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Abstract

Recent advances in large language models
(LLMs) have enabled new agentic workflows
where multiple LLMs collaborate in special-
ized roles. Current approaches to designing
these workflows face key limitations: manual
design requires substantial human expertise,
while existing automated frameworks struggle
with optimization efficiency and task adaptabil-
ity. To address these challenges, we present
AutoSwarm, a novel system that trains an LLM
orchestrator through reinforcement learning to
generate executable code. The generated code
can be directly executed in a workflow run-
time environment, with the orchestrator learn-
ing end-to-end through a reward mechanism
that optimizes both performance and efficiency.
AutoSwarm outperforms existing automated
workflow methods, achieving a 1.91% accuracy
improvement on reasoning benchmarks. The
system also shows robust generalization, with a
1.25% performance gain on out-of-distribution
tasks. Our work explores a promising direction
for learning-based workflow orchestration. !

1 Introduction

The emergence of large language models (LLMs)
has revealed a potential pathway toward artificial
general intelligence (AGI), driven primarily by the
success of scaling laws (Brown et al., 2020; Hoft-
mann et al., 2022; Chowdhery et al., 2022). By sys-
tematically expanding model parameters, training
data volume, and computing resource, LLMs have
exhibited remarkable reasoning capabilities that not
only approach but in some cases exceed human-
level performance (OpenAl, 2024a; DeepSeek-
Al, 2024; Phan et al., 2025). However, as high-
quality pretraining data sources become increas-
ingly exhausted (Abdin et al., 2024; Alemoham-
mad et al., 2023), the traditional pre-training scal-
ing paradigm faces fundamental limitations. The

!Codes and datasets are available at https://anonymous.
4open.science/r/Agentic-7EEA.

Workflow Optimization AutoSwarm
via LLM Optimizer
Orchestrator LLM - >
Workflow > 0220 =
I o RL Training

Workflow Code

Workflow:

" “python
def create_workflow() ->
generator_1 = Agent(instruc-

|
|
|
|
|
|
|
|
|
|
i
| gjﬂof
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

o
X

Executing || Textual
Evaluation || gradient

@ Workflow Runtime

® @

LLM Optimizer

@ Reward Verifier
| G

Policy Gradient

Figure 1: Comparison between existing automated
workflow optimization via LLM optimizer (left) and
AutoSwarm (right). Existing approaches rely on it-
erative refinement through LLM-based optimization,
which can be inefficient and limited in generalization.
In contrast, AutoSwarm employs reinforcement learn-
ing to train an LLM orchestrator that generates complete
workflows in a single forward pass, enabling continuous
improvement and better adaptation to novel scenarios.

data scarcity has prompted researchers to actively
explore alternative paradigms to amplify LLM in-
telligence. Recent advances span multiple direc-
tions: large-scale reinforcement learning (OpenAl,
2024b; DeepSeek-Al, 2025; Kimi-Team, 2025),
test-time enhancement through search algorithms
like Monte Carlo Tree Search (MCTS) (Zhao et al.,
2023; Zhang et al., 2024a; Jiang et al., 2024), and
agentic workflows that leverage collective intelli-
gence through role-based collaboration (Li et al.,

2023; Wu et al., 2023). )
Among these approaches, agentic workflows rep-

resent a promising direction for enhancing LLM
capabilities. The orchestration of multiple agents
in complementary roles enables emergent cogni-
tive capabilities through their structured interac-
tions and collaborative problem-solving, analogous
to the collective intelligence observed in human
organizations. Current approaches to designing
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such workflows can be categorized into two main
paradigms: (1) manual design by human experts,
which offers precise control but suffers from lim-
ited scalability and requires substantial human ex-
pertise and effort; and (2) automated optimiza-
tion frameworks such as GPTSwarm (Zhuge et al.,
2024), ADAS (Hu et al., 2024), EvoMac (Hu et al.,
2025) and AFLOW (Zhang et al., 2025). These
automated approaches share a fundamental design
principle: they employ LLMs as optimization en-
gines to iteratively improve workflows by using
feedback from execution outcomes and making ad-
justments accordingly. (See Figure 1 left)

However, these automated workflow design ap-
proaches suffer from several limitations. First, the
effectiveness of LLMs in optimizing workflows
solely through textual gradient is questionable, par-
ticularly considering that LLMs likely lack train-
ing data in workflow optimization scenarios. Sec-
ond, using LLMs as optimizers requires multiple
steps of discrete optimization within the search
space, resulting in suboptimal efficiency. Most crit-
ically, these systems are fundamentally limited to
searching for workflows within predefined prob-
lem subsets, and cannot generalize beyond their
initial design. Unlike learning-based approaches,
they lack the capability to leverage training data
to improve their workflow optimization abilities
over time, making them unable to learn and adapt
to new scenarios or accumulate experience across
different workflow optimization tasks.

