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Abstract

Studying cell morphology changes with time is critical to understanding cell migration
mechanisms. This work presents a deep learning-based workflow to segment cancer cells
embedded in 3D collagen matrices and imaged with phase-contrast microscopy. Our ap-
proach uses transfer learning and recurrent convolutional long-short term memory units
to exploit the temporal information from the past and provide. Besides, we propose a
geometrical-characterization approach to studying cancer cell morphology. Our approach
offers stable results in time, and it is robust to the different weight initialization or train-
ing data sampling. We introduce a new annotated dataset for 2D cell segmentation and
tracking and an open-source implementation to replicate the experiments or adapt them
to novel image processing problems.

Keywords: Video segmentation, cell segmentation, transfer-learning, convlstm, phase-
contrast, cell migration, mesenchymal migration

1. Introduction

Metastasis, the leading cause of death caused by cancer, refers to the process in which cells
spread from the primary tumor to adjacent tissues, proliferate and invade healthy organs.
Thus, understanding the mechanisms driving cancer cell migration is critical to characterize
highly metastatic cells, develop new efficient treatments and improve precision medicine.
Due to the experimental complexity (e.g., mechanical control of 3D gel matrices, reduced
imaging speed and increased phototoxicity), most quantitative cell migration studies are
performed on 2D cell culture experiments, while cell migration naturally occurs in 3D
environments (i.e., the extracellular matrix (ECM)). Instead of the lamellipodia or filopodia
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usually observed in 2D substrates, cells migrating in 3D substrates (e.g., collagen type I
matrices) form dendritic protrusions to anchor, exert forces, and propel. Consequently, there
is a growing interest to study cell morphology and motility in 3D environments (Doyle et al.,
2015; Wu et al., 2018; Jayatilaka et al., 2018; Doyle et al., 2021).

Sample phototoxicity and photobleaching are well-known constraints in fluorescence
microscopy. Thus, prolonged time-lapse videos are customarily acquired using brightfield
microscopy techniques such as phase contrast at the expense of low contrast between the cell
and the background. To mimic the mechanical properties of the ECM, cells are commonly
embedded in matrices of collagen type I (Wu et al., 2018; Doyle et al., 2015). Additionally,
the brightfield images of collagen matrices are full of artifacts and quite heterogeneous due
to the polymerization of the collagen fibers resulting in images full of artifacts (see Figure 3
in the Appendix). The typical setup to study 3D cell motility consists of acquiring images of
a fixed focal plane placed in the middle of the collagen matrix where the cells are embedded.
Therefore, the cell movement is assessed in the cited xy-plane under the premise that 3D
cell motility is isotropic (Wu et al., 2018). Note that while the images are 2D, cells are
migrating in 3D, so they can exit and enter the plane of focus, fixed along with the videos.

The manual annotation of cells in long phase-contrast microscopy time-lapse videos is
tedious and non-viable. Hence, implementing a robust computational tool for the automatic
quantification of cell morpho-dynamics is critical to deciphering the mechanisms that drive
cancer cell migration in metastasis.

Deep learning (DL) approaches are considered the state-of-the-art for processing images
with large inter-variability and intra-variability. Usiigaci et al. (Tsai et al., 2019) released
one of the first methods (based on a Mask R-CNN (He et al., 2017) backbone) that achieve
accurate cell instance segmentation in phase-contrast microscopy images. Lux and Mat-
ula (Lux and Matula, 2020) use a DL-based approach that first predicts the binary segmen-
tation and landmarks for cell detection and then performs a watershed transformation using
the landmarks to provide the instance segmentation. Pixel embedding approaches (Payer
et al., 2018; Lalit et al., 2021) are efficient instance segmentation strategies, especially for
highly packed cells. Other works show accurate results for binary segmentation using re-
currences such as the convolutional Long-Short Term Memory (LSTM) U-Net (Arbelle and
Raviv, 2019; Wang et al., 2019b) or the recurrent U-Net (Wang et al., 2019a). Additionally,
DeepCellKiosk (Bannon et al., 2021) is a cloud-based toolbox to train and deploy DL models
for cell segmentation, detection and tracking and to ease the use of large datasets. Some of
the previously mentioned methods (e.g., Mask R-CNN, convolutional LSTM U-Net, cosine-
embedding) have high-computational requirements when adapting their implementations to
new experiments or data types. Others are not optimized for a low cell/background ratio
(e.g. DeepCellKiosk models for instance segmentation, the approach of Filip et al.). Ad-
ditionally, most previous contributions focus on defining the convolutional neural network
(CNN) architecture and, sometimes, the loss function rather than the training strategy.
Aspects to consider for the latter are using pre-trained encoders, dealing with data imbal-
ance, or avoiding the creation of artifacts during data augmentation. From our in-house
experiments, we realized that the quality of the ground truth and the training strategy was
the most important factors to get accurate and robust results.

