v ∈ V , define dual(v) := ℓ(0, v)− ℓ(1, v). Then there exists a convex function
ψ : R→ R such that

ℓ(y, v) = ψ(dual(v))− y dual(v) for every y ∈ {0, 1} and v ∈ V . (6)

Moreover, if ψ is differentiable, then∇ψ(t) ∈ [0, 1].

Lemma 4.2 says that every proper loss induces a convex function ψ and a mapping dual : V → R
that maps a prediction v ∈ V ⊆ [0, 1] to its dual prediction dual(v) ∈ R. Our main theorem applies
whenever the induced function ψ is differentiable, and∇ψ is λ-Lipschitz (equivalently ψ is λ-smooth)
— those are relatively mild conditions that are satisfied by all proper loss functions of interest.

The duality relationship between v and dual(v) comes from the fact that each (v, dual(v)) pair
makes the Fenchel-Young divergence induced by a conjugate pair of convex functions (φ,ψ) take its
minimum value zero, as we show in Appendix E. Equation (6) expresses a proper loss as a function
that depends on dual(v) rather than directly on v, and thus minimizing a proper loss over predictions
v is equivalent to minimizing a corresponding dual loss over dual predictions t = dual(v):

Definition 4.3 (Dual loss). For a function ψ : R → R, we define a dual loss function ℓ(ψ) :
{0, 1} × R→ R such that

ℓ(ψ)(y, t) = ψ(t)− yt for every y ∈ {0, 1} and t ∈ R.

Consequently, if a loss function ℓ : {0, 1}× V → R satisfies (6) for some V ⊆ [0, 1] and dual : V →
R, then

ℓ(y, v) = ℓ(ψ)(y, dual(v)) for every y ∈ {0, 1} and v ∈ V. (7)

The above definition of a dual loss function is essentially the definition of the Fenchel-Young loss
in the literature [see e.g. Duchi et al., 2018, Blondel et al., 2020]. A loss function ℓ(ψ) satisfying
the relationship in (7) has been referred to as a composite loss [see e.g. Buja et al., 2005, Reid and
Williamson, 2010].

For the cross-entropy loss ℓ(y, v) = −y ln v − (1 − y) ln(1 − v), the corresponding dual loss is
the logistic loss ℓ(ψ)(y, t) = ln(1 + et) − yt, and the relationship between a prediction v ∈ (0, 1)
and its dual prediction t = dual(v) ∈ R is given by v = σ(t) for the sigmoid transformation
σ(t) = et/(1 + et).

For a predictor f : X → V , we define its dual post-processing gap by considering dual predictions
g(x) = dual(f(x)) w.r.t. the dual loss ℓ(ψ) as follows:
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Definition 4.4 (Dual post-processing gap). For λ > 0, let Kλ denote the family of all post-processing
functions κ : R → R such that there exists a 1-Lipschitz function η : R → [−1/λ, 1/λ] satisfying
κ(t) = t+η(t) for every t ∈ R. Let ψ and ℓ(ψ) be defined as in Definition 4.3. LetD be a distribution
over X × {0, 1}. We define the dual post-processing gap of a function g : X → R to be

pGap
(ψ,λ)
D (g) := E(x,y)∼D ℓ

(ψ)(y, g(x))− infκ∈Kλ E(x,y)∼D ℓ
(ψ)

(
y, κ(g(x))

)
.

Definition 4.4 is a generalization of Definition 2.2 from the squared loss to an arbitrary proper
loss corresponding to a function ψ as in (6). The following definition generalizes the definition of
smooth calibration in Definition 2.3 to an arbitrary proper loss in a similar way. Here we use the
fact proved in Appendix E (equation (20)) that if the function ψ from Lemma 4.2 for a proper loss
ℓ : {0, 1} × V → R is differentiable, then ∇ψ(dual(v)) = v holds for any v ∈ V , where ∇ψ(·)
denotes the derivative of ψ. This means that∇ψ transforms a dual prediction to its original prediction.
Definition 4.5 (Dual smooth calibration). For λ > 0, let Hλ be the family of all λ-Lipschitz functions
η : R→ [−1, 1]. Let ψ : R→ R be a differentiable function with derivative∇ψ(t) ∈ [0, 1] for every
t ∈ R. For a function g : X → R, define predictor f : X → [0, 1] such that f(x) = ∇ψ(g(x)) for
every x ∈ X . Let D be a distribution over X × {0, 1}. We define the dual calibration error of g to be

smCE
(ψ,λ)
D (g) := supη∈Hλ

|E(x,y)∼D[(y − f(x))η(g(x))]|.

In Theorem 4.6 below we state our generalization of Theorem 2.4 to arbitrary proper loss functions.
Theorem 4.6 shows that achieving a small dual post-processing gap is equivalent to achieving a small
dual calibration error. We then show in Lemma 4.7 that a small dual calibration error implies a small
(standard) smooth calibration error.
Theorem 4.6. Let ψ : R→ R be a differentiable convex function with derivative ∇ψ(t) ∈ [0, 1] for
every t ∈ R. For λ > 0, assume that ψ is λ-smooth, i.e.,

|∇ψ(t)−∇ψ(t′)| ≤ λ|t− t′| for every t, t′ ∈ R. (8)

Then for every g : X → R and any distribution D over X × {0, 1},

smCE
(ψ,λ)
D (g)2/2 ≤ λ pGap(ψ,λ)D (g) ≤ smCE

(ψ,λ)
D (g).

Lemma 4.7. Let ψ : R→ R be a differentiable convex function with derivative∇ψ(t) ∈ [0, 1] for
every t ∈ R. For λ > 0, assume that ψ is λ-smooth as in (8). For g : X → R, define f : X → [0, 1]
such that f(x) = ∇ψ(g(x)) for every x ∈ X . For a distributionD overX×{0, 1}, define smCED(f)
as in Definition 2.3. Then

smCED(f) ≤ smCE
(ψ,λ)
D (g).

We defer the proofs of Theorem 4.6 and Lemma 4.7 to Appendix F.1 and Appendix F.2. Combining
the two results, assuming ψ is λ-smooth, we have

smCED(f)
2/2 ≤ λ pGap(ψ,λ)D (g).

This means that a small dual post-processing gap for a proper loss implies a small (standard) smooth
calibration error. The cross-entropy loss ℓ is a proper loss where the corresponding ψ from Lemma 4.2
is given by ψ(t) = ln(1 + et) and it is 1/4-smooth. Setting λ = 1/4 in Theorem 4.6 and Lemma 4.7,
we get (3) and (4) for the cross-entropy loss.

