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Abstract

Data wrangling tasks for data integration and cleaning arise in virtually every data-
driven application scenario nowadays. Recent research indicated the astounding
potential of Large Language Models (LLMs) for such tasks. However, the automa-
tion of data wrangling with LLMs poses additional challenges, as hand-tuning
task- and data-specific prompts for LLMs requires high expertise and manual effort.
On the other hand, finetuning a whole LLM is more amenable to automation, but
incurs high storage costs, as a copy of the LLM has to be maintained. In this work,
we explore the potential of a lightweight alternative to finetuning an LLM, which
automatically learns a continuous prompt. This approach called prefix-tuning does
not require updating the original LLM parameters, and can therefore re-use a single
LLM instance across tasks. At the same time, it is amenable to automation, as
continuous prompts can be automatically learned with standard techniques. We
evaluate prefix-tuning on common data wrangling tasks for tabular data such as en-
tity matching, error detection, and data imputation, with promising results. We find
that in five out of ten cases, prefix-tuning is within 2.3% of the performance of fine-
tuning, even though it leverages only 0.39% of the parameter updates required for
finetuning the full model. These results highlight the potential of prefix-tuning as a
parameter-efficient alternative to finetuning for data integration and data cleaning
with LLMs.

1 Introduction

Data wrangling tasks such as finding duplicates during data integration, detecting errors in tables or
imputing missing attribute values during data cleaning arise in virtually every data-driven application
scenario [19, 18]. Traditionally, these tasks are framed as classification problems and tackled with
machine learning techniques [8, 5, 2, 6, 17].

Data wrangling with large language models. Recent research [14] indicated the astounding
potential of Large Language Models (LLMs) for data wrangling tasks. LLMs are neural networks
pre-trained on large quantities of raw text. Narayan et al. showed that LLMs can achieve state-of-
the-art performance on data wrangling tasks when manually tuned with a simple transfer learning
technique called prompting [14]. In prompting, the model parameters are frozen and the model
performs an inference task based on a textual input that describes the inputs, formulates the task,
and potentially contains examples. The model prediction is taken from the generated textual output
of the model in response to the prompt. A concrete example for data wrangling is to generate a
prompt that asks an LLM to perform entity matching, e.g.: Product A is Title: Macbook Pro
Price: $1,999, Product B is Title: Macbook Air Price: $899. Are product A
and product B the same?. The output is evaluated by checking whether the LLM generates Yes
or No as a response [14].
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Data management challenges in data wrangling with LLMs. A major challenge for the outlined
data integration and cleaning tasks is to automate them for complex real-world use cases [15].
Examples are enterprise data warehouses with large numbers of different tables or cloud database
vendors, which host and maintain hundreds of customer databases. The approach of prompting LLMs
is attractive for such use cases, as it can re-use a single pre-trained model for several tasks and tables.
A major downside is however that prompting requires high expertise and manual effort to engineer
high-quality task- and data-specific prompts. This is not actionable for enterprise databases with
thousands of different tables, or for cloud vendor use cases, where employees are legally prohibited
from viewing the customers’ data. In summary, prompting incurs low storage costs (as the LLM can
be re-used), but high manual costs for automation. A common alternative for transfer learning with
LLMs is to finetune the LLM to a given task. While this can be automated and typically achieves
high performance [14], it has the major disadvantage that it requires the maintenance of copies of the
(adjusted) model parameters. Therefore, finetuning results in low manual costs but high storage costs.

Contributions and limitations. Based on these insights, we explore a lightweight alternative to
transfer learning with LLMs which automatically learns continuous prompts. This approach called
prefix-tuning [9] combines the advantages of both previously discussed approaches: (i) Analogous
to prompting, prefix-tuning does not require updating the original parameters of the pre-trained
LLM, and can re-use a single LLM instance across multiple tasks and tables; (ii) Prefixes are
continuous model inputs (in contrast to discrete prompts) and can be automatically learned with
standard techniques. Therefore, prefix-tuning has the potential to enable data wrangling with both
low manual costs (as continuous prompts can be learned) and low storage costs, as continuous
prompts require several orders of magnitude fewer parameters than the original LLM. We address the
following research question:

RQ: To what extent can prefix-tuning serve as a parameter-efficient alternative to finetuning for data
wrangling tasks?