We want to introduce the temporal-consistency (Varghese et al., 2020) as we, as manual
annotators, needed it to achieve a robust segmentation that can be tracked afterwards. As
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stated in (Ulman et al., 2017), cell segmentation and tracking could be achieved in different
manners, while the most common one is to perform first, a consistent segmentation in
time, and then the tracking. We identify two possible approaches to obtain consistent
segmentation: (1) using 3D convolutions (2D images and the time), and (2) using recurrent
attributes in the network. We claim that a system able to discard the noise and artifacts and
detect the movement of the cell will be sufficient to determine the cellular shape accurately.
Cell movement can be easily detected by the shape differences from frame to frame. A
similar paradigm for time consistency can be found in echocardiography segmentation due
to the cardiac function (Wei et al., 2020; Painchaud et al., 2021). The latter works proposed
exploiting 3D-connectivity of a 3D U-Net to extract time information. Nevertheless, 3D
CNN implementations require considerable memory while the cell movement can be easily
detected by the local shape differences between frames. Hence, inspired by the work of
Arbelle et al. (Arbelle and Raviv, 2019), we decided to build a recurrent architecture that
combines a 2D U-Net shaped encoder-decoder with a convolutional long short term memory
(ConvLSTM) (architecture, Figure 5 and convolutional blocks, Figure 6 in the Appendix).

We need to detect cell protrusions to analyze the relationship between cell morphology
and motility. There exist several works in the literature addressing a closely related problem
with cell filopodium (Maška et al., 2013; Tsygankov et al., 2014; Barry et al., 2015; Urbančič
et al., 2017; Castilla et al., 2019; Bagonis et al., 2019). The previously cited methods work
under the hypothesis that a well-defined frontier exists between the cell and the filopodia.
However, setting the limit between the cell body and the cell protrusions is still an open
question. This inconvenience can be circumvented by detecting the protrusion tips instead.

To summarize, in this work, we propose deep learning (DL)-based bioimage processing
workflow: (1) to segment cells on phase-contrast microscopy videos, and (2) to detect their
protrusions. We first build a consistent and heterogeneous ground truth image dataset.
Then, we propose a workflow that combines deep CNN and geometrical analysis of the cell
morphology to quantify cellular protrusions automatically.

2. Materials

We build the ground truth dataset from the phase-contrast microscopy videos used in (Jay-
atilaka et al., 2018): Human fibrosarcoma HT1080WT (ATCC) cells at low cell densities
embedded in 3D collagen type I matrices. The time-lapse videos were recorded every 2 min-
utes for 16.7 hours and covered a field of view of 1002 pixels× 1004 pixels with a pixel size
of 0.802µm/pixel The videos were pre-processed to correct frame-to-frame drift artifacts,
resulting in a final size of 983 pixels× 985 pixels. All the details are given in Appendix A.

The ground truth is built with heterogeneous and independent videos. We chose 27
videos from independent replicates in which mitosis and apoptosis events and different cell
morphology and migration patterns were present. We ensure that cells touching each other
and migrating faster or slower are also present. The variation of the collagen matrix under
the microscope is also considered. We subtract short sections between 3 and 100 frames from
the videos to gather the mentioned events. Finally, our ground truth data consists of 56 short
videos, resulting in a total of 992 frames. Over time, the instance segmentation of focused
cells is manually annotated and uniquely labeled, preserving the tracking information. Three
experts annotated the videos, and a majority voting method as described in (Ulman et al.,
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Figure 1: Sample image of a human fibrosarcoma (HT1080WT) cells embedded in a 3D
collagen Type I matrix, From left to right: Phase contrast microscopy image;
manual annotations of cells in focus in (a); Zoomed versions of the crops shown
in the yellow boxes in (a). Cells out of focus are discarded. Scale bars of 100µm.