5 Optimization Algorithms and Implicit Regularization

As simple consequences of our results, there are several natural algorithms which explicitly minimize
loss, but implicitly achieve good calibration. Here, we focus on one such algorithm: structural risk
minimization, and discuss additional such algorithms in Appendix G. We also give informal intuitions
connecting each algorithm to training DNNs in practice.

We show that structural risk minimization (SRM) on the population distribution is guaranteed to output
well-calibrated predictors, under mild assumptions on the function family and regularizer. Recall,
structural risk minimization considers a function family F equipped with some “complexity measure”
µ : F → R≥0. For example, we may take the family of bounded-width neural networks, with depth
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as the complexity measure. SRM then minimizes a proper loss, plus a complexity-regularizer given
by µ:

f∗ = argmin
f∈F

E
D
[ℓ(y, f(x)] + λµ(f).

The complexity measure µ is usually designed to control the capacity of the function family for
generalization reasons, though we will not require such assumptions about µ. Rather, we only require
that µ(f) does not grow too quickly under composition with Lipshitz functions. That is, µ(κ ◦ f)
should be at most a constant greater than µ(f), for all Lipshitz functions κ. Now, as long as the
function family F is also closed under composition, SRM is well-calibrated:

Claim 5.1. Let F be a class of functions f : X → [0, 1] closed under composition with K, where
we define K as in Definition 2.2. That is, for f ∈ F , κ ∈ K we have κ ◦ f ∈ F . Let µ : F → R≥0

be any complexity measure satisfying, for all f ∈ F , κ ∈ K : µ(κ ◦ f) ≤ µ(f) + 1. Then the
minimizer f∗ of the regularized optimization problem

f∗ = argmin
f∈F

E
D
ℓsq(y, f(x)) + λµ(f).

satisfies pGapD(f
∗) ≤ λ, and thus by Theorem 2.4 has small calibration error: smCED(f

∗) ≤
√
λ.

Proof. The proof is almost immediate. Let MSED(f) denote ED[ℓsq(y, f(x))]. Consider the solution
f∗ and arbitrary κ ∈ K. Since κ ◦ f∗ ∈ F , we have

MSED(f
∗) + λµ(f∗) ≤ MSED(κ ◦ f∗) + λµ(κ ◦ f∗) ≤ MSED(κ ◦ f∗) + λµ(f∗) + λ.

After rearranging, this is equivalent to

MSED(f
∗)−MSED(κ ◦ f∗) ≤ λ,

and since κ ∈ K was arbitrary, we get pGapD(f) ≤ λ. as desired.

Discussion: Implicit Regularization. This aspect of SRM connects our results to the “implicit
regularization” hypothesis from deep learning theory community [Neyshabur, 2017]. The implicit
regularization hypothesis is an informal belief that SGD on neural networks implicitly performs
minimization on a “complexity-regularized” objective, which ensures generalization. The exact
form of this complexity regularizer remains elusive, but many works have attempted to identify its
structural properties (e.g. Arora et al. [2019], Neyshabur et al. [2014], Neyshabur [2017], Zhang et al.
[2021]). In this context, our results imply that if the implicit regularization hypothesis is true, then as
long as the complexity measure µ doesn’t increase too much from composition, the final output of
SGD will be well-calibrated.

6 Conclusion

Inspired by recent empirical observations, we studied formal conditions under which optimizing
a proper loss also happens to yield calibration “for free.” We identified a certain local optimality
condition that characterizes distance to calibration, in terms of properties of the (proper) loss landscape.
Our results apply even to realistic optimization algorithms, which optimize over restricted function
families, and may not reach global minima within these families. In particular, our formal results
suggest an intuitive explanation for why state-of-the-art DNNs are often well-calibrated: because
their test loss cannot be improved much by adding a few more layers. It also offers guidance for how
one can achieve calibration simply by proper loss minimization over a sufficiently expressive family
of predictors.

Limitations. The connection between our theoretical results and DNNs in practice is heuristic— for
example, we do not have a complete proof that training a DNN with SGD on natural distributions will
yield a calibrated predictor, though we have formal results that give some intuition for this. Part of the
difficulty here is due to known definitional barriers [Nakkiran, 2021], which is that we would need
to formally specify what “DNN” means in practice (which architectures, and sizes?), what “SGD”
means in practice (what initialization, learning-rate schedule, etc), and what “natural distributions”
means in practice. Finally, we intuitively expect the results from our work to generalize beyond the
binary label setting; we leave it to future work to formalize this intuition.
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A Additional Related Works

Calibration without Bayesian Modeling. Our results show that it is formally possible to obtain cal-
ibrated classifiers via pure loss minimization, without incorporating Bayesian priors into the learning
process. We view this as encouraging for the field of uncertainty quantification in machine learning,
since it shows it is possible to obtain accurate uncertainties without incurring the computational and
conceptual overheads of Bayesian methods [Abdar et al., 2021, Graves, 2011, MacKay, 1995, Gal,
2016].

Calibration Methods. There have been many methods proposed to achieve accurate models that
are also well-calibrated. The classic two-stage approach is to first learn an accurate classifier, and then
post-process for calibration (via e.g. isotonic regression or Platt scaling as in Platt [1999], Zadrozny
and Elkan [2001, 2002], Niculescu-Mizil and Caruana [2005]). Recent papers on neural networks also
suggest optimizing for both calibration and accuracy jointly, by adding a “calibration regularizer” term
to the standard accuracy-encouraging objective function [Kumar et al., 2018, Karandikar et al., 2021].
In contrast, we are interested in the setting where loss-minimization happens to yield calibration
“out of the box”, without re-calibration. There is a growing body of work on principled measures
of calibration [Kakade and Foster, 2008, Gopalan et al., 2022b, Błasiok et al., 2023b], which we
build on in our paper. Clarté et al. [2023a,b] analyze calibration for empirical risk minimization and
highlight the role played by regularization.

Multicalibration. There has recently been great interest in a generalization of calibration known as
multicalibration [Hébert-Johnson et al., 2018], see also Kearns et al. [2017], motivated by algorithmic
fairness considerations. A series of works explores the connection between multicalibration and
minimization of convex losses, through the notion of omniprediction [Gopalan et al., 2022a, 2023a,b,
Hu et al., 2022, Globus-Harris et al., 2023]. A tight characterization of multicalibration in terms of
squared loss minimization is presented in Gopalan et al. [2023b], which involves a novel notion of
loss minimization called swap agnostic learning. Another related result is the recent work of Błasiok
et al. [2023a] which shows that minimizing squared loss for sufficiently deep neural nets yields
multicalibration with regard to smaller neural nets of a fixed complexity. This result is similar in
flavor since it argues that a lack of multicalibration points to a good way to reduce the loss, and relies
on the expressive power of DNNs to do this improvement. But it goes only in one direction. Our
results apply to any proper loss, and give a tight characterization of calibration error. We generalize
our results to multicalibration in Appendix F.