We first describe how to automatically learn continuous prompts for LLMs applied to data wrangling
tasks via prefix-tuning (Section 3). Next, we experimentally explore the potential of prefix-tuning
on ten data wrangling tasks compared to finetuning in Section 4. A major obstacle for our work
is that the current state-of-the-art approach uses prompting with the proprietary GPT-3 [3] model.
GPT-3 is only accessible for inference through an API that does not support continuous prompts. As
a consequence, we use the smaller publicly available T5 [16] model as an alternative. Our goal is
not to beat the state-of-the-art achieved by GPT-3, but rather to introduce a parameter-efficient and
automated way to learn continuous prompts. Despite the limitations, our results from prefix-tuning
on T5 are promising:

We find that in five out of ten cases, prefix-tuning is within 2.3% of the performance of finetuning,
even though it leverages only 0.39% of the parameter updates required for finetuning the full model.

We discuss the implications of these findings and outline directions for follow-up research
on further automating data wrangling with LLMs in Section 5. We make the code for
our approach and experiments available to the public at https://github.com/davidvos/
prefix-tuning-for-data-management/.

2 Background

Large language models (LLMs) are neural networks pre-trained on large quantities of raw text data
using a masked word prediction tasks. Examples are BERT [7], RoBERTa [11] and T5 [16], which
leverage a transformer architecture with with hundreds of millions of parameters. Since data wrangling
often involves string-based operations, various recent approaches leverage LLMs [10, 13, 12]

When utilizing an LLM for a downstream task, it can be finetuned by updating all the model parame-
ters on a task-specific dataset. This is expensive as it requires maintaining a copy of all the model
parameters for each separate task. Several parameter-efficient alternatives to fully finetuning an LLM
have been proposed. An example is adapter-tuning, which inserts additional layers (adapters) between
the layers of the LLM and optimizes only those. With around 3.6% of the original LLM parameters,
this method still results in relatively high memory costs while achieving worse performance on
common data wrangling tasks compared to finetuning [14].
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Recently, OpenAI introduced GPT-3 [3], an LLM with hundreds of billions of parameters, which
often provides state-of-the-art performance using manually engineered prompts without finetuning.
Prefix-tuning takes inspiration from prompt engineering as it casts the manual selection of prompts to
a continuous optimization problem. Automatically updating a prefix allows for LLM data wrangling
approaches to be deployed at scale, compared to manually engineered prompting techniques.

3 Approach

In the following section, we introduce the three data wrangling tasks in the focus of this work, and
detail how to automatically learn continuous prompts for them.

As already discussed, prefix-tuning has been proposed as a lightweight alternative to finetuning
LLMs for natural language generation tasks. The parameters of the LLM are frozen, and only a
small continuous task-specific prefix is updated. Instead of manually engineering a prompt that is
prepended to the original input sequence, prefix-tuning allows for learning a continuous prompt
consisting of ‘virtual’ tokens.

Data wrangling as text generation. Assume we have an LLM with an encoder-decoder architecture
to perform a data wrangling task. We follow the setup proposed in [14] to cast data wrangling
tasks to text-generation tasks. We serialize the attributes and values from each input tuple as:
serialize(tuple) = attribute-1: value-1 ... attribute-m: value-m.

Entity matching. Entity matching (EM) is crucial for combining different data sources dur-
ing data integration. The task is to predict whether two tuples refer to the same real-
world entity, e.g., a product or song. To use LLMs, a textual input is created as follows:
Product A: serialize(tuple-1). Product B: serialize(tuple-2). Are product A
and product B the same?. Depending on the domain, we replace the term Product with a more
appropriate term (e.g. Song for music data), following the approach of Narayan et al [14]. The
classification targets are converted to text as well (Yes or No).

Error detection. Error detection (ED) predicts whether a certain attribute of a database tuple contains
an error [1]. For example, if a tuple has the country value Germany but the attribute capital contains
the value Amsterdam instead of Berlin, an ED algorithm should classify this value as an error.
We convert the ED problem to the following input format: serialize(tuple). Is there an
error in attribute-j: value-j?, and the textualised classification targets are either Yes or
No.

