Make-A-Shape: a Ten-Million-scale 3D Shape Model
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Figure 1. Make-A-Shape is a very large-scale 3D generative model trained on 10 million diverse shapes, capable of generating diverse 3D
shapes with intricate geometric details, realistic structures, complex topologies, and smooth surfaces; see the generative results above.

Abstract

The progression in large-scale 3D generative mod-
els has been impeded by significant resource re-
quirements for training and challenges like ineffi-
cient representations. This paper introduces Make-
A-Shape, a novel 3D generative model trained on
a vast scale, using 10 million publicly-available
shapes. We first innovate the wavelet-tree repre-
sentation to encode high-resolution SDF shapes
with minimal loss, leveraging our newly-proposed
subband coefficient filtering scheme. We then de-
sign a subband coefficient packing scheme to fa-
cilitate diffusion-based generation and a subband
adaptive training strategy for effective training on
the large-scale dataset. Our generative framework
is versatile, capable of conditioning on various in-
put modalities such as images, point clouds, and
voxels, enabling a variety of downstream applica-
tions, e.g., unconditional generation, completion,
and conditional generation. Our approach clearly
surpasses the existing baselines in delivering high-
quality results and can efficiently generate shapes
within two seconds for most conditions.
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1. Introduction

Significant progress has been made in training large gen-
erative models for natural language and images (Rombach
et al., 2022; Saharia et al., 2022; Ramesh et al., 2021; Yu
et al., 2022). However, the advancement of 3D generative
models is lagging behind. Existing models are either limited
in quality, focused on small 3D datasets (Zhang et al., 2023;
Shue et al., 2023; Hui et al., 2022; Mescheder et al., 2019;
Gao et al., 2022b), or allowing a single condition (Nichol
et al., 2022; Jun & Nichol, 2023; Liu et al., 2023a; Li et al.,
2024; Hong et al., 2024; Xu et al., 2024).

Training 3D generative models introduces unique challenges.
First, the extra dimension in 3D increases the number of
variables, demanding more network parameters and memory
in training. Particularly, U-Net-based diffusion models (Ho
et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon,
2019) generate memory-intensive feature maps that exceed
the processing power of GPUs, so greatly extending the
training time; see (Hoogeboom et al., 2023). Second, 3D
data imposes a significant input/output (I0) burden. Large
model training relies on cloud services like AWS or Azure
for data storage, so handling 3D data substantially increases
the storage costs and prolongs the data download time for
each training iteration. Third, 3D shapes are irregular and
sparse, unlike 2D images. How to efficiently represent 3D
shapes for large-scale training remains an open question.

Recent large generative models for 3D shapes tackle these
issues by two strategies. The first employs lossy input rep-
resentations to reduce the number of input variables, at the
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Figure 2. Reconstructing (a) a shape using (b) point clouds from
Point-E (Nichol et al., 2022), (c) latent vectors from Shap-E (Jun
& Nichol, 2023), (d) coarse coefficients Cy (Hui et al., 2022), and
(e) our wavelet-tree representation. See the structure and details,
faithfully reconstructed in (e).

expense of compromising on detail fidelity. For instance,
Point-E (Nichol et al., 2022) uses point clouds and Shap-
E (Jun & Nichol, 2023) uses latent vectors; while these
methods are efficient, the compromise is noticeable in the
detail retention. As Table 1 clearly illustrates, reconstruc-
tions of the ground-truth signed distance function (SDF)
often display a significant loss of detail. The second strategy
uses multi-view images to represent the 3D geometry (Liu
et al., 2023a; Li et al., 2024; Hong et al., 2024; Xu et al.,
2024), where differentiable rendering is used to produce im-
ages of the generated shape for comparing with the ground
truth in the training loss. However, relying on differentiable
rendering can be slow and may not capture full geometry in
one training example due to occlusions in the rendering.

This work aims for efficient training and compact 3D rep-
resentation to enable the creation of a large model trained
on ten million 3D shapes. First, we design a new 3D rep-
resentation, the wavelet-tree representation, to compactly
encode 3D shapes, while considering both coarse and detail
coefficients. Beyond (Hui et al., 2022), which considers
detail coefficients simply by network predictions in the gen-
erative process, we design a family of techniques to enable
large model training that effectively and efficiently capture
the high-frequency shape details: (i) subband coefficients
filtering selectively retains coefficients rich in information,
ensuring a compact yet comprehensive representation of
shapes; (ii) subband coefficients packing reorganizes these
coefficients into a compact grid format, suitable for use
with diffusion models; and (iii) subband adaptive training
strategy maintains an effective equilibrium of both coarse
and detail coefficients during the training process. Lastly,
we develop a range of conditioning mechanisms to accom-
modate various input modalities, including point clouds,
voxels, and images. Hence, our new representation, while
being compact, can faithfully retain most shape information
and, at the same time, enables effective training of a large

Table 1. Comparing 3D representations on GSO dataset (Downs
et al., 2022). “IoU”: Intersection Over Union; “Num. of Input
Var.”: number of input variables in a representation; “Add. Net.”:
necessity of training multiple networks to obtain SDF; and “Proc.
Time”: time to output the representation from a given SDF.

| ToU | Num.of Input Var. | Add. Net.| Time

Representation

Ground-truth SDF (256°) 1.0 |16777216 (~ 64MB) No —
Point Cloud (Nichol et al., 2022) |0.8642| 12288 (~ 0.05MB) Yes ~ls
Latent Vectors (Jun & Nichol, 2023) | 0.8576 | 1048576 (~ 4MB) Yes ~5mins

Coarse Component (Hui et al., 2022) | 0.9531 | 97336 (~ 0.4MB) No ~ls

Wavelet tree (ours) [0.9956 | 1129528 (~ 4.3MB) |  No | ~1 second

Table 2. Efficiency comparison with state-of-the-art methods. For
single-view, we offer inference times for both 10 and 100 iterations
(iter.), with the latter determined as the quality-optimized hyperpa-
rameter through our ablation study. For multi-view, 10 iterations
are chosen as the optimal option. Regarding training time, as dif-
ferent methods use varying numbers of GPUs, we compare their
training speed by the number of training shapes they can process in
a day divided by the number of GPUs used. Note that DMV3D (Xu
et al., 2024), Instant3D (Li et al., 2024), and LRM (Hong et al.,
2024) are concurrent works. Their codes are not publicly avail-
able. So, their numbers are derived from their original papers.
While these numbers merely approximate efficiency and could be
influenced by multiple factors, they do provide insight into the
volume of learning steps undertaken, which is necessary for good
scalability. Further, it is important to mention that we do not have
access to the training time data for Point-E and Shap-E.