B Miscalibration Example from Logistic Regression

Figure 2 gives an example of a 1-dimensional distribution for which logistic regression (on the
population distribution itself) is severely mis-calibrated. This occurs despite logistic regression
optimizing a proper loss. Note that the constant predictor f(x) = 0.5 is perfectly calibrated in this
example, but logistic regression encourages the solution to deviate from it in order to minimize the
proper cross-entropy loss. Similar examples of logistic regression being miscalibrated are found in
Kull et al. [2017].

C Post-processing Gap for Cross Entropy Loss

Here we show that directly replacing the squared loss in the definition of post-processing gap (Defini-
tion 2.2) with the cross-entropy loss does not give us a similar result as Theorem 2.4. Specifically, we
give an example where the smooth calibration error of a predictor is small but the post-processing
gap w.r.t. the cross entropy loss can be arbitrarily large.

We choose X = {x0, x1} and let D be the distribution over X × {0, 1} such that the marginal
distribution over X is uniform, E(x,y)∼D[y|x = x0] = 0.1 and E(x,y)∼D[y|x = x1] = 0.9. Consider
predictor f : X → [0, 1] such that f(x0) = ε and f(x1) = 1− ε for some ε ∈ (0, 0.1). As ε→ 0, it
is easy to verify that smCED(f)→ 0.05. However, the post-processing gap w.r.t. the cross-entropy
loss tends to +∞ because ℓ(1, ε) = ℓ(0, 1− ε)→ +∞ as ε→ 0 for the cross-entropy loss ℓ.
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Figure 2: Logistic Regression can be Miscalibrated. We illustrate a 1-dimensional distribution on
which logistic regression is severely miscalibrated: consider two overlapping uniform distributions,
one for each class. Specifically, with probability 1/2 we have y = 0 and x ∼ Unif([−3, 1]), and
with the remaining probability 1/2, we have y = 1 and x ∼ Unif([−1, 3]). This distribution is
shown on the left, as well as the optimal logistic regressor f on this distribution. In this setting, the
logistic regressor is miscalibrated (as shown at right), despite logistic regression optimizing a proper
loss. Note that the constant predictor f(x) = 0.5 is perfectly calibrated in this example, but logistic
regression encourages the solution to deviate from it in order to minimize the proper cross-entropy
loss. Similar examples of logistic regression being miscalibrated are also found in Kull et al. [2017].

D Tight Examples

We give examples showing that the constants in Theorem 2.4 and in Corollary 2.7 are all optimal.
Specifically Lemma D.1 shows that the constants in the upper bound of pGap in Theorem 2.4
are optimal, whereas Lemma D.2 shows that the constants in the lower bound of pGap are also
optimal. Lemma D.3 shows that the constants in the upper bound of pGap(ψ,1/4) in (3) are optimal.
Lemma D.4 simultaneously shows that the constants in the lower bound of pGap(ψ,1/4) in (3) and
the constants in (4) are optimal.

Lemma D.1. Let X = {x0, x1} be a set of two individuals. For every ε ∈ (0, 1/4), there exists a
distribution D over X × {0, 1} and a predictor f : X → [0, 1] such that

pGapD(f) = ε− 3ε2, whereas smCED(f) = ε/2− ε2.

Proof. We simply choose D to be the uniform distribution over {(x0, 0), (x1, 1)}, and we choose
f(x0) = 1/2− ε and f(x1) = 1/2 + ε. For any 1-Lipschitz function η : [0, 1]→ [−1, 1], we have

|E(x,y)∼D[(y − f(x))η(f(x))]| = | − (1/2)(1/2− ε)η(f(x0)) + (1/2)(1/2− ε)η(f(x1))|
= (1/2)(1/2− ε)|η(1/2− ε)− η(1/2 + ε)|.

Clearly, the supremum of the above quantity is ε/2 − ε2 which is achieved when |η(1/2 − ε) −
η(1/2 + ε)| = 2ε. Therefore,

smCED(f) = ε/2− ε2.
For any predictor f ′ : X → [0, 1] and the squared loss ℓ,

E(x,y)∼D[ℓ(y, f
′(x))] = (1/2)(0− f ′(x0))2 + (1/2)(1− f ′(x1))2

= f ′(x0)
2/2 + f ′(x1)

2/2− f ′(x1) + 1/2

=
1

4
(f ′(x0) + f ′(x1)− 1)2 +

1

4
(f ′(x1)− f ′(x0)− 1)2

When f ′(x) = f(x) + η(f(x)) for a 1-Lipschitz function η : [0, 1] → [−1, 1], the infimum of the
above quantity is achieved when f ′(x0)+f ′(x1)−1 = 0 and f ′(x1)−f ′(x0) = 4ε, and the infimum
is (1/4)(1− 4ε)2. If we choose f ′ = f instead, we get E[ℓ(y, f(x))] = (1/4)(1− 2ε)2. Therefore,

pGapD(f) = (1/4)(1− 2ε)2 − (1/4)(1− 4ε)2 = ε− 3ε2.
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Lemma D.2. Let X = {x0} be a set consisting of only a single individual x0. Let D be the uniform
distribution over X × {0, 1} and for ε ∈ (0, 1/2), let f : X → [0, 1] be the predictor such that
f(x0) = 1/2 + ε. Then

pGapD(f) = ε2, whereas smCED(f) = ε.

Proof. For any 1-Lipschitz function η : [0, 1]→ [−1, 1],
|E(x,y)∼D[(y − f(x))η(f(x))]| = ε|η(1/2 + ε)|.

The supremum of the quantity above over η is clearly ε, implying that smCED(f) = ε.

For any predictor f ′ : X → [0, 1] and the squared loss ℓ,

E(x,y)∼D[ℓ(y, f
′(x))] = (1/2)(0− f ′(x0))2 + (1/2)(1− f ′(x0))2

= f ′(x0)
2 − f ′(x0) + 1/2

= 1/4 + (f ′(x0)− 1/2)2.

The infimum of the above quantity over a function f ′ : X → [0, 1] satisfying f ′(x) = f(x)+η(f(x))
for some 1-Lipschitz η : [0, 1] → [−1, 1] is clearly 1/4. If we choose f ′ = f instead, we get
E(x,y)∼D[ℓ(y, f(x))] = 1/4 + ε2. Therefore,

pGapD(f) = (1/4 + ε2)− 1/4 = ε2.

