
Under review as a conference paper at ICLR 2024

SIGNATURES MEET DYNAMIC PROGRAMMING:
GENERALIZING BELLMAN EQUATIONS FOR TRAJEC-
TORY FOLLOWING

Anonymous authors
Paper under double-blind review

ABSTRACT

Path signatures have been proposed as a powerful representation of paths that
efficiently captures the path’s analytic and geometric characteristics, having useful
algebraic properties including fast concatenation of paths through tensor products.
Signatures have recently been widely adopted in machine learning problems for
time series analysis. In this work we establish connections between value functions
typically used in optimal control and intriguing properties of path signatures.
These connections motivate our novel control framework with signature transforms
that efficiently generalizes the Bellman equation to the space of trajectories. We
analyze the properties and advantages of the framework, termed signature control.
In particular, we demonstrate that (i) it can naturally deal with varying/adaptive
time steps; (ii) it propagates higher-level information more efficiently than value
function updates; (iii) it is robust to dynamical system misspecification over long
rollouts. As a specific case of our framework, we devise a model predictive control
method for path tracking. This method generalizes integral control, being suitable
for problems with unknown disturbances. The proposed algorithms are tested
in simulation, with differentiable physics models including typical control and
robotics tasks such as point-mass, curve following for an ant model, and a robotic
manipulator.

1 INTRODUCTION

Dynamic programming (DP) is a foundation of many of the modern decision making algorithms
such as optimal control (Liberzon, 2011) and reinforcement learning (RL) (Sutton & Barto, 2018).
Typically, dynamic programming (Bellman, 1953) over the scalar or value of a respective policy is
studied and analyzed through the lenses of the Bellman expectation (or optimality) which describes
the evolution of values or rewards over time (cf. Kakade (2003); Sutton & Barto (2018); Kaelbling
et al. (1996)). This is done by computing a value function which maps states to values and is updated
online as new information becomes available.
However, value functions capture state information exclusively through its scalar value, which is
a downside of model-free algorithms (see Sun et al. (2019) for theoretical comparisons between
model-based and model-free approaches). Further, cumulative reward based trajectory (or policy)
optimization is suboptimal for tasks such as path tracking where waypoints are unavailable, and for
other problems that require the entire trajectory information to obtain an optimal control strategy. In
particular, path tracking is the main focus of this work. Path tracking has been a central problem for
autonomous vehicles (e.g., Schwarting et al. (2018); Aguiar & Hespanha (2007)), imitation learning,
learning from demonstrations (cf. Hussein et al. (2017); Argall et al. (2009)), character animations
(with mocap systems; e.g., Peng et al. (2018)), robot manipulation for executing plans returned by a
solver (cf. Kaelbling & Lozano-Pérez (2011); Garrett et al. (2021)), and for flying drones (e.g., Zhou
& Schwager (2014)), just to name a few. Typically, those problems are dealt with by using reference
dynamics or are formulated as a control problem with a sequence of goals to follow.
In this work, we instead adopt a rough-path theoretical approach; specifically, we exploit path
signatures (cf. Chevyrev & Kormilitzin (2016); Lyons (1998)), which have been widely studied as
a useful geometrical feature representation of path, and have recently attracted the attention of the
machine learning community (e.g., Chevyrev & Kormilitzin (2016); Kidger et al. (2019); Salvi et al.
(2021); Morrill et al. (2021); Levin et al. (2013); Fermanian (2021)). By eReview and performance

1

Under review as a conference paper at ICLR 2024

evaluation of path trackinglishing the connection of algebra of path signatures to value functions, we
tackle control problems for trajectory following in a novel manner.
Our framework predicated on signatures, named signature control, describes an evolution of signatures
over a certain path. By demonstrating how it reduces to the Bellman equation as a special case,
we show that the S-function representing the signatures of future path (we call it path-to-go in
this paper) is cast as an effective generalization of value function. In addition, since an S-function
naturally encodes information of a long trajectory, it is robust against misspecification of dynamics.
Our signature control inherits some of the properties of signatures, namely, time-parameterization
invariance, shift invariance, and tree-like equivalence (cf. Lyons et al. (2007); Boedihardjo et al.
(2016)); as such, when applied to tracking problems, there is no need to specify waypoints.
In order to devise new algorithms from this framework, including model predictive controls (MPCs)
(Camacho & Alba, 2013), we present path cost designs and their properties. In fact, our signature
control generalizes the classical integral control (see Khalil (2002)); it hence shows robustness against
unknown disturbances, which is demonstrated in robotic manipulator simulation.
Our contributions: We devise a novel framework based on path signatures for control problems
named signature control. We define Chen equation for decision making and show how it reduces to the
Bellman equation as a special instance, and discuss the relation to classical integral control. Our work
offers a general approach that systematically lifts (generalizes) the classical Bellman-based dynamic
programming to the space of paths; without the need of problem specific ad-hoc modifications,
giving us more flexibility of devising algorithms on top. In addition, we present MPC algorithms
accompanied by practical path cost designs and their properties. signature is a nice mathematical tool
that has suitable properties for representing paths and has an algebraic property that is also well-fitted
to dynamic programming based decision making. Finally, we analyze some of the advantages of our
approach numerically and present several control and robotics applications. To this end, we show
several simple numerical examples showcasing the benefits and demonstrating the concepts that
inherit mathematical properties of the path signature, including its algebraic and geometric features.
Notation: Throughout this paper, we let R, N, R≥0, and Z>0 be the set of the real numbers, the
natural numbers ({0, 1, 2, . . .}), the nonnegative real numbers, and the positive integers, respectively.
Also, let [T] := {0, 1, . . . , T − 1} for T ∈ Z>0. The floor and the ceiling of a real number a is
denoted by ⌊a⌋ and ⌈a⌉, respectively. Let T denote time for random dynamical systems, which is
defined to be either N (discrete-time) or R≥0 (continuous-time).

Figure 1: Left: simple tracking example. The black and blue circles represent an obstacle and the
goal respectively. Given a feasible path (black line), a point-mass (red) follows this reference via
minimization of deviation of signatures in an online fashion with optimized action repetitions. Right:
illustration of path-to-go formulation as an analogy to value-to-go in the classical settings.

2 RELATED WORK
We introduce related lines of work on signature and its applications, controls/RLs, and path tracking.

Path signature: Path signatures are mathematical tools developed in rough path theoretical re-
search (Lyons, 1998; Chen, 1954; Boedihardjo et al., 2016). For efficient computations of metrics
over signatures, kernel methods (Hofmann et al., 2008; Aronszajn, 1950) are employed (Király &
Oberhauser, 2019; Salvi et al., 2021; Cass et al., 2021; Salvi et al., 2021). Signatures have been
widely applied to various applications, such as sound compression (Lyons & Sidorova, 2005), time
series data analysis and regression (Gyurkó et al., 2013; Lyons, 2014; Levin et al., 2013), action and
text recognitions (Yang et al., 2022; Xie et al., 2017), and neural rough differential equations (Morrill
et al., 2021). Also, deep signature transform is proposed in (Kidger et al., 2019) with applications to
reinforcement learning by embedding the signature transform as a layer in a recurrent neural network
(RNN). The formulation of RL proposed by Kidger et al. (2019) is still within Bellman equation