Data imputation. Data imputation (DI) fills in missing values for textual or categorical at-
tributes. The following input format is used to cast the DI problem to a text generation problem:
serialize(tuple) attribute-j?, where attribute-j is the attribute for which the value is
predicted. The target label is the value corresponding to attribute-j.
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Figure 1: Prefix-tuning compared to finetuning. For finetuning, all activations are based on the
updated LLM weights and a separate LLM copy is stored for each new task. When using prefix-
tuning, only the prefix parameters are updated and copied for new tasks. The LLM parameters are
frozen and activations are conditioned on the newly introduced prefix.

Learning continuous prompts via prefix-tuning. Let ϕ denote the parameters of the pre-trained
LLM. Prefix-tuning freezes the LLM parameters ϕ and instead initializes a trainable matrix Pθ,
parametrized by θ. The matrix Pθ contains Nprefix prefix vectors. Nprefix can be considered a
hyperparameter whereas the size of each prefix vector should be the same size as the embedding used
withing the LLM. Intuitively, this sequence of vectors is prepended to the sequence of tokens that
represent the textual task-based input samples as previously introduced.

To be more precice, let Pidx represent the indices corresponding to the prefix. We can now compute
the activation hi at time step i as follows:

hi =

{
Pθ[i, :] if i ∈ Pidx

LLM(zi, h<i) otherwise

Here LLM(zi, h<i) computes the hidden state hi of the LLM based on the hidden states from the
left context h<i and the current token to be processed zi. In cases where i ∈ Pidx, hi is taken from
the trainable Pθ. However, even when i /∈ Pidx, the prefix activations Pθ are still in the left context
h<i and influence all following activations.

In practice, the prefix Pθ is generated by a small neural network. The network takes a constant,
predefined vector of integers as input and converts it into an embedding. This embedding is then
forwarded through another small neural network to increase the training stability [9]. The training
proceeds as usual, by passing the prefix together with the actual sample through the LLM, back-
propagating the error and updating the prefix network parameters. After training, only the parameters
of the prefix network θ need to be stored to generate the task-prefix. The size of θ is typically less
than a percent of the size of the LLM weights ϕ.

4 Experimental Evaluation

4.1 Experimental Setup

Datasets and metrics. We experiment with the datasets and their corresponding data splits as
recommended by Narayan et al. [14], listed in Table 1. We evaluate the performance for the binary
classification problems EM and ED via the F1-score on the test set, and measure the performance
for DI via the accuracy of the generated values to impute. We use accuracy for DI, as the labels are
arbitrary pieces of text and not classification values.
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Table 1: Datasets with their corresponding task, domain and label distribution.
Task Dataset Domain #Samples Frac. Positive

Entity matching Beer food 450 15.1%
iTunes-Amazon music 539 24.5%
Fodors-Zagats food 946 11.6%
Walmart-Amazon electronics 10,242 90.6%
Amazon-Google software 11,460 10.2%
DBLP-ACM citation 12,363 25%
DBLP-Google citation 28,707 18.6%

Error detection Hospital healthcare 19,000 2.7%

Data Imputation Buy electronics 651 -
Restaurant address 864 -

Architectures and hyperparameters. We use the T5-base implementation from Hugging Face [20].
For all training procedures, we apply the AdamW optimizer and a linear learning rate scheduler,
as recommended by the default Hugging Face setup. We train each setup for 50 epochs with a
batch size of 16, a learning rate of 5 · 10−4, and a prefix-length of 100. Upon generation time, we
use beam search with a beam size of 5. We use these hyperparameters for both prefix-tuning and
finetuning. We try different learning rates (5 · 10−3, 5 · 10−4and 5 · 10−5) and choose 5 · 10−4

based on validation metrics. For the testing phase, we leverage the model with the highest validation
F1-score after 50 epochs of training. The prefix-tuning setups for the Restaurant, Amazon-Google
and Walmart-Amazon datasets showed no clear convergence after 50 epochs of training. For this
reason we trained these three setups for a total of 100 epochs.

Baseline methods. To assess the performance of prefix-tuning T5 on data wrangling tasks, we
compare it to two benchmarks. Firstly, we compare prefix-tuning to finetuning T5. Finetuning
is automatable using a similar training procedure as prefix-tuning, but requires 256 times more
parameters. For this reason, prefix-tuning T5 should at least come close to the performance of a full
finetuning procedure in order to be relevant in practical data wrangling settings.