Method

‘ Inference time ‘ # Training shapes in 1 day / GPU

Point-E (Nichol et al., 2022) ~ 31 sec —
Shape-E (Jun & Nichol, 2023) ~ 6 sec —
One-2-3-45 (Liu et al., 2023a) ~ 45 sec ~ 50k (A10G)

DMV3D (Xu et al., 2024) ~ 30 sec ~ 110k (A100)
Instant3D (Li et al., 2024) ~ 20 sec ~ 98k (A100)
LRM (Hong et al., 2024) ~ 5 sec ~ 74k (A100)
Ours (single-view 10 iter.) ~ 2 sec
Ours (single-view 100 iter.) ~ 8 sec ~ 290k (A10G)
Ours (multi-view 10iter) | ~2sec | ~ 250k (A10G)

generative model. We named our method Make-A-Shape.

Make-A-Shape has several clear advantages over prior works.
(i) Our representation is notably expressive, capable of en-
coding shapes with minimal loss, e.g., a 2562 grid can be bi-
jectively encoded in one second, yet with an IoU of 99.56%.
(ii) Our representation is compact, characterized by a low
number of input variables, almost akin to lossy represen-
tations like latent vectors (Jun & Nichol, 2023), yet not
necessitating additional autoencoder training, while having
higher quality (Table 1). (iii) Our representation is efficient,
enabling fast streaming and training, e.g., streaming and
loading a sophisticatedly compressed 2563 SDF grid takes
266 milliseconds, while our representation takes only 184
milliseconds for the same process. On average, we can pro-
cess approximately 2x to 6x more training shapes in one
day than prior methods, despite using a less powerful GPU
(A10G vs. A100), as detailed in Table 2. (iv) Make-A-Shape
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is versatile. It can be conditioned on different modalities
such as single/multi-view images, point clouds, and low-
resolution voxels, enabling various downstream applications.
(V) Make-A-Shape enables fast generation, taking just few
seconds to generate high-quality shapes (Table 2); see Fig-
ure | for a wide range of shapes generated by our approach.

2. Related Work

Neural Shape Representations. Recently, using deep
learning for 3D representations has gained significant in-
terest. Explicit representations, like point clouds (Qi et al.,
2017a;b; Wang et al., 2019), meshes (Hanocka et al., 2019;
Masci et al., 2015; Verma et al., 2018; Nash et al., 2020),
and boundary representation (Jayaraman et al., 2021; Lam-
bourne et al., 2021; Wu et al., 2021; Jayaraman et al., 2022)
have been widely adopted for both discriminative and gen-
erative applications. Neural implicit representations, like
signed distance functions (SDFs) and occupancy fields, have
also gained popularity, notably explored in works, e.g., (Park
et al., 2019; Mescheder et al., 2019; Chen & Zhang, 2019).
Some very recent works (Hui et al., 2022; Liu et al.) ex-
plored wavelets to decompose SDF signals into multi-scale
coefficients. Despite enhanced quality, high-frequency de-
tails are mostly ignored at the expense of shape fidelity. In
this work, we introduce a new wavelet-tree representation,
encoding shapes compactly yet nearly losslessly.

3D Diffusion Models. With recent advances in diffusion
models for high-quality image generation, there is a growing
interest in adopting diffusion models to 3D contexts. Exist-
ing approaches mostly train a Vector-Quantized-VAE (VQ-
VAE) on a 3D representation like triplane (Shue et al., 2023;
Chou et al., 2023; Peng et al., 2020), implicit forms (Li et al.,
2023; Cheng et al., 2023), or point clouds (Jun & Nichol,
2023; Zeng et al., 2022), then employ the diffusion model
in the latent space. Direct training on a 3D representation
has been less explored, with some recent studies focusing
on point clouds (Nichol et al., 2022; Zhou et al., 2021; Luo
& Hu, 2021), voxels (Zheng et al., 2023) and neural wavelet
coefficients (Hui et al., 2022; Liu et al.). In our work, we
design our 3D representation in a way that it can be directly
trained with a diffusion model, avoiding information loss
with the VQ-VAE.

Conditional 3D Models. Existing conditional 3D models
fall into two categories. The first group utilizes large 2D
conditional image generative models. Initially, this area
focused on text-to-3D approaches (Jain et al., 2022; Michel
et al., 2022; Poole et al., 2023), and later expanded to in-
clude images (Deng et al., 2023; Melas-Kyriazi et al., 2023;
Xu et al., 2023a), multi-view images (Liu et al., 2023b;
Deitke et al., 2023; Qian et al., 2024; Shi et al., 2024), and
additional conditions like sketches (Mikaeili et al., 2023).

The second group centers on training conditional generative
models using data either paired with a condition or in a zero-
shot manner. Paired conditional generative models consider
various conditions such as point clouds (Zhang et al., 2022;
2023), images (Zhang et al., 2022; Nichol et al., 2022; Jun
& Nichol, 2023; Zhang et al., 2023), low-resolution vox-
els (Chen et al., 2021; 2023), sketches (Lun et al., 2017;
Guillard et al., 2021; Gao et al., 2022a; Kong et al., 2022),
and text (Nichol et al., 2022; Jun & Nichol, 2023). Recently,
zero-shot methods have gained popularity, particularly fo-
cusing on text (Sanghi et al., 2022; 2023a; Liu et al., 2023c;
Xu et al., 2023b) and sketches (Sanghi et al., 2023b). In this
work, we focus on training a large, paired conditional gener-
ative model to accommodate various conditions, enabling
fast generation without the need for scene optimization.

3. Method

Figure 3 overviews the Make-A-Shape framework, which
has four components, as described from Sections 3.1 to 3.4.

3.1. Wavelet-tree representation

We formulate a novel, efficient and expressive 3D repre-
sentation called wavelet-tree representation. We first trans-
form a 3D shape into a truncated signed distance function
(TSDF) of resolution 2563, then we utilize a wavelet trans-
form ! to decompose the TSDF into coarse coefficient Cjy €
RA6® and detail coefficients Dy € R(27-1)x467 , D1 €
RE-DXT6° D, ¢ RE2'=1X136° \where d denotes the
dimension. In 3D, each D; is a set of 23 — 1 = 7 volumes,
which are denoted as subband volumes. In Figure 3, we
illustrate in 2D where d = 2 and each D; has 22 — 1 =3
subband volumes. The coarse coefficient Cy encodes the
low-frequency components and represents the overall 3D
topology, whereas the detail coefficients encompass high-
frequency information. Importantly, this representation is
lossless, allowing for bijective conversion back to a TSDF
via inverse wavelet transforms.

Wavelet coefficient tree. Expanding on (Hui et al., 2022),
we propose exploiting the relationships between wavelet
coefficients. As illustrated in “wavelet tree” in Figure 3,
each coarse coefficient in Cj (the parent) is hierarchically
connected to its associated detail coefficients in Dy (the chil-
dren). This parent-child relationship iterates through sub-
sequent levels (such as from Dy to D), creating a wavelet
coefficient tree with coefficients from C as the roots and
those sharing the same parent as siblings.