2017) was applied to combine the three annotations and build a consensus ground truth.
The ground truth data can be accessed in https://zenodo.org/record/5979761.

3. Cell segmentation

3.1. Methodology

We propose to train a U-Net-shaped encoder-decoder with a pre-trained encoder, depth-
wise separable convolutions, and convolutional long short term memory (LSTM) (Shi et al.,
2015) units to obtain a binary mask with the cells being represented by the foreground
pixels.

In (Arbelle and Raviv, 2019), the authors add a ConvLSTM on each encoder level, so
the temporal and spatial information are encoded together. Using a pre-trained encoder,
the ConvLSTM units should go in the decoder layers. We use a single ConvLSTM layer at
the end of the encoder-decoder to optimize the memory usage and adapt to the limitations
of our hardware training systems. Thus, the number of parameters is not significantly in-
creased despite the recurrent layers. Separable depth-wise convolutions are also introduced
to optimize the memory usage, as proposed in (Howard et al., 2017) (see Figure 5 in the Ap-
pendix). The last recurrent layer will sequentially analyze the frames of an input video once
the 2D U-Net processes them. With this approach, we expect to improve the robustness to
intra-cell variations along time (i.e., caused by cell exiting and entering the plane of focus)
and the network’s output to be more consistent at the cell edges where the protrusions
appear and disappear (see Figure 4 in the Appendix). The proposed architecture provides
segmentation for the frame at time t based on the information in the frames (t−k, ..., t) for
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a chosen time window k.
The architecture is as follows:

• 2D U-Net shaped encoder-decoder: The encoder is a MobileNetV2 (Sandler
et al., 2018) pre-trained on the ImageNet (Deng et al., 2009) dataset for image classi-
fication with 35% of the filters of its convolutional layers and with skip connections. A
decoder with separable depth-wise convolutions is connected to the skip connections
of the MobileNetV2.

• A recurrent Conv2D-LSTM layer: The time-series entering the encoder-decoder
will be recurrently processed so the segmentation of the frame t is done taking into
account previous information.

• A final 2D convolutional layer with two feature maps to obtain the pixel classifi-
cation (background and foreground).

Training data sampling strategy: A common practice to apply data augmenta-
tion (DA) is to crop the original images in a large number of patches and modify these
patches with random image transformations. Some DA transformations use image mirror-
ing or zero-padding in the image borders, which adds many unrealistic artifacts that would
prevent our CNNs from learning correctly. Frequently, the patches are cropped uniformly
along the image regardless of the foreground-background ratio. Our proposal consists of
first transforming the image and then cropping a patch using a probability distribution
function that deals with the foreground-background ratio. The probability distribution
function is commonly used in statistical learning when there is data imbalance. In our
case, we define the pixel probability distribution function by setting a weight of 50000
and 1 to the pixels in the foreground and background, respectively. Note that the ratio
of foreground to background is a maximum of 0.06 in the best case. After setting the
weights, the image is normalized. Namely, the sum of all the pixels equals 1, which means
we create a probability distribution function for all the pixels in the image. A random
pixel drawn using this probability distribution is set as the centroid of the patch that will
enter the network during training. With this configuration, we generate cell-containing
patches most of the time, and just in a few cases, background patches. The previous
method has been implemented in Python using TensorFlow. The code is freely available at
https://github.com/esgomezm/microscopy-dl-suite-tf.

3.2. Experimental results

A set of 28 patches from the raw data in the training set were used as a validation set.
Those patches remain the same for all our experiments, while the training data is randomly
transformed on each iteration. Each input image intensity is normalized using the percentile
normalization with 0.1 and 99.1 percentages for the lower and upper bounds. The models
are trained in two steps:

1. Transfer-learning to our segmentation model of the MobileNetV2 weights for image
classification. In this step, the pre-trained encoder is frozen, the decoder is randomly
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initialized, and the model is trained for 2K epochs. This model (i.e., the decoder)
is trained to learn the segmentation task using a large learning rate (0.005). The
proposed transfer-learning approach is not sensible to the decoder initialization and
the data sampling strategy (see Appendix).