To overcome existing limitations, we introduce
AutoSwarm, a system that employs an LLM as
an orchestrator to adaptively generate workflows
based on user inputs. Specifically, we implement
a Python-based workflow framework where the or-
chestrator LLM generates executable code defining
the roles, dependencies, and execution logic of mul-
tiple specialized LLMs. This generated code can be
directly executed in our implemented sandbox en-
vironment to obtain workflow outputs. We design
a comprehensive reward function based on output
correctness and workflow efficiency, and utilize re-
inforcement learning to optimize the orchestrator’s
workflow generation capabilities.

Our proposed AutoSwarm offers several key
advantages: (1) it enables end-to-end learning of
workflow generation strategies through direct op-
timization of execution outcomes, (2) it maintains
efficiency by generating complete workflows in
a single forward pass rather than through itera-
tive refinement, and (3) it accumulates experience

across tasks to continuously improve its workflow
design capabilities, allowing for better generaliza-
tion to novel scenarios. By combining the flexibil-
ity of LLM-based generation with the systematic
optimization capabilities of reinforcement learning,
AutoSwarm represents a significant step forward
in automated workflow design.

Our extensive experiments demonstrate the ef-
fectiveness of AutoSwarm across multiple dimen-
sions. When evaluated on five mathematical bench-
marks, AutoSwarm achieves an average accuracy
of 47.36%, outperforming current state-of-the-art
automated workflow design approaches by 1.91%.
The system also shows strong generalization ca-
pabilities, successfully transferring its learned or-
chestration strategies to various out-of-distribution
domains, with consistent improvements averaging
1.25% over baseline models. Through detailed anal-
ysis of training dynamics and case studies, we ob-
serve the orchestrator’s evolution from basic linear
workflows to sophisticated, problem-specific archi-
tectures, demonstrating its ability to learn and adapt
complex workflow optimization strategies through
reinforcement learning.

2 Methods

2.1 Preliminaries
Workflow Definition We formally define a work-
flow W as a directed acyclic graph A = (M U
1,E), where language models serve as nodes
and | marks the workflow end. The set M =
{My,...,M,} represents specialized language
models that write outputs to a shared memory S.
The edge set £ represents model dependencies,
where (M;, M;) € € indicates M; executes after
M; completes. For any M; € M without outgoing
edges, we add (M;, L) € £. The workflow termi-
nates at | and returns its predecessor’s output.
Each model M; € M is defined by (p;,7;),
where prompt p; defines the LLM’s role-specific
instructions and temperature 7; controls sampling
randomness.

Inter-Model Communication The workflow im-
plements a centralized shared memory (scratch-
pad) S that maintains contextual information across
models. Unlike prior work (Zhang et al., 2025)
that only passes final results between models, the
complete reasoning process of each model is pre-
served in S, enabling subsequent models to build
upon their predecessors’ reasoning chains. While
questions about the scalability of this shared mem-
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Figure 2: The architecture of AutoSwarm enables dynamic workflow synthesis through reinforcement learning.
An orchestrator LLM generates executable workflow code, which is executed by specialized executor LLMs.
The system improves through reinforcement learning, with the orchestrator receiving rewards based on solution

correctness and workflow efficiency.

ory architecture exist, they are beyond this paper’s
scope.

Overview AutoSwarm introduces a novel ap-
proach to LLM-based workflow synthesis by train-
ing an LLM orchestrator through reinforcement
learning. As illustrated in Figure 2, the system con-
sists of three key components: (1) a code-based
workflow framework for generating executable
Python code, (2) a resource pool of executor LLMs
for computation, which are instantiated as work-
flow nodes based on the orchestrator-generated
code, and (3) a reinforcement learning framework
that optimizes the orchestrator. Given an input
problem, the orchestrator generates workflow code
to coordinate multiple specialized LLMs, which is
then executed across the resource pool. Through re-
wards based on solution correctness and efficiency,
the orchestrator learns to generate increasingly ef-
fective workflows over the training process.

