
AutoSwarm: Training LLM to Self-orchestrate via Reinforcement
Learning

Anonymous ACL submission

Abstract
Recent advances in large language models001
(LLMs) have enabled new agentic workflows002
where multiple LLMs collaborate in special-003
ized roles. Current approaches to designing004
these workflows face key limitations: manual005
design requires substantial human expertise,006
while existing automated frameworks struggle007
with optimization efficiency and task adaptabil-008
ity. To address these challenges, we present009
AutoSwarm, a novel system that trains an LLM010
orchestrator through reinforcement learning to011
generate executable code. The generated code012
can be directly executed in a workflow run-013
time environment, with the orchestrator learn-014
ing end-to-end through a reward mechanism015
that optimizes both performance and efficiency.016
AutoSwarm outperforms existing automated017
workflow methods, achieving a 1.91% accuracy018
improvement on reasoning benchmarks. The019
system also shows robust generalization, with a020
1.25% performance gain on out-of-distribution021
tasks. Our work explores a promising direction022
for learning-based workflow orchestration.1023

1 Introduction024

The emergence of large language models (LLMs)025

has revealed a potential pathway toward artificial026

general intelligence (AGI), driven primarily by the027

success of scaling laws (Brown et al., 2020; Hoff-028

mann et al., 2022; Chowdhery et al., 2022). By sys-029

tematically expanding model parameters, training030

data volume, and computing resource, LLMs have031

exhibited remarkable reasoning capabilities that not032

only approach but in some cases exceed human-033

level performance (OpenAI, 2024a; DeepSeek-034

AI, 2024; Phan et al., 2025). However, as high-035

quality pretraining data sources become increas-036

ingly exhausted (Abdin et al., 2024; Alemoham-037

mad et al., 2023), the traditional pre-training scal-038

ing paradigm faces fundamental limitations. The039

1Codes and datasets are available at https://anonymous.
4open.science/r/Agentic-7EEA.