2. We unfreeze the encoder and fine-tune all the weights using a lower initial learning
rate (0.0001) that is automatically halved whenever the Jaccard index does not show
an improvement larger than 0.0001 during 600 epochs in the validation set. We train
for 2K epochs (see Table 1, and Figures 2 and 10).

We evaluate five different configurations of the architecture Bi, i = 1, ..., 5 by changing the
depth and sizes of the convolutional layers in the decoder. The main architectural details
are given in Table 1. Notice that the number of trainable parameters prevents us from
testing a batch size larger than two using our computational resources (see the Appendix).
The decoders of the CNN setups in Table 1 are randomly initialized using the Glorot
Uniform initializer (Glorot and Bengio, 2010). We choose exponential linear units (ELUs)
to activate the convolutional layers in the decoder except for the output layers, which are
not activated. We apply the categorical cross-entropy loss function given by Equation 1
directly to the logits of the last layer. The latter is recommended for a more numerically
stable computation of the gradients1. ADAM is the optimizer chosen (Equation 2). During
the training, we evaluate the binary segmentation with the Jaccard index, Equation 3.
The accuracy is assessed on the test set. The binary segmentation is evaluated using the
Evaluation Software provided in the Cell Tracking Challenge (Ulman et al., 2017) (SEG
measure). The Appendix describes the total SEG that accounts for all the videos in the
test set.

Pools Convolutional filters Batch Size Transfer learning Fine tuning

B1 5 16− 32− 64− 128− 256 1 0.473 0.430
B2 4 25− 50− 100− 200 1 0.411 0.455
B3 4 25− 50− 100− 200 2 0.550 0.551
B4 4 50− 100− 200− 400 1 0.481 0.446
B5 3 16− 32− 64 2 0.437 0.561

Table 1: Convolutional neural network architecture and SEG for transfer learning and fine
tuning. Note that the size of the convolutional layers only applies for the decoder
path of the encoder-decoder. See Figure 5 in the Appendix for details about the
architecture. Transfer learning and fine tuning processes are programmed for 2K
epochs with a constant learning rate of 0.005 and 0.0001, respectively.

Unsurprisingly, a batch size larger than one improves the learning process making it
smoother and more accurate. While the loss function for the training and validation datasets
differs in shape and magnitude, the accuracy measured by the Jaccard index (Equation 3)
remains similar for both datasets, which could be due to the overlap between the training

1. https://www.tensorflow.org/api docs/python/tf/keras/losses/SparseCategoricalCrossentropy
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Figure 2: (Left) Phase-contrast microscopy image. Scale bar of 100 µm; (Right) Zoomed
crops of the region enclosed by the boxes in the full images; (From left to right)
Original phase-contrast microscopy crop; Ground Truth (annotated in-focus cells
are labeled in black); Output of the trained models B2, B3 and B5.

and validation sets. The CNN set up for B4 is the least stable, related to the larger size of
the convolutional layers chosen and the small batch size. Table 1 shows that B3 and B5 are
the most accurate CNNs.

We trained a model with the same architecture as B5 but analysed only one input image,
thus missing the time information. When comparing both (Figure 11 in the Appendix), one
can notice that integrating the temporal information improves the segmentation result.

4. Protrusion tip quantification

Similar to the work of (Castilla et al., 2019), we use the cell’s skeleton and its end-points
to identify the tips of the protrusions. When annotated manually, biologists consider cell
protrusions that are longer than 5µm. We use the Geodesic distance transform to measure
the distance between the cell centroid and each detected tip and estimate the protrusion
length. Hence, spurious tips can be accordingly discarded using this longitudinal estimation.
We set the minimum length to 20 µm. Note that the Geodesic distance transform includes
the radius of the cell nuclei region computed from the cell body centroid. Most cells show
a roundish pattern in their nucleic region. As cells are either elongated or rounded, the
nuclei area will always be the wider region of the cell. Hence, the centroid is determined
by the location of the maximum value of the Euclidean distance transform (see Figures 12
and 13).
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5. Discussion and conclusions