Despite the losslessness, the multi-scale wavelet coefficients
contain multiple high-resolution coefficient volumes, say

"Following (Hui et al., 2022), we employ biorthogonal wavelets.
Additional details are in Appendix A.
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Figure 3. Overview of our Make-A-Shape framework. (a) A shape, encoded in a truncated signed distance field (TSDF), is first decomposed
into multi-scale wavelet coefficients in a wavelet-tree structure. We design the subband coefficient filtering procedure to exploit the
relations among coefficients and extract information-rich coefficients to build our wavelet-tree representation. (b) We propose the subband
coefficient packing scheme to rearrange our wavelet-tree representation into a regular grid structure of manageable spatial resolution, so
that we can adopt a denoising diffusion model to effectively generate the representation. (c) Further, we formulate the subband adaptive
training strategy to effectively balance the shape information in different subbands and address the detail coefficient sparsity. Hence, we
can efficiently train our model on millions of 3D shapes. (d) Our framework can be extended to condition on various modalities.

Dy, Do, which are far from compact and can be inefficient
in both data loading and model training, making them less
scalable for large-scale training. To make the representation
more compact and to relieve the I/O and training burden, we
conducted several empirical studies on the wavelet coeffi-
cients and identified four key observations (i)-(iv):

(1) The significance of each coefficient for shape recon-
struction is positively correlated to its magnitude. If
a coefficient’s magnitude falls below a threshold (e.g.,
1/32 of the largest coefficient within a subband), its chil-
dren will likely have small magnitudes, contributing
minimally to the shape. We empirically explored the
Dy subbands of 1,000 random shapes, confirming that
over 96.1% of the coefficients satisfy this hypothesis.

(i) Magnitudes of sibling coefficients are positively cor-
related. We evaluated the correlation coefficients be-
tween all pairs of sibling coefficients in 1,000 random
shapes and found a positive correlation value of 0.35.

(iii) Cy contains more of the shape information than sib-
lings. Coefficients in Cy are mostly non-zeros, with a
mean magnitude of 2.2, while the mean magnitude of
detail coefficients in Dy is much closer to zero,

(iv) Most coefficients in Dy are insignificant. By empir-
ically setting them to zeros in inverse wavelet trans-
forms, we can reconstruct the TSDFs faithfully for
1,000 random shapes with 99.64% IoU.

Subband Coefficient Filtering. Based on the above find-
ings, we introduce a subband coefficient filtering approach
as a pre-processing, building a wavelet-tree representation

which is faithful and compact. To do this, all coefficients
in Cy are preserved, while those in D, are discarded, as
observations (iii) and (iv) indicate. To further reduce the
I/0 burden, we selectively retain coefficients from D, and
D, according to their information, inspired by (i) and (ii).
Specifically, we evaluate each coordinate in D(’s subbands,
selecting the one with the highest magnitude as a measure of
’information’. Then, we only retain the top-K information
(K = 16384 < 463) coordinates X and their associated
sibling coefficients, denoted as D},. Given X, we then cre-
ate another information-rich coefficient set D’ by retaining
the (2¢ — 1)2¢ children in D; (d = 2 in the 2D illustrations
and d = 3 in our 3D shapes) on each location, discarding
remaining less significant coefficients. Please refer to Ap-
pendix A for a detailed 2D visualization to construct our
wavelet-tree representation.

The above procedure results in our wavelet-tree represen-
tation, which contains four parts, i.e., Cy, Xo, D}, D1,
as illustrated in Figure 3. It does not only achieve both
a significant compression (reducing to 1/15 in size) and
an impressive mean IoU of 99.56%, but also leads to a
44.5% speed-up in streaming and loading, a critical factor
for large-scale training. Notably, this process is a one-time
preprocessing step, making it efficient for handling millions
of 3D shapes and storing them in the cloud.

3.2. Diffusable Wavelet-tree Representation

The above representation, while efficient for data stream-
ing, still presents challenges during the training of diffusion
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models (Ho et al., 2020) due to the mix of a regular struc-
ture (Cp) and the irregular structures (Xo, Dy, D7). One
straightforward approach would be to treat them directly
as the diffusion target using a multi-branch network. How-
ever, this approach exhibited convergence issues, resulting
in model training collapse. A second approach could be
to load D{, D} and reassign them to a zero-initialized vol-
ume with the same size as Dy, D; following their coor-
dinates. The derived volumes D, € R(zd’l)X4637b1 €
R(2'=1x(2")x46" can then be naively arranged in a grid
with a large spatial resolution as in Figure 3 “multi-scale
wavelets”. However, using the U-Net architecture, com-
monly employed in diffusion models, on this spatially large
structure leads to memory-intensive feature maps, causing
out-of-memory issues and inefficient GPU utilization.

Subband Coefficient Packing. To tackle these challenges,
we take inspiration from observation (iii) and (Hooge-
boom et al., 2023). Specifically, we reshape D to have
(24 — 1)(2%) channels such that it can have the same spatial
resolution as Cy and ﬁo, i.e., 462, and we concatenate Cj,
f)o, and the reshaped ﬁl in the channel dimension, inducing
the regular volume as the diffusable wavelet-tree represen-
tation zo € R2"x46° a5 depicted in the bottom row of
Figure 3. This strategy can lead to an approximate cubic-
order speedup and a significant reduction in GPU memory
usage, estimated to be around 64x compared to when ap-
plied to the same network architecture. The technical detail
is presented with an illustrative example in Appendix A

3.3. Subband Adaptive Training Strategy

Then, we train a diffusion model fy(x¢,t) to generate x,
where x, is the noised coefficient of x at time step ¢. Di-
rectly applying MSE loss following DDPM (Ho et al., 2020)
on xy may lead to the imbalanced loss weights, due to the
imbalanced channel dimensions of C, DO, and D;. More-
over, our empirical observations indicate that even when
assigning equal loss weights to these three volumes, the
performance is still unsatisfactory.

To address these issues, we introduce a subband adap-
tive training strategy that prioritizes high-magnitude de-
tail coefficients while maintaining balance with the remain-
ing detail coefficients. Let ﬁoﬁj denote one of the sub-
bands in f)o, we select an information-rich coordinate set
Yo,; = {yly € Doy, Do;ly] > maz(Dy,;)/32}. We then

d_
union coordinate sets of all subbands into Yy = U?zol ORE
which records the locations of important detail coefficients.
For D4, we still adopt Yy as the most informative coordi-

nates due to our finding (i). We thus formulate the loss:

241
1 N .
LMSE(CO)"‘E Ve{go . E y [LMSE(Di,j [YO])+LMSE(D~L,]'[ZO])]7
i€{0,1} j=

&)

where bl ;[Yo] denotes the information-rich coefficients of
ZA)@ j;and Zj is a subset randomly sampled from the com-
plement set f)o \ Yy. We ensure that the size of Z;, equals to
|Yo| to provide supervision for network predictions at these
coordinates, where this approach guarantees that less impor-
tant coefficients receive an equal amount of supervision.

Efficient Loss Computation. For efficient code compi-
lation in PyTorch, we utilize a fixed-size binary mask to
represent the coordinate set. This allows us to calculate the
MSE loss by masking both the generation target and network
prediction, eliminating the need for irregular operations.

