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Abstract. Medical image segmentation is a crucial step for accurate
diagnosis and treatment planning, as it provides quantitative informa-
tion about anatomical structures and pathological lesions in various
clinical scenarios. However, the existing methodologies have limitations
in terms of their generalizability and computational efficiency. In this
study, we propose SwiftMedSAM, an ultra-lightweight prompt-based
general model, to enable efficient medical image segmentation even in
resource-constrained environments. Based on LiteMedSAM, we signifi-
cantly reduced the model size and computational complexity through the
hyperparameter optimization of the image encoder and mask decoder
components. The developed model shows remarkable segmentation per-
formance across various imaging modalities and anatomical structures
while enabling real-time inference in resource-limited computing envi-
ronments. The experimental results demonstrate that SwiftMedSAM
outperforms the existing methodologies in terms of the trade-off between
accuracy and efficiency. SwiftMedSAM achieved a validation score of 0.75
on the validation dataset. Owing to its unprecedented generalizability
and low computational cost, SwiftMedSAM is expected to enable high-
quality medical image analysis in resource-constrained settings, thereby
contributing to advancements in precision medicine and telemedicine.
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1 Introduction

Medical image segmentation is a critical step in accurate diagnosis and treatment
planning. It provides quantitative information about anatomical structures and
pathological lesions in various clinical scenarios such as computer-aided diagnosis,
surgical guidance, treatment monitoring, and patient follow-up. For example,
accurate identification of the location, size, and boundaries of a tumor is essential
for determining cancer staging, surgical planning, and radiation therapy. However,
such segmentation tasks are highly complex and time-consuming, necessitating
the development of automated high-performance segmentation models [34].
Driven by advancements in deep learning techniques, innovative achievements
have been made in the field of medical image analysis in recent years, with signif-
icant progress in segmentation problems. Initially, transfer-learned CNN-based
models such as U-Net [49] and V-Net [43] were predominant, and subsequently,
the introduction of cutting-edge models such as Vision Transformer [15] and
Swin Transformer [36] led to substantial accuracy improvements. However, most
existing studies have been limited by a lack of generalizability as they employ ar-
chitectures and training methods tailored to specific clinical tasks or datasets [17].
Active research has been conducted in the field of segmentation foundation models
for prompt-based universal image segmentation. A representative model, the
Segment Anything Model (SAM), has demonstrated the ability to effectively
perform various general image segmentation tasks using a single model through
prompt engineering. However, SAM is a heavy model, making it impractical for
use in resource-constrained environments or edge devices. To address this issue,
lightweight models such as MobileSAM [61] and EfficientViT-SAM [62] have been
proposed; however, they are specialized for natural image datasets rather than
medical images, which presents a limitation.
In response, MedSAM was introduced, fine-tuning the existing SAM model on
an unprecedented large-scale dataset comprising over one million medical image-
mask pairs, achieving remarkable performance in medical image segmentation.
MedSAM underwent comprehensive experimental evaluation on 86 internal and
60 external validation tasks, encompassing various anatomical structures, patho-
logical conditions, and medical imaging modalities. The results showed that
MedSAM consistently outperformed the previous SOTA segmentation model,
SAM, and exhibited performance on par with or superior to specialized mod-
els [25] trained on the same imaging modality.
However, MedSAM, with 93M parameters, is an extremely large model that re-
quires significant computational resources, making it difficult to utilize in resource-
constrained computing environments. To address this limitation, LiteMedSAM,
a lightweight version of the original MedSAM, was proposed. It was trained in
two stages: distilling a lightweight encoder from MedSAM’s large image encoder
and then fine-tuning the entire pipeline with the distilled encoder. Through
this process, LiteMedSAM achieved a significant reduction in model size and
computational complexity compared to MedSAM, enabling faster inference in
resource-constrained settings.
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CVPR 2024: SEGMENT ANYTHING IN MEDICAL IMAGES ON LAPTOP
Challenge focuses on developing a prompt-based general model for medical im-
age segmentation. This challenge provides a large-scale dataset comprising over
1,000,000 image-mask pairs, including 11 medical imaging modalities and more
than 20 types of cancer. The goal is to develop a prompt-based universal segmen-
tation model that can handle various medical image segmentation tasks while
being computationally lightweight enough to run on edge devices such as laptops.
In this study, we used LiteMedSAM as the baseline model and optimized the
hyperparameters of the image encoder and mask decoder components to develop
a more lightweight SwiftMedSAM. While leveraging the large-scale dataset pro-
vided, we further reduced the model size and computational complexity to enable
real-time inference, even in resource-constrained computing environments.
The developed SwiftMedSAM model is expected to have a significantly reduced
model size and computational cost compared to LiteMedSAM, enabling real-time
inference in even more constrained environments. Through this research, we aim
to further mitigate the generalizability-efficiency trade-off of existing methods and
achieve high-quality medical image segmentation under highly limited computing
resources.