2

Under review as a conference paper at ICLR 2024

based framework where states are augmented with signatures of past path that are updated using
Chen’s identity (Chen, 1954). In contrast, our framework is solely replacing this Bellman backup with
signature based DP. More theory and practice for combining path signatures and machine learning
are summarized in (Chevyrev & Kormilitzin, 2016; Fermanian, 2021).
Control and RL: Algorithm designs and sample complexity analyses for RL have been studied
extensively (cf. (Kakade, 2003; Agarwal et al., 2019)). Value function based methods are widely
adopted in RL for control problems. However model-free RL algorithms based on value function
(Jiang et al., 2017; Haarnoja et al., 2018; Mnih et al., 2013; Wurman et al., 2022) treat the model as a
black box and typically suffer from low sample efficiency. To alleviate this problem of value function
based approaches, model-based RL methods learn one-step dynamics to exploit the dynamics across
states (cf. (Sun et al., 2019; Du et al., 2021; Wang et al., 2019; Chua et al., 2018)). In practical
algorithms, however, even small errors on one-step dynamics could diverge along multiple time steps,
which hinders the performance (cf. Moerland et al. (2023)). To improve sample complexity and
generalizability of value function based methods, on the other hand, successor features (e.g., Barreto
et al. (2017)) have been developed for encoding representations of values for a diverse set of reward
signals spanned by the features. We tackle the issue of value function based methods from another
angle by capturing sufficiently rich information in a form of path-to-go, which is robust against long
horizon problems; at the same time, it subsumes value function (and successor feature) updates. Our
approach shares a similar idea proposed by Ohnishi et al. (2021) which controls with costs over
spectrums of the Koopman operator in addition to a cumulative cost with sample complexity analysis,
but that approach is not utilizing DP.
Path tracking: Path planning and path tracking are core techniques for autonomous robot navi-
gation and control tasks. Traditionally, the optimal tracking control is achieved by using reference
dynamics or by assigning time-varying waypoints (Paden et al., 2016; Schwarting et al., 2018;
Aguiar & Hespanha, 2007; Zhou & Schwager, 2014; Patle et al., 2019). In practice, MPC is usually
applied for tracking time-varying waypoints and PID controls are often employed when optimal
control dynamics can be computed offline (cf. Khalil (2002)). Some of the important path tracking
methodologies were summarized in (Rokonuzzaman et al., 2021); namely, pure pursuit (Scharf et al.,
1969), Stanley controller (Thrun et al., 2007), linear control such as the linear quadratic regulator after
feedback linearisation (Khalil, 2002), Lyapunov’s direct method, robust or adaptive control using
simplified or partially known system models, and MPC. Those methodologies are highly sensitive
to time step sizes and requires analytical (and simplified) system models, and misspecifications of
dynamics may also cause significant errors in tracking accuracy even when using MPC. Due to those
limitations, many ad-hoc heuristics are often required when applying them in practice. Our signature
based method applied to path tracking problems can systematically remedy some of those drawbacks
in its vanilla form.

3 PRELIMINARIES
In this section, we introduce path signatures, their main properties, and present the problem setups.

3.1 PATH SIGNATURE

Let X ⊂ Rd be a state space and suppose a path is defined over a compact time interval [s, t] for 0 ≤
s < t to be an element of X [s,t]; i.e., a continuous stream of states. The path signature is a collection
of infinitely many features (scalar coefficients) of a path with depth one to infinite. Coefficients of
each depth roughly correspond to the geometric characteristics of paths, e.g., displacement and area
surrounded by the path can be expressed by coefficients of depth one and two.
The formal definition of path signatures is given below. We use T ((X)) to denote the space of formal
power series and ⊗ to denote the tensor product operation (see Appendix A).

Definition 3.1 (Path signatures (Lyons et al., 2007)). Let Σ ⊂ X [0,T] be a certain space of paths.
Define a map on Σ over T ((X)) by S(σ) ∈ T ((X)) for a path σ ∈ Σ where its coefficient
corresponding to the basis ei ⊗ ej ⊗ . . .⊗ ek is given by

S(σ)i,j,...,k :=

∫
0<τk<T

∫
0<τj<τk

. . .

∫
0<τi<τj

dxi . . . dxjdxk.

The space Σ is chosen so that the path signature S(σ) of σ ∈ Σ is well-defined.
Given a positive integer m, the truncated signature Sm(σ) is defined accordingly by a truncation of
S(σ) (as an element of the quotient denoted by Tm(X); see Appendix A for the definition of tensor
algebra and related notations).

3

Under review as a conference paper at ICLR 2024

Properties of the path signatures: The basic properties of path signature allow us to develop our
decision making framework and its extension to control algorithms. Such properties are also inherited
by the algorithms we devise, providing several advantages over classical methods for tasks such as
path tracking (further details are in Section 5 and 6). We summarize these properties below:

• The signature of a path is the same as the path shifted by a constant (shift invariance)
and different time reparametrization (time parameterization invariance). Straightforward
applications of signatures thus represent shape information of a path without the need to
specify waypoints and/or absolute initial positions.

• A path is uniquely recovered from its signature up to tree-like equivalence (e.g., path with
detours) and the magnitudes of coefficients decay as fast as depth increases. As such,
(truncated) path signatures contain sufficiently rich information about the state trajectory,
providing a valuable and compact representation of a path in several control problems.

• Any real-valued continuous (and nonlinear) map on the certain space of paths can be
approximated to arbitrary accuracy by a linear map on the space of signatures (Arribas,
2018). This universality property enables us to construct a universal kernel which is used to
compute the metric or cost of a generated path in our algorithms.

• The path signature has a useful algebraic property known as Chen’s identity (Chen, 1954).
It states that the signature of the concatenation of two paths can be computed by the tensor
product of the signatures of the paths. Let X : [a, b] → Rd and Y : [b, c] → Rd be two
paths. Then, it follows that

S(X ∗ Y)a,c = S(X)a,b ⊗ S(Y)b,c,

where ∗ denotes the concatenation operation.
From the properties above, we can define a kernel operating over the space of trajectories. This will
be critical to derive our control framework in section 4.
Definition 3.2 (Signature Kernel). Let X and Y be two trajectories defined in two compact intervals
[a, a′] and [b, b′]. The signature kernel K : Σ× Σ → R is defined by

K(X,Y) := ⟨S(X), S(Y)⟩ ,
where the inner product ⟨·, ·⟩ is the inner product defined for tensor algebra (see Appendix B for
detailed definition). Efficient computation of the kernel was studied in (Salvi et al., 2021) or in
(Király & Oberhauser, 2019) for truncated signatures.

We present several theoretical and numerical examples showcasing how these properties benefit
control applications in Appendix G and H.

3.2 DYNAMICAL SYSTEMS AND PATH TRACKING

Since we are interested in cost definitions over the entire path and not limited to the form of the
cumulative cost over a trajectory with fixed time interval (or integral along continuous time), Markov
Decision Processes (MDPs; Bellman (1957)) are no longer the most suitable representation for the
problem. Instead, we assume that the system dynamics of an agent is described by a stochastic
dynamical system Φ (SDS; in other fields the term is also known as Random Dynamical System
(RDS) (Arnold, 1995)). We defer the mathematical definition to Appendix C. In particular, let π be
a policy in a space Π which defines the SDS Φπ (it does not have to be a map from state space to
action value). Roughly speaking, a SDS consists of two models:

• A model of the noise;
• A function representing the physical dynamics of the system.

Examples of stochastic dynamical systems include Markov chains, stochastic differential equations,
and additive-noise systems, i.e.,

xt+1 = f(xt) + ηt, x0 ∈ Rd, t ∈ [T],

where f : Rd → Rd represents the dynamics, and ηt ∈ Rd is the zero-mean i.i.d. additive noise vector.
Intuitively, dynamical systems with an invariant noise-generating mechanism could be described as a
stochastic dynamical system by an appropriate translation. We also note that SDS subsumes many
practical systems studied in the control community.