LLM Optimizer

Executing
Evaluation

Textual
Gradient

Workflow

LLM Node

Orchestrator LLM

```python
def create_workflow() -> Workflow:
    generator_1 = Agent(instruc-

Workflow Code

Workflow

Workflow Runtime

generating ...

Reward Verifier

Policy Gradient

RL Training

AutoSwarmWork�ow Optimization 
via LLM Optimizer

Figure 1: Comparison between existing automated
workflow optimization via LLM optimizer (left) and
AutoSwarm (right). Existing approaches rely on it-
erative refinement through LLM-based optimization,
which can be inefficient and limited in generalization.
In contrast, AutoSwarm employs reinforcement learn-
ing to train an LLM orchestrator that generates complete
workflows in a single forward pass, enabling continuous
improvement and better adaptation to novel scenarios.

data scarcity has prompted researchers to actively 040

explore alternative paradigms to amplify LLM in- 041

telligence. Recent advances span multiple direc- 042

tions: large-scale reinforcement learning (OpenAI, 043

2024b; DeepSeek-AI, 2025; Kimi-Team, 2025), 044

test-time enhancement through search algorithms 045

like Monte Carlo Tree Search (MCTS) (Zhao et al., 046

2023; Zhang et al., 2024a; Jiang et al., 2024), and 047

agentic workflows that leverage collective intelli- 048

gence through role-based collaboration (Li et al., 049

2023; Wu et al., 2023). 050
Among these approaches, agentic workflows rep- 051

resent a promising direction for enhancing LLM 052

capabilities. The orchestration of multiple agents 053

in complementary roles enables emergent cogni- 054

tive capabilities through their structured interac- 055

tions and collaborative problem-solving, analogous 056

to the collective intelligence observed in human 057

organizations. Current approaches to designing 058

1

https://anonymous.4open.science/r/Agentic-7EEA
https://anonymous.4open.science/r/Agentic-7EEA


such workflows can be categorized into two main059

paradigms: (1) manual design by human experts,060

which offers precise control but suffers from lim-061

ited scalability and requires substantial human ex-062

pertise and effort; and (2) automated optimiza-063

tion frameworks such as GPTSwarm (Zhuge et al.,064

2024), ADAS (Hu et al., 2024), EvoMac (Hu et al.,065

2025) and AFLOW (Zhang et al., 2025). These066

automated approaches share a fundamental design067

principle: they employ LLMs as optimization en-068

gines to iteratively improve workflows by using069

feedback from execution outcomes and making ad-070

justments accordingly. (See Figure 1 left)071

However, these automated workflow design ap-072

proaches suffer from several limitations. First, the073

effectiveness of LLMs in optimizing workflows074

solely through textual gradient is questionable, par-075

ticularly considering that LLMs likely lack train-076

ing data in workflow optimization scenarios. Sec-077

ond, using LLMs as optimizers requires multiple078

steps of discrete optimization within the search079

space, resulting in suboptimal efficiency. Most crit-080

ically, these systems are fundamentally limited to081

searching for workflows within predefined prob-082

lem subsets, and cannot generalize beyond their083

initial design. Unlike learning-based approaches,084

they lack the capability to leverage training data085

to improve their workflow optimization abilities086

over time, making them unable to learn and adapt087

to new scenarios or accumulate experience across088

different workflow optimization tasks.089

To overcome existing limitations, we introduce090

AutoSwarm, a system that employs an LLM as091

an orchestrator to adaptively generate workflows092

based on user inputs. Specifically, we implement093

a Python-based workflow framework where the or-094

chestrator LLM generates executable code defining095

the roles, dependencies, and execution logic of mul-096

tiple specialized LLMs. This generated code can be097

directly executed in our implemented sandbox en-098

vironment to obtain workflow outputs. We design099

a comprehensive reward function based on output100

correctness and workflow efficiency, and utilize re-101

inforcement learning to optimize the orchestrator’s102

workflow generation capabilities.103

Our proposed AutoSwarm offers several key104

advantages: (1) it enables end-to-end learning of105

workflow generation strategies through direct op-106

timization of execution outcomes, (2) it maintains107

efficiency by generating complete workflows in108

a single forward pass rather than through itera-109

tive refinement, and (3) it accumulates experience110

across tasks to continuously improve its workflow 111

design capabilities, allowing for better generaliza- 112

tion to novel scenarios. By combining the flexibil- 113

ity of LLM-based generation with the systematic 114

optimization capabilities of reinforcement learning, 115

AutoSwarm represents a significant step forward 116

in automated workflow design. 117

Our extensive experiments demonstrate the ef- 118

fectiveness of AutoSwarm across multiple dimen- 119

sions. When evaluated on five mathematical bench- 120

marks, AutoSwarm achieves an average accuracy 121

of 47.36%, outperforming current state-of-the-art 122

automated workflow design approaches by 1.91%. 123

The system also shows strong generalization ca- 124

pabilities, successfully transferring its learned or- 125

chestration strategies to various out-of-distribution 126

domains, with consistent improvements averaging 127

1.25% over baseline models. Through detailed anal- 128

ysis of training dynamics and case studies, we ob- 129

serve the orchestrator’s evolution from basic linear 130

workflows to sophisticated, problem-specific archi- 131

tectures, demonstrating its ability to learn and adapt 132

complex workflow optimization strategies through 133

reinforcement learning. 134

2 Methods 135

2.1 Preliminaries 136

Workflow Definition We formally define a work- 137

flow W as a directed acyclic graph A = (M ∪ 138

⊥, E), where language models serve as nodes 139

and ⊥ marks the workflow end. The set M = 140

{M1, . . . ,Mn} represents specialized language 141

models that write outputs to a shared memory S. 142

The edge set E represents model dependencies, 143

where (Mi,Mj) ∈ E indicates Mj executes after 144

Mi completes. For any Mi ∈ M without outgoing 145

edges, we add (Mi,⊥) ∈ E . The workflow termi- 146

nates at ⊥ and returns its predecessor’s output. 147

Each model Mi ∈ M is defined by (pi, τi), 148

where prompt pi defines the LLM’s role-specific 149

instructions and temperature τi controls sampling 150

randomness. 151

Inter-Model Communication The workflow im- 152

plements a centralized shared memory (scratch- 153

pad) S that maintains contextual information across 154

models. Unlike prior work (Zhang et al., 2025) 155

that only passes final results between models, the 156

complete reasoning process of each model is pre- 157

served in S, enabling subsequent models to build 158

upon their predecessors’ reasoning chains. While 159

questions about the scalability of this shared mem- 160

2



You are an expert in designing LLM-based 
Agentic workflows. Your task is to design ... 

@dataclass
class Agent:
    name: str