We compare prefix-tuning T5 to the zero-shot prompting results achieved using GPT-3 [14]. The
T5 model makes it hard to compare prefix-tuning to zero- or few-shot prompting as it does not
support this for any other task than the 18 tasks it was pre-trained on [16]. We found empirically that
indeed zero-shot prompting T5 on new data wrangling tasks lead to suboptimal results. Comparing
prefix-tuning T5 (220M parameters) to zero-shot prompting GPT-3 (175B parameters) gives an idea
of what can be achieved when prefix-tuning can be applied to GPT-3. Zero-shot prompting does
not require any training (only the design of an adequate prompt), and is therefore very attractive
from an automation perspective. A method like prefix-tuning, which requires training and introduces
additional parameters to learn must therefore outperform such zero-shot prompting by a large margin
to justify its additional cost. We conduct such a comparison for validating our approach.

4.2 Results

Prefix-tuning against finetuning. Table 2 lists our results, ranked by the relative performance of
prefix-tuning compared to finetuning. In five of the ten datasets, the performance of prefix-tuning is
within 2.3% of finetuning. For eight out of ten datasets, the performance is within 5.2%. Especially
for entity matching and error detection, prefix-tuning is able to achieve a performance close to
fully finetuning T5. Data imputation seems to be particularly hard for prefix-tuning. However,
prefix-tuning performs within 5% of finetuning even for DI. Two exceptions are the results for entity
matching on the Amazon-Google and Walmart-Amazon datasets, where prefix-tuning only achieves
a relative performance of 90% on these datasets.

Parameter-efficiency. Note that prefix tuning only leverages 0.39% of the parameter updates required
for finetuning. Storing all the 222,882,048 parameters of a finetuned copy of T5 takes 892 MB. Our
prefix-tuning approach however requires only 864,512 parameters, two orders of magnitude less
than the full model, which take up 3.5 MB. As LLMs continually increase in size, the importance
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Table 2: Relative performance of prefix-tuning compared to finetuning on ten data wrangling tasks.
In five out of ten cases, prefix-tuning is within 2.3% of the performance of finetuning, even though it
leverages only 0.39% of the parameter updates required for finetuning the full model.

Task Dataset Metric Prefix-tuning Finetuning Rel. Perf.

Entity matching DBLP-Google F1-score 0.9517 0.9552 99.6%
Entity matching DBLP-ACM F1-score 0.981 0.9876 99.3%
Error detection Hospital F1-score 0.9766 0.9912 98.5%
Entity matching iTunes-Amazon F1-score 0.9286 0.9455 98.2%
Entity matching Fodors-Zagats F1-score 0.9767 1.000 97.7%

Entity matching Beer F1-score 0.8571 0.8966 95.6%
Imputation Buy Accuracy 0.9231 0.9692 95.2%
Imputation Restaurant Accuracy 0.8488 0.8953 94.8%

Entity matching Walmart-Amazon F1-score 0.7961 0.8806 90.4%
Entity matching Amazon-Google F1-score 0.6642 0.7436 89.3%

of parameter-efficient alternatives to finetuning becomes even more drastic. For example, GPT-3
already contains 175 billion parameters leading to a memory size of 700 GB. These findings imply
that prefix-tuning can be deployed as a parameter-efficient alternative to an expensive finetuning
setup for data wrangling, with a minimal loss in performance in many cases.

Discussion. The imputation datasets are challenging, because the range of possible imputation values
is not known a priori and they are potentially not contained in the training data [14]. Prefix-tuning is
able to achieve a relative performance of 95.2% on one dataset but only 88.3% on the other. As this
task requires complex language generation (in contrast to deciding on Yes and No in the other tasks),
we expect that an LLM such as GPT-3 in combination with prefix-tuning can come closer to the full
finetuning result. This is because GPT-3 has been shown to accurately generate complex language for
new domains, and can generate samples not seen in task-specific training data [3].

The relatively low performance of prefix-tuning on the Amazon-Google and Walmart-Amazon
datasets is in line with the findings by Narayan et al.[14]. Fully finetuning an LLM outperforms
parameter-efficient techniques using both GPT-3 and T5 for the Amazon-Google dataset. Our
findings confirm that currently this dataset is hard for any approaches other than full finetuning. The
Walmart-Amazon case shows a similar pattern, albeit less significant.