Although the framework we propose is general, the main problem of interest is path tracking which
we formally define below:

4

Under review as a conference paper at ICLR 2024

Definition 3.3 (Path tracking). Let Γ : Σ×Σ → R≥0 be a cost function on the product of the spaces
of paths over the nonnegative real number, satisfying:

∀σ ∈ Σ : Γ(σ, σ) = 0; ∀σ∗ ∈ Σ, ∀σ ∈ Σ s.t. σ ̸≡σ σ∗ : Γ(σ, σ∗) > 0,

where ≡σ is any equivalence relation of path in Σ. Given a reference path σ∗ ∈ Σ and a cost, the
goal of path tracking is to find a policy π∗ ∈ Π such that a path σπ generated by the SDS Φπ satisfies

π∗ ∈ argmin
π∈Π

Γ(σπ, σ
∗).

With these definitions we can now present a novel control framework, namely, signature control.

4 SIGNATURE CONTROL

A SDS creates a discrete or continuous path T ∩ [0, T] → X . For an SDS operating in discrete-time
(i.e., T is N) up to time T , we first interpolate each pair of two discrete points to create a path
[0, T] → X . One may transform the obtained path onto Σ as appropriate (see Appendix C for detailed
description and procedures).

4.1 PROBLEM FORMULATION

Our signature control problem is described as follows:
Problem 4.1 (signature control). Let T ∈ [0,∞) be a time horizon. The signature control problem
is defined as

Find π∗ s.t. π∗ ∈ argmin
π∈Π

c (EΩ [S (σπ (x0, T, ω))]) , (4.1)

where c : T ((X)) → R≥0 is a cost function over the space of signatures. σπ(x0, T, ω) is the
(transformed) path for the SDS Φπ associated with a policy π, x0 is the initial state and ω is the
realization for the noise model.

This problem subsumes the Markov Decision Process as we shall see in Section 4.2. The given
formulation covers both discrete-time and continuous-time cases through interpolation over time. To
simplify notation, we omit the details of probability space (e.g., realization ω and sample space Ω) in
the rest of the paper with a slight sacrifice of rigor (see Appendix C for detailed descriptions). Given a
reference path σ∗, when Γ(σ, σ∗) = c(S(σ)) and ≡σ denotes tree-like equivalence, signature control
becomes the path tracking Problem 3.3. To effectively solve it we exploit dynamic programming over
signatures in the next section.

4.2 DYNAMIC PROGRAMMING OVER SIGNATURES

Before introducing dynamic programming over signatures, we present the notion of path-to-go using
Chen’s identity.
Path-to-go: Without loss of generality, consider a finite-time dynamical system. Let a ∈ A be an
action which basically constrains the realizations of path up to time ta (actions studied in MDPs are
constraining the one-step dynamics from a given state). Given T ∈ T, path-to-go, or the future path
generated by π, refers to Pπ defined by

Pπ(x, t) = σπ(x, T − t), ∀t ∈ [0, T].

Under Markov assumption (see Appendix D), it follows that each realization of the path constrained
by an action a can be written as

Pπ(x, t) = Pπa (x, t) ∗ Pπ(x+, ta + t), Pπa (x, t) := σπ(x,min{T − t, ta}),

where x+ is the state reached after ta from x. This is illustrated in Figure 1 Right. To express the
above relation in the signature form, we exploit the Chen’s identity, and define the signature-to-go
function (or in short S-function) Sπ given by

Sπ(a, x, t) := E [S(Pπa (x, t))|a] . (4.2)

Using the Chen’s identity, the law of total expectation, the Markov assumption, the properties of
tensor product and the path transformation, we obtain the update rule:

5

Under review as a conference paper at ICLR 2024

Figure 2: Left: illustrations of how a cumulative reward-to-go is represented by our path formulation.
Right: an error of approximated one-step dynamics propagates through time steps; while an error on
signature has less effect over long horizon.

Theorem 4.2 (Signature Dynamic Programming for Decision Making). Let the function S is defined
by (4.2). Under the Markov assumption, it follows that

Sπ(a, x, t) = E
[
S(Pπa (x, t))⊗ ESπ(x+, t+ ta)|a

]
where the expected S-function ESπ is defined by

ESπ(x, t) := E [Sπ(a, x, t)] ,
where the expectation is taken over actions.
Truncated signature formulation: For the mth-depth truncated signature (note that m = ∞ for
signature with no truncation), we obtain,

(S(X)⊗ S(Y))m = (S(X)m ⊗ S(Y)m)m =: S(X)m ⊗m S(Y)m. (4.3)

Therefore, when the cost only depends on the first mth-depth signatures, keeping track of the first
mth-depth S-function Sπm(a, x, t) suffices.

Following from these results, the cost function c can be efficiently computed as

c(Sπm(a, x, t)) = c
(
E
[
Sm(Pπa (x, t))⊗m ESπm(x+, t+ ta)|a

])
.

Reduction to the Bellman equation: Here we demonstrate that the formulation above subsumes
the classical Bellman equation. Recall that the Bellman expectation equation w.r.t. action-value
function or Q-function is given by

Qπ(a, x, t) = E
[
r(a, x) + V π(x+, t+ 1)

∣∣a] , (4.4)

where V π(x, t) = γtV π(x, 0) = E[Qπ(a, x, t)] for all t ∈ N, where γ ∈ (0, 1] is a discount factor.
We briefly show how this equation can be described by a S-function formulation. Here, the action a is
the typical action input considered in MDPs. We suppose discrete-time system (T = N), and that the
state is augmented by reward and time, and suppose ta = 1 for all a ∈ A. Let the depth of signatures
to keep be m = 2. Then, by properly defining (see Appendix E for details) the interpolation and
transformation, we obtain the path illustrated in Figure 2 Left over the time index and immediate
reward. For this two dimensional path, note that a signature element of depth two represents the
surface surrounded by the path (colored by yellow in the figure), which is equivalent to the value-to-go.
As such, define the cost c : T 2(X) → R≥0 by c(s) = −s1,2, and Chen equation becomes

c(Sπ2 (a, x, t)) = c
(
E
[
S2(Pπa (x, t))⊗2 ESπ2 (x+, t+ 1)|a

])
= E

[
−S1,2(Pπa (x, t)) + c

(
ESπ2 (x+, t+ 1)

)
|a
]
.

Now, since

c (Sπ2 (a, x, t)) = −Qπ(a, x, t), c (ESπ2 (x, t)) = −V π(x, t), S1,2(Pπa (x, t)) = r(a, x),

it reduces to the Bellman expectation equation (4.4).

Next, we present several practical applications that highlight some of the benefits of our signature
control framework.

5 SIGNATURE MPC

First, we discuss an effective cost formulation over signatures to enable flexible and robust model
predictive control (MPC). Then, we present additional numerical properties of path signatures that
benefit signature control.

6

Under review as a conference paper at ICLR 2024

Algorithm 1 Signature MPC

Input: initial state x0; signature depth m; initial signature of past path s0 = 1; # actions for
rollout N ; surrogate cost ℓ and regularizer ℓreg; terminal S-function T Sm; simulation model Φ̂

1: while not task finished do
2: Observe the current state xt
3: Update the signature of past path: st = st−1 ⊗m S(σ(xt−1, xt)), where S(σ(xt−1, xt)) is

the signature transform of the subpath traversed since the last update from t− 1 to t
4: Compute the N optimal future actions a∗ := (a0, a1, . . . , aN−1) using a simulation model

Φ̂ that minimize the cost of the signature of the entire path (See Equation (5.1)).
5: Run the first action a0 for the associated duration ta0
6: end while

Signature model predictive control: We present an application of Chen equation to MPC control–
an iterative, finite-horizon optimization framework for control. In our signature model predictive
control formulation, the optimization cost is defined over the signature of the full path being tracked
i.e., the previous path seen so far and the future path generated by the optimized control inputs
(e.g., distance from the reference path signature for path tracking problem). Our algorithm, given
in Algorithm 1, works in the receding-horizon manner and computes a fixed number of actions (the
execution time for the full path can vary as each action may have a different time scale; i.e., each
action is taken effect up to optimized (or fixed) time ta ∈ T).