Lemma D.3. Define pGap(ψ,1/4) and smCE(ψ,1/4) as in Definition 2.5 and Definition 2.6 for the
cross-entropy loss. Let X = {x0, x1} be a set of two individuals. For every ε ∈ (0, 1/4), there exists
a distribution D over X × {0, 1} and a function g : X → R such that

pGap
(ψ,1/4)
D (g) ≥ 2ε+O(ε2), whereas smCE

(ψ,1/4)
D (g) ≤ ε/2 +O(ε2).

Proof. We simply choose D to be the uniform distribution over {(x0, 0), (x1, 1)}, and we choose
g(x0) = −4ε and g(x1) = 4ε. Let σ denote the sigmoid transformation given by σ(t) = et/(1+ et).
The Taylor expansion of the sigmoid transformation σ around t = 0 is σ(t) = 1/2 + O(t). Thus
the predictor f we get from applying σ to g satisfies f(x1) = 1 − f(x0) = 1/2 + O(ε). For any
1/4-Lipschitz function η : R→ [−1, 1], we have

E(x,y)∼D[(y − f(x))η(g(x))] = (1/2)(0− f(x0))η(g(x0)) + (1/2)(1− f(x1))η(g(x1))
= −(1/2)(1− f(x1))η(g(x0)) + (1/2)(1− f(x1))η(g(x1))
= (1/2)(1− f(x1))(η(g(x1))− η(g(x0)))
≤ (1/2)(1− f(x1))|g(x0)− g(x1)|/4
≤ (1/2)(1/2 +O(ε)) · (8ε)/4
= ε/2 +O(ε2).

This implies that smCE
(ψ,1/4)
D (g) ≤ ε/2 +O(ε2).

For any function g′ : X → R and the logistic loss ℓ(ψ),

E(x,y)∼D[ℓ
(ψ)(y, g′(x))] = (1/2) ln(1 + eg

′(x0)) + (1/2) ln(1 + eg
′(x1))− (1/2)g′(x1)

= (1/2) ln(1 + eg
′(x0)) + (1/2) ln(1 + e−g

′(x1)).

We use the Taylor expansion ln(1 + et) = ln 2 + t/2 +O(t2) to get

E(x,y)∼D[ℓ
(ψ)(y, g′(x))] = ln 2 + (1/4)(g′(x0)− g′(x1)) +O(g′(x0)

2 + g′(x1)
2). (9)

Consider the case when g′(x0) = −8ε and g′(x1) = 8ε. Clearly, g′ can be written as g′(x) =
g(x) + η(g(x)) for a 1-Lipschitz function η : R→ [−4, 4]. By (9), the expected loss achieved by g′
is

E(x,y)∼D[ℓ
(ψ)(y, g′(x))] = ln 2− 4ε+O(ε2).

If g′ = g instead, the expected loss is ln 2− 2ε+O(ε2). Taking the difference between the two, we
get

pGap
(ψ,1/4)
D (g) ≥ 2ε+O(ε2).
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Lemma D.4. Define pGap(ψ,1/4) as in Definition 2.5 for the cross-entropy loss. Let X = {x0} be a
set consisting of only a single individual x0. Let D be the uniform distribution over X × {0, 1} and
for ε ∈ (0, 1/2), let g : X → R be the function such that g(x0) = 4ε. Then

pGap
(ψ,1/4)
D (g) = 2ε2 +O(ε4), whereas smCED(f) = ε+O(ε3),

where f : X → (0, 1) is given by f(x) = σ(g(x)) for the sigmoid transformation σ(t) = et/(1+et).

Proof. The Taylor expansion of σ around t = 0 is σ(t) = 1/2 + t/4 + O(t3). Thus f(x0) =
σ(g(x0)) = 1/2 + ε+O(ε3). For any 1-Lipschitz function η : [0, 1]→ [−1, 1],

|E(x,y)∼D[(y − f(x)η(f(x))]| = |(1/2− f(x0))η(f(x0))| = (ε+O(ε3))|η(f(x0))|.

The supremum of the quantity above over η is clearly ε + O(ε3), implying that smCED(f) =
ε+O(ε3).

For any function g′ : X → [0, 1] and the logistic loss ℓ(ψ),

E(x,y)∼D[ℓ
(ψ)(y, g′(x))] = ln(1 + eg

′(x0))− (1/2)g′(x0) (10)

= ln(eg
′(x0)/2 + e−g

′(x0)/2).

The infimum of the above quantity over a function g′ : X → R satisfying g′(x) = g(x) + η(g(x))
for some 1-Lipschitz η : R → [−4, 4] is ln 2 achieved when g′(x0) = 0. If we choose g′ = g
instead, we get E(x,y)∼D[ℓ

(ψ)(y, g(x))] = ln 2 + 2ε2 + O(ε4) by plugging the Taylor expansion
ln(1 + et) = ln 2 + t/2 + t2/8 +O(t4) into (10). Therefore,

pGap
(ψ,1/4)
D (g) = 2ε2 +O(ε4).

E Proper Loss and Convex Functions

It is known that there is a correspondence between proper loss functions and convex functions
[Shuford et al., 1966, Savage, 1971, Schervish, 1989, Buja et al., 2005]. Here we demonstrate this
correspondence, which is important for extending the connection between smooth calibration and
post-processing gap (Theorem 2.4) to general proper loss functions in Section 4.
Definition E.1 (Sub-gradient). For a function φ : V → R defined on V ⊆ R, we say t ∈ R is a
sub-gradient of φ at v ∈ V if

φ(v′) ≥ φ(v) + (v′ − v)t for every v′ ∈ V,
or equivalently,

vt− φ(v) = max
v′∈V

(
v′t− φ(v′)

)
. (11)

Definition E.2 (Fenchel-Young divergence). For a pair of functions φ : V → R and ψ : T → R
defined on V, T ⊆ R, we define the Fenchel-Young divergence Dφ,ψ : V × T → R such that

Dφ,ψ(v, t) = φ(v) + ψ(t)− vt for every v ∈ V and t ∈ T.