3.4. Conditional Generation

Our framework is versatile and can be extended beyond
unconditional generation to accommodate conditional gen-
eration across various modalities. To achieve this, we adopt
a different encoder for each modality that transforms a given
condition into a sequence of latent vectors. Subsequently,
these vectors are injected into the generator using multi-
ple conditioning mechanisms. We also use a classifier-free
guidance mechanism (Ho & Salimans, 2021), which has em-
pirically demonstrated greater effectiveness in conditional
settings. Note that our designed generator with architecture
details, together with our formulated condition encoders and
conditioning mechanisms, are reported in Appendix B.

It is worthwhile to note that due to space limit, please refer
to Appendices A and B for the full technical details of the
methodology, presented with various illustrative figures.

4. Results

4.1. Experimental Setup

Dataset. We compile a new, extensive dataset that fea-
tures over 10 million 3D shapes aggregated from 18 dif-
ferent publicly-available sub-datasets: ModelNet (Vish-
wanath et al.,, 2009), ShapeNet (Chang et al., 2015),
SMPL (Loper et al., 2015), ThingilOK (Zhou & Jacob-
son, 2016), SMAL (Zuffi et al., 2017), COMA (Ranjan
et al., 2018), House3D (Wu et al., 2018), ABC (Koch et al.,
2019), Fusion 360 (Willis et al., 2021), 3D-FUTURE (Fu
et al., 2021), BuildingNet (Selvaraju et al., 2021), Deform-
ingThings4D (Li et al., 2021), FG3D (Liu et al., 2021),
Toys4K (Stojanov et al., 2021), ABO (Collins et al., 2022),
Infinigen (Raistrick et al., 2023), Objaverse (Deitke et al.,
2023), and two subsets of ObjaverseXL (Deitke et al., 2023)
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(Thingiverse and GitHub).

For the data division, we randomly split each sub-dataset
into two segments: a training set, which includes 98% of the
shapes, and a testing set, which contains the remaining 2%.
We then assembled the ultimate training and testing datasets
by merging these segmented sets from each sub-dataset.

For every shape, we produced both a Truncated Signed Dis-
tance Function (TSDF) and its corresponding wavelet-tree
representation to facilitate model training. Note that this
data pre-processing is one-time and highly parallelizable,
allowing for the conversion of 10 million data points in
less than one day using 40,000 CPUs, which is highly effi-
cient for large-scale datasets. Also, for tasks that require
conditional generation, we prepared a range of additional
inputs to support these activities. Specifically, (i) Image
inputs. We randomly sampled 55 pre-defined camera poses
and rendered 55 images for each object according to these
poses, using the scripts provided by (Jun & Nichol, 2023).
(ii) Voxel inputs. We prepared two voxel grids (163 and
323) per 3D object. (iii) Point cloud input. We randomly
sampled 25,000 points on the surface of each 3D shape.

Training Details. We train our shape model Make-A-Shape
using the Adam Optimizer (Kingma & Ba, 2014) with a
learning rate of 1e~* and a batch size of 96. To stabilize the
training, we employ an exponential moving average with
a decay rate of 0.9999, in line with existing 2D large-scale
diffusion models (Rombach et al., 2022). Our model is
trained on 48 x A10G with 2M-4M iterations, depending
on the input condition. Altogether, six different models
were trained from scratch, each on a unique type of input:
single-view images, multi-view images, voxels (162), voxels
(32%), point clouds, and an unconditional model that does
not require any specific condition. Each model is trained
over 20 days, amounting to around 23,000 GPU hours.

Evaluation Dataset. For qualitative evaluation, we utilized
the testing set shapes to provide the visual results (~ 2%
of shapes). Due to computational constraints, for quantita-
tive evaluation, we randomly selected 50 shapes from the
test set of each sub-dataset. This set-aside collection is de-
noted as the “Our Val” dataset and will be used throughout
the remainder of the paper. To further evaluate the cross-
domain generalization capability of our model to new and
unseen data, we also conducted evaluation on the entire
Google Scanned Objects (GSO) dataset that is not part of
our model’s training data.

Evaluation Metrics. To assess our model’s performance
on conditional tasks, we use these three metrics: (i) Inter-
section over Union (IoU), a metric that quantifies the volu-
metric overlap by calculating the ratio of the intersection to
the union of voxelized volumes; (ii) Light Field Distance

\-o
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Figure 4. Visual comparisons for the Image-to-3D generation task
clearly reveal that our model largely outperforms three major gen-
erative models; see the high-frequency geometric details (row 2)
and patterns (row 4) captured by our model. More results are
illustrated in Figure 5.

(LFD) (Chen et al., 2003), a metric that evaluates the resem-
blance between two sets of images rendered from diverse
viewpoints; and (iii) Chamfer Distance (CD), a metric that
quantifies the bidirectional distances between two sets of
points, which are sampled from the generated shape and the
corresponding ground-truth shape. For the unconditional
task, we ablate the generative quality (Table 5) using the
Frechet Inception Distance (FID) (Heusel et al., 2017), fol-
lowing (Zhang et al., 2023), to compare the rendered images
of the generated shapes against a reference set to evaluate
the geometric plausibility of these shapes.

4.2. Quantitative Comparison with Existing Large
Generative Models

In this experiment, we compare our method against existing
large image-to-3D generative models (Nichol et al., 2022;
Jun & Nichol, 2023; Liu et al., 2023b) conditioned on single-
view image and multi-view images. Also, we compare with
OpenLRM (He & Wang, 2024), an open-sourced implemen-
tation of a concurrent work, LRM (Hong et al., 2024).

The results in Table 3 reveal that our single-view model
surpasses all the existing baselines (Point-E (Nichol et al.,
2022), Shap-E (Jun & Nichol, 2023), and One-2-3-45 (Liu
et al., 2023a)) by a significant margin for all three metrics
(IoU, LFD, and CD). Note that LFD is a rotation-insensitive
metric, indicating that the effectiveness of our approach
does not depend on how the generated shapes are aligned
with the ground-truth shapes. For the concurrent work
OpenLRM (He & Wang, 2024), our model demonstrates
similar or better performance for different metrics, despite
that it has only one tenth of the model parameters (25M
vs 260M, see Table 4), highlighting its high efficiency and
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Table 3. Quantitative evaluation of the Image-to-3D task shows that our single-view model surpasses all the existing baselines (Point-E,
Shap-E, and One-2-3-45), achieving the highest IoU, lowest LFD, and lowest CD. At the same time, our framework achieves a comparable
performance with OpenLRM (He & Wang, 2024), an open-source implementation of the concurrent work, LRM (Hong et al., 2024). Also,
our multi-view model further enhances the performance, when more views are available. See also Table 4 for the model size comparison.