Given the signature st of transformed past path (depth m) and the current state xt at time t, the
actions are selected by minimizing a two-part objective which is the sum of the surrogate cost ℓ and
some regularizer ℓreg:

J =

ℓ

(
st ⊗m E [Sm(σa(xt))⊗m T Sm(x0, st, σa(xt))]

)
surrogate cost

+ ℓreg

(
E [T Sm(x0, st, σa(xt))]

)
regularizer

(5.1)

where the optimization variable a := (a0, a1, . . . aN−1) is the sequence of actions, the path traced by
an action sequence is σa(xt), and T Sm : X × Tm(X)× Σ → Tm(X) is the terminal S-function
that may be defined arbitrarily (as an analogy to terminal value used in typical Bellman equation
based MPC; see Appendix I for a comparison of a few options.).

Terminal S-function returns the signature of the terminal path-to-go. For the tracking problems
studied in this work, we define the terminal subpath (path-to-go) as the final portion of the reference
path starting from the closest point to the end-point of roll-out. This choice optimizes for actions up
until the horizon anticipating that the reference path can be tracked afterward. We observed that this
choice worked the best for simple classical examples analyzed in this work.
Error explosion along time steps: We consider robustness against misspecification of dynamics.
Figure 2 Right shows an example where the dashed red line is the ground truth trajectory with the
true dynamics. When there is an approximation error on the one-step dynamics being modelled, the
trajectory deviates significantly (black dashed line). On the other hand, when the same amount of
error is added to each term of signature, the recovered path (blue solid line) is less erroneous. This is
because signatures capture the entire (future) trajectory globally (see Appendix H.2 for details).
Computations of signatures: We compute the signatures through the kernel computations (see
Definition 3.2) using an approach in (Salvi et al., 2021). We emphasize that the discrete points we
use for computing the signatures of (past/future) trajectories are not regarded as waypoints, and their
placement has negligible effects on the signatures as long as they sufficiently maintain the “shape” of
the trajectories; while the designs of waypoints for the classical Bellman-based MPC are critical.

6 EXPERIMENTAL RESULTS

We conduct experiments on both simple classical examples and simulated robotic tasks. We also
present a specific instance of signature control to the classical integral control to show its robustness
against disturbance. For more experiment details, see Appendix J.
Simple point-mass: We use double-integrator point-mass as a simple example to demonstrate our
approach (as shown in Figure 1 Left). In this task, the velocity of a point-mass is controlled to reach

7

Under review as a conference paper at ICLR 2024

Table 1: Selected results on path following with an ant robot model. Comparing signature control,
and baseline MPC and SAC RL with equally assigned waypoints. “Slow” means it uses more time
steps than our signature control for reaching the goal.

Deviation (distance) from reference

Mean (10−2m) Variance (10−2m) # waypoints reaching goal

signature control 21.266 6.568 N/A success
baseline MPC 102.877 182.988 880 fail

SAC RL 446.242 281.412 880 fail

baseline MPC (slow) 10.718 5.616 1500 success
baseline MPC (slower) 1.866 0.026 2500 success

a goal position while avoiding the obstacle in the scene. We first generate a collision-free path via
RRT* (Karaman & Frazzoli, 2011) which can be suboptimal in terms of tracking speed. We then
employ our Signature MPC to follow this reference path by producing the actions (i.e. velocities).
Thanks to the properties of signature control, Signature MPC is able to optimize the tracking speed
while matching the trajectory shape in the meantime. As a result, the solution produced by Signature
MPC taking around 30 seconds while the reference path generated by RRT* path takes 72 seconds.

Two-mass, spring, damper system: To view the integral control (Khalil, 2002) within the scope
of our proposed signature control formulation, recall a second depth signature term corresponding to
the surface surrounded by the time axis, each of the state dimension, and the path, represents each
dimension of the integrated error. In addition, a first depth signature term together with the initial
state x0 represent the immediate error, and the cost c may be a weighted sum of these two. To test
this, we consider two-mass, spring, damper system; the disturbance is assumed zero for planning,
but is 0.03 for executions. We compare Signature MPC where the cost is the squared Euclidean
distance between the signatures of the reference and the generated paths with truncations upto the
first and the second depth. The results of position evolutions of the two masses are plotted in Figure
3 Top. As expected, the black line (first depth) does not converge to zero error state while the blue
line (second depth) does (see Appendix J for details). If we further include other signature terms,
signature control effectively becomes a generalization of integral controls, which we will see for
robotic arm experiments later.

Ant path tracking: In this task, an Ant robot is controlled to follow a “2”-shape reference path.
The action optimized is the torque applied to each joint actuator. We test the tracking performances
of signature control and baseline standard MPC on this problem. Also, we run soft actor-critic
(SAC) (Haarnoja et al., 2018) RL algorithm where the state is augmented with time index to manage
waypoints and the reward (negative cost) is the same as that of the baseline MPC. For the baseline
MPC and SAC, we equally distribute 880 waypoints to be tracked along the path and the time stamp
of each waypoint is determined by also equally dividing the total tracking time achieved by signature
control. Table 1 compares the mean/variance of deviation (measured by distance in meter) from
the closest of 2000 points over the reference path, and Figure 3 (Bottom Left) shows the resulting
behaviors of MPCs, showing significant advantages of our method in terms of tracking accuracy. The
performance of SAC RL is insufficient under the settings; this is expected given that we have no
access to sophisticated waypoints over joints (see Peng et al. (2018) for the discussion). When more
time steps are used (i.e., slower tracking), baseline MPC becomes a bit better. Note our method can
also tune the trade-off between accuracy and progress through weight on regularizer.

Robotic manipulator path tracking: In this task, a robotic manipulator is controlled to track an
end-effector reference path. Similar to the Ant task, 270 waypoints are equally sampled along the
reference path for the baseline MPC method and SAC RL to track. To show robustness of signature
control against unknown disturbance (torque: N ·m), we test different scales of disturbance force
applied to each joint of the arm. The means/variances of the tracking deviation of the three approaches
for selected cases are reported in Table 2 and the tracking paths are visualized in Figure 3 (Bottom
Right). For all of the cases, our signature control outperforms the baseline MPC and SAC RL,
especially when the disturbance becomes larger, the difference becomes much clearer. This is because
the signature MPC is insensitive to waypoint designs but rather depends on the “distance” between
the target path and the rollout path in the signature space, making the tracking speed adaptive.

8

Under review as a conference paper at ICLR 2024

Table 2: Results on path tracking with a robotic manipulator end-effector. Comparing signature
control, and baseline MPC and SAC RL with equally assigned waypoints under unknown fixed
disturbance.

Deviation (distance) from reference

Disturbance (N ·m) Mean (10−2m) Variance (10−2m)

+30 1.674 0.002
signature control ±0 0.458 0.001

−30 1.255 0.002

+30 2.648 0.015
baseline MPC ±0 0.612 0.007

−30 5.803 0.209

+30 15.669 0.405
SAC RL ±0 3.853 0.052

−30 16.019 0.743

Figure 3: Top (two-mass spring, damper system): the plots show the evolutions of positions of two
masses for Signature MPC with/without second depth signature terms, showing how Signature MPC
reduces to integral control. Down: (Left two; Ant) tracking behaviors of signature control (left) and
baseline MPC (right) for the same reaching time, where green lines are the executed trajectories.
(Right two; Robotic arm): tracking behaviors of signature control (left) and baseline MPC (right)
under disturbance −30.