    handoff: List[str | Literal["workflow_end"]]
    instruction: str
    temperature: float = 0.0
    @property
    def system_prompt(self) -> str:
       ...
    async def execute(self, scratchpad) -> str:
       ...

class Workflow:
    ...
    async def run(self, user_input) -> str:
        ...
    

In how many ways can $7$ people ... 

Framework Code

User �ery

Or�estrator Instruction

Or�estrator 

def create_workflow() -> Workflow:
   // The full implementation are omitted for brevity.
   return Workflow(..., 
        agents=[generator_permutation, generator_graph, 
  generator_recurrence, critic_permutation,
    critic_graph, critic_recurrence, 
                ranker_approach, summarizer,formatter])

LLM

Executor LLM 

Resource Pool Execution Output

Reward Veri�er
Policy Gradient

RL Training

Work�ow Code

Work�ow 

Figure 2: The architecture of AutoSwarm enables dynamic workflow synthesis through reinforcement learning.
An orchestrator LLM generates executable workflow code, which is executed by specialized executor LLMs.
The system improves through reinforcement learning, with the orchestrator receiving rewards based on solution
correctness and workflow efficiency.

ory architecture exist, they are beyond this paper’s161

scope.162

Overview AutoSwarm introduces a novel ap-163

proach to LLM-based workflow synthesis by train-164

ing an LLM orchestrator through reinforcement165

learning. As illustrated in Figure 2, the system con-166

sists of three key components: (1) a code-based167

workflow framework for generating executable168

Python code, (2) a resource pool of executor LLMs169

for computation, which are instantiated as work-170

flow nodes based on the orchestrator-generated171

code, and (3) a reinforcement learning framework172

that optimizes the orchestrator. Given an input173

problem, the orchestrator generates workflow code174

to coordinate multiple specialized LLMs, which is175

then executed across the resource pool. Through re-176

wards based on solution correctness and efficiency,177

the orchestrator learns to generate increasingly ef-178

fective workflows over the training process.179

2.2 LLM-Driven Workflow Synthesis180

AutoSwarm introduces a novel meta-programming181

paradigm where a specialized orchestrator LLM182

O dynamically generates executable code that ex-183

presses problem-specific workflows. Given an184

input problem x ∈ X from the problem space,185

AutoSwarm leverages orchestrator LLM O : X →186

W , where W represents the executable Python187

code of the workflow W .188

Workflow Code Generation The orchestrator189

LLM O generates Python code that implements190

workflows using pre-defined code framework F ,191

which provides two core classes: Agent and192

Workflow. The Agent class encapsulates each lan- 193

guage model’s characteristics, including its prompt 194

pi, temperature τi, and dependency relationships 195

ei with other models. The Workflow class orches- 196

trates the execution logic outlined in Section 2.1, 197

managing the directed flow of information between 198

models. 199

Specifically, given a input problem, the orches- 200

trator LLM acts as a meta-programmer, analyz- 201

ing the problem and synthesizing appropriate code. 202

The orchestrator LLM combines the following com- 203

ponents into its context: 204

• Framework Code F - The core classes and utili- 205

ties that serve as building blocks for the generated 206

workflow code 207

• Orchestrator Instruction IO - Specific guidance 208

for the orchestrator on how to construct the work- 209

flow code 210

• User Query x - The specific problem that needs 211

to be solved using the workflow 212

The orchestrator LLM then generates the 213

executable workflow code by implementing a 214

create_workflow function that will return a 215

Workflow object, which can be formulated as: 216

W = O(Context(F , IO, x)) (1) 217

Workflow Runtime After the Orchestrator LLM 218

generates the workflow code W for a specific prob- 219

lem, the code is delegated to a resource pool con- 220

taining multiple executor LLMs for actual execu- 221

tion. The architecture of AutoSwarm mirrors es- 222

tablished distributed computing frameworks like 223

3



Algorithm 1 Inference Procedure of AUTOSWARM

Require:
1: User query x ∈ X
2: Framework code F
3: Orchestrator LLM O and its instruction IO
4: Pool of executor LLMs P

Ensure: Final workflow output
Phase I: Workflow Code Generation

5: function GENWORKFLOW(x,F , IO,O)
6: context

compose←−−−− Context(F , IO, x)
7: W ←O(context)
8: returnW ▷ Workflow Code
9: end function

Phase II: Workflow Execution
10: function EXECUTEWORKFLOW(W,P)
11: S ← ∅ ▷ Shared scratchpad
12: W

instantiation←−−−−−−W
13: M← InitializeModels(W )
14: ready← GetWorkflowStartModel(W )
15: while ready ̸= ∅ do
16: for all Mi ∈ ready in parallel do
17: executor← GetExecutor(P)
18: input← PrepareInput(Mi,S)
19: output← executor.Run(input)
20: if IsTerminalNode(W , Mi) then
21: return output
22: end if
23: UpdateMemory(S, Mi, output)
24: end for
25: ready← GetNextModels(W ,M)
26: end while
27: end function

Spark, where the Orchestrator LLM assumes a man-224

agement role analogous to a master node - handling225

high-level tasks like workflow decomposition and226

orchestration - while the computational workload227

is efficiently distributed across the executor LLMs228

that act as worker nodes. This architecture achieves229

enhanced reasoning capabilities through its syner-230

gistic combination of high-level workflow planning231

and parallel execution, while maintaining efficient232

resource utilization.233

AutoSwarm Inference Procedure Algorithm 1234

formalizes the complete inference procedure of235

AutoSwarm, which consists of two main phases236

outlined above. During the workflow code gen-237

eration phase, the orchestrator LLM analyzes the238

input problem and generates executable workflow239

code using the provided framework. Subsequently,240

in the workflow execution phase, the generated241

workflow is instantiated and executed across the242

executor LLM pool, with results aggregated in the243

shared memory space until the terminal node is244

reached.245

2.3 Orchestrator Reinforcement Learning 246

In this section, we present our reinforcement learn- 247

ing framework that enables systematic training 248

of workflow orchestrators. The framework con- 249

sists of two key components: (1) a reward mech- 250

anism balancing correctness and efficiency (Sec- 251

tion 2.3.1), and (2) an end-to-end training pipeline 252

using the group-based policy optimization (GRPO) 253

algorithm (Shao et al., 2024) (Section 2.3.2). Be- 254

low we detail these components. 255

2.3.1 Reward Modeling for Orchestrator 256

The reward signals used for training orchestrator 257

LLM O are derived from both workflow correct- 258

ness and solution efficiency. 259

Workflow Correctness Reward A workflow’s 260

correctness is evaluated through a two-stage veri- 261

fication process: (1) workflow validity check and 262

(2) execution result verification. The correctness 263

reward rcor(x,W) for workflow W is defined as: 264

rcor(x,W) =


1 if valid(W) ∧W(x) = y∗

−0.5 if valid(W) ∧W(x) ̸= y∗

−1 if ¬valid(W)
(2) 265