2.2 LLM-Driven Workflow Synthesis

AutoSwarm introduces a novel meta-programming
paradigm where a specialized orchestrator LLM
O dynamically generates executable code that ex-
presses problem-specific workflows. Given an
input problem z € X from the problem space,
AutoSwarm leverages orchestrator LLM O : & —
W, where W represents the executable Python
code of the workflow W.

Workflow Code Generation The orchestrator
LLM O generates Python code that implements
workflows using pre-defined code framework F,
which provides two core classes: Agent and

Workflow. The Agent class encapsulates each lan-
guage model’s characteristics, including its prompt
pi, temperature 7;, and dependency relationships
e; with other models. The Workflow class orches-
trates the execution logic outlined in Section 2.1,
managing the directed flow of information between
models.

Specifically, given a input problem, the orches-
trator LLM acts as a meta-programmer, analyz-
ing the problem and synthesizing appropriate code.
The orchestrator LLM combines the following com-
ponents into its context:

* Framework Code F - The core classes and utili-
ties that serve as building blocks for the generated
workflow code

* Orchestrator Instruction /o - Specific guidance
for the orchestrator on how to construct the work-
flow code

» User Query z - The specific problem that needs
to be solved using the workflow

The orchestrator LLM then generates the
executable workflow code by implementing a
create_workflow function that will return a
Workflow object, which can be formulated as:

W = O(Context(F, Ip, x)) (1

Workflow Runtime After the Orchestrator LLM
generates the workflow code W for a specific prob-
lem, the code is delegated to a resource pool con-
taining multiple executor LL.Ms for actual execu-
tion. The architecture of AutoSwarm mirrors es-
tablished distributed computing frameworks like



Algorithm 1 Inference Procedure of AUTOSWARM

Require:
1: User query x € X
2: Framework code F
3: Orchestrator LLM O and its instruction /o
4: Pool of executor LLMs P
Ensure: Final workflow output
Phase I: Workflow Code Generation
function GENWORKFLOW(x, F, [, O)

compose

5:

6: context «—— Context(F, [o, x)
7 W < O(context)
8
9

return YV > Workflow Code
: end function
Phase II: Workflow Execution

10: function EXECUTEWORKFLOW (W, P)

11: S+ 10 > Shared scratchpad
12: W instantiation W

13: M <« InitializeModels(W)
14: ready <+ GetWorkflowStartModel(1V)
15: while ready # () do

16: for all M, € ready in parallel do
17: executor < GetExecutor(P)

18: input < Preparelnput(M;, S)
19: output < executor.Run(input)
20: if IsTerminalNode(W, M;) then
21: return output

22: end if

23: UpdateMemory(S, M;, output)
24 end for

25: ready < GetNextModels(W, M)

26: end while
27: end function

Spark, where the Orchestrator LLM assumes a man-
agement role analogous to a master node - handling
high-level tasks like workflow decomposition and
orchestration - while the computational workload
is efficiently distributed across the executor LLMs
that act as worker nodes. This architecture achieves
enhanced reasoning capabilities through its syner-
gistic combination of high-level workflow planning
and parallel execution, while maintaining efficient
resource utilization.

AutoSwarm Inference Procedure Algorithm 1
formalizes the complete inference procedure of
AutoSwarm, which consists of two main phases
outlined above. During the workflow code gen-
eration phase, the orchestrator LLM analyzes the
input problem and generates executable workflow
code using the provided framework. Subsequently,
in the workflow execution phase, the generated
workflow is instantiated and executed across the
executor LLM pool, with results aggregated in the
shared memory space until the terminal node is
reached.

2.3 Orchestrator Reinforcement Learning

In this section, we present our reinforcement learn-
ing framework that enables systematic training
of workflow orchestrators. The framework con-
sists of two key components: (1) a reward mech-
anism balancing correctness and efficiency (Sec-
tion 2.3.1), and (2) an end-to-end training pipeline
using the group-based policy optimization (GRPO)
algorithm (Shao et al., 2024) (Section 2.3.2). Be-
low we detail these components.