7 DISCUSSIONS

This work presented signature control, a novel framework that generalizes dynamic programming
to reason over entire paths, instead of single timesteps. This allowed us to develop novel control
algorithms such as Signature Model Predictive Control (Signature MPC), and apply them to path
tracking problems. Since our framework is based on the signature transform, our algorithms inherit
several useful features from it including time-parameterization invariance and shift invariance. We
applied Signature MPC to path tracking in several domains, including a 2D point mass environment,
a multi-joint ant, and a robotic manipulator, and showed superior tracking capability against baselines.
We further demonstrated that our Signature MPC method is robust against misspecification of dynam-
ics and significant disturbances. There are many promising avenues for future work (which is relevant
to the current limitations of our work), such as developing a more complete theoretical understanding
of guarantees provided by the signature control framework, leveraging hardware parallelization to
accelerate Signature MPC and make it real-time, and developing additional reinforcement learning
algorithms that inherit the benefits of our signature control framework. While we emphasize that
the run times of MPC algorithms we used in this work for signature control and baseline are almost
the same, adopting some of the state-of-the-art MPC algorithm running in real-time to our signature
MPC is an important future work.

9

Under review as a conference paper at ICLR 2024

8 ETHICS STATEMENT

Our work is a fundamental research which potentially influences future control/RL/robotics work;
as such, when misused (or carelessly used) for the military, self-driving cars, and robotics system
interacting with humans, we mention that our work may negatively impact us.

9 REPRODUCIBILITY STATEMENT

We listed all the relevant parameters used in the experiments in Appendix J.

10

Under review as a conference paper at ICLR 2024

REFERENCES

A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun. Reinforcement learning: Theory and algorithms.
CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, pp. 10–4, 2019.

A. P. Aguiar and J. P. Hespanha. Trajectory-tracking and path-following of underactuated autonomous
vehicles with parametric modeling uncertainty. IEEE Trans. Automatic Control, 52(8):1362–1379,
2007.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demonstra-
tion. Robotics and autonomous systems, 57(5):469–483, 2009.

L. Arnold. Random dynamical systems. In Dynamical systems, pp. 1–43. Springer, 1995.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical society,
68(3):337–404, 1950.

I. P. Arribas. Derivatives pricing using signature payoffs. arXiv preprint arXiv:1809.09466, 2018.

A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt, and D. Silver. Successor
features for transfer in reinforcement learning. Advances in Neural Information Processing Systems,
30, 2017.

R. Bellman. An introduction to the theory of dynamic programming. Technical report, The Rand
Corporation, Santa Monica, Calif., 1953.

R. Bellman. A Markovian decision process. Journal of mathematics and mechanics, pp. 679–684,
1957.

H. Boedihardjo and X. Geng. A non-vanishing property for the signature of a path. Comptes Rendus
Mathematique, 357(2):120–129, 2019.

H. Boedihardjo, X. Geng, T. Lyons, and D. Yang. The signature of a rough path: uniqueness.
Advances in Mathematics, 293:720–737, 2016.

E. F. Camacho and C. B. Alba. Model predictive control. Springer science & business media, 2013.

T. Cass, T. Lyons, and X. Xu. General signature kernels. arXiv preprint arXiv:2107.00447, 2021.

K. Chen. Iterated integrals and exponential homomorphisms. Proceedings of the London Mathemati-
cal Society, 3(1):502–512, 1954.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations.
Advances in Neural Information Processing Systems, 2018.

R. T. Q. Chen, B. Amos, and M. Nickel. Learning neural event functions for ordinary differential
equations. International Conference on Learning Representations, 2021.

I. Chevyrev and A. Kormilitzin. A primer on the signature method in machine learning. arXiv
preprint arXiv:1603.03788, 2016.

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. Advances in Neural Information Processing Systems,
31, 2018.

S. Du, S. Kakade, J. Lee, S. Lovett, G. Mahajan, W. Sun, and R. Wang. Bilinear classes: A structural
framework for provable generalization in RL. In International Conference on Machine Learning,
pp. 2826–2836. PMLR, 2021.

A. Fermanian. Learning time-dependent data with the signature transform. PhD thesis, Sorbonne
Université, 2021.

C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual review of control, robotics, and autonomous systems,
4:265–293, 2021.

11

Under review as a conference paper at ICLR 2024

M. Ghil, M. D. Chekroun, and E. Simonnet. Climate dynamics and fluid mechanics: Natural
variability and related uncertainties. Physica D: Nonlinear Phenomena, 237(14-17):2111–2126,
2008.

L. G. Gyurkó, T. Lyons, M. Kontkowski, and J. Field. Extracting information from the signature of a
financial data stream. arXiv preprint arXiv:1307.7244, 2013.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In International conference on machine learning,
pp. 1861–1870. PMLR, 2018.

B. Hambly and T. Lyons. Uniqueness for the signature of a path of bounded variation and the reduced
path group. Annals of Mathematics, pp. 109–167, 2010.

T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning. 2008.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning methods.
ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Contextual decision
processes with low Bellman rank are PAC-learnable. In International Conference on Machine
Learning, pp. 1704–1713. PMLR, 2017.

L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task and motion planning in the now. In IEEE
International Conference on Robotics and Automation, pp. 1470–1477, 2011.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of
artificial intelligence research, 4:237–285, 1996.

S. M. Kakade. On the sample complexity of reinforcement learning. University of London, University
College London (United Kingdom), 2003.

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The interna-
tional journal of robotics research, 30(7):846–894, 2011.

H. K. Khalil. Nonlinear systems; 3rd ed. 2002.

P. Kidger, P. Bonnier, I. Perez A., C. Salvi, and T. Lyons. Deep signature transforms. Advances in
Neural Information Processing Systems, 32, 2019.

D. P. Kingma and J. Ba. ADAM: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

F. J. Király and H. Oberhauser. Kernels for sequentially ordered data. Journal of Machine Learning
Research, 20, 2019.

D. Levin, T. Lyons, and H. Ni. Learning from the past, predicting the statistics for the future, learning
an evolving system. arXiv preprint arXiv:1309.0260, 2013.

D. Liberzon. Calculus of variations and optimal control theory: a concise introduction. Princeton
university press, 2011.

T. Lyons. Rough paths, signatures and the modelling of functions on streams. arXiv preprint
arXiv:1405.4537, 2014.

T. J. Lyons. Differential equations driven by rough signals. Revista Matemática Iberoamericana, 14
(2):215–310, 1998.

T. J. Lyons and N. Sidorova. Sound compression–a rough path approach. signs, 10(1):X1, 2005.

T. J. Lyons, M. Caruana, and T. Lévy. Differential equations driven by rough paths. Springer, 2007.

D. Makoviichuk and V. Makoviychuk. rl-games: A high-performance framework for reinforcement
learning. https://github.com/Denys88/rl_games, May 2021.

12

https://github.com/Denys88/rl_games

Under review as a conference paper at ICLR 2024

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker, et al. Model-based reinforcement learning: A
survey. Foundations and Trends® in Machine Learning, 16(1):1–118, 2023.

J. Morrill, C. Salvi, P. Kidger, and J. Foster. Neural rough differential equations for long time series.
In International Conference on Machine Learning, pp. 7829–7838. PMLR, 2021.

M. Ohnishi, I. Ishikawa, K. Lowrey, M. Ikeda, S. Kakade, and Y. Kawahara. Koopman spectrum
nonlinear regulator and provably efficient online learning. arXiv preprint arXiv:2106.15775, 2021.