The following claim follows immediately from the two definitions above.
Claim E.3. Let φ : V → R and ψ : T → R be functions defined on V, T ⊆ R. Then t ∈ T
is a sub-gradient of φ at v ∈ V if and only if Dφ,ψ(v, t) = minv′∈V Dφ,ψ(v

′, t). Similarly, v is
a sub-gradient of ψ at t if and only if Dφ,ψ(v, t) = mint′∈T Dφ,ψ(v, t

′). In particular, assuming
Dφ,ψ(v

′, t′) ≥ 0 for every v′ ∈ V and t′ ∈ T whereas Dφ,ψ(v, t) = 0 for some v ∈ V and t ∈ T ,
then t is a sub-gradient of φ at v, and v is a sub-gradient of ψ at t.
Lemma E.4 (Convex functions from proper loss). Let V ⊆ [0, 1] be a non-empty interval. Let
ℓ : {0, 1} × V → R be a proper loss function. For every v ∈ V , define dual(v) := ℓ(0, v)− ℓ(1, v).
There exist convex functions φ : V → R and ψ : R→ R such that

ℓ(y, v) = ψ(dual(v))− y dual(v) for every y ∈ {0, 1} and v ∈ V , (12)
Dφ,ψ(v, t) ≥ 0 for every v ∈ V and t ∈ R, (13)

Dφ,ψ(v, dual(v)) = 0 for every v ∈ V , (14)

0 ≤ ψ(t2)− ψ(t1)
t2 − t1

≤ 1 for every distinct t1, t2 ∈ R. (15)
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Before we prove the lemma, we remark that (12) and (14) together imply the following:

ℓ(y, v) = −φ(v) + (v − y)dual(v) for every y ∈ {0, 1} and v ∈ V .

Proof. Any loss function ℓ : {0, 1} × V → R, proper or not, can be written as ℓ(y, v) = ℓ(0, v)−
y dual(v). When ℓ is proper, it is easy to see that for v, v′ ∈ V with dual(v) = dual(v′), it holds
that ℓ(0, v) = ℓ(0, v′); otherwise, ℓ(y, v) is always smaller or always larger than ℓ(y, v′) for every
y ∈ {0, 1}, making it impossible for ℓ to be proper. Therefore, for proper ℓ, there exists ψ0 : T → R
such that ℓ(0, v) = ψ0(dual(v)) for every v ∈ V , where T := {dual(v) : v ∈ V }. Therefore,

ℓ(y, v) = ℓ(0, v)− y dual(v) = ψ0(dual(v))− y dual(v). (16)

By the assumption that ℓ is proper, for every v ∈ V ,

v ∈ argmin
v′∈V

E
y∼Ber(v)

ℓ(y, v′) = argmin
v′∈V

(
ψ0(dual(v

′))− v dual(v′)
)
,

and thus
dual(v) ∈ argmin

t∈T

(
ψ0(t)− vt

)
.

For every v ∈ V , we define

φ(v) := v dual(v)− ψ0(dual(v)) = max
t∈T

(
vt− ψ0(t)

)
.

The definition of φ immediately implies the following:

Dφ,ψ0
(v, t) ≥ 0 for every v ∈ V and t ∈ T, (17)

Dφ,ψ0
(v, dual(v)) = 0 for every v ∈ V. (18)

By Claim E.3, dual(v) is a sub-gradient of φ at v. This proves that φ is convex. Now we define
ψ : R → R such that ψ(t) = supv∈V vt − φ(v) for every t ∈ R. This definition ensures that
inequality (13) holds. By Lemma H.3, ψ is a convex function and (15) holds. Moreover, for
every v ∈ V , we have shown that dual(v) is a sub-gradient of φ at v, so by (11), ψ(dual(v)) =
v dual(v)− φ(v) = ψ0(dual(v)). This implies that (12) and (14) hold because of (16) and (18).

Lemma E.5 (Proper loss from convex functions). Let V ⊆ [0, 1] be a non-empty interval. Let
φ : V → R, ψ : R → R, and dual : V → R be functions satisfying (13) and (14). Define loss
function ℓ : {0, 1} × V → R as in (12). Then

1. ℓ is a proper loss function;

2. φ is convex;

3. for every v ∈ V , dual(v) is a sub-gradient of φ at v, and v is a sub-gradient of ψ at dual(v);

4. φ(v) = v dual(v)− ψ(dual(v)) = −Ey∼Ber(v)[ℓ(y, v)];

5. if we define ψ′(t) := supv∈V (vt− φ(v)), then ψ′ is convex and ψ′(dual(v)) = ψ(dual(v))
for every v ∈ V . Moreover, for any two distinct real numbers t1, t2,

0 ≤ ψ′(t2)− ψ′(t1)

t2 − t1
≤ 1. (19)

Proof. For every v ∈ V , equations (13) and (14) imply that

dual(v) ∈ argmin
t∈R

(
ψ(t)− vt

)
,

and thus
v ∈ argmin

v′∈V

(
ψ(dual(v′))− v dual(v′)

)
= argmin

v′∈V
E

y∼Ber(v)
ℓ(y, v′).

This proves that ℓ is proper (Item 1). Item 3 follows from (13), (14) and Claim E.3. Item 2 follows
from Item 3. The first equation in Item 4 follows from (14), and the second equation follows
from (12). For Item 5, the convexity of ψ′ and inequality (19) follow from Lemma H.3, and
ψ′(dual(v)) = ψ(dual(v)) holds because ψ′(dual(v)) = v dual(v)− φ(v) by Item 3 and (11), and
ψ(dual(v)) = v dual(v)− φ(v) by Item 4.
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Our discussion above gives a correspondence between a proper loss function ℓ : {0, 1} × V → R
and a tuple (φ,ψ, dual) satisfying (13) and (14). By Lemma E.5, if φ,ψ and dual satisfy (13) and
(14), then every v ∈ V is a sub-gradient of ψ at dual(v). Therefore, assuming ψ is differentiable and
using ∇ψ : R→ R to denote its derivative, if t = dual(v) for some v ∈ V , then we can compute v
from t by

v = ∇ψ(t). (20)

For the cross entropy loss ℓ(y, v) = −y ln v − (1 − y) ln(1 − v), we can find the corresponding
φ,ψ, dual and ℓ(ψ) (see Definition 4.3) as follows:

φ(v) = − E
y∼Ber(v)

[ℓ(y, v)] = v ln v + (1− v) ln(1− v),

dual(v) = ℓ(0, v)− ℓ(1, v) = ln(v/(1− v)),
ψ(t) = sup

v∈(0,1)

(
vt− φ(v)

)
= ln(1 + et),

ℓ(ψ)(y, t) = ψ(t)− yt = ln(1 + et)− yt, (logistic loss)

∇ψ(t) = et/(1 + et). (sigmoid transformation)

For the squared loss ℓ(y, v) = (y− v)2, we can find the corresponding φ,ψ, dual and ℓ(ψ) as follows:

φ(v) = − E
y∼Ber(v)

[ℓ(y, v)] = −v(1− v)2 − (1− v)v2 = v(v − 1),

dual(v) = ℓ(0, v)− ℓ(1, v) = 2v − 1,

ψ(t) = sup
v∈[0,1]

(
vt− φ(v)

)
=


0, if t < −1;
(t+ 1)2/4, if − 1 ≤ t ≤ 1;

t, if t > 1.