2 Method

Fig. 1. Overall framework of the proposed method. The image and bounding box
prompts serve as inputs to the model, passing through their respective encoders. The
resulting outputs are then passed through the mask decoder to produce the segmentation
results.
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2.1 Preprocessing

The preprocessing strategy was inspired by MedSAM. We utilized a large-scale
dataset with over one million image-mask pairs based on publicly available
datasets that were used for MedSAM training. This dataset includes 11 imaging
modalities (CT, MRI, endoscopy, ultrasound, etc.) and more than 30 types of
cancers. The original 3D CT and MRI data, as well as grayscale images (X-ray,
ultrasound, etc.) and RGB images (endoscopy, fundus, etc.), were converted to
npz format for use. To structure the dataset and enable efficient management,
the ground-truth masks and additional information, such as spacing, for both 2D
and 3D images were stored together in a single file.

2.2 Proposed Method

The proposed SwiftMedSAM model builds upon the architecture of LiteMedSAM,
with a focus on hyperparameter optimization and structural modifications to
achieve ultra-lightweight performance. Our approach targets both the image
encoder and mask decoder components, aiming to reduce computational load
while maintaining high segmentation accuracy. The backbone of the existing
LiteMedSAM was maintained, with the primary focus on hyperparameter opti-
mization to achieve a balance between model efficiency and performance.
In the image encoder component, we made adjustments to the block depths to
reduce the computational load. As the block depth increases, both the model
capacity and computational complexity increase. Therefore, we employed a strat-
egy of gradually decreasing the depths. In SwiftMedSAMv1, we applied block
depths of [2, 2, 4, 2], whereas in SwiftMedSAMv2, we further reduced this to
[1, 2, 2, 2]. This adjustment resulted in a lighter model while still preserving
essential feature extraction capabilities.
For the mask decoder, we implemented several key modifications, primarily in
the transformer and IoU head components. First, we reduced the transformer
depth from 2 to 1, significantly decreasing the computational cost. Additionally,
we made substantial reductions to the transformer’s MLP dimensions, lowering
them from the original 2048 to 1024, and further to 256. Larger MLP dimen-
sions increase both model capacity and computational load, so reducing them
contributes significantly to the lightening effect we aimed to achieve.
We also decreased the number of multi-head attention units in the transformer,
reducing them from 8 to 4. While a higher number of attention heads allows for
feature extraction from diverse perspectives, an excessive number risks overfitting
and increases computational complexity. Therefore, we made an appropriate
reduction to optimize both model capacity and computational load.
Lastly, we lowered the depth of the IoU head from 3 to 2, further reducing
computations in this component. Although the IoU head, which is related to
mask prediction, does not constitute a large portion of the overall computational
load, we considered this adjustment valuable for our lightening purposes.
As a result of these optimizations, SwiftMedSAM has approximately 5.9M pa-
rameters, which represents a reduction of about 40% compared to the original
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9.8M parameters of LiteMedSAM. This significant reduction in model size con-
tributes to improved inference speed and reduced memory requirements, making
SwiftMedSAM more suitable for deployment in resource-constrained environ-
ments.
To address the challenge of dataset imbalance, particularly the substantially
lower number of PET modality images in the provided training dataset, we incor-
porated an additional dataset known as autoPETIII. This supplementary data
was used to construct the final training dataset, helping to improve the model’s
performance across various imaging modalities, especially for PET images. The
inclusion of this additional data helped to mitigate potential biases and enhance
the model’s generalization capabilities.
Through the combination of these structural lightening strategies and careful
dataset curation, SwiftMedSAM achieves real-time performance and efficiency
while maintaining high segmentation accuracy. The decrease in segmentation
accuracy compared to the original model was not substantial, thanks to the pre-
training on large-scale medical image data. This approach allows SwiftMedSAM
to offer a compelling solution for medical image segmentation tasks in scenarios
where computational resources are limited, without significantly compromising
on the quality of the segmentation results.

Table 1. SwiftMedSAM Hyperparameters.