B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. A survey of motion planning and control
techniques for self-driving urban vehicles. IEEE Trans. Intelligent Vehicles, 1(1):33–55, 2016.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in PyTorch. 2017.

B. K. Patle, A. Pandey, D. R. K. Parhi, A. J. D. T. Jagadeesh, et al. A review: On path planning
strategies for navigation of mobile robot. Defence Technology, 15(4):582–606, 2019.

X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne. DeepMimic: Example-guided deep
reinforcement learning of physics-based character skills. ACM Transactions On Graphics (TOG),
37(4):1–14, 2018.

M. Rokonuzzaman, N. Mohajer, S. Nahavandi, and S. Mohamed. Review and performance evaluation
of path tracking controllers of autonomous vehicles. IET Intelligent Transport Systems, 15(5):
646–670, 2021.

C. Salvi, T. Cass, J. Foster, T. Lyons, and W. Yang. The signature kernel is the solution of a Goursat
PDE. SIAM Journal on Mathematics of Data Science, 3(3):873–899, 2021.

L. L. Scharf, W. P. Harthill, and P. H. Moose. A comparison of expected flight times for intercept and
pure pursuit missiles. IEEE Trans. Aerospace and Electronic Systems, (4):672–673, 1969.

W. Schwarting, J. Alonso-Mora, and D. Rus. Planning and decision-making for autonomous vehicles.
Annual Review of Control, Robotics, and Autonomous Systems, 1:187–210, 2018.

W. Sun, N. Jiang, A. Krishnamurthy, A. Agarwal, and J. Langford. Model-based RL in contextual
decision processes: PAC bounds and exponential improvements over model-free approaches. In
Conference on Learning Theory, pp. 2898–2933. PMLR, 2019.

G. Sutanto, A. Wang, Y. Lin, M. Mukadam, G. Sukhatme, A. Rai, and F. Meier. Encoding
physical constraints in differentiable Newton-Euler algorithm. volume 120 of Proceedings
of Machine Learning Research, pp. 804–813, The Cloud, 10–11 Jun 2020. PMLR. URL
http://proceedings.mlr.press/v120/sutanto20a.html.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,
M. Halpenny, G. Hoffmann, et al. Stanley: The robot that won the DARPA grand challenge.
The 2005 DARPA grand challenge: the great robot race, pp. 1–43, 2007.

T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and J. Ba.
Benchmarking model-based reinforcement learning. arXiv preprint arXiv:1907.02057, 2019.

G. Williams, A. Aldrich, and E. A. Theodorou. Model predictive path integral control: From theory
to parallel computation. Journal of Guidance, Control, and Dynamics, 40(2):344–357, 2017.

P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. J. Walsh, R. Capobianco,
A. Devlic, F. Eckert, F. Fuchs, et al. Outracing champion Gran Turismo drivers with deep
reinforcement learning. Nature, 602(7896):223–228, 2022.

13

http://proceedings.mlr.press/v120/sutanto20a.html

Under review as a conference paper at ICLR 2024

Z. Xie, Z. Sun, L. Jin, H. Ni, and T. Lyons. Learning spatial-semantic context with fully convolutional
recurrent network for online handwritten Chinese text recognition. IEEE Trans. pattern analysis
and machine intelligence, 40(8):1903–1917, 2017.

J. Xu, V. Makoviychuk, Y. Narang, F. Ramos, W. Matusik, A. Garg, and M. Macklin. Accelerated
policy learning with parallel differentiable simulation. In International Conference on Learning
Representations, 2021.

W. Yang, T. Lyons, H. Ni, C. Schmid, and L. Jin. Developing the path signature methodology and its
application to landmark-based human action recognition. In Stochastic Analysis, Filtering, and
Stochastic Optimization: A Commemorative Volume to Honor Mark HA Davis’s Contributions, pp.
431–464. Springer, 2022.

D. Zhou and M. Schwager. Vector field following for quadrotors using differential flatness. In IEEE
International Conference on Robotics and Automation, pp. 6567–6572, 2014.

14

Under review as a conference paper at ICLR 2024

CONTENTS

1 Introduction 1

2 Related work 2

3 Preliminaries 3

3.1 Path signature . 3

3.2 Dynamical systems and path tracking . 4

4 Signature control 5

4.1 Problem formulation . 5

4.2 Dynamic programming over signatures . 5

5 Signature MPC 6

6 Experimental results 7

7 Discussions 9

8 Ethics statement 10

9 Reproducibility Statement 10

Appendix 15

A Tensor algebra 17

B Signature kernel 17

C Detailed problem settings 17

D Details of path-to-go and S-function formulations 19

E Details on reduction to Bellman equations 20

F Infinite time interval extension of Chen formulation 22

G Separations from classical approach 22

G.1 Cost and expectation order . 22

G.2 Sample complexity . 23

H Other numerical examples: sanity check 24

H.1 S-tables: dynamic programming . 25

H.2 Error explosions . 26

H.3 Generating similar paths . 26

15

Under review as a conference paper at ICLR 2024

H.4 Additional simple analysis of signatures . 27

I Details on the choice of terminal S-functions 28

J Experimental setups 29

J.1 Simple pointmass MPC . 30

J.2 Integral control examples . 31

J.3 Path tracking with Ant . 32

J.4 Path tracking with Franka arm end-effector . 35

K Potential applications to reinforcement learning 37

L Computational setups and licences 38

16

Under review as a conference paper at ICLR 2024

A TENSOR ALGEBRA

We present the definition of tensor algebra here. In the main text, we used some of the notations,
including T ((X)), defined below.
Definition A.1 (Tensor algebra). Let X be a Banach space. The spaces of formal power series over
X is defined by

T ((X)) :=

∞∏
k=0

X⊗k,

where X⊗k is the tensor product of k vector spaces (X s). For A = (a0, a1, . . .), B = (b0, b1, . . .) ∈
T ((X)), the addition + and multiplication ⊗ are defined by

A+B = (a0 + b0, a1 + b1, . . .), A⊗B = (c0, c1, . . .) , ck =

k∑
ℓ=0

aℓ ⊗ bk−ℓ.

Also, λA = (λa0, λa1, . . .) for any λ ∈ R. The truncated tensor algebra for a positive integer m is
defined by the quotient Tm(X)

Tm(X) := T ((X))/Tm,

where

Tm = {A = (a0, a1, . . .) ∈ T ((X))|a0 = a1 = . . . = am = 0} .

The equation (4.3) is immediate from the definition of the multiplication ⊗ of the formal power series
and the signatures of X ⊗ Y upto depth m only depend on the signatures of X and Y upto depth m.

B SIGNATURE KERNEL

We used signature kernels for computing the metric (or cost) for MPC problems. A path signature is
a collection of infinitely many real values, and in general, the computations of inner product of a pair
of signatures in the space of formal polynomials are intractable. Although, it is still not the exact
computation in general, (Salvi et al., 2021) utilized a Goursat PDE to efficiently and approximately
compute the inner product. The signature kernel is given below:
Definition B.1 (Signature kernel (Salvi et al., 2021)). Let X be a d-dimensional space with canonical
basis {e1, . . . , ed} equipped with an inner product ⟨·, ·⟩X . Let T (X) :=

⊕∞
k=0 X⊗k be the space of

formal polynomials endowed with the same operators + and ⊗ as T ((X)), and with the inner product

⟨A,B⟩ :=
∞∑
k=0

⟨ak, bk⟩X⊗k ,

where ⟨·, ·⟩X⊗k is defined on basis elements {ei1 ⊗ . . .⊗ eik : {i1, . . . , ik} ∈ {1, . . . , d}k} as

⟨ei1 ⊗ . . .⊗ eik , ej1 ⊗ . . .⊗ ejk⟩X⊗k = ⟨ei1 , ej1⟩X . . . ⟨eik , ejk⟩X .