ℓ(ψ)(y, t) = ψ(t)− yt =


−yt, if t < −1;
(y − (t+ 1)/2)2, if − 1 ≤ t ≤ 1;

(1− y)t, if t > 1.

∇ψ(t) =


0, if t < −1;
(t+ 1)/2, if − 1 ≤ t ≤ 1;

1, if t > 1.

For the squared loss, one can alternatively choose ψ(t) = (t+1)2/4 for every t ∈ R and accordingly
define ℓ(ψ)(y, t) = (y− (t+ 1)/2)2 for every y ∈ {0, 1} and t ∈ R. This still ensures (12), (13) and
(14), but (15) no longer holds.

F Generalized Dual (Multi)calibration and Generalized Dual Post-processing
Gap

Below we generalize the notions of dual post-processing gap and dual smooth calibration error from
Section 4 by replacing the Lipschitz functions in those definitions with functions from a general class.
Here we allow the functions to not only depend on the dual prediction g(x), but also depend directly
on x. With such generality, the calibration notion we consider in Definition F.2 below captures the
notion of multicalibration [Hébert-Johnson et al., 2018]. We connect this generalized calibration
notion with a generalized notion of post-processing gap (Definition F.1) in Theorem F.3.
Definition F.1 (Generalized dual post-processing gap). Let ψ and ℓ(ψ) be defined as in Definition 4.3.
Let W be a class of functions w : X × R→ R. Let D be a distribution over X × {0, 1}. We define
the generalized dual post-processing gap of a function g : X → R w.r.t. class W and distribution D
to be

genGap
(ψ,W )
D (g) := E(x,y)∼D ℓ

(ψ)(y, g(x))− infw∈W E(x,y)∼D ℓ
(ψ)

(
y, w(x, g(x))

)
.

Definition F.2 (Generalized dual calibration). Let ψ : R → R be a differentiable function. For a
function g : X → R, define predictor f : X → R such that f(x) = ∇ψ(g(x)) for every x ∈ X .4 Let

4It is possible here for f(x) to lie outside the interval [0, 1], in which case f is not a valid predictor. However,
if ψ satisfies (15), then ∇ψ(t) ∈ [0, 1] for every t ∈ R and thus f(x) ∈ [0, 1] for every x ∈ X . Also, one can
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W be a class of functions w : X × R→ R. Let D be a distribution over X × {0, 1}. We define the
generalized dual calibration error of g w.r.t. class W and distribution D to be

genCE
(ψ,W )
D (g) := supw∈W |E(x,y)∼D[(y − f(x))w

(
x, g(x)

)
]|.

Theorem F.3. Let ψ : R → R be a differentiable convex function. For λ > 0, assume that ψ is
λ-smooth as defined in (8). Let W be a class of bounded functions w : X × R → [−1, 1]. Define
W ′ to be the class of functions w′ : X × R→ R such that there exist w ∈W and β ∈ [−1/λ, 1/λ]
satisfying

w′(x, t) = t+ βw(x, t) for every x ∈ X and t ∈ R.
Then for every g : X → R and any distribution D over X × {0, 1},

genCE
(ψ,W )
D (g)2/2 ≤ λ genGap(ψ,W

′)
D (g) ≤ genCE

(ψ,W )
D (g).

Proof. By the definition of ℓ(ψ) in Definition 4.3,

E
(x,y)∼D

ℓ(ψ)(y, g(x))− E
(x,y)∼D

ℓ(ψ)
(
y, w′(x, g(x)))

= E[ψ(g(x))− yg(x)− ψ(w′(x, g(x))) + yw′(x, g(x))]

= E[ψ(g(x))− ψ(w′(x, g(x))) + yβw(x, g(x))]. (21)
By the convexity of ψ and the λ-smoothness property, for every t, t′ ∈ R,

∇ψ(t)(t′ − t) ≤ ψ(t′)− ψ(t) =
∫ t′

t

∇ψ(τ)dτ

≤
∫ t′

t

(∇ψ(t) + λ(τ − t))dτ = ∇ψ(t)(t′ − t) + λ

2
(t′ − t)2. (22)

For x ∈ X , setting t to be g(x) and setting t′ to be w′(x, g(x)) := g(x) + βw(x, g(x)) for some
w ∈W and β ∈ [−1/λ, 1/λ], we have

t′ − t = w′(x, g(x))− g(x) = βw(x, g(x)).

Plugging this into (22) and defining f(x) := ∇ψ(g(x)) = ∇ψ(t), we have

f(x)βw(x, g(x)) ≤ ψ(w′(x, g(x)))− ψ(g(x)) ≤ f(x)βw(x, g(x)) + λβ2

2
w(x, g(x))2.

Plugging this into (21) and using the fact that |w(x, g(x))| ≤ 1, we have

E[(y − f(x))βw(x, g(x))]−
λβ2

2

≤ E
(x,y)∼D

ℓ(ψ)(y, g(x))− E
(x,y)∼D

ℓ(ψ)
(
y, w′(x, g(x))) (23)

≤ E[(y − f(x))βw(x, g(x))]. (24)
For any w ∈ W , choosing β = E[(y − f(x))w(x, g(x))]/λ and choosing w′ ∈ W ′ such that
w′(x, t) = t+ βw(x, t), by (23) we have

1

2λ
E[(y − f(x))w(x, g(x))]2 ≤ E

(x,y)∼D
ℓ(ψ)(y, g(x))− E

(x,y)∼D
ℓ(ψ)

(
y, w′(x, g(x))).

This proves that
genCE

(ψ,W )
D (g)2/2 ≤ λ genGap(ψ,W

′)
D (g).

For any w′ ∈ W ′, there exists β ∈ [−1/λ, 1/λ] and w ∈ W such that w′(x, t) = t+ βw(x, t). By
(24),

E
(x,y)∼D

ℓ(ψ)(y, g(x))− E
(x,y)∼D

ℓ(ψ)
(
y, w′(x, g(x)))

≤ E[(y − f(x))βw(x, g(x))]
≤ (1/λ)|E[(y − f(x))w(x, g(x))]|.