Component HyperParameters Lite
MedSAM

Swift
MedSAMv1

Swift
MedSAMv2

Image Encoder Block Depths [2, 2, 6, 2] [2, 2, 4, 2] [1, 2, 2, 2]
Mask Decoder Transformer Depth 2 1 1
Mask Decoder Transformer MLP Dim 2048 1024 256
Mask Decoder Transformer Num Heads 8 8 4
Mask Decoder IOU Head Depth 3 2 2

2.3 Post-processing

The Swift MedSAM model proposed in this study includes a post-processing
stage that converts the predicted mask to the original image size through a
series of steps. This post-processing stage ensures that the mask output by
the model is aligned with the original image size, thereby providing an accu-
rate segmentation result. The post-processing stage consists of the following steps:

1. Cropping
The predicted mask is resized to the size of the input image (256 × 256) for
the model, the mask undergoes a cropping process to eliminate unnecessary
padding areas.
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2. Resizing
The cropped mask is resized to the original size of the image. This is achieved
through bilinear interpolation, upsampling the mask to the same size as the
original image.

3. Sigmoid Activation Function
A sigmoid activation function is applied to the upsampled mask, normalizing
the values of each pixel between 0 and 1. This step ensures that each pixel in
the mask represents the probability of belonging to the target region.

4. Binarization
The mask that undergoes the sigmoid activation function is binarized using
a threshold of 0.5. In other words, values greater than or equal to 0.5 are
converted to 1, and values below 0.5 are converted to 0, generating the final
mask. This process ensures that the predicted mask has a clear binary form.

3 Experiments

3.1 Dataset and evaluation measures
In the CVPR 2024: SEGMENT ANYTHING IN MEDICAL IMAGES ON LAP-
TOP challenge, participants could use the training and validation datasets
provided by the organizers and external publicly available datasets. The
datasets used in developing SwiftMedSAM are as follows: COVID-19-20 [51],
AbdomenCT-1K [40], FDG-PET-CT-Lesions [18], NSCLC Radiogenomics [6],
NSCLC-Radiomics [18], CT Lymph Nodes [50], NSCLC-PleuralEffusion [31],
NSCLC-Lung MSD-LUNG [53,4,38], KiTS23 [20], CT-ORG [4], COVID-19-20-
CTSEG [38], TotalSegmentator [58], AMOS [28], LCTSC [60], HCC-TACE-
Seg [45], Adrenal-ACC-Ki67-Seg [44], MSD [4,52], ISLES [21], WMH [33],
BraTS [5,42], PROMISE12 [35], MSD-Prostate [4,52], NCI-ISBI [7], Cross-
moda [14], QIN-PROSTATE-Repeatability [16], CC-Tumor Heterogeneity [8],
COVID-19 Radiography Database [48,10], COVID-QU-Ex [55,13,10,48], Chest
Xray Masks and Labels [9,26], Chest X-Ray Images with Pneumothorax
Masks, CDD-CESM [30,29], Intraretinal Cystoid Fluid [2], ps-fh-aop-2023 [37],
hc18 [22,23], Breast Ultrasound Images Dataset [3], ISIC2018 [56,11,12], Cholec-
Seg8k [24,57], Kvasir-SEG [27,46], m2caiSeg [41], PAPILA [32], IDRiD [47],
NeurIPS CellSeg [39], autoPETIII.
The training dataset includes 11 imaging modalities: Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography
(PET), X-ray, ultrasound, mammography, Optical Coherence Tomography (OCT),
endoscopy, fundus, dermoscopy, and microscopy. A total of 1,490,576 medical
image-mask pairs were used to train our model. The validation dataset contains
9 modalities and is a subset of the testing set used in this challenge.
The evaluation metrics for this challenge were divided into accuracy and efficiency.
The accuracy metrics are Dice Similarity Coefficient (DSC), which measures
the overlap between the ground truth and predictions, and Normalized Surface
Dice (NSD), which measures the similarity between the ground truth boundary
and predictions. The efficiency metric is runtime, measured using only the CPU
without GPU assistance.
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3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 2.

Table 2. Development environments and requirements.

System Ubuntu 20.04.6 LTS
CPU AMD EPYC™7402X CPU@2.8GHz
RAM 8×64GB; 3200MT/s
GPU (number and type) Four NVIDIA A100 80G
CUDA version 11.8
Programming language Python 3.10.13
Deep learning framework torch 2.1.0 , torchvision 0.16.0
Code

Training protocols The training protocols of SwiftMedSAM is listed in Table 3.

Table 3. Training protocols.