The results obtained when using pre-trained encoders are already quite promising in terms of
true and false positive pixel classification, suggesting that pre-trained encoders on biomed-
ical images could accelerate and improve the learning process. However, the outcome of
the fine-tuned models improved, especially for those training schedules with batch sizes
larger than one (see Tables 1). Unfortunately, the batch sizes we could use were limited
by the resources to train the CNN (see the number of parameters for each configuration in
the Appendix). We use depth-wise separable convolutions to increase the field of view of
the network at a lower parameter cost. Nevertheless, the receptive field of a pixel in our
networks varies from 194 pixels × 194 pixels to 230 pixels × 230 pixels, depending on the
encoder-decoder depth chosen. Hence, reducing the spatial input size to allow larger batch
sizes can prevent the network from visualizing the entire cell body without being affected
by the padding artifacts of the convolutional layers.

Another critical point in the image processing design is the trade-off between image
resolution and network configuration. The thinnest details, i.e., the cell protrusions, are the
primary source of error for the segmentation. We attribute these errors to the poor image
resolution to draw cell protrusions and their large variability. Such low resolution hinders
the learning of essential features and voids the effect that those pixels may have in the loss
function or gradients. A simple computational experiment to test it could be to upsample
the size of the images and repeat the training process.

Training strategy plays a crucial role in DL model training with scarce annotated data.
The proposed training data sampling is relatively easy to implement and resembles the
approach described in (Ronneberger et al., 2015). It can hardly worsen the final results and
often achieves similar performances with simpler CNN architectures. We believe that most
image processing DL workflows should integrate a similar arrangement.

Thanks to the binary cell segmentation, we obtain accurate results for the cell tracking
in low-resolution 2D phase-contrast microscopy images. Due to the low density of cells in
our images, they could be tracked easily with the last version of TrackMate (Tinevez et al.,
2017; Ershov et al., 2021) which already processes object instances. The combination of
whole-cell shape segmentation and tracking is already a promising image processing tool
for studying new clinical strategies to mitigate metastatic phenotypes.
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Appendix A. Microscopy data specifications

Human fibrosarcoma HT1080WT (ATCC) cells at low cell densities were embedded in 3D
collagen type I matrices (5, 000−10, 000 cells per 500µmL of collagen matrix) and placed on
independent plates. They were imaged with a Cascade 1K CCD camera (Roper Scientific)
mounted on a Nikon TE2000 microscope with a 10X objective lens (i.e., low magnification).
The time-lapse videos were recorded every 2 minutes on a focal plane of at least 200 µm away
from the bottom of the culture plates to diminish edge effects. All the videos covered a field
of view of 809 µm×810 µm and a total of 16.7 hours (1002 pixels×1004 pixels×500 frames).

The videos suffer of frame-to-frame drift artifacts due to the microscope objective’s
drive when acquiring the temporal frames of each well in the plate. Because this feature
is present in all the videos, we corrected the drift by applying an affine registration based
on the compensation of the image correlation similarity frame-by-frame with the StackReg

plugin (http://bigwww.epfl.ch/thevenaz/stackreg/) for ImageJ (Schneider et al., 2012;
Schindelin et al., 2012; Schroeder et al., 2021; Rueden et al., 2017). Then, the videos were
cropped to curate border artifact, resulting in a final size of 983 pixels × 985 pixels ×
500 pixels. See Figure 3 and 4 for sample images.
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Figure 3: (a) Phase contrast microscopy images of cancer cells (MDA-MB-231) migrat-
ing in a 3D collagen type I matrix. The collagen gels, cell culture and acqui-
sition of each image was performed by a different researcher; (b) Fluorescence
microscopy image of GFP-GOWT1 mouse stem cells migrating in 2D and fixed
in paraformaldehyde (Ulman et al., 2017); (c) Phase contrast microscopy image
of glioblastoma-astrocytoma (U373) cells on a polyacrylamide substrate (Ulman
et al., 2017). Scale bars of 100 µm in all the images.