The workflow validity (valid(W)) is checked 266

using a Python interpreter with predefined rules, in- 267

cluding syntactic correctness, architectural patterns 268

compliance, and runtime limit constraints. For 269

valid workflows, the execution results are then com- 270

pared against ground truth answers (y∗) through 271

rule-based verification. 272

Workflow Efficiency Reward The efficiency re- 273

ward reffcy(x,W) is formulated as: 274

reffcy =


−γ if |M| > Mmax

α sin2( π|M|
2Mmax

) if |M| ≤Mmax ∧ rcor(x,W) = 1

0 if |M| ≤Mmax ∧ rcor(x,W) ̸= 1
(3) 275

where |M| is the number of models, Mmax is 276

the maximum allowed model count, and α and γ 277

are hyperparameters. The sinusoidal decay func- 278

tion maintains stable gradients while optimizing for 279

efficiency as a secondary objective to correctness. 280

Composite Reward Function The final reward 281

combines correctness and efficiency: 282

r = rcor(x,W) + λreffcy(x,W) (4) 283

where λ controls the trade-off between correctness 284

and efficiency. 285

4



2.3.2 Optimizing the Orchestrator Policy286

With our designed reward defined in Equation (4)287

that jointly optimizes solution correctness and re-288

source efficiency, we optimize the orchestrator us-289

ing GRPO as our training algorithm, which of-290

fers an alternative to Proximal Policy Optimization291

(PPO) (Schulman et al., 2017). While proven effec-292

tive by many previous research efforts (DeepSeek-293

AI, 2025; Kimi-Team, 2025), GRPO eliminates the294

need for a critic to estimate the value function. In-295

stead, it uses the average return of multiple sampled296

outputs, produced in response to the same question,297

as the baseline.298

Specifically, for each input user problem299

x, GRPO samples a group of workflow code300

{W1,W2, . . . ,WG} from the old policy θold,301

which represents the parameters of orchestrator302

LLM O in the previous policy iteration. Each work-303

flow code represents a different approach to decom-304

posing and solving the given problem, potentially305

varying in their model composition, dependency306

structure, and resource utilization patterns. The or-307

chestrator then optimizes its policy by maximizing308

the following objective:309

LGRPO(θ) = Ex∼D,{Wi}Gi=1∼θold

1

G

G∑
i=1

[
min

( πθ(Wi|x)
πθold(Wi|x)

Âi(x),

clip
(

πθ(Wi|x)
πθold(Wi|x)

, 1− ϵ, 1 + ϵ

)
Âi(x)

)
− βDKL

]
(5)

310

DKL =
πref (oi|q)
πθ (oi|q)

− log
πref (oi|q)
πθ (oi|q)

− 1 (6)311

where D is the distribution of RL training data, ϵ312

and β are hyper-parameters, and Âi denotes the313

group-normalized advantage, computed using a314

group of rewards corresponding to the output work-315

flow codes within each group:316

Âi =
ri −mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
(7)317

3 Experiments318

This section investigates three research questions:319

• RQ1: How does AutoSwarm compare to existing320

workflow orchestration methods? (Section 3.1)321

• RQ2: How effective is our Orchestrator versus322

state-of-the-art LLMs, and how well does it gen-323

eralize? (Section 3.2)324

• RQ3: How does the Orchestrator evolve during 325

training? (Section 3.3) 326

Implementation Details We choose Qwen2.5- 327

Coder-32B-Instruct as the base model for the rein- 328

forcement learning of the orchestrator. The GRPO 329

algorithm is implemented upon the OpenRLHF 330

framework. We sample 8 responses for each query 331

in GRPO. Each episode comprising 1024 samples. 332

We utilize a training batch size of 128 and optimize 333

using a learning rate of 5e-7. The reinforcement 334

learning process exhibits convergence at approxi- 335

mately 90 steps, with reward signals reaching satu- 336

ration. The checkpoint at step 96 was selected for 337

subsequent evaluation experiments. Comprehen- 338

sive experimental parameters and hyperparameter 339

settings are detailed in Appendix A. 340

Workflow Execution Environment We utilize 341

Qwen2.5-7B-Instruct as the executor LLM. Dur- 342

ing the RL training process, we form an executor 343

resource pool consisting of 16 executor LLM in- 344

stances. While obtaining workflow execution feed- 345

back accounts for approximately 15% of the time 346

in a complete RL training step, this overhead can be 347

reduced through increased parallelization or over- 348

lapping with other RL steps to achieve improved 349

efficiency. 350

RL Data Construction We sampled 3,000 prob- 351

lems from the MATH500 dataset’s training set for 352

RL training, following these sampling criteria: The 353

Executor LLM must achieve at least one correct 354

answer in 16 repeated sampling attempts with a 355

temperature of 0.6, while maintaining an accuracy 356

rate below 0.9. This ensures that the problems are 357

solvable by the Executor LLM while still present- 358

ing sufficient challenge. 359

3.1 Comparison on Workflow Optimization 360

Baselines We evaluate AutoSwarm by compar- 361

ing it with both traditional and state-of-the-art ap- 362

proaches. For traditional methods, we include 363

Chain-of-Thought prompting (CoT) (Wei et al., 364

2023), Self-Consistency (Wang et al., 2023), and 365

more advanced techniques like MultiPersona De- 366

bate (Wang et al., 2024b), Self-Refine (Madaan 367

et al., 2023) and MedPrompt (Nori et al., 2023). 368

Additionally, we benchmark against recent auto- 369

mated workflow optimization frameworks includ- 370

ing ADAS (Hu et al., 2024) and AFLOW (Zhang 371

et al., 2024b) to provide a comprehensive compari- 372

son across the spectrum of existing solutions. 373

5



Table 1: Comparison of AutoSwarm with existing workflow design methods. Results show accuracy (%) on
mathematical benchmarks.

Method Benchmarks Avg.
MATH500 AIME 24 OlympiadBench AMC 23 Minerva Math

CoT (Wei et al., 2023) 74.40 13.33 37.19 57.50 30.51 42.59
CoT SC (Wang et al., 2023) 75.60 16.67 38.37 60.00 31.62 44.45
MedPrompt (Nori et al., 2023) 74.80 13.33 37.78 60.00 31.25 43.43
MultiPersona (Wang et al., 2024b) 75.80 16.67 38.67 62.50 31.99 45.12
Self Refine (Madaan et al., 2023) 72.80 13.33 36.44 55.00 29.78 41.47

ADAS (Hu et al., 2024) 71.80 6.67 35.85 55.00 29.41 39.75
AFLOW (Zhang et al., 2024b) 76.60 16.67 39.11 62.50 32.35 45.45

AutoSwarm (Ours) 78.20 20.00 40.15 65.00 33.46 47.36

Table 2: Comparison of AutoSwarm with state-of-the-art LLMs as workflow orchestrators. All methods use
Qwen2.5-7B-Instruct as the executor model.

Orchestrator + Qwen2.5-7B-Instruct as Executor
Benchmarks Avg.

MATH500 AIME 24 OlympiadBench AMC 23 Minerva Math

Qwen2.5-Coder-32B-Instruct (Hui et al., 2024) 74.20 10.00 36.89 55.00 31.25 41.47
DeepSeek V3 (DeepSeek-AI, 2024) 74.60 13.33 37.33 57.50 31.62 42.88
GPT-4o (OpenAI, 2024a) 74.80 10.00 37.48 57.50 30.88 42.13
Claude-3.5-Sonnet (Anthropic, 2024) 75.60 13.33 38.07 60.00 31.99 43.80

AutoSwarm (Ours) 78.20 20.00 40.15 65.00 33.46 47.36

Implementation Details To ensure fair compar-374

ison, we maintain identical model configurations375

between our method and baselines. Specifically,376

for both ADAS and AFLOW, we use Claude-3.5-377

Sonnet as their optimizer LLM, matching their378

original configurations, and Qwen2.5-7B-Instruct379

as their executor LLM, identical to our execution380

model for fair comparison. All other hyperparame-381