Pre-trained Model LiteMedSAM
Batch size 32
Patch size 256×256×3
Total epochs 26
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Initial learning rate (lr) 0.005
Lr decay schedule ReduceLROnPlateau
Training time 93.5 hours
Loss function Dice Loss, Binary Cross Entrophy Loss
Number of model parameters 5.94M6

Number of flops 30.04G7

CO2eq 16.16 Kg8

4 Results and discussion

4.1 Quantitative results on validation set

In this study, we conducted experiments to evaluate the performance of SwiftMed-
SAM. The accuracy was measured based on the 3,076 validation data images
provided and compared with the baseline model, LiteMedSAM. The results are
presented in Table 4. Compared to the baseline, SwiftMedSAMv1 exhibited a
0.05% average decrease in DSC, but a 2.00% improvement in NSD. Compared to
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SwiftMedSAMv1, SwiftMedSAMv2 showed a 0.63% improvement in DSC and
0.73% improvement in NSD.
In particular, when examining each imaging modality, for CT images, SwiftMed-
SAMv1 achieved a 2.38% improvement in DSC and a 3.39% improvement in NSD
compared to the baseline. For MR images, DSC improved by 3.42% and NSD
improved by 4.45%. For PET images, there was a significant improvement, with
DSC increasing by 13.77% and NSD by 21.79%. However, for US images, DSC
decreased by 15.61% and NSD decreased by 11.69%. For X-ray images, DSC
decreased by 11.34% and NSD decreased by 9.55%.
Comparing SwiftMedSAMv2 and SwiftMedSAMv1, for CT images, DSC de-
creased by 0.33%, whereas NSD decreased by 0.27%. For MR images, DSC
decreased by 0.78% and NSD decreased by 0.56%. For PET images, DSC de-
creased by 5.49% and NSD decreased by 0.93%. For US images, DSC improved
by 1.72%, and NSD improved by 2.14%. For X-ray images, DSC improved by
6.24%, and NSD improved by 5.88%.

Table 4. Quantitative evaluation results on validation set.

Target Baseline Swift
MedSAMv1

Swift
MedSAMv2

DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)
CT 40.71 40.27 43.09 43.66 42.76 43.39
MR 61.17 62.40 64.59 66.85 63.81 66.29
PET 55.10 29.17 68.87 50.96 63.38 50.03
US 94.77 96.81 79.16 85.12 80.88 87.26
X-Ray 75.82 80.38 64.48 70.83 70.72 76.71
Dermotology 92.47 93.85 93.88 95.30 93.43 94.80
Endoscopy 96.04 98.11 94.57 97.22 95.58 98.02
Fundus 94.81 96.41 94.10 95.79 96.13 97.69
Microscopy 61.63 65.39 69.41 75.05 66.13 73.13
Average 74.73 73.64 74.68 75.64 75.31 76.37

4.2 Qualitative results on validation set

For the comparison of qualitative results, we used publicly available datasets
with ground truth annotations: CT2USforKidneySeg [54], HipXRay [19], and
NSCLC-Radiomics [1], which contain ultrasound, X-ray, and CT modalities, re-
spectively. Examples of SwiftMedSAMv2’s segmentation results for these datasets
are shown in Fig 2. While SwiftMedSAMv2 demonstrated refined segmentation
performance on the CT2USforKidneySeg and NSCLC-Radiomics datasets, it
yielded suboptimal results for some images from the HipXRay dataset with
low-contrast or unclear boundaries.
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Fig. 2. Qualitative results of our SwiftMedSAMv2. (a-b) Good segmentation cases from
CT2USforKidneySeg dataset and NSCLC-Radiomics dataset, respectively. Our method
accurately delineates the kidney boundaries in the CT image (a) and captures the tumor
region in the lung CT image (b). (c-d) Bad segmentation cases from the HipXRay
dataset, where our method struggles to segment the femoral head and acetabulum
regions precisely due to low contrast and complex anatomical structures.

4.3 Segmentation efficiency results on validation set

The efficiency experiments for the final model were performed on a CPU: AMD
EPYC™7402X CPU@2.8GHz, RAM: 8×64GB; 3200MT/s. The specific infer-
ence time measurements for some cases are listed in Table 5. Consequently,
the SwiftMedSAMv1 and SwiftMedSAMv2 models showed reduced execution
times compared to the baseline model in most cases. Particularly, for the
3DBox_MR_0621 case, while the baseline model’s execution time was 630.2
seconds, SwiftMedSAMv1 and SwiftMedSAMv2 took 166.8 seconds and 145.0
seconds, respectively, showing a significant reduction. Compared to SwiftMed-
SAMv1, SwiftMedSAMv2 exhibited better performance in some cases, and an
overall slight improvement was observed. For instance, in the 3DBox_CT_0566
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case, SwiftMedSAMv1 recorded 343.2 seconds, while SwiftMedSAMv2 took 331.9
seconds, demonstrating a faster execution time.