Appendix B. Details for the cell segmentation deep learning model

B.1. Convolutional neural network blocks and layers

The main blocks and layer of the recurrent neural network component are given in Figure
6.
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Figure 4: Example of a cell migrating during 8 minutes at two different time points. Cell
protrusions lie sometimes out of the focus plane so they are blurry, preventing
resolving their correct structure. In the second row, there is an artifact on the
right side of the cell that, unless the video is shown for long enough times, it is
not possible to determine that it does not belong to the cell body. Scale bars of
5 µm in all the images.

B.2. Loss function and accuracy metrics

The categorical cross-entropy loss function is given as:

Lcell(x, y) = −
C=2∑
i=1

xi log(yi), (1)

where C is total number of classes (background and foreground), xi is the class in the
ground truth image and yi the score given by the CNN.

Adaptive moment estimation (ADAM) is defined as follows:

mt = β1mt−1 + (1− β1)gt, vt = β2mt−1 + (1− β2)g2
t , (2)

where mt and vt are the estimates of the first moment and the second moment of the
gradients, respectively, and gt refers to the gradient value at the time point t. We chose the
default values given in Keras: β1 = 0.9 and β2 = 0.999.
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Figure 5: Convolutional neural network (CNN) architecture exploits spatio-temporal infor-
mation. The architecture processes N consecutive frames (N = 5) to infer the
segmentation of the last one. The encoder-decoder processes the input frames as
a batch. The last layer uses a ConvLSTM to process the time-frames recurrently.
The encoder is a pre-trained MobileNetV2 (Sandler et al., 2018) with 35% of its
original width (i.e., number of filters) and skip connections to the corresponding
blocks in the decoder. In the encoder, the number of feature maps is kn for each
k = 1, 2, 3 level after downsampling, being n = 8. Each block of the decoder is
formed by a depth-wise separable convolutional block (see Figure 6). The number
of filters in the decoder and the ConvLSTM depend on the parameter f .

The Jaccard index of the foreground is given as follows:

JC =
|X ∩ Y |
|X ∪ Y |

(3)

where X is the ground truth and Y is the output segmentation.
The Evaluation Software provided in the Cell Tracking Challenge (Ulman et al., 2017)2

calculates segmentation (SEG) and tracking (TRA) accuracy measures. SEG is computed
as the Jaccard index between the labeled objects in the ground truth and the resulting
masks when the former covers more than 50% of the output mask. Otherwise (less than
50% of overlap), it sets the segmentation measure to zero. This accuracy measure is called
SEG. As the length of the test videos is different, we averaged the SEG values of all the
videos, Equation 4

SEGtest =
1

‖N‖

N∑
i=1

SEGi(Xi, Yi) (4)

2. http://celltrackingchallenge.net/evaluation-methodology/
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Figure 6: Recurrent convolutional neural network components: a) Single and multi-output
modalities of the encoder-decoder described in Figure 5. A MobileNetV2 trained
on the ImageNet dataset (Deng et al., 2009) was used as a pre-trained encoder.
The decoder and the ConvLSTM units were randomly initialized; b) Description
of a depth-wise separable convolution: (1) each channel of the input is filtered
independently (depth-wise convolution), and (2) the resulting filtered channels
are processed with a kernel of size 1 × 1 × c, c being the number of channels in
the input. If the depth-wise separable convolution has n filters, the described
process is repeated n times; c) Description of each convolutional block used in
the CNN architecture of Figure 5. The expansion and the depth-wise separable
convolutions are followed by batch normalization and a ReLU activation function
in the encoder path. The proyection convolutions are only followed by a batch
normalization layer and are not activated. The depth-wise separable convolutions
in the decoder are followed by batch normalization, an ELU activation function,
and use dropout.
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where Xi and Yi is video i in the ground truth and the network’s output, respectively, and
N is the total number of videos in the test set. TRA relies on acyclic oriented graphs
matching (AOGM) (Matula et al., 2015), calculated as follows:

TRA = 1− min(AOGMD,AOGM0)

AOGM0
(5)

where AOGMD is the cost of transforming a set of nodes provided by the algorithm into
the set of Ground Truth (GT) nodes, and AOGM0 is the cost of creating the set of GT
nodes from scratch (i.e., it is AOGMD for empty results). TRA behaves as an accuracy
measure with values normalized to the [0, 1] interval. The final tracking measure TRA is
the average of the TRA values obtained for each video

TRAtest =
1

‖N‖

N∑
i=1

TRAi(Xi, Yi). (6)

B.3. Number of parameters of the convolutional neural networks

See Table 2.