Method GSO Dataset Our Val Dataset
LFD | IoU 1 CDh | LFD | ToU 1 CDh |

Point-E (Nichol et al., 2022) 5018.73 0.1948 0.02231 6181.97 0.2154 0.03536
Shap-E (Jun & Nichol, 2023) 382448 0.3488 0.01905 4858.92 0.2656 0.02480
One-2-3-45 (Liu et al., 2023a) | 4397.18 0.4159 0.04422 5094.11 0.2900 0.04036
OpenLRM (He & Wang, 2024) | 3198.28 0.5748 0.01303 4348.20 0.4091 0.01499
Ours (single-view) 3406.61 0.5004 0.01748 4071.33 0.4285 0.01851

Ours (multi-view) \ 1890.85 0.7460 0.00337 2217.25 0.6707 0.00350
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Figure 5. Our single-view conditioned generation model is able
to yield a wide variety of shapes with higher fidelity than others
(Figure 4). It adeptly generates both CAD objects (e.g., screws and
chairs) and organic forms (e.g., humans, animals, and plants).

effectiveness. Further, Figure 4 illustrates that our approach
effectively captures both the global structures and the fine
local details, along with more complex geometric patterns,
outperforming the baseline methods by a large margin.

Upon incorporating three additional views, our multi-view
model demonstrates notable enhancements in performance,
as evidenced in Table 3 and Figure 4. The improvement in
performance can be attributed to the augmented informa-
tional input derived from multiple views. However, it is
crucial to acknowledge that, even with the inclusion of four
images, the visual information accessible remains somewhat
restricted for achieving a fully detailed and comprehensive
reconstruction of a shape.

Both the qualitative and quantitative comparisons demon-
strate the effectiveness of our wavelet-tree representation
and adaptive training scheme. Additionally, we provide a
comparison of the parameter counts of different image-to-
3D generative models. As illustrated in Table 4, our pro-
posed framework demands significantly less parameters than

Table 4. Comparison on the number of model parameters for differ-
ent methods. Note that “M” stands for million and the parameter
count of DMV3D (Xu et al., 2024) is not available.

Methods

| # of parameters

Point-E (Nichol et al., 2022) ~40M
Shap-E (Jun & Nichol, 2023) ~300M
One-2-3-45 (Liu et al., 2023a) ~0.5M
Instant3D (Li et al., 2024) ~500M
LRM (Hong et al., 2024) ~500M
OpenLRM (He & Wang, 2024) ~260M
Ours (single-view/multi-view) ~25M

most of the compared baselines, while achieving a compa-
rable or superior performance. Overall, these comparisons
highlight the effectiveness and the generation capability of
Make-A-Shape over the existing works.

4.3. Conditional generation

Image-to-3D. The qualitative results for Image-to-3D Gen-
eration tasks are showcased in Figure 5, demonstrating our
method’s capability to generate objects across a broad spec-
trum of categories. . In addition, Figure 6 shows that our
method can generate diverse objects in the multi-view set-
ting. The produced results exhibit a noticeable alignment
with the images, which is more pronounced compared to
the single-view approach.

Point-cloud-to-3D. In this experiment, we aim to process a
point cloud input and generate a Truncated Signed Distance
Function (TSDF) that faithfully follows its geometry. To do
this, we utilize PointNet (Qi et al., 2017a) combined with a
Permutation Invariant Set Attention (PMA) block (Lee et al.,
2019) as our encoder, which takes 25,000 points during the
training phase and can accommodate an arbitrary number
of points during inference. The additional visual results in
Figure 7 further underscore our method’s consistent perfor-
mance across a diverse range of object categories. Also, a
comprehensive quantitative and qualitative analysis of the
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Figure 6. Our multi-view conditioned generation model can effec-
tively utilize the available multi-view information to create diverse
and coherent shapes with nontrivial topologies, exemplified by the
CAD objects shown in the first two rows.

number of input points is detailed in Appendix C.

Voxel-to-3D. Next, we explore creating a high-resolution
Signed Distance Function using low-resolution voxel in-
puts at resolutions of 163 and 323. Figure 8 showcases
the outcomes achieved by our model, emphasizing its capa-
bility to generate outputs with smooth, clean surfaces and
enhanced geometric precision. This capability is particu-
larly remarkable when dealing with complex cases, such
as disjoint objects and comprehensive scene-level inputs.
To underline the superiority of our method, we conduct a
detailed comparison against conventional techniques used
for transforming low-resolution voxels into meshes, both
quantitatively and qualitatively; please refer to Appendix C.

4.4. 3D Shape Completion

Further, our model can be adapted for the zero-shot shape
completion task, i.e., to create a complete 3D shape con-
ditioned on an incomplete 3D input. To do this, we adopt
the approach (Lugmayr et al., 2022) with the missing re-
gion as the input mask. Figure 9 demonstrates the semantic
meaningful (first and third rows), highly consistent (body
region of the animal in the fifth row), and diversified shape
completion capability of our approach.

4.5. Ablation Studies

In this section, we present ablation studies, with further
detailed investigations available in Appendix D.

Ablation of Wavelet Tree Representation. We begin by
assessing the efficacy of our wavelet tree representation.
We do this by comparing it to a baseline representation
that relies exclusively on the coarse coefficient Cy as de-
scribed in (Hui et al., 2022), omitting the inclusion of the

) 2500 Points —

o0 1 jml

& « &
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A Y
v o® " *
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Figure 7. Point-cloud-conditioned generation. Our model is ca-
pable of producing shapes with intricate geometric details while
preserving the complex topologies given in the input point clouds.

Table 5. Ablation studies conducted on the “Our Val” dataset. Our
approach with the wavelet tree representation alongside an adaptive
training strategy outperforms the following baselines (i) the use of
only the coarse coefficient for representation, and (ii) two distinct
MSE training strategies.

Settings Metrics
g LED] IoU%
Coarse component only (Hui et al., 2022) ‘ 285541  0.5919
MSE 319149 05474
subband-based MSE 2824.28  0.5898
Ours \ 2611.60  0.6105

detail coefficients in Dy and D;. The results presented in
the first and last rows of Table 5 underscore the improved
representational capacity of our wavelet tree representation
compared to the baseline that uses only the C coefficients.
This demonstrates the significant advantage of integrating
detail coefficients, which allows for a more effective capture
of the data’s intricacies and complexities.

Ablation of Adaptive Training Strategy. Further, to show
the effectiveness of our subband adaptive training strategy,
we conduct a comparison against two baseline training ob-
jectives. Note that we adopt our wavelet tree representation
in these two baselines for a fair comparison. (i) MSE: we
apply an MSE (Mean Squared Error) loss to simultaneously
optimize the entire coefficients volume, which includes
{Cy, Dy, D1 }, aligning with the objective used in standard
diffusion models (Ho et al., 2020). (ii) Subband-based MSE,
we individually compute MSE losses on Cy, Dy, and D,
respectively, and take an average of the three terms. As
indicated in Table 5, both of the two strategies using the
MSE loss lead to a notable performance drop, demonstrat-
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Figure 8. Our voxel-conditioned generative model excels in creat-
ing high-quality outputs from low-resolution inputs, imaginatively
introducing various plausible geometric patterns. This is exempli-
fied by the creation of holes in the crown, which are obviously not

available in the initial inputs.

ing the effectiveness of our adaptive training strategy. Note
that in (Hui et al., 2022), an additional detail predictor is
adopted to regress (predict) the detail coefficients Dy based
on the coarse coefficients. We empirically find that this strat-
egy does not converge well even in a subset of our dataset
(all categories of ShapeNet (Chang et al., 2015)), thus not
adopting it in our setting.