Let T (X) be a completion of T (X), and H := (T (X), ⟨·, ·⟩) is a Hilbert space. The signature kernel
K : Σ× Σ → R is defined by

K(X,Y) := ⟨S(X), S(Y)⟩ ,

for X and Y such that S(X), S(Y) ∈ T (X).

The overall properties of path signatures mentioned in Section 3.1 are illustrated in Figure 4.

C DETAILED PROBLEM SETTINGS

Here, we present the problem settings based on RDSs more carefully. First, we define the RDSs
mathematically.

17

Under review as a conference paper at ICLR 2024

Figure 4: Illustrations of properties of path signatures. Paths in the space X ⊂ Rd are uniquely
transformed into signatures upto tree-like equivalence. One can construct an RKHS where the kernel
represents the inner product between two signatures. This kernel is a universal kernel.

Definition C.1 (Random dynamical systems (Arnold, 1995)). Let (Ω, P) be a probability space
and {θt}t∈T, where θt : Ω → Ω, (θt)∗P = P , θ0 = idΩ and θs ◦ θt = θs+t for all s, t ∈ T, is a
semi-group of measure preserving maps. Define a random dynamical system (RDS) by

Φ : T× Ω× Rd → Rd,

where

Φ(0, ω, x) = x, Φ(t+ s, ω, x) = Φ(t, θs(ω),Φ(s, ω, x)), ∀x ∈ Rd.

An RDS is illustrated in Figure 5 as portrayed in Arnold (1995); Ghil et al. (2008).

In this work, in order to fully appreciate the generality of our framework, we view the policy π ∈ Π
as some parameter that defines an RDS. In particular, for simplicity, we assume that the random
dynamical system generated by a policy π ∈ Π shares the same sample space Ω, and is denoted by
Φπ . Roughly speaking, this means that the noise mechanism of RDSs is the same for all policies (not
necessarily the same probability distribution). Also, the action a ∈ A is for constraining the event of
downstream trajectories of RDS to be of some subset of Ω, which we define Ωa ⊂ Ω. Further, we
suppose that

⊔
a∈A Ωa = Ω (see Appendix D for details).

signature control: We (re)define signature control carefully. Let T ∈ T be a time horizon, and
define the map σπ,F : X × [0, T]× Ω → X [0,T] by

[σπ,F (x0, T, ω)] (t)

=

{
Φπ(t, ω, x0) (∀t ∈ T ∩ [0, T])

[F (Φπ(⌊t⌋, ω, x0),Φπ(⌊t⌋+ 1, ω, x0))] (t− ⌊t⌋) (∀t ∈ [0, T] \ T) ,

where F : X × X → X [0,1] is an interpolation between two given points.

Also, let practical partition D = {0 = t0 < t1 < . . . < tk−1 = T} of the time interval [0, T] be
such that there exists a sequence of actions {a1, a2, . . .} over that partition, i.e., t0, t1, t2... represent
0, ta1 , ta1 + ta2 ,....

Let T : X [0,T] → Σ be some (possibly nonlinear) transformation such that, for any practical partition
D of the time interval [0, T], for any j ∈ [k − 2], a pair of feasible paths σ1 ∈ X [tj ,tj+1], σ2 ∈
X [tj+1,tj+2] satisfies

σ ≡σ σ1 ∗ σ2 =⇒ T (σ) ≡σ T (σ1) ∗ T (σ2),

where ∗ denotes the concatenation of paths and ≡σ is the tree-like equivalence relation. The
interpolation F and the transformation T are illustrated in Figure 6.

18

Under review as a conference paper at ICLR 2024

Figure 5: Random dynamical system consists of a model of the noise and the physical phase space.
For each realization ω, and initial state x, the RDS is the flow over sample space and phase space.

Figure 6: Top (discrete-time): interpolation for pairs of points will produce a path and one may
possibly transform them. Down (continuous-time): a path generated by an RDS may include
discontinuity or unbounded variation. Transformation makes it to be a path for which the signatures
are defined. Discontinuous points may be interpolated (a path is defined over a compact interval),
and unbounded variations may be overcome by down-sampling over points of any practical partition.

Then, the signature-based optimal control problem reads

Find π∗ s.t. π∗ ∈ argmin
π∈Π

c
(
EΩ

[
S
(
σT
π,F (x0, T, ω)

)])
,

where c : T ((X)) → R≥0 is a cost function on the space of formal power series, and σT
π,F :=

T ◦ σπ,F ; we use, for simplicity, σπ instead of σT
π,F when F and T are clear in the contexts.

D DETAILS OF PATH-TO-GO AND S-FUNCTION FORMULATIONS

Let the projection on A× B over A is denoted by PA : (a, b) 7→ a. Without loss of generality, we
assume that X = Y ×O, and that PO[Φπ(t, ω, x)] is known when PY [x], t, and ω are given (i.e., O

19

Under review as a conference paper at ICLR 2024

is the space of observations). Given T ∈ T, define the path-to-go function Pπ on Y × T over ΣΩ by

Pπ(y, t)(ω) = σπ(x, T − t, ω), ∀t ∈ [0, T].

Formal definition of Markov property used in this work is given below.
Assumption 1 (Markov property (Arnold, 1995)). For each action a ∈ A, there exists ta ≥ 0 such
that the RDS Φπ satisfies the Markov property, i.e., for each B ∈ 2X , a ∈ A, and s ≥ 0,

Pr [Φ(ta + s, ω, z) ∈ B|Φ(ta, ω, z) = x, ω ∈ Ωa] = Pr [ω|Φ(s, ω, x) ∈ B] . (D.1)

Remark D.1. When µ(Ωa) = 0, we can still assign the probability of the right hand side of (D.1) to
its left hand side; however, one can define arbitrarily the probability of a future path conditioned on
ω ∈ Ωa and it does not harm the current arguments for now.

Now, the path-to-go formulation is reexpressed by

Pπ(y, t)(ω) = Pπa (y, t)(ω) ∗ Pπ(y+, t+ ta)(θtaω),

where

Pπa (y, t)(ω) := σπ(x,min{T − t, ta}, ω),
y+ = PYΦ(ta, ω, x).

Then, Theorem 4.2 is proved as follows:

Proof of Theorem 4.2. Using the Chen’s identity (first equality), tower rule (second equality), As-
sumption 1 (third equality), and the properties of tensor product and the transformation (first and
third equalities) we obtain

Sπ(a, y, t)
= E [S(Pπa (y, t)(ω))⊗A|ω ∈ Ωa] = E [E [S(Pπa (y, t)(ω))⊗A|Pπa (y, t)(ω), ω ∈ Ωa] |ω ∈ Ωa]

= E [S(Pπa (y, t)(ω))⊗ E [A|Pπa (y, t)(ω)] |ω ∈ Ωa]

= E
[
S(Pπa (y, t)(ω))⊗ ESπ(y+, t+ ta)|ω ∈ Ωa

]
where

A := S(Pπ(y+, t+ ta)(θtaω)),

and the expected S-function ESπ : Y × T → T ((X)) is defined by

ESπ(y, t) := EΩ [Sπ(b(ω), y, t)] ,
and b : Ω → A is defined by b(ω) = a for ω ∈ Ωa.