ters, including the maximum number of iterations,382

strictly follow the specifications in the AFLOW383

paper.384

Dataset For comprehensive evaluation, we uti-385

lize five mathematical benchmarks: AMC 23,386

AIME 24, MATH500 (Hendrycks et al., 2021),387

OlympiadBench (He et al., 2024) (using text-only388

math problems) and Minerva Math (Lewkowycz389

et al., 2022). These benchmarks span different390

mathematical domains and difficulty levels to en-391

sure comprehensive evaluation.392

Results Table 1 presents a comparison of Au-393

toSwarm against existing workflow design methods394

across mathematical benchmarks. Our approach395

achieves an average accuracy of 47.36%, consis-396

tently outperforming both manual workflow de-397

sign methods and automated workflow optimiza-398

tion frameworks. AutoSwarm demonstrates sig-399

nificant advantages over existing workflow design 400

approaches. First, compared to manual workflow 401

design methods, AutoSwarm shows a substantial 402

improvement of 4.77%, highlighting the limitations 403

of human-designed workflow patterns. Second, 404

against automated workflow optimization frame- 405

works, AutoSwarm outperforms the strongest base- 406

line AFLOW by 1.91 percentage points on aver- 407

age, demonstrating the advantages of end-to-end 408

reinforcement learning approaches over methods 409

that use LLMs as optimizers. This improvement 410

suggests that direct policy optimization through 411

RL enables more effective workflow orchestration 412

compared to discrete optimization steps performed 413

by LLM-based optimizers. 414

3.2 Orchestrator Performance Comparison 415

Settings A critical research question we inves- 416

tigate is the comparative performance between 417

AutoSwarm and existing state-of-the-art language 418

models in orchestration tasks. Specifically, we ex- 419

amine whether contemporary LLMs can outper- 420

form AutoSwarm as Orchestrators, and quantify the 421

improvements achieved through our reinforcement 422

learning approach compared to the base model. 423

For comparative evaluation of workflow orches- 424

tration capabilities, we utilized a set of contem- 425

6



porary LLMs as orchestrator baselines, including426

Qwen2.5-Coder-32B-Instruct (Hui et al., 2024),427

Deepseek-V3 (DeepSeek-AI, 2024), GPT-4o (Ope-428

nAI, 2024a) and Claude-3.5-Sonnet (Anthropic,429

2024), benchmarked against AutoSwarm’s orches-430

trator. All evaluations were conducted using431

Qwen2.5-7B-Instruct as the Executor model.432

Comparison Analysis The experimental results433

reveal key insights about orchestration capabili-434

ties of current language models. As shown in Ta-435

ble 2, while state-of-the-art LLMs demonstrate ba-436

sic orchestration abilities, they consistently under-437

perform compared to our RL-trained orchestrator438

across all benchmarks. This gap stems primar-439

ily from insufficient orchestration-specific train-440

ing in existing LLMs - despite their strong gen-441

eral capabilities, these models lack exposure to442

complex workflow orchestration scenarios. Even443

advanced models like DeepSeek-V3 (42.88% av-444

erage accuracy) and Claude-3.5-Sonnet (43.80%445

average accuracy) show limitations in this special-446

ized domain.AutoSwarm addresses these limita-447

tions through targeted reinforcement learning. The448

results demonstrate that AutoSwarm’s framework449

(47.36% average accuracy) significantly enhances450

orchestration capabilities, achieving a 5.8% im-451

provement over its base LLM Qwen2.5-Coder-32B-452

Instrcut. These consistent improvements across453

all benchmarks highlight the effectiveness of our454

reinforcement learning paradigm in elevating the455

model’s workflow orchestration intelligence.456

Generalization Analysis To investigate general-457

ization beyond mathematical problems, we eval-458

uated our RL-trained orchestrator on three do-459

mains (Physics, Chemistry, and Law) from MMLU-460

Pro (Wang et al., 2024a). The results in Table 3461

show that AutoSwarm generalizes well to these out-462

of-distribution tasks, achieving improvements in463

Physics (+1.77%), Chemistry (+0.71%), and Law464

(+1.27%). This consistent improvement (1.25%465

on average) suggests that the learned orchestration466

strategies represent general workflow optimization467

principles that transfer across domains.468

3.3 Orchestrator Training Dynamics Analysis469

RL Training Dynamics Figure 3 illustrates the470

training dynamics of AutoSwarm’s reinforcement471

learning process. The reward curve shows con-472

sistent improvement in the Orchestrator’s perfor-473

mance, characterized by two distinct phases: (1)474

an initial rapid improvement phase (steps 1-32)475

Table 3: Accuracy (%) on Out-of-distribution evaluation
benchmarks. Physics, Chemistry and Law are from
MMLU-Pro dataset. ↑ indicates the improvement of
AutoSwarm after RL training.

Method Benchmarks Avg.
Physics Chemistry Law

Executor 59.28 55.65 31.79 48.91
w/o RL 59.43 55.74 31.61 48.93

AutoSwarm 61.20 ↑1.77 56.45 ↑0.71 32.88 ↑1.27 50.18 ↑1.25

Reward
Acc. on MATH500

Step

Acc. Reward

Step 16

Step 32

Step 48

Step 64

Step 96

Figure 3: RL Training curve of AutoSwarm, with train-
ing steps on the x-axis and reward on the y-axis. Check-
points are saved every 16 steps to compute accuracy on
the MATH500 test set.

with sharp reward increases, demonstrating quick 476

adaptation to basic orchestration strategies; and 477

(2) a steady optimization phase (steps 32-96) with 478

gradual improvements as the model refines its tech- 479

niques. Periodic evaluations on the MATH500 test 480

set validate that reward improvements correlate 481

with actual performance gains, confirming the ef- 482

fectiveness of our reward design. 483

Case Study To illustrate the orchestrator’s learn- 484

ing progression, we analyze workflow evolution 485

during training. As shown in Figure 4, examining 486

a test instance from MATH500, the orchestrator 487

demonstrates clear development from basic to so- 488

phisticated workflows. At step 16, it generates sim- 489

ple linear workflows with straightforward solutions. 490

By step 96, it produces complex, problem-specific 491

architectures with parallel generator components 492

and generator-critic frameworks. This evolution en- 493

ables the orchestrator to adapt workflow structures 494

based on problem complexity and requirements, 495

consistently demonstrating its advancement in op- 496

timizing problem-specific workflows. 497

7



Input
In how many ways can $7$ people sit around a round table if no two of the $3$ people Pierre, Rosa, 
and Thomas can sit next to each other?...                        (MATH500/test/counting_and_probability/525)

def create_workflow() -> Workflow:
   // The full implementation are omitted for brevity.
   ...    
   return Workflow(..., 
        agents=[generator_permutation, generator_graph, 
  generator_recurrence, critic_permutation,
    critic_graph, critic_recurrence, 
                ranker_approach, summarizer,formatter])

RL Training Step 96

def create_workflow() -> Workflow:
   // The full implementation are omitted for brevity.
   ...    
   return Workflow(..., 