Table 5. Quantitative evaluation of efficiency in terms of running time (s).

Case ID Size Num.
Objects Baseline Swift

MedSAMv1
Swift

MedSAMv2
3DBox_CT_0566 (287, 512, 512) 6 499.2 343.2 331.9
3DBox_CT_0888 (237, 512, 512) 6 114.1 97.4 94.1
3DBox_CT_0860 (246, 512, 512) 1 17.7 15.9 14.2
3DBox_MR_0621 (115, 400, 400) 6 630.2 166.8 145.0
3DBox_MR_0121 (64, 290, 320) 6 119.4 94.7 90.7
3DBox_MR_0179 (84, 512, 512) 1 17.7 14.7 13.3
3DBox_PET_0001 (264, 200, 200) 1 31.9 9.9 8.6
2DBox_US_0525 (256, 256, 3) 1 1.8 1.7 1.6
2DBox_X-Ray_0053 (320, 640, 3) 34 9.8 9.3 9.8
2DBox_Dermoscopy_0003 (3024, 4032, 3) 1 7.9 8.4 7.9
2DBox_Endoscopy_0086 (480, 560, 3) 1 6.1 2.7 2.6
2DBox_Fundus_0003 (2048, 2048, 3) 1 2.6 4.2 4.0
2DBox_Microscope_0008 (1536, 2040, 3) 19 19.5 18.1 18.0
2DBox_Microscope_0016 (1920, 2560, 3) 241 257.5 253.1 267.1

4.4 Results on final testing set

The SwiftMedSAM was evaluated on the final testing set across various medi-
cal imaging modalities. In terms of segmentation accuracy metrics, endoscopy
achieved the highest DSC of 91.55% and NSD of 94.44%. The average DSC and
NSD across all modalities were 75.50% and 78.95%, respectively. Regarding effi-
ciency, the mean runtime was 12.86 seconds, with endoscopy being the fastest at
7.37 seconds and CT the slowest at 30.89 seconds. Detailed results are presented
in Table 6.

Table 6. Testing results on final testing set

Target SwiftMedSAM
DSC(%) NSD(%) Runtime (s)

CT 61.03 65.56 30.89
MR 66.73 68.62 14.51
X-Ray 64.55 77.04 9.25
Endoscopy 91.55 94.44 7.37
Fundus 85.96 88.15 8.96
Microscopy 81.00 83.00 15.73
OCT 71.09 78.47 7.84
PET 79.30 70.65 12.09
US 78.28 84.63 9.10
Average 75.50 78.95 12.86
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4.5 Limitation and future work

SwiftMedSAM exhibited versatility in medical image segmentation despite its
remarkably small model size and low computational complexity. However, there
are still limitations in which segmentation errors occur when the boundaries of
the structures/lesions are ambiguous. We expect that these issues can be resolved
with higher-quality data and more powerful training strategies in the future.
Currently, the performance is maintained at the level of the baseline model, but
we aim to achieve a fast inference speed and improve the performance in the
future.

5 Conclusion

In this study, we proposed SwiftMedSAM, an ultra-lightweight prompt-based
model that enables real-time high-performance medical image segmentation even
in highly constrained computing environments. While maintaining the backbone of
the existing SOTA model MedSAM, we introduced the lightweight LiteMedSAM
as the baseline and performed a process of hyperparameter tuning to drastically
reduce the model size and computational complexity. Through experiments, we
verified the comparable segmentation performance and fast inference speed of
SwiftMedSAM.
The proposed SwiftMedSAM demonstrates the potential for a universal prompt-
based medical image segmentation model while simultaneously pursuing efficiency
and generalizability. This will enable high-quality medical image analysis, even
in resource-constrained environments, contributing to advancements in precision
medicine and telemedicine.
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Table 7. Checklist Table. Please fill out this checklist table in the answer column.
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A meaningful title Yes
The number of authors (≤6) 5
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Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided Figure 1
Pre-processing Page 4
Strategies to data augmentation (none)
Strategies to improve model inference Page 4
Post-processing Page 5
Environment setting table is provided Table 2
Training protocol table is provided Table 3
Ablation study Page 7
Efficiency evaluation results are provided Table 5
Visualized segmentation example is provided Figure 2
Limitation and future work are presented Yes
Reference format is consistent. Yes
Main text >= 8 pages (not include references and appendix) Yes