Transfer learning Fine tuning Total

B1 227, 266 477, 250 490, 530
B2 188, 358 280, 326 288, 370
B3 188, 358 280, 326 288, 370
B4 622, 008 713, 976 723, 520
B5 83, 430 99, 270 101, 714

Table 2: Number of trainable parameters for each convolutional neural network architecture
during transfer learning and fine tuning. Total values include trainable and non
trainable parameters (convolutions’ biases).

B.4. Effect of data sampling in model training

In Figure 7, we show a sanity experiment performed with our sampling strategy. We trained
the same network architecture with three different approaches: (1) On each iteration the
data generator crops a random patch from an image and introduces it into the network
(no-sampling (no DA)); (2) same as before but the patch is randomly transformed for data
augmentation (no-sampling (DA)); (3) first the original image is randomly transformed
and then, a patch is cropped using a sampling probability distribution function over the
pixels in the image. The loss function when there is no sampling probability distribution
function (no-sampling) is lower than when it is applied (sampling run 1 and sampling run 2).
However, the accuracy is less than 0.5 for the foreground in those cases, indicating that the
network classifies most of the pixels as background. During the training, CNN average the
loss function values for all the pixels in the input patch. Because the foreground-background
ratio is quite low, classifying all the pixels as background leads to a fickle local minimum.
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Figure 7: Effect of training data sampling strategy. MobileUNet network (Seif, 2018;
Howard et al., 2017) trained with the same parameters and changing the training
data sampling strategy. (a) Softmax cross-entropy loss function for each training
epoch. (b) Averaged accuracy of the foreground (pixels classified as cells) for the
validation dataset on each 50 epochs during the training. DA: data-augmentation.

When using a sampling probability distribution function, such optimal modes are avoided.
Moreover, it takes much longer until the loss function converges to a value similar to the
one for which all the pixels are classified as background. The result, thus, is that the
network learns to classify those poorly represented pixels with very little programming and
mathematical effort.

B.5. Stability of the learning process

See Figures 8 and 9.

B.6. Learning process of different model configurations

See Figure 10.

Appendix C. Protrusion tip quantification

See Figures 12 and 13.
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Figure 8: Replication of the learning process for the architecture B5 with exactly the same
decoder initialization but randomly updating the training patches.

Figure 9: Replication of the learning process for the architecture B5 with a random decoder
initialization but fixed training data patches.
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Figure 10: Learning process of the evaluated neural network architectures: (a) Architec-
tures trained to segment cells (B1, B2, B3, B4, and B5). During the first 2K
epochs, the pre-trained encoder was frozen and the decoder is trained using
a learning rate of 0.005. During the remaining 2K epochs, the gradients are
back-propagated to all the weights in the model using a learning rate of 0.0001.
Training curves are smoothed to improve visualization.
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Figure 11: Results for the same CNN architecture (B5) having only the image at time t
as input (B5 (2D input)) or a time series consisting of 5 frames previous to
the frame at time t (B5 (2D + t input)). The images at t = 0 do not have
previous frames so it is not until t = 6 min that the model can determine that
the uncertain part is indeed a protrusion of the cell and needs to be segmented.
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Figure 12: (Top) Image processing schema based on the cellular shape for the detection
of protrusion tips. The local maximum of the Euclidean distance transform
provides the cell body center. This reference point is employed for the calculation
of the Geodesic distance transform. (Bottom) Sample images for the detection of
protrusion tips (the extreme of the skeleton) and the skeleton branch keypoints.
The images on the right correspond to the zoomed crops of the regions enclosed
in the boxes on the left. Scale bars of 100 µm and 50 µm for the first and the
second row, respectively.
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Figure 13: Result of the protrusion tip detection for different cell morphologies. The tips
are labelled in yellow and the cell body in green, blue and violet, respectively.
Scale bars of 40 µm.
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