        agents=[generator, critic, refiner, 
  verifier, summarizer]
   )

RL Training Step 16

Generator

Critic

Refiner

Verifier

Summarizer

generator_permutation
generator_graph
generator_recurrence

critic_permutation
critic_graph
critic_recurrence

ranker_approach

summarizer

formatter

Figure 4: Case Study: Evolution of workflow sophistication in workflows generated by the Orchestrator LLM,
demonstrated on a test case (counting_and_probability-525) from MATH500 test set. The transformation from
elementary linear patterns (Step 16) to sophisticated architectures including parallel generator and generator-critic
frameworks (Step 96) illustrates the model’s architectural learning trajectory.

4 Related Works498

Agentic Workflow Orchestration Recent re-499

search has highlighted the emergence of agen-500

tic workflows - predefined processes leveraging501

multiple LLM invocations to accomplish com-502

plex tasks through domain expertise. These work-503

flows span from universal problem-solving meth-504

ods (Wang et al., 2023; Madaan et al., 2023; Wang505

et al., 2024b) to specialized solutions like data506

analysis (Xie et al., 2024) and software develop-507

ment (Hong et al., 2024). The automation and508

optimization of these workflows has emerged as509

a critical research direction. Key examples in-510

clude GPTSwarm (Zhuge et al., 2024), which rep-511

resents LLM-based workflows as computational512

graphs with optimizable node-level prompts and513

edge-level orchestration, ADAS (Hu et al., 2024),514

which pioneers code-based structures but faces ef-515

ficiency challenges due to simplified experience516

representations, and AFLOW (Zhang et al., 2024b),517

which introduces named nodes and MCTS-based518

optimization but is limited by its discrete optimiza-519

tion approach.520

AutoSwarm advances this field through two key521

innovations: end-to-end reinforcement learning522

for workflow optimization based on execution out-523

comes, and an orchestrator that generalizes across524

tasks through accumulated experience. These en- 525

able more effective workflows while maintaining 526

single-pass generation efficiency. 527

5 Conclusion 528

This paper introduces AutoSwarm, a novel ap- 529

proach for workflow orchestration through rein- 530

forcement learning of LLM orchestrators. Our key 531

contributions include an end-to-end framework for 532

generating executable workflow code and a reward 533

mechanism optimizing both correctness and effi- 534

ciency. Experimental results show AutoSwarm 535

achieves 47.36% accuracy on mathematical bench- 536

marks, outperforming state-of-the-art by 1.91%, 537

while demonstrating strong generalization with 538

1.25% improvements on out-of-distribution tasks. 539

6 Limitations 540

While AutoSwarm demonstrates strong perfor- 541

mance, some limitations remain. The current im- 542

plementation requires substantial computational 543

resources for reinforcement learning. Additionally, 544

the system’s performance may vary across different 545

domains and problem types. Future work could ex- 546

plore more efficient training methods and expanded 547

application scenarios. 548

8



References549

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien550
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael551
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero552
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li,553
Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric554
Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim,555
Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli556
Yu, Cyril Zhang, and Yi Zhang. 2024. Phi-4 technical557
report.558

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo559
Luzi, Ahmed Imtiaz Humayun, Hossein Babaei,560
Daniel LeJeune, Ali Siahkoohi, and Richard G. Bara-561
niuk. 2023. Self-consuming generative models go562
mad.563

Anthropic. 2024. Introducing claude 3.5 son-564
net. https://www.anthropic.com/news/565
claude-3-5-sonnet.566

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie567
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind568
Neelakantan, Pranav Shyam, Girish Sastry, Amanda569
Askell, Sandhini Agarwal, Ariel Herbert-Voss,570
Gretchen Krueger, Tom Henighan, Rewon Child,571
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,572
Clemens Winter, Christopher Hesse, Mark Chen, Eric573
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,574
Jack Clark, Christopher Berner, Sam McCandlish,575
Alec Radford, Ilya Sutskever, and Dario Amodei.576
2020. Language Models are Few-Shot Learners.577

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,578
Maarten Bosma, Gaurav Mishra, Adam Roberts,579
Paul Barham, Hyung Won Chung, Charles Sutton,580
Sebastian Gehrmann, Parker Schuh, Kensen Shi,581
Sasha Tsvyashchenko, Joshua Maynez, Abhishek582
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-583
odkumar Prabhakaran, Emily Reif, Nan Du, Ben584
Hutchinson, Reiner Pope, James Bradbury, Jacob585
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,586
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,587
Sunipa Dev, Henryk Michalewski, Xavier Garcia,588
Vedant Misra, Kevin Robinson, Liam Fedus, Denny589
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,590
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,591
David Dohan, Shivani Agrawal, Mark Omernick, An-592
drew M. Dai, Thanumalayan Sankaranarayana Pil-593
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,594
Rewon Child, Oleksandr Polozov, Katherine Lee,595
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark596
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy597
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,598
and Noah Fiedel. 2022. PaLM: Scaling Language599
Modeling with Pathways.600

DeepSeek-AI. 2024. Deepseek-v3 technical report.601

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-602
soning capability in llms via reinforcement learning.603

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,604
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-605
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan606

Liu, and Maosong Sun. 2024. Olympiadbench: 607
A challenging benchmark for promoting agi with 608
olympiad-level bilingual multimodal scientific prob- 609
lems. 610

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 611
Arora, Steven Basart, Eric Tang, Dawn Song, and 612
Jacob Steinhardt. 2021. Measuring mathematical 613
problem solving with the math dataset. 614

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, 615
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, 616
Diego de Las Casas, Lisa Anne Hendricks, Johannes 617
Welbl, Aidan Clark, Tom Hennigan, Eric Noland, 618
Katie Millican, George van den Driessche, Bogdan 619
Damoc, Aurelia Guy, Simon Osindero, Karen Si- 620
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, 621
and Laurent Sifre. 2022. Training Compute-Optimal 622
Large Language Models. 623

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, 624
Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili 625
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang 626
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, 627
and Jürgen Schmidhuber. 2024. Metagpt: Meta pro- 628