This proves that
λ genGap

(W ′)
D (g) ≤ genCE

(W )
D (g).

start from a valid predictor f : X → [0, 1] and define g(x) = dual(f(x)). By Lemma E.5, this ensures that
f(x) = ∇ψ(g(x)) assuming that (φ,ψ, dual) satisfy (13) and (14).
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F.1 Proof of Theorem 4.6

We restate and prove Theorem 4.6.
Theorem 4.6. Let ψ : R→ R be a differentiable convex function with derivative ∇ψ(t) ∈ [0, 1] for
every t ∈ R. For λ > 0, assume that ψ is λ-smooth, i.e.,

|∇ψ(t)−∇ψ(t′)| ≤ λ|t− t′| for every t, t′ ∈ R. (8)

Then for every g : X → R and any distribution D over X × {0, 1},

smCE
(ψ,λ)
D (g)2/2 ≤ λ pGap(ψ,λ)D (g) ≤ smCE

(ψ,λ)
D (g).

Proof. Let W be the family of all λ-Lipschitz functions η : R → [−1, 1] and define W ′ as in
Theorem F.3. We have

genCE
(ψ,W )
D (g) = smCE

(ψ,λ)
D (g), and

genGap
(ψ,W ′)
D (g) = pGap

(ψ,λ)
D (g).

Theorem 4.6 then follows immediately from Theorem F.3.

F.2 Proof of Lemma 4.7

We restate and prove Lemma 4.7.
Lemma 4.7. Let ψ : R→ R be a differentiable convex function with derivative∇ψ(t) ∈ [0, 1] for
every t ∈ R. For λ > 0, assume that ψ is λ-smooth as in (8). For g : X → R, define f : X → [0, 1]
such that f(x) = ∇ψ(g(x)) for every x ∈ X . For a distributionD overX×{0, 1}, define smCED(f)
as in Definition 2.3. Then

smCED(f) ≤ smCE
(ψ,λ)
D (g).

Proof. For a 1-Lipschitz function η : [0, 1] → [−1, 1], define η′ : R → [−1, 1] such that η′(t) =
η(∇ψ(t)) for every t ∈ R. For t1, t2 ∈ R, by the λ-smoothness property of η,

|η′(t1)− η′(t2)| = |η(∇ψ(t1))− η(∇ψ(t2))| ≤ |∇ψ(t1)−∇ψ(t2)| ≤ λ|t1 − t2|.
This proves that η′ is λ-Lipschitz. Therefore,

|E(x,y)∼D[(y − f(x))η(f(x))]| = |E(x,y)∼D(y − f(x))η′(g(x))| ≤ smCE
(ψ,λ)
D (g).

Taking supremum over η completes the proof.

G Optimization Algorithms Which Achieve Calibration

Continuing the discussion of structural risk minimization in Section 5, here we describe additional
families of learning algorithms which explicitly minimize loss, but implicitly achieve good calibration.

G.1 Iterative Risk Minimization

One intuition for why state-of-the-art DNNs are often calibrated is that they are “locally optimal”
(in our sense) by design. For a state-of-the-art network, if it were possible to improve its test loss
significantly by just adding a layer (and training it optimally), then the human practitioner training
the DNN would have added another layer and re-trained. Thus, we expect the network eventually
produced will be approximately loss-optimal with respect to adding a layer, and thus also with respect
to univariate Lipshitz post-processings (so pGapD(f) ≈ 0).

This intuition makes several strong assumptions, for example, the practitioner must be able to re-
train the last two layers globally optimally5. However, the same idea can apply in settings where
optimization is tractable. We give one way of formalizing this via the Iterative Risk Minimization
algorithm.

We work with the following setup:
5Technically, we only require a weaker statement of the form: For all networks fd of depth d in the support

of SGD outputs, if the loss of κ ◦ fd is ε, then training a network fd+1 of depth d+ 1 will reach loss at most ε.
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• We are interested in models f ∈ F with a complexity measure µ : F → Z. Think of size for
decision trees or depth for neural nets with a fixed architecture. We assume that F contains
all constant functions and that µ(c) = 0 for any constant function c.

• We consider post-processing functions κ : [0, 1] → [0, 1] belonging to some family K,
which have bounded complexity under µ. Formally, there exists b = b(K) ∈ Z such that for
every f ∈ F and κ ∈ K,

µ(κ ◦ f) ≤ µ(f) + b

.
• We have a loss function ℓ : [0, 1]× R→ R . Let

ℓ(f,D) = E
(x,y)∼D

[ℓ(y, f)].

For any complexity bound s, we have an efficient procedure MinD(s) that can solve the loss
minimization problem over models of complexity s:

min
f∈F
µ(f)≤s

ℓ(f,D).

The running time can grow with s. For each s ∈ Z, let OPTs denote the minimum of this
program and let f∗s denote the model found by MinD(s) that achieves this minimum.

We use this to present an algorithm that produces a model f which is smoothly calibrated, has loss
bounded by OPTs, and complexity not too much larger than s.

Algorithm 1 Local search for small pGap.
Input s0.
s← s0.
h← 0.
while True do

f∗s = Min(s).
f∗s+b = Min(s+ b).
if OPTs+b ≥ OPTs − α then

Return f∗s .
else

h← h+ 1.
s← s+ b.

end if
end while

Theorem G.1. On input s0, Algorithm 1 terminates in h ≤ 1/α steps and returns a model f ∈ F
which satisfies the following guarantees:

1. µ(f) = t ≤ s0 + hb.

2. ℓ2(f,D) = OPTt ≤ OPTs0 − hα.

3. pGap(f) ≤ α, hence smCE(f) ≤
√
α.

Proof. The bound on the number of steps follows by observing that each update decreases ℓ2(f,D)
by α. Since OPTs0 ≤ OPT0 ≤ 1, this can only happen 1/α times. This also implies items (1) and
(2), since each update increases the complexity by no more than b, while decreasing the loss by at
least α.

To prove claim (3), assume for contradiction that pGap(f) > α. Then there exists κ ∈ K such that if
we consider f ′ = κ ◦ f , then

µ(f ′) ≤ t+ b, ℓ2(f,D) < OPTt − α.
But this f ′ provides a certificate that

OPTt+b ≤ ℓ2(f ′,D) < OPTt − α.
Hence the termination condition is not satisfied for f . So by contradiction, it must hold that
pGap(f) ≤ α, hence smCE(f) ≤

√
α.
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We now present an alternative algorithm that is close in spirit to algorithm 1, but can be viewed
more directly as minimizing a regularized loss function. We assume access to the same minmization
procedure MinD(s) as before. We define the regularized loss

ℓλ(f,D) = ℓ(f,D) + λµ(f).

λ quantifies the tradeoff between accuracy and model complexity that we accept. In other words, we
accept increasing µ(f) by 1 if it results in a reduction of at least λ in the loss.