2.3.1 Reward Modeling for Orchestrator

The reward signals used for training orchestrator
LLM O are derived from both workflow correct-
ness and solution efficiency.

Workflow Correctness Reward A workflow’s
correctness is evaluated through a two-stage veri-
fication process: (1) workflow validity check and
(2) execution result verification. The correctness
reward 7o (z, VW) for workflow W is defined as:

1 if valid(W) A W(z) = y*

Feor(z, W) = { —0.5  if validW) A W(z) # y*
-1 if =valid(W)

(2)

The workflow validity (valid(W)) is checked
using a Python interpreter with predefined rules, in-
cluding syntactic correctness, architectural patterns
compliance, and runtime limit constraints. For
valid workflows, the execution results are then com-
pared against ground truth answers (y*) through
rule-based verification.

Workflow Efficiency Reward The efficiency re-
ward 7efrey (2, W) is formulated as:

77 lf |M| > Mmax
Teffcy = | & Sin2( 27\'1‘\;:,1 ) if |M| < Mmax A Tcor(-’lf, Ww)=1
0 if M| < Muax A Teor(z, W) # 1

©))

where |M)| is the number of models, M,y is
the maximum allowed model count, and « and
are hyperparameters. The sinusoidal decay func-
tion maintains stable gradients while optimizing for
efficiency as a secondary objective to correctness.

Composite Reward Function The final reward
combines correctness and efficiency:

r= rcor(xy W) + )\Teffcy(xy W) 4

where )\ controls the trade-off between correctness
and efficiency.



2.3.2 Optimizing the Orchestrator Policy

With our designed reward defined in Equation (4)
that jointly optimizes solution correctness and re-
source efficiency, we optimize the orchestrator us-
ing GRPO as our training algorithm, which of-
fers an alternative to Proximal Policy Optimization
(PPO) (Schulman et al., 2017). While proven effec-
tive by many previous research efforts (DeepSeek-
Al, 2025; Kimi-Team, 2025), GRPO eliminates the
need for a critic to estimate the value function. In-
stead, it uses the average return of multiple sampled
outputs, produced in response to the same question,
as the baseline.

Specifically, for each input user problem
x, GRPO samples a group of workflow code
W1, Wa, ..., Wg} from the old policy 6o,
which represents the parameters of orchestrator
LLM O in the previous policy iteration. Each work-
flow code represents a different approach to decom-
posing and solving the given problem, potentially
varying in their model composition, dependency
structure, and resource utilization patterns. The or-
chestrator then optimizes its policy by maximizing
the following objective:

Laorro(0) = E:wD,{Wi}?:lN@old

LT . meWilz) &
G ; [mm (7r9(‘|d (Wilz) Aile),

Cllp (%, 1-— €, 14+ 6) Al(ﬂj)) — ﬂDKL:|
(&)

s 0;|q o 0i|q
b = T - S o
where D is the distribution of RL training data, €
and [ are hyper-parameters, and A; denotes the
group-normalized advantage, computed using a
group of rewards corresponding to the output work-

flow codes within each group:
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3 Experiments
This section investigates three research questions:

* RQ1: How does AutoSwarm compare to existing
workflow orchestration methods? (Section 3.1)

* RQ2: How effective is our Orchestrator versus
state-of-the-art LL.Ms, and how well does it gen-
eralize? (Section 3.2)

* RQ3: How does the Orchestrator evolve during
training? (Section 3.3)

Implementation Details We choose Qwen2.5-
Coder-32B-Instruct as the base model for the rein-
forcement learning of the orchestrator. The GRPO
algorithm is implemented upon the OpenRLHF
framework. We sample 8 responses for each query
in GRPO. Each episode comprising 1024 samples.
We utilize a training batch size of 128 and optimize
using a learning rate of 5e-7. The reinforcement
learning process exhibits convergence at approxi-
mately 90 steps, with reward signals reaching satu-
ration. The checkpoint at step 96 was selected for
subsequent evaluation experiments. Comprehen-
sive experimental parameters and hyperparameter
settings are detailed in Appendix A.

Workflow Execution Environment We utilize
Qwen2.5-7B-Instruct as the executor LLM. Dur-
ing the RL training process, we form an executor
resource pool consisting of 16 executor LLLM in-
stances. While obtaining workflow execution feed-
back accounts for approximately 15% of the time
in a complete RL training step, this overhead can be
reduced through increased parallelization or over-
lapping with other RL steps to achieve improved
efficiency.