gramming for a multi-agent collaborative framework. 629

Shengran Hu, Cong Lu, and Jeff Clune. 2024. Auto- 630
mated design of agentic systems. 631

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, 632
Zijie Yu, Yuchen Hou, Shuo Tang, and Siheng Chen. 633
2025. Self-evolving multi-agent networks for soft- 634
ware development. In The Thirteenth International 635
Conference on Learning Representations. 636

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 637
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 638
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, 639
Yichang Zhang, An Yang, Rui Men, Fei Huang, 640
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun- 641
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren 642
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech- 643
nical report. 644

Jinhao Jiang, Zhipeng Chen, Yingqian Min, Jie Chen, 645
Xiaoxue Cheng, Jiapeng Wang, Yiru Tang, Haoxiang 646
Sun, Jia Deng, Wayne Xin Zhao, Zheng Liu, Dong 647
Yan, Jian Xie, Zhongyuan Wang, and Ji-Rong Wen. 648
2024. Enhancing llm reasoning with reward-guided 649
tree search. 650

Kimi-Team. 2025. Kimi k1.5: Scaling reinforcement 651
learning with llms. 652

Aitor Lewkowycz, Anders Andreassen, David Dohan, 653
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, 654
Ambrose Slone, Cem Anil, Imanol Schlag, Theo 655
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy 656
Gur-Ari, and Vedant Misra. 2022. Solving quantita- 657
tive reasoning problems with language models. 658

Guohao Li, Hasan Abed Al Kader Hammoud, Hani 659
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023. 660
Camel: Communicative agents for "mind" explo- 661
ration of large language model society. 662

9

http://arxiv.org/abs/2412.08905
http://arxiv.org/abs/2412.08905
http://arxiv.org/abs/2412.08905
http://arxiv.org/abs/2307.01850
http://arxiv.org/abs/2307.01850
http://arxiv.org/abs/2307.01850
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
http://arxiv.org/abs/2412.19437
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2402.14008
http://arxiv.org/abs/2402.14008
http://arxiv.org/abs/2402.14008
http://arxiv.org/abs/2402.14008
http://arxiv.org/abs/2402.14008
http://arxiv.org/abs/2402.14008
http://arxiv.org/abs/2402.14008
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2408.08435
http://arxiv.org/abs/2408.08435
http://arxiv.org/abs/2408.08435
https://openreview.net/forum?id=4R71pdPBZp
https://openreview.net/forum?id=4R71pdPBZp
https://openreview.net/forum?id=4R71pdPBZp
http://arxiv.org/abs/2409.12186
http://arxiv.org/abs/2409.12186
http://arxiv.org/abs/2409.12186
http://arxiv.org/abs/2411.11694
http://arxiv.org/abs/2411.11694
http://arxiv.org/abs/2411.11694
http://arxiv.org/abs/2501.12599
http://arxiv.org/abs/2501.12599
http://arxiv.org/abs/2501.12599
http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2303.17760
http://arxiv.org/abs/2303.17760
http://arxiv.org/abs/2303.17760


Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler663
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,664
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,665
Shashank Gupta, Bodhisattwa Prasad Majumder,666
Katherine Hermann, Sean Welleck, Amir Yazdan-667
bakhsh, and Peter Clark. 2023. Self-refine: Iterative668
refinement with self-feedback.669

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan,670
Richard Edgar, Nicolo Fusi, Nicholas King, Jonathan671
Larson, Yuanzhi Li, Weishung Liu, Renqian Luo,672
Scott Mayer McKinney, Robert Osazuwa Ness, Hoi-673
fung Poon, Tao Qin, Naoto Usuyama, Chris White,674
and Eric Horvitz. 2023. Can generalist foundation675
models outcompete special-purpose tuning? case676
study in medicine.677

OpenAI. 2024a. Hello gpt-4o. https://openai.com/678
index/hello-gpt-4o/.679

OpenAI. 2024b. Learning to reason with680
llms. https://openai.com/index/681
learning-to-reason-with-llms/.682

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li,683
Josephina Hu, Hugh Zhang, Sean Shi, Michael684
Choi, Anish Agrawal, Arnav Chopra, and et al.685
Adam Khoja. 2025. Humanity’s last exam.686

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec687
Radford, and Oleg Klimov. 2017. Proximal policy688
optimization algorithms.689

Zhihong Shao, Yihong Zhang, Qingyu Wang, Yan Xu,690
Kai Xu, Jiang Bian, Yiming Liu, Xuanwei Liu, Peng691
Liu, et al. 2024. Deepseek math: Pushing the limits692
of mathematical reasoning in open language models.693

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,694
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and695
Denny Zhou. 2023. Self-consistency improves chain696
of thought reasoning in language models.697

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,698
Abhranil Chandra, Shiguang Guo, Weiming Ren,699
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max700
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang701
Yue, and Wenhu Chen. 2024a. MMLU-pro: A more702
robust and challenging multi-task language under-703
standing benchmark. In The Thirty-eight Conference704
on Neural Information Processing Systems Datasets705
and Benchmarks Track.706

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao707
Ge, Furu Wei, and Heng Ji. 2024b. Unleashing the708
emergent cognitive synergy in large language models:709
A task-solving agent througåh multi-persona self-710
collaboration.711

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten712
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and713
Denny Zhou. 2023. Chain-of-thought prompting elic-714
its reasoning in large language models.715

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, 716
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, 717
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal- 718
lah, Ryen W White, Doug Burger, and Chi Wang. 719
2023. Autogen: Enabling next-gen llm applications 720
via multi-agent conversation. 721

Yupeng Xie, Yuyu Luo, Guoliang Li, and Nan Tang. 722
2024. Haichart: Human and ai paired visualiza- 723
tion system. Proceedings of the VLDB Endowment, 724
17(11):3178–3191. 725

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, 726
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm 727
self-training via process reward guided tree search. 728

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, 729
Xiong-Hui Chen, Jiaqi Chen, Mingchen Zhuge, Xin 730
Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, 731
Bang Liu, Yuyu Luo, and Chenglin Wu. 2025. 732
AFlow: Automating agentic workflow generation. In 733
The Thirteenth International Conference on Learning 734
Representations. 735

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, 736
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin 737
Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, 738
Bang Liu, Yuyu Luo, and Chenglin Wu. 2024b. 739
Aflow: Automating agentic workflow generation. 740

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023. Large 741
language models as commonsense knowledge for 742
large-scale task planning. In Thirty-seventh Confer- 743
ence on Neural Information Processing Systems. 744

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, 745
Francesco Faccio, Dmitrii Khizbullin, and Jürgen 746
Schmidhuber. 2024. GPTSwarm: Language agents 747
as optimizable graphs. In Forty-first International 748