5. Limitations and Future Works

Our approach exhibits the following limitations:

(i) While our unconditional model is capable of generating
a diverse variety of shapes from various sub-datasets,
it can not ensure a balanced representation of objects
across different categories during sampling. Hence,
the learned 3D shape distribution is inherently imbal-
anced, evident in the disproportionate representation of
CAD models. We can utilize large zero-shot language
models like ChatGPT for annotating object categories,
enabling the application of data augmentation methods
to balance training data according to these categories.

(ii)) Our generation network, trained on a mix of sub-
datasets, does not utilize the category label as an extra
condition. For this reason, our unconditional model
may occasionally generate implausible shapes (mixing
shapes from different sub-datasets). Identifying and
mitigating these undesired shapes represents an inter-
esting direction for future research. It is particularly
intriguing to consider the development of data-driven
metrics for assessing the visual plausibility of gener-
ated 3D shapes, especially in the context with multiple
categories.
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Figure 9. From partial inputs (left), our generative model com-
pletes the missing regions in a coherent and semantically meaning-
ful way. Also, it can generate multiple variations of the completed
shapes (middle), many of which are significantly different from the
inputs (right), highlighting the diverse shape distribution learned.

(iii) At present, our primary focus lies in the direct gener-
ation of 3D geometry. To generate additional texture,
our approach can work with existing texture generation
approaches, such as (Richardson et al., 2023), to first
create the geometry and then generate the textures on
the geometry. Yet, an interesting direction for future
exploration involves generating textures together on
the geometry, with the aim of achieving this without
relying on computationally-expensive optimizations.

6. Conclusion

In summary, this paper introduces Make-A-Shape, a novel
3D generative framework trained on an extensive dataset of
over 10 million publicly-available 3D shapes. It can effi-
ciently generate a wide range of high-quality 3D shapes with
superior details and plausible structures in just 2 seconds
for most conditions. Our comprehensive experiments show-
case the model’s superiority in synthesizing high-quality
3D shapes across various challenging conditions, including
single/multi-view images, point clouds, and low-resolution
voxels, all while demanding minimal resources during train-
ing. Notably, our model not only quantitatively outperforms
existing baselines but also demonstrates zero-shot applica-
tions like partial shape completion. We acknowledge the
limitations of our model and outline potential future work
in Appendix 5. We believe Make-A-Shape will set the stage
for future research on large-scale 3D model training.
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Impact statement

While Make-A-Shape represents a significant advancement
in the field of 3D modeling, enabling the creation of detailed
shapes with unprecedented speed and quality, it also inherits
and potentially amplifies ethical challenges, common to the
existing generative models.

First, the use of a vast dataset of 10 million publicly-
available shapes, while instrumental in achieving high-
quality generation, introduces the risk of propagating exist-
ing biases or inadvertently, including sensitive or potentially
copyrighted material. Though our dataset selection process
aimed to be comprehensive and responsible, the sheer scale
and diversity of the data mean that unintended biases could
be encoded within the model, affecting the fairness and
neutrality of the generated outputs.

Moreover, the capability of Make-A-Shape to produce de-
tailed 3D models based on a variety of input modalities
raises concerns regarding the potential misuse of the technol-
ogy. In the wrong hands, such technology could be utilized
to create counterfeit products or other harmful objects with
relative ease. The fidelity of the generated shapes could also
contribute to creating highly realistic or deceptive materials,
posing challenges in areas such as copyright infringement,
privacy, and security.

Finally, while our model can serve as a powerful tool for
designers, architects, and artists, facilitating creativity and
innovation, it also poses the risk of automating tasks tra-
ditionally performed by human professionals. However,
it is also anticipated that the technology will democratize
access to high-quality 3D modeling, enabling growth and
improving accessibility for the creative industry.
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A. Wavelet-tree representation

To build our representation, we transform every 3D shape
in our dataset into a truncated signed distance function
(TSDF) with a resolution of 2562. Following the approach
in (Hui et al., 2022), we decompose the TSDF using a dis-
crete wavelet transform. In particular, we use biorthogonal
wavelets with 6 and 8 moments (Cohen, 1992).

Initially, we compute coarse coefficients Cj and detail coef-
ficients { Dy, D1, D2 }. This process, depicted in Figure 10,
involves three subsequent wavelet decomposition. In gen-
eral, each D; includes 2% — 1 subband volumes, where d
is the dimension of the original data. For simplicity, we
present our method using 2D illustrations, yet the actual
computation is performed in 3D with seven subband vol-
umes (instead of three subband images, in the 2D case)
of detail coefficients in each decomposition. We start by
converting the TSDF into C and its associated detail co-
efficients Dy = {Da2 0, D2 1, D2 2}. Then, we decompose
CQ into Cl and Dl = {D1,07D1,17D1,2}~ Finally, Cl is
decomposed into Cyy and Dy = {Dyg o, Do,1, Do 2}

Up to this point, the resulting representation is lossless, in
the sense that we can convert it back to a TSDF via inverse
wavelet transforms without loss of information.

Input

wn- @8 o 0. D
v v v v
Ci Diy D1y Dip
l v v v
Cy Doy Doy Dop

Figure 10. Wavelet decomposition of the input shape, represented
as a TSDF, recursively into coarse coefficients C; and detail coeffi-
cients {D; 0, D;,1, D; 2}. Note that in the 3D case, there will be
seven subbands of detail coefficients in each decomposition.

Figure 11 further illustrates how the relationships between
wavelet coefficients are exploited. Generally, each coarse
coefficient in Cy, referred to as a parent, and its associated
detail coefficients in Dg, known as children, reconstruct the
corresponding coefficients in C through the inverse wavelet
transform. This parent-child relation extends between Dy
and D1, and so forth, as shown by the arrows leading from
Dg to D1 in Figure 11. Additionally, coefficients sharing
the same parent are termed siblings. By aggregating all de-
scendants of a coefficient in Cy, we can construct a wavelet
coefficient tree or simply a wavelet tree, with the coefficient
in Cy serving as its root.

In Figure 12, we show our filtering procedure. For each
coefficient location, we examine the sibling coefficients
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Root Cy

Figure 11. Overview of Parent-child relation. A wavelet tree is
formed for each coefficient in C| as the root, with a coarser-level
coefficient as parent and the finer-level coefficients as children.

in the subbands Dy o, Do, 1, and Dy o, selecting the one
with the largest magnitude. We consider its magnitude
value as the measure of information for that coefficient
location. Next, we filter the top K coefficient locations with
the highest information content, as illustrated on the left of
Figure 12, and store their location coordinates (denoted as
X)) and associated coefficient values in Dy (denoted as DY),
along with their children’s coefficient values in D; (denoted
as D). These three quantities (X, Dy, D7) form the detail
component in our wavelet-tree representation (Figure 12 on
the right).