RL Data Construction We sampled 3,000 prob-
lems from the MATH500 dataset’s training set for
RL training, following these sampling criteria: The
Executor LLM must achieve at least one correct
answer in 16 repeated sampling attempts with a
temperature of 0.6, while maintaining an accuracy
rate below 0.9. This ensures that the problems are
solvable by the Executor LLM while still present-
ing sufficient challenge.

3.1 Comparison on Workflow Optimization

Baselines We evaluate AutoSwarm by compar-
ing it with both traditional and state-of-the-art ap-
proaches. For traditional methods, we include
Chain-of-Thought prompting (CoT) (Wei et al.,
2023), Self-Consistency (Wang et al., 2023), and
more advanced techniques like MultiPersona De-
bate (Wang et al., 2024b), Self-Refine (Madaan
et al., 2023) and MedPrompt (Nori et al., 2023).
Additionally, we benchmark against recent auto-
mated workflow optimization frameworks includ-
ing ADAS (Hu et al., 2024) and AFLOW (Zhang
et al., 2024b) to provide a comprehensive compari-
son across the spectrum of existing solutions.



Table 1: Comparison of AutoSwarm with existing workflow design methods. Results show accuracy (%) on

mathematical benchmarks.

Method Benchmarks Av
MATH500 AIME 24 OlympiadBench AMC 23 Minerva Math &
CoT (Wei et al., 2023) 74.40 13.33 37.19 57.50 30.51 42.59
CoT SC (Wang et al., 2023) 75.60 16.67 38.37 60.00 31.62 44.45
MedPrompt (Nori et al., 2023) 74.80 13.33 37.78 60.00 31.25 43.43
MultiPersona (Wang et al., 2024b) 75.80 16.67 38.67 62.50 31.99 45.12
Self Refine (Madaan et al., 2023) 72.80 13.33 36.44 55.00 29.78 41.47
ADAS (Hu et al., 2024) 71.80 6.67 35.85 55.00 29.41 39.75
AFLOW (Zhang et al., 2024b) 76.60 16.67 39.11 62.50 32.35 45.45
AutoSwarm (Ours) ‘ 78.20 20.00 40.15 65.00 33.46 47.36

Table 2: Comparison of AutoSwarm with state-of-the-art LLMs as workflow orchestrators. All methods use

Qwen2.5-7B-Instruct as the executor model.

Benchmarks

Orchestrator + Qwen2.5-7B-Instruct as Executor MATHS00 AIME24 OlympiadBench AMC23  Minerva Math ‘ Avg.
Qwen2.5-Coder-32B-Instruct (Hui et al., 2024) 74.20 10.00 36.89 55.00 31.25 41.47
DeepSeek V3 (DeepSeek-Al, 2024) 74.60 13.33 37.33 57.50 31.62 42.88
GPT-40 (OpenAl, 2024a) 74.80 10.00 37.48 57.50 30.88 42.13
Claude-3.5-Sonnet (Anthropic, 2024) 75.60 13.33 38.07 60.00 31.99 43.80
AutoSwarm (Ours) ‘ 78.20 20.00 40.15 65.00 33.46 ‘ 47.36

Implementation Details To ensure fair compar-
ison, we maintain identical model configurations
between our method and baselines. Specifically,
for both ADAS and AFLOW, we use Claude-3.5-
Sonnet as their optimizer LLM, matching their
original configurations, and Qwen2.5-7B-Instruct
as their executor LLM, identical to our execution
model for fair comparison. All other hyperparame-
ters, including the maximum number of iterations,
strictly follow the specifications in the AFLOW

paper.

Dataset For comprehensive evaluation, we uti-
lize five mathematical benchmarks: AMC 23,
AIME 24, MATHS500 (Hendrycks et al., 2021),
OlympiadBench (He et al., 2024) (using text-only
math problems) and Minerva Math (Lewkowycz
et al., 2022). These benchmarks span different
mathematical domains and difficulty levels to en-
sure comprehensive evaluation.