Prefix-tuning against zero-shot prompting. The results in Table 3 show that prefix-tuning drastically
outperforms zero-shot prompting across all tasks, while using the smaller T5 model. These findings
validate our expectation that the additional training effort in prefix-tuning translates into significantly
higher prediction quality, compared to zero-shot prompting without hand-engineered prompts.

Table 3: Prefix-tuning drastically outperforms (trainingless) zero-shot prompting across all tasks.

Task Dataset Metric Prefix-tuning Zero-shot prompting
T5 (220M params) GPT-3 (175B params)

Entity matching DBLP-Google F1-score 0.9517 0.646
Entity matching DBLP-ACM F1-score 0.981 0.935
Entity matching iTunes-Amazon F1-score 0.9286 0.659
Entity matching Fodors-Zagats F1-score 0.9767 0.872
Entity matching Beer F1-score 0.8571 0.786
Entity matching Walmart-Amazon F1-score 0.7961 0.606
Entity matching Amazon-Google F1-score 0.6642 0.543
Imputation Buy Accuracy 0.9231 0.846
Imputation Restaurant Accuracy 0.8488 0.709
Error detection Hospital F1-score 0.9766 0.069
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5 Discussion & Next Directions

We obtain a positive response to our research question. The experimental results indicate that prefix-
tuning can serve as a parameter-efficient alternative to finetuning for entity matching, error detection
and data imputation. Prefix tuning only fell behind finetuning by more than 5% for two specific
datasets.

The fact that prefix-tuning only requires 0.39% of the amount of the parameters required for finetuning
an LLM means that this approach is easier to scale. In scenarios, where a large enterprise requires a
data wrangling solution for thousands of tables, finetuning a model for each table is too expensive in
terms of storage. Introducing prefix-tuning on the other hand can reduce the storage requirements
by a factor of more than 250 without a big drop in performance. Finetuning can still be used to
ensure optimal performance for high values tables with critical data. A down-side that prefix-tuning
shares with finetuning is a high training cost, as errors need to be back-propagated through the whole
network during training.

Optimizing continuous prompts for LLMs shows promising results for data wrangling tasks. Current
state-of-the-art data wrangling approaches use models much larger than T5 (GPT-3) with manually
engineered textual prompts. As prefix-tuning is inspired by prompt engineering, we expect that the
performance of this method extends to models like GPT-3, and could possibly beat the state of the art.
Li et al. [9] show that prefix-tuning extends well from a small version to a large version of GPT-2,
implicating that scaling to GPT-3 should be possible as well. However, the proprietary nature of
GPT-3 and its limited API currently make it impossible for us to validate this statement.

The parametrization of prefix-tuning as used in this paper is a basic one, and approaches to give
prefix networks more fine-grained control have been proposed. A prominent example are control
prefixes [4], which support conditioning on attribute specific information to increase prefix-tuning
performance. In future work, we aim to explore the potential of control prefixes to further advance
the parameter-efficient automation of data wrangling with LLMs.

Acknowledgements. We want to acknowledge Qualcomm, the ELLIS Unit in Amsterdam and the
AIRLab Amsterdam for making it possible to write and present this work.
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Appendix

In addition to the metrics already reported, we provide the precision and recall results for the entity
matching and error detection tasks.

Table 4: Entity matching results by precision, recall and F1-score.
Dataset Metric Prefix-tuning Finetuning

Amazon-Google
Precision 0.5946 0.7436
Recall 0.7521 0.7436
F1-score 0.6642 0.7436

Beer
Precision 0.8571 0.8667
Recall 0.8571 0.9286
F1-score 0.8571 0.8966

DBLP-ACM
Precision 0.9734 0.9865
Recall 0.9887 0.9887
F1-score 0.981 0.9876

DBLP-Google
Precision 0.9456 0.9435
Recall 0.9579 0.9673
F1-score 0.9517 0.9552

Fodors-Zagats
Precision 1.000 1.000
Recall 0.9545 1.000
F1-score 0.9767 1.000

iTunes-Amazon
Precision 0.8966 0.9286
Recall 0.963 0.963
F1-score 0.9286 0.9455

Walmart-Amazon
Precision 0.7489 0.9022
Recall 0.8497 0.8601
F1-score 0.7961 0.8806

Table 5: Error detection results measured by precision, recall and F1-score.
Dataset Metric Prefix-tuning Finetuning

Hospital
Precision 1.000 1.0000
Recall 0.9542 0.9826
F1-score 0.9766 0.9912
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