Conference on Machine Learning. 749

10

http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2311.16452
http://arxiv.org/abs/2311.16452
http://arxiv.org/abs/2311.16452
http://arxiv.org/abs/2311.16452
http://arxiv.org/abs/2311.16452
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
http://arxiv.org/abs/2501.14249
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3
http://arxiv.org/abs/2307.05300
http://arxiv.org/abs/2307.05300
http://arxiv.org/abs/2307.05300
http://arxiv.org/abs/2307.05300
http://arxiv.org/abs/2307.05300
http://arxiv.org/abs/2307.05300
http://arxiv.org/abs/2307.05300
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2308.08155
https://doi.org/10.14778/3681954.3681992
https://doi.org/10.14778/3681954.3681992
https://doi.org/10.14778/3681954.3681992
http://arxiv.org/abs/2406.03816
http://arxiv.org/abs/2406.03816
http://arxiv.org/abs/2406.03816
https://openreview.net/forum?id=z5uVAKwmjf
http://arxiv.org/abs/2410.10762
https://openreview.net/forum?id=Wjp1AYB8lH
https://openreview.net/forum?id=Wjp1AYB8lH
https://openreview.net/forum?id=Wjp1AYB8lH
https://openreview.net/forum?id=Wjp1AYB8lH
https://openreview.net/forum?id=Wjp1AYB8lH
https://openreview.net/forum?id=uTC9AFXIhg
https://openreview.net/forum?id=uTC9AFXIhg
https://openreview.net/forum?id=uTC9AFXIhg


A Appendix 750

A.1 AutoSwarm Training Setup 751

We provide comprehensive details of our training setup and hyperparameters. The training process consists 752

of two main components: (1) the orchestrator model training using GRPO algorithm, and (2) the workflow 753

execution environment setup. 754

Orchestrator Training We use Qwen2.5-Coder-32B-Instruct as our base model for the orchestrator, 755

which is trained using the Group-based Policy Optimization (GRPO) algorithm implemented on the 756

OpenRLHF framework. For each input query, we sample 8 different responses to form a group for 757

advantage estimation. The training process involves episodes of 1024 samples each. The model parameters 758

are updated using the Adam optimizer with weight decay. The training converges at approximately 90 759

steps, with reward signals reaching saturation. We select the checkpoint at step 96 for our final evaluation 760

experiments. 761

Workflow Execution Environment During training, we maintain a resource pool of 16 Qwen2.5-7B- 762

Instruct models as executors. The workflow execution feedback accounts for approximately 15% of the 763

total time in each RL training step. This overhead can be further reduced through increased parallelization 764

or by overlapping with other RL training steps. 765

Training Data The RL training data consists of 3,000 problems sampled from the MATH500 dataset’s 766

training set. We carefully select problems that meet two criteria: (1) the Executor LLM must achieve at 767

least one correct answer in 16 repeated sampling attempts with a temperature of 0.6, and (2) the accuracy 768

rate must remain below 0.9. This ensures that the selected problems are both solvable and sufficiently 769

challenging for the Executor LLM. 770

We provide the detailed hyperparameters for our training setup in Table 4. 771

Table 4: Training Hyperparameters

Hyper Parameter Value
Base Model Qwen2.5-Coder-32B-Instruct
Train Batch Size 256
Micro Train Batch Size 2
Rollout Batch Size 128
Micro Rollout Batch Size 4
Learning Rate 1e-6
Number of Training Episodes 20
Maximum Epochs 1
Prompt Max Length 2,096
Generation Max Length 2,048
Initial KL Coefficient 1e-8
Number of GPUs 64 (8 GPUs × 8 nodes)
VLLM Engine Count 16
VLLM Tensor Parallel Size 2
Advantage Estimator GRPO
DeepSpeed ZeRO Stage 3
Mixed Precision BF16
Random Seed 42

Infrastructure Details The training is conducted using DeepSpeed ZeRO Stage 3 for efficient memory 772

usage and mixed precision training with BF16. We employ gradient checkpointing and Adam optimizer 773

offloading to manage memory constraints. The distributed training setup spans across 8 nodes with 8 774

GPUs each, totaling 64 GPUs. For workflow execution, we utilize VLLM with 16 engines and a tensor 775

parallel size of 2 to optimize inference throughput. 776

11



A.2 AutoSwarm Orchestrator Prompt777

We present the complete orchestrator prompt used to guide the model in workflow design and execution.778

The prompt consists of several key components:779

1. A role definition establishing the model as an expert in LLM-based workflow design780

2. A comprehensive list of available specialized agent types (Generator, Fuser, Ranker, Critic, Refiner,781

Verifier, Summarizer, and Formatter)782

3. A detailed implementation framework showing the core classes and interfaces783

4. Critical requirements for workflow creation and execution784

from agentic.model import Workflow, Agent

PROMPT_PREFIX = f"""You are an expert in designing LLM-based Agentic workflows. Your task is to 
design a workflow that maximizes the synergistic potential of multiple specialized agents working 
together.

# Valid Agent Types:
The system supports the following specialized agent types:
1. **Generator** - Proposes different mathematical solution approaches and strategies
2. **Fuser** - Combines multiple solution methods and integrates different mathematical perspec-
tives
3. **Ranker** - Evaluates solutions based on efficiency, elegance, and correctness
4. **Critic** - Identifies logical errors, optimization opportunities, and validates mathematical 
reasoning
5. **Refiner** - Optimizes solutions by simplifying expressions and improving mathematical 
clarity
6. **Verifier** - Checks mathematical proofs, validates calculations, and ensures solution 
completeness
7. **Summarizer** - Creates concise explanations of mathematical solutions and key insights
8. **Formatter** - Structures mathematical expressions and equations in clear, standard notation

# Implementation Framework:
```python
import os
import asyncio
import logging
from typing import Dict, List, Literal
from openai import AsyncOpenAI
from dataclasses import dataclass

{inspect.getsource(Agent)}

{inspect.getsource(Workflow)}

def create_workflow() -> Workflow:
 # Implement your workflow here
 ...

workflow = create_workflow()
response = await workflow.run(user_input="[User Input]")
```

# Critical Requirements:
1. You may include your design rationale and explanations
2. Your implementation MUST start with '```python\\ndef create_workflow()'
3. Each agent name MUST include one of the valid agent types.
4. Provide ONLY the function implementation code

# User Input:
"""

Figure 5: The complete orchestrator prompt template used in AutoSwarm. The prompt includes the role definition,
available agent types, implementation framework with core classes, and critical requirements for workflow creation.
This structured prompt ensures consistent and effective workflow generation across different mathematical problems.

12


	Introduction
	Methods
	Preliminaries
	LLM-Driven Workflow Synthesis
	Orchestrator Reinforcement Learning
	Reward Modeling for Orchestrator
	Optimizing the Orchestrator Policy


	Experiments
	Comparison on Workflow Optimization 
	Orchestrator Performance Comparison
	Orchestrator Training Dynamics Analysis

	Related Works
	Conclusion
	Limitations
	Appendix
	AutoSwarm Training Setup
	AutoSwarm Orchestrator Prompt