Results Table 1 presents a comparison of Au-
toSwarm against existing workflow design methods
across mathematical benchmarks. Our approach
achieves an average accuracy of 47.36%, consis-
tently outperforming both manual workflow de-
sign methods and automated workflow optimiza-
tion frameworks. AutoSwarm demonstrates sig-

nificant advantages over existing workflow design
approaches. First, compared to manual workflow
design methods, AutoSwarm shows a substantial
improvement of 4.77%, highlighting the limitations
of human-designed workflow patterns. Second,
against automated workflow optimization frame-
works, AutoSwarm outperforms the strongest base-
line AFLOW by 1.91 percentage points on aver-
age, demonstrating the advantages of end-to-end
reinforcement learning approaches over methods
that use LLMs as optimizers. This improvement
suggests that direct policy optimization through
RL enables more effective workflow orchestration
compared to discrete optimization steps performed
by LLM-based optimizers.

3.2 Orchestrator Performance Comparison

Settings A critical research question we inves-
tigate is the comparative performance between
AutoSwarm and existing state-of-the-art language
models in orchestration tasks. Specifically, we ex-
amine whether contemporary LLLMs can outper-
form AutoSwarm as Orchestrators, and quantify the
improvements achieved through our reinforcement
learning approach compared to the base model.
For comparative evaluation of workflow orches-
tration capabilities, we utilized a set of contem-



porary LLMs as orchestrator baselines, including
Qwen2.5-Coder-32B-Instruct (Hui et al., 2024),
Deepseek-V3 (DeepSeek-Al, 2024), GPT-40 (Ope-
nAl, 2024a) and Claude-3.5-Sonnet (Anthropic,
2024), benchmarked against AutoSwarm’s orches-
trator.  All evaluations were conducted using
Qwen2.5-7B-Instruct as the Executor model.

Comparison Analysis The experimental results
reveal key insights about orchestration capabili-
ties of current language models. As shown in Ta-
ble 2, while state-of-the-art LLMs demonstrate ba-
sic orchestration abilities, they consistently under-
perform compared to our RL-trained orchestrator
across all benchmarks. This gap stems primar-
ily from insufficient orchestration-specific train-
ing in existing LLMs - despite their strong gen-
eral capabilities, these models lack exposure to
complex workflow orchestration scenarios. Even
advanced models like DeepSeek-V3 (42.88% av-
erage accuracy) and Claude-3.5-Sonnet (43.80%
average accuracy) show limitations in this special-
ized domain.AutoSwarm addresses these limita-
tions through targeted reinforcement learning. The
results demonstrate that AutoSwarm’s framework
(47.36% average accuracy) significantly enhances
orchestration capabilities, achieving a 5.8% im-
provement over its base LLM Qwen2.5-Coder-32B-
Instrcut. These consistent improvements across
all benchmarks highlight the effectiveness of our
reinforcement learning paradigm in elevating the
model’s workflow orchestration intelligence.

Generalization Analysis To investigate general-
ization beyond mathematical problems, we eval-
uated our RL-trained orchestrator on three do-
mains (Physics, Chemistry, and Law) from MMLU-
Pro (Wang et al., 2024a). The results in Table 3
show that AutoSwarm generalizes well to these out-
of-distribution tasks, achieving improvements in
Physics (+1.77%), Chemistry (+0.71%), and Law
(+1.27%). This consistent improvement (1.25%
on average) suggests that the learned orchestration
strategies represent general workflow optimization
principles that transfer across domains.

3.3 Orchestrator Training Dynamics Analysis
RL Training Dynamics Figure 3 illustrates the
training dynamics of AutoSwarm’s reinforcement
learning process. The reward curve shows con-
sistent improvement in the Orchestrator’s perfor-
mance, characterized by two distinct phases: (1)
an initial rapid improvement phase (steps 1-32)

Table 3: Accuracy (%) on Out-of-distribution evaluation
benchmarks. Physics, Chemistry and Law are from
MMLU-Pro dataset. 7 indicates the improvement of
AutoSwarm after RL training.