Dy Dy 1 Dy s ,
1
= Xo D Dy
(1] Ll ARTE m
Dy Dy, Dy 2 T [ |
i i ; L2 Y2
[ |
i TKYK
] | | ]

Figure 12. The detail component part of our representation. We
extract and pack informative coefficients from Dg and D1, indi-
cated in yellow boxes, along with their spatial locations to form
our representation’s detail component.

Finally, we need to effectively pack the irregular structure
of the detailed component for training a diffusion model.
Flattening the extracted coefficients and arranging CY, Dy,
and D; in a 2D grid naively creates a spatially large repre-
sentation, as shown in Figure 13 (left). We thus rearrange
sibling subband coefficients with their children in a channel-
wise manner, reshaping the Dy children from 2 x 2 x 1 to
1 x 1 x 4 format, as shown in Figure 13.
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Reshape Sibling
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Flatten Wavelet-tree Coefficients

Representation

Figure 13. Diffusible wavelet representation. First, we unpack and
flatten the coefficients in our wavelet-tree representation (left).
Then, we channel-wise concatenate sibling coefficients to reduce
the spatial resolution (right). Here we concatenate each coefficient
in C with its three children in Dy and the reshaped descendants
in D1 (each of size 1x1x4).

B. Architecture details

Figure 14 illustrates the network architecture of our genera-
tor. The main branch, highlighted by yellow boxes, adopts a
U-ViT architecture (Hoogeboom et al., 2023). The network
uses multiple ResNet convolution layers for downsampling
our noised coefficients into a feature bottleneck volume, as
shown in the middle part of Figure 14. Following this step,
we apply a series of attention layers to the volume. The
volume is then upscaled using various deconvolution layers
to produce the denoised coefficients. A key feature of our
architecture is the inclusion of learnable skip-connections
between the convolution and deconvolution blocks, which
have been found to enhance stability and facilitate more
effective information sharing (Huang et al., 2023).

Condition Latent Vectors. We deliberately convert all
input conditions into a sequence of latent vectors, which
we call condition latent vectors, to preserve the generality
of our conditioning framework. This approach eliminates
the need to devise new specific condition mechanisms to
diffusion model for each modality, thereby enabling our
framework to function seamlessly across various modalities.
Our encoder for different modalities are described below:

1. Single-view image. Given a rendered image of a 3D
model, we utilize the pre-trained CLIP L-14 image en-
coder (Radford et al., 2021) to process the image. The
latent vectors extracted from just before the pooling
layer of this encoder are then used as the conditional
latent vectors.

2. Multi-view images. We are provided with four im-
ages of a 3D model, each rendered from one of 55
predefined camera poses (selected randomly). To gen-
erate the conditional latent vectors, we first use the
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CLIP L-14 image encoder to process each rendered
image individually to produce an image latent vector.
Considering the camera poses, we maintain 55 train-
able camera latent vectors, each corresponding to one
camera pose and matching the dimensionality of the
latent vectors encoded by the CLIP image encoder. For
each encoded image latent vector, we retrieve the cor-
responding trainable camera latent vector based on the
camera pose of the image. This camera vector is then
added to each image latent vector in the sequence in
an element-wise fashion. Finally, the four processed
sequences of latent vectors are concatenated to form
the conditional latent vectors.

3. 3D point cloud. We utilize three Multi-Layer Percep-
tron (MLP) layers to first transform the given point
cloud into feature vectors like PointNet (Qi et al.,
2017a). These vectors are then aggregated using the
PMA block from the Set Transformer layer (Lee et al.,
2019), resulting in a sequence of latent vectors that
serve as the condition.

Voxels. We utilize two 3D convolution layers to pro-
gressively downsample the input 3D voxels into a 3D
feature volume. This volume is subsequently flattened
to form the desired conditional latent vectors.

Skip-Connections
| [ Bottleneck Volume l l

c c

Denoised

Deconv —p .
Blocks Coefficients

Noised
Coefficients

Conv
Blocks

Self-Attention
Self-Attention

Cross-Attentio
Cross-Attentio

MLPs + Pooling

Cross-Attention
Condition Latent Vectors

Figure 14. Our generator network progressively downsamples in-
put coefficients to a bottleneck feature volume (middle). This
volume goes through attention layers and deconvolution for up-
sampling to predict the denoised coefficients. If the condition
latent vectors are available, we simultaneously transform these
vectors and adopt them at three locations in our architecture: (i)
concatenating with the input noised coefficients (the green arrow);
(i1) conditioning the convolution and deconvolution blocks (the
blue arrows); and (iii) cross-attention with the bottleneck volume
(the red arrows).

Conditioning mechanism. When condition latent vectors
are available, we integrate them into our generation net-
work at three distinct locations in the U-ViT architecture,
as depicted in the bottom part of Figure 14. Initially, these
latent vectors are processed through MLP layers and a pool-
ing layer to yield a single latent vector (highlighted by the
green arrow in the left section of Figure 14). This vector is
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Figure 15. Our model demonstrates the capability to generate var-
ied results from a single input image, accurately resembling the
visible portions while offering diversity in unseen areas.

subsequently concatenated as additional channels of the in-
put noise coefficients. Second, following a similar process,
we convert condition latent vectors to another latent vector.
However, this vector is utilized to condition the convolution
and deconvolution layers via modulating the affine param-
eters of group normalization layers (Dhariwal & Nichol,
2021). This integration is represented by the blue arrows in
Figure 14. Lastly, to condition the bottleneck volume, an
additional positional encoding is applied to the condition
latent vectors in an element-wise fashion. These vectors are
then used in a cross-attention operation with the bottleneck
volume, as indicated by the red arrows in Figure 14.

C. Additional results

A gallery of our generation results from diverse input modal-
ities can be found in Figures 18, 19, 20, 21, 22.

Our model can produce multiple variations from a given con-
dition, as demonstrated in Figure 15 using single-view im-
ages. In addition to the correct reconstruction of the visible
input regions, our model can also create diverse and faithful
results in the occluded or invisible areas, as evidenced in
rows 2 and 4 of Figure 15. Note that all the quantitative
comparisons are conducted in “Our Val” dataset.

C.1. Number of Points.

We conduct an ablation study to assess how the quality
of generation is influenced by different sets of points, as
detailed in Table 6. Our findings reveal that an increase
in the number of points leads to improved IoU results on
our val set. Notably, even with sparse point clouds with as
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few as 5,000 points, our model achieves a reasonable IoU,
demonstrating the robustness of our method.

Table 6. The quantitative evaluation (on Our Val dataset) reveals
that our model’s performance is not significantly impacted by the
number of points of inputs. Even with inputs of 5000 points, it
manages to deliver reasonable reconstructions, though trained on
25000-point inputs.