Algorithm 2 Regularized loss minimization for small pGap.

r ← ⌊1/λ⌋.
while s ∈ {0, · · · , r} do

f∗s ← Min(s).
OPTs ← ℓ2(f

∗
s ,D).

end while
t← argmins∈{0,...,r} OPTs + λs.
Return f∗t .

Theorem G.2. Let λ = α/b. Algorithm 2 returns a model f with µ(f) = t ≤ ⌊1/λ⌋ where

1. f = argminf ′∈F ℓ
λ(f ′,D) and ℓ2(f,D) = OPTt.

2. For any s ̸= t,
OPTs ≥ OPTt − (s− t)λ.

3. pGap(f) ≤ α, hence smCE(f) ≤
√
α.

Proof. We claim that
min
f ′∈F

ℓλ(f ′,D) ≤ 1.

This follows by taking the constant 1/2, which results in ℓ2(0,D) ≤ 1 and µ(f) = 0. This means
that the optimum is achieved for f where µ(f) ≤ 1/λ. For f such that µ(f) ≤ t, it is easy to see
that Algorithm 2 finds the best model.

Assume that s ̸= t. By item (1), we must have
OPTt + λt ≤ OPTs + λs

Rearranging this gives the claimed bound.

Assume that pGap(f) = α′ > α. Then there exists f ′ = κ(f) such that µ(f ′) ≤ µ(f) + b, but
ℓ(f ′,D) ≤ ℓ2(f,D)− α′. But this means that

ℓλ(f ′) = ℓ(f ′,D) + λµ(f ′)

≤ ℓ2(f,D)− α′ + λ(µ(f) + b)

= ℓλ(f) + (λb− α′)

< ℓλ(f)

where the inequality holds by our choice of λ = α/b. But this contradicts item (1).

Note that if we take s− t = hb, then (s− t)λ = hα, so Item (2) in Theorem G.2 gives a statement
matching Item (2) in Theorem G.1. The difference is that we now get a bound for any s ̸= t. When
s > t, item (3) upper bounds OPTt −OPTs, which measures how much the ℓ2 loss decreases with
increased complexity. When s < t, OPTs > OPTt, and item (3) lower bounds how much the loss
increases when shrink the complexity of the model.

Discussion: Importance of depth. These two algorithms highlight the central role of composition
in function families. Specifically, if we are optimizing over a function family that is not closed
under univariate Lipshitz compositions (perhaps approximately), then we have no reason to expect
pGap(f) ≈ 0: because there could exist a simple (univariate, Lipshitz) transformation which
reduces the loss, but which our function family cannot model. This may provide intuition for why
certain models which preceeded DNNs, like logistic regression and SVMs, were often not calibrated.
Moreover, it emphasizes the importance of depth in neural-networks: depth is required to model
composing Lipshitz transforms, which improves both loss and calibration.
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G.2 Heuristic Structure of SGD

Finally, there is an informal conjecture which could explain why certain DNNs in practice are
calibrated, even if they are far from state-of-the-art: Informally, if it were possible to improve the
loss by a simple update to the network function (post-processing), then one may conjecture SGD
would have exploited this by the end of training. That is, updating the parameters from computing
the function f to computing (κ ◦ f) may be a “simple” update for SGD on a deep-enough network,
and SGD would not leave this gain on the table by the end of training. We stress that this conjecture
is informal and speculative, but we consider it a plausible intuition.

H Helper Lemmas

Claim H.1. Let η1, η2 : [0, 1] → R be two 1-Lipschitz functions. Then max(η1(v), η2(v)) and
min(η1(v), η2(v)) are also 1-Lipschitz functions of v ∈ [0, 1].

Proof. Fix arbitrary v, v′ ∈ [0, 1]. Let i, i′ ∈ {1, 2} be such that max(η1(v), η2(v)) = ηi(v) and
max(η1(v

′), η2(v
′)) = ηi′(v

′). We have

max(η1(v), η2(v))−max(η1(v
′), η2(v

′)) ≥ ηi′(v)− ηi′(v′) ≥ −|v − v′|, and

max(η1(v), η2(v))−max(η1(v
′), η2(v

′)) ≤ ηi(v)− ηi(v′) ≤ |v − v′|.

This proves that max(η1(v), η2(v)) is 1-Lipschitz. A similar argument works for min(η1(v), η2(v)).

Lemma H.2. Let η : [0, 1]→ [−1, 1] be a 1-Lipschitz function. Define κ : [0, 1]→ [0, 1] such that
κ(v) = proj[0,1](v+η(v)) for every v ∈ [0, 1]. Define η′ : [0, 1]→ [−1, 1] such that η′(v) = κ(v)−v
for every v ∈ [0, 1]. Then η′ is 1-Lipschitz.

Proof. By the definition of κ, we have κ(v) = min(max(v + η(v), 0), 1). Therefore, η′(v) =
min(max(η(v),−v), 1− v). The lemma is proved by applying Claim H.1 twice.

Lemma H.3. Let V ⊆ [a, b] be a non-empty set. For some m ∈ R, let φ : V → [m,+∞) be a

function lower bounded by m. Define ψ : R→ R such that ψ(t) = sup
v∈V

(
vt− φ(v)

)
. Then ψ is a

convex function. Moreover, for t1 < t2, we have

a(t2 − t1) ≤ ψ(t2)− ψ(t1) ≤ b(t2 − t1).

Proof. For any p ∈ [0, 1], t1, t2 ∈ R, and v ∈ V ,

v(pt1 + (1− p)t2)− φ(v) = p(vt1 − φ(v)) + (1− p)(vt2 − φ(v)) ≤ pψ(t1) + (1− p)ψ(t2).

Taking supremum over v ∈ V , we have

ψ(pt1 + (1− p)t2) ≤ pψ(t1) + (1− p)ψ(t2).

This proves the convexity of ψ. Moreover, if t1, t2 ∈ R satisfies t1 < t2, then for any v ∈ V ,

vt1 − φ(v) = vt2 − φ(v) + v(t1 − t2) ≤ vt2 − φ(v) + a(t1 − t2) ≤ ψ(t2)− a(t2 − t1).

Taking supremum over v ∈ V , we have

ψ(t1) ≤ ψ(t2) + a(t1 − t2).

Similarly,

vt2 − φ(v) = vt1 − φ(v) + v(t2 − t1) ≤ vt1 − φ(v) + b(t2 − t1) ≤ ψ(t1) + b(t2 − t1).

Taking supremum over v ∈ V , we have

ψ(t2) ≤ ψ(t1) + b(t2 − t1).
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