Benchmarks

Method ‘ Physics Chemistry Law ‘ Ave.
Executor 59.28 55.65 31.79 48.91
w/o RL 59.43 55.74 31.61 48.93

AutoSwarm | 61.2011.77  56.4510.71 32.8811.27 | 50.18 11.25
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Figure 3: RL Training curve of AutoSwarm, with train-
ing steps on the x-axis and reward on the y-axis. Check-
points are saved every 16 steps to compute accuracy on
the MATHS00 test set.

with sharp reward increases, demonstrating quick
adaptation to basic orchestration strategies; and
(2) a steady optimization phase (steps 32-96) with
gradual improvements as the model refines its tech-
niques. Periodic evaluations on the MATH500 test
set validate that reward improvements correlate
with actual performance gains, confirming the ef-
fectiveness of our reward design.

Case Study To illustrate the orchestrator’s learn-
ing progression, we analyze workflow evolution
during training. As shown in Figure 4, examining
a test instance from MATHS500, the orchestrator
demonstrates clear development from basic to so-
phisticated workflows. At step 16, it generates sim-
ple linear workflows with straightforward solutions.
By step 96, it produces complex, problem-specific
architectures with parallel generator components
and generator-critic frameworks. This evolution en-
ables the orchestrator to adapt workflow structures
based on problem complexity and requirements,
consistently demonstrating its advancement in op-
timizing problem-specific workflows.
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def create_workflow() -> Workflow:
// The full implementation are omitted for brevity.

def create_workflow() -> Workflow:
// The full implementation are omitted for brevity.
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Figure 4: Case Study: Evolution of workflow sophistication in workflows generated by the Orchestrator LLM,
demonstrated on a test case (counting_and_probability-525) from MATHS500 test set. The transformation from
elementary linear patterns (Step 16) to sophisticated architectures including parallel generator and generator-critic
frameworks (Step 96) illustrates the model’s architectural learning trajectory.

4 Related Works

Agentic Workflow Orchestration Recent re-
search has highlighted the emergence of agen-
tic workflows - predefined processes leveraging
multiple LLM invocations to accomplish com-
plex tasks through domain expertise. These work-
flows span from universal problem-solving meth-
ods (Wang et al., 2023; Madaan et al., 2023; Wang
et al., 2024b) to specialized solutions like data
analysis (Xie et al., 2024) and software develop-
ment (Hong et al., 2024). The automation and
optimization of these workflows has emerged as
a critical research direction. Key examples in-
clude GPTSwarm (Zhuge et al., 2024), which rep-
resents LL.M-based workflows as computational
graphs with optimizable node-level prompts and
edge-level orchestration, ADAS (Hu et al., 2024),
which pioneers code-based structures but faces ef-
ficiency challenges due to simplified experience
representations, and AFLOW (Zhang et al., 2024b),
which introduces named nodes and MCTS-based
optimization but is limited by its discrete optimiza-
tion approach.

AutoSwarm advances this field through two key
innovations: end-to-end reinforcement learning
for workflow optimization based on execution out-
comes, and an orchestrator that generalizes across

tasks through accumulated experience. These en-
able more effective workflows while maintaining
single-pass generation efficiency.

5 Conclusion

This paper introduces AutoSwarm, a novel ap-
proach for workflow orchestration through rein-
forcement learning of LLM orchestrators. Our key
contributions include an end-to-end framework for
generating executable workflow code and a reward
mechanism optimizing both correctness and effi-
ciency. Experimental results show AutoSwarm
achieves 47.36% accuracy on mathematical bench-
marks, outperforming state-of-the-art by 1.91%,
while demonstrating strong generalization with
1.25% improvements on out-of-distribution tasks.

6 Limitations

While AutoSwarm demonstrates strong perfor-
mance, some limitations remain. The current im-
plementation requires substantial computational
resources for reinforcement learning. Additionally,
the system’s performance may vary across different
domains and problem types. Future work could ex-
plore more efficient training methods and expanded
application scenarios.
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A Appendix
A.1 AutoSwarm Training Setup

We provide comprehensive details of our training setup and hyperparameters. The training process consists
of two main components: (1) the orchestrator model training using GRPO algorithm, and (2) the workflow
execution environment setup.

Orchestrator Training We use Qwen2.5-Coder-32B-Instruct as our base model for the orchestrator,
which is trained using the Group-based Policy Optimization (GRPO) algorithm implemented on the
OpenRLHF framework. For each input query, we sample 8 different responses to form a group for
advantage estimation. The training process involves episodes of 1024 samples each. The model parameters
are updated using the Adam optimizer with weight decay. The training converges at approximately 90
steps, with reward signals reaching saturation. We select the checkpoint at step 96 for our final evaluation
experiments.