Metrics Number of Points
! 2500 5000 10000 25000
LFD | | 1857.84 1472.02 1397.39 1368.90
IoU 1 0.7595 0.8338 0.8493 0.8535

This analysis is also visually illustrated in Figure 16. Here,
we observe that certain details are lost when fewer points are
used, as evident in row 2. However, it’s worth mentioning
that, in general, our method performs well even with fewer
points.

C.2. Voxel Comparisons.

We further compare our method with traditional approaches
for converting low-resolution voxels to meshes. For the
baselines, we first employ interpolation techniques such as
nearest neighbor and trilinear interpolation, followed by the
use of marching cubes (Lorensen & Cline, 1998) to derive
the meshes. Importantly, our approach is the first large-scale
generative model to tackle this task. The quantitative and
qualitative results of this comparison are presented in Ta-
ble 7 and Figure 17. It is evident that, among the baseline
methods, trilinear interpolation outperforms nearest neigh-
bor, which is intuitively reasonable. Our method easily
surpasses both of these traditional methods in terms of IoU
and LFD metrics.

D. Ablation Study

Classifier-free Guidance. As previously mentioned, we
employ classifier-free guidance, as detailed in (Ho & Sali-

Table 7. Our method is quantitatively compared with traditional
voxel upsampling techniques, specifically nearest neighbour
upsampling and trilinear interpolation, followed by marching
cubes (Lorensen & Cline, 1998) for mesh extraction. Our genera-
tive model significantly surpasses these two baselines in both Light
Field Distance (LFD) and Intersection Over Union (IoU) metrics.

Setting | Methods | LFD|  IoU?
Ours 2266.41  0.687

Voxel (16%) | Nearest | 6408.82 0.2331
Trilinear | 6132.99 0.2373

Ours 1580.98  0.7942

Voxel (32%) | Nearest | 397049 0.4677
Trilinear | 3682.83  0.4719
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Figure 16. Visual comparisons, based on the number of input points, highlight our model’s ability to robustly generate thin structures, like
the deer horn or the chair leg, with a reasonable number of points (> 5000).
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Figure 17. In comparison with meshes generated from interpola-
tion using nearest neighbor upsampling and trilinear interpolation,
our generation results display notably smoother surfaces.

mans, 2021), to enhance the quality of conditioned samples.
A crucial hyperparameter in this classifier-free guidance,
during inference, is the scale parameter or guidance weight,
denoted as w. This parameter plays a key role in managing
the trade-off between the generation’s fidelity to the input
conditions and the diversity of the generated output.

We experiment to explore the effect of the guidance weight
parameter on the quality of samples generated by various
conditional models. The guidance weight parameter was
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systematically adjusted in a linear progression from 1.0 to
5.0. It is important to note that, for efficient evaluation, an
inference timestep of 100 was consistently employed across
all experiments. The results of this study are presented in
Table 8.

Empirically, we observe that a guidance weight of 2.0 is
optimal for most conditional generation tasks. However,
when the model is conditioned on point cloud data, a lower
guidance weight of 1.0 yields better results. This contrasts
with the text-to-image scenarios, which typically require a
larger value for the guidance weight. We suspect this differ-
ence is attributable to the nature of the input conditions we
use, such as images and point clouds, which contain more
information and thus make it more challenging to generate
diverse samples compared to text-based inputs. Note that
we adopt these identified optimal values as fixed hyperpa-
rameters for all subsequent inferences in the remainder of
our experiments, as well as for the generation of qualitative
results.

Inference Time Step Analysis. Furthermore, we also pro-
vide a detailed analysis of the inference timesteps for both
our conditional and unconditional models. Specifically, we
evaluate the generation models under the same settings as
above but with varying timesteps, namely 10, 100, 500, and
1000.

Table 9 presents the quantitative results for our different
generative models using various time steps during infer-
ence. Specifically, we empirically find that a small time step
(10) suffices for conditions with minimal ambiguity, such as
multi-view images, voxels, and point clouds. As ambiguity
rises, the required number of time steps to achieve satisfac-
tory sample quality also increases. For the unconditional
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Table 8. Quantitative analysis of the performance of our condi-
tional generation models on different guidance weights.

Guidance Weight (w)

Model ‘ Metrics ‘ 1 2 3 4 5
Sinale-view LFD | | 4395.15 4071.33 4121.14 4192.30 4295.28
e ToU 7t 0.3706 0.4285 0.4348 0.4289 0.4202
Multi-view LFD | | 2378.48 2310.30 2413.18 2522.03 2639.69
IoU T 0.6322 0.6595 0.6488 0.6317 0.6148
Voxels (32) LFD | | 1701.17 1683.95 1769.93 1900.48 2029.59
ToU T 0.7636 0.7771 0.7659 0.7483 0.7323
Voxels (16) LFD | | 2453.69 2347.04 242640 2556.62 2724.72
ToU T 0.6424 0.6726 0.6614 0.6452 0.6289
Points LFD | | 1429.37 143295 1521.55 1658.03 1830.78
) ToU t 0.8380 0.8379 0.8207 0.8002 0.7781

Table 9. We quantitatively evaluate the performances of generation
models with different inference time steps.

Model ‘ Metrics 10 Infei%r(l)ce Time Ss(t)%p ® 1000
Sineleview | LFD 4 | 431223 407133 413614  4113.10
e IoUt | 04477 04285 04186 04144
Multiview | LD | 221725 231030 236915  2394.17
IoUt | 0.6707 0.6595 06514  0.6445
o3 | LFD| | 158098 1683.95 174448 176391
Voxels (327) ‘ IoUt | 07943 07771 07700  0.7667
Voxels (16 | LFD L | 226641 234704 237589 237342
oxels ToUT | 0.6870 0.6726  0.6620  0.6616
Point Cloud | LFD 4 | 136890 142937 1457.89 146891
u IoUT | 0.8535 08380 08283  0.8287
Unconditional | FID| | 37132 8525 7460  68.54

model, which has no condition, the optimal time step is the
maximum one (1000). Similarly to the guidance weight, we
consider the optimal time step as a hyper-parameter, which
is utilized in all experiments.
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Figure 18. Make-A-Shape is able to generate a large variety of shapes for diverse input modalities: single-view images (rows 1 & 2),
multi-view images (rows 3 & 4), point clouds (rows 5 & 6), voxels (rows 7 & 8), and incomplete inputs (last row). The resolution of the
voxels in rows 7 & 8 are 16 and 322, respectively. In the top eight rows, odd columns show the inputs whereas even columns show
the generated shapes. In the last row, columns 1 & 4 show the partial input whereas the remaining columns show the diverse completed
shapes.
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Figure 19. Shape generation conditioned on a single image.
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Figure 20. Shape generation conditioned on multiple views.
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Figure 21. Additional visual results for the voxel-to-3D application.
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Figure 22. Additional visual results for the pointcloud-to-3D application.
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