Workflow Execution Environment During training, we maintain a resource pool of 16 Qwen2.5-7B-
Instruct models as executors. The workflow execution feedback accounts for approximately 15% of the
total time in each RL training step. This overhead can be further reduced through increased parallelization
or by overlapping with other RL training steps.

Training Data The RL training data consists of 3,000 problems sampled from the MATHS500 dataset’s
training set. We carefully select problems that meet two criteria: (1) the Executor LLM must achieve at
least one correct answer in 16 repeated sampling attempts with a temperature of 0.6, and (2) the accuracy
rate must remain below 0.9. This ensures that the selected problems are both solvable and sufficiently
challenging for the Executor LLM.

We provide the detailed hyperparameters for our training setup in Table 4.

Table 4: Training Hyperparameters

Hyper Parameter Value

Base Model Qwen2.5-Coder-32B-Instruct
Train Batch Size 256

Micro Train Batch Size 2

Rollout Batch Size 128

Micro Rollout Batch Size 4

Learning Rate le-6

Number of Training Episodes 20

Maximum Epochs 1

Prompt Max Length 2,096

Generation Max Length 2,048

Initial KL Coefficient le-8

Number of GPUs 64 (8 GPUs x 8 nodes)
VLLM Engine Count 16

VLLM Tensor Parallel Size 2

Advantage Estimator GRPO

DeepSpeed ZeRO Stage 3

Mixed Precision BF16

Random Seed 42

Infrastructure Details The training is conducted using DeepSpeed ZeRO Stage 3 for efficient memory
usage and mixed precision training with BF16. We employ gradient checkpointing and Adam optimizer
offloading to manage memory constraints. The distributed training setup spans across 8 nodes with 8
GPUs each, totaling 64 GPUs. For workflow execution, we utilize VLLM with 16 engines and a tensor
parallel size of 2 to optimize inference throughput.
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A.2  AutoSwarm Orchestrator Prompt

We present the complete orchestrator prompt used to guide the model in workflow design and execution.
The prompt consists of several key components:

1. A role definition establishing the model as an expert in LLM-based workflow design

2. A comprehensive list of available specialized agent types (Generator, Fuser, Ranker, Critic, Refiner,
Verifier, Summarizer, and Formatter)

3. A detailed implementation framework showing the core classes and interfaces

4. Critical requirements for workflow creation and execution

from agentic.model import Workflow, Agent

PROMPT_PREFIX = f"""You are an expert in designing LLM-based Agentic workflows. Your task is to
design a workflow that maximizes the synergistic potential of multiple specialized agents working
together.

# Valid Agent Types:

The system supports the following specialized agent types:

1. **xGenerator*x - Proposes different mathematical solution approaches and strategies

2. xxFuserxx - Combines multiple solution methods and integrates different mathematical perspec-
tives

3. *xxRanker** - Evaluates solutions based on efficiency, elegance, and correctness

4., xxCriticx* - Identifies logical errors, optimization opportunities, and validates mathematical

reasoning

5. xxRefiner** - Optimizes solutions by simplifying expressions and improving mathematical
clarity

6. *xVerifierxx - Checks mathematical proofs, validates calculations, and ensures solution
completeness

7. **xSummarizer** - Creates concise explanations of mathematical solutions and key insights
8. *xFormatterxx - Structures mathematical expressions and equations in clear, standard notation

# Implementation Framework:

" python

import os

import asyncio

import logging

from typing import Dict, List, Literal
from openai import AsyncOpenAIl

from dataclasses import dataclass

{inspect.getsource(Agent)}
{inspect.getsource (Workflow)}
def create_workflow() -> Workflow:

# Implement your workflow here

create_workflow()
await workflow.run(user_input="[User Input]")

workflow
response

# Critical Requirements:

1. You may include your design rationale and explanations

2. Your implementation MUST start with '~ python\\ndef create_workflow()"'
3. Each agent name MUST include one of the valid agent types.

4. Provide ONLY the function implementation code

# User Input:

Figure 5: The complete orchestrator prompt template used in AutoSwarm. The prompt includes the role definition,
available agent types, implementation framework with core classes, and critical requirements for workflow creation.
This structured prompt ensures consistent and effective workflow generation across different mathematical problems.
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