E DETAILS ON REDUCTION TO BELLMAN EQUATIONS

Here, we carefully show how Chen equation reduces to Bellman expectation equation:

Qπ(a, x, t) = EΩ

[
r(a, x, ω) + V π(x+, t+ 1)

∣∣ω ∈ Ωa
]
, (E.1)

We suppose X := Z × R≥0 × R≥0 ⊂ Rd, for d > 2, is the state space augmented by the immediate
reward and time, and suppose ta = 1 for all a ∈ A. Let m = 2. We define the interpolation F , the
transformation T , and the cost function c so that

∀x, y ∈ X s.t. xd−1:d = [rx, tx], yd−1:d = [ry, tx + 1] :

F (x, y)(τ) =

{
[rx + 2τ · (ry − rx), tx] (τ ∈ [0, 0.5])

[ry, tx + 2(τ − 0.5)] (τ ∈ (0.5, 1])
,

∀σ : [s, t] → R≥0 × R≥0 s.t. s, t ∈ N, s < t :

T (σ)(τ + s) =

[2τγs[σ(s+ 1)]d−1, s] , (τ ∈ [0, 0.5])[
γξ1(τ)[σ(τ + s)]d−1, [σ(τ + s)]d

]
, (τ ∈ [0.5, t− s− 0.5))[

γ⌊ξ2(τ)⌋[σ(ξ2(τ))]d−1, [σ(ξ2(τ))]d
]
, (τ ∈ [t− s− 0.5, t− s− 0.25))[

4(t− s− τ)γt−1[σ(t)]d−1, [σ(t)]d
]
, (τ ∈ [t− s− 0.25, t− s])

c(s) = −s1,2,

20

Under review as a conference paper at ICLR 2024

where

ξ1(τ) =

{
max {2(τ − ⌊τ⌋) + ⌊τ⌋+ s− 1, 0} , (τ − ⌊τ⌋ ≤ 0.5)

⌊τ⌋+ s, (τ − ⌊τ⌋ > 0.5),

and ξ2(τ) = 2τ − (t− s− 0.5) + s.

Then Chen equation reduces to the Bellman equation (E.1) by

c(Sπ2 (a, y, t))
= c

(
E
[
S2(Pπa (y, t)(ω))⊗2 ESπ2 (y+, t+ 1)|ω ∈ Ωa

])
= E

[
−S1,2(Pπa (y, t)(ω)) + c

(
ESπ2 (y+, t+ 1)

)
|ω ∈ Ωa

]
Put

c (Sπ2 (a, y, t)) = −Qπ(a, y, t), c (ESπ2 (y, t)) = −V π(y, t), S1,2(Pπa (y, t)(ω)) = r(a, y, ω),

and it reduces to Bellman expectation equation.

Optimality: Next, we briefly cover optimality; i.e., we present Chen optimality equation. Opti-
mality is tricky for Chen formulation because some relation between policy and action is required
in addition to the Markov assumption. To obtain our Chen optimality, we make the following
assumption.
Assumption 2 (Relations between policy and action). For any policy π ∈ Π, state x ∈ X , time
t ∈ T ∩ (0, T], and an action a ∈ A, there exists a policy π′ ∈ Π such that

EΩ

[
Sπ

′
(b(ω), PY(x0), 0)

]
= EΩ

[
Sπ(b(ω), PY(x0), 0)

∣∣ (Φπ(t, ω, x0) = x) =⇒ (θtω ∈ Ωa)
]
.

Also, there exists a ∈ A such that π′ = π.

Given a positive integer m and a cost function c : Tm(X) → R≥0, suppose π∗ satisfies

c
(
ESπ

∗

m (PY(x0), 0)
)
= inf
π∈Π

c (ESπm(PY(x0), 0)) .

Then, under Assumption 2, Chen optimality reads

c
(
EΩ

[
Sπ

∗
(b(ω), PY(x0), 0)

])
= min

a∈A
c
(
EΩ

[
Sπ

∗
(b(ω), PY(x0), 0)

∣∣ (Φπ∗(t, ω, x0) = x) =⇒ (θtω ∈ Ωa)
])
, (E.2)

when the right hand side is defined.

Therefore, with the same settings as the case of reduction to Bellman expectation equation, we have

c
(
EΩ

[
Sπ

∗
(b(ω), PY(x0), 0)

∣∣σπ∗(x0, t, ω)(t) = x
])

= min
a∈A

c
(
EΩ

[
Sπ

∗
(b(ω), PY(x0), 0)

∣∣ (σπ∗(x0, t, ω)(t) = x) ∧ (θtω ∈ Ωa)
])
,

and we obtain

c
(
EΩ

[
Sπ

∗
(b(ω), PY(x0), 0)

∣∣σπ∗(x0, t, ω)(t) = x
])

= c
(
EΩ

[
S(σπ∗(x0, t, ω))⊗ Sπ

∗
(b(θtω), PY(x), t)

∣∣σπ∗(x0, t, ω)(t) = x
])

= c
(
EΩ

[
S(σπ∗(x0, t, ω))

∣∣σπ∗(x0, t, ω)(t) = x
])

+ c
(
ESπ

∗

2 (PY(x), t)
)

= c
(
EΩ

[
S(σπ∗(x0, t, ω))

∣∣σπ∗(x0, t, ω)(t) = x
])

+

min
a∈A

E
[
−S1,2(Pπ

∗

a (PY(x), t)(ω)) + c
(
ESπ

∗

2 (PY(x
+), t+ 1)

)
|ω ∈ Ωa

]
,

from which it follows that

V π
∗
(y, t) = max

a∈A
E
[
r(a, y, ω) + V π

∗
(y+, t+ 1)

]
.

21

Under review as a conference paper at ICLR 2024

F INFINITE TIME INTERVAL EXTENSION OF CHEN FORMULATION

Extending Chen equation to infinite time interval requires an argument of the extended real line. Let
[0,∞] ⊂ R be the subset of the extended real line R. Now, we make the following assumption:
Assumption 3. There exists a homeomorphism ψ : [0,∞] → [0, T] for some T > 0 such that for
any policy π ∈ Π, initial state x0 ∈ X , and realization ω ∈ Ω, the limit

lim
τ→∞

σT
π,F (x0, τ, ω)(τ)

exists and the path σT
π,F can be continuously extended to [0,∞]. In addition, the path σπ : X×Ω → Σ

defined by

σπ(x0, ω)(t) =
[
lim
τ→∞

σT
π,F (x0, τ, ω)

]
(ψ−1(t)), ∀x0 ∈ X , ω ∈ Ω, t ∈ [0, T],

is an element of Σ.

Now, we redefine (for avoiding introducing more notations)

Pπ(y)(ω) = σπ(x, ω),

and Chen equation becomes

Sπ(a, y)
= E [S(Pπa (y, 0)(ω))⊗A|ω ∈ Ωa] = E [E [S(Pπa (y, 0)(ω))⊗A|Pπa (y, 0)(ω), ω ∈ Ωa] |ω ∈ Ωa]

= E [S(Pπa (y, 0)(ω))⊗ E [A|Pπa (y, 0)(ω)] |ω ∈ Ωa]

= E
[
S(Pπa (y, 0)(ω))⊗ ESπ(y+)|ω ∈ Ωa

]
where A is redefined by

A := S(Pπ(y+)(θψ(ta)ω)).
To see how it reduces to infintie horizon Bellman expectation equation, note that one cannot consider
time axis now because it diverges and signatures are no longer defined. Therefore, instead we consider
O to be a space of discount factor and discounted cumulative reward, i.e., one dimension of O evolves
as 1, γ, γ2, . . . and the other dimension is given by r0, r0 + γr1, r0 + γr1 + γ2r2, Extracting the
path over discounted cumulative reward, and transforming it so that it starts from 0, the first depth
signature (displacement) corresponds to the value-to-go. We omit the details but we mention that the
value function is again captured by signatures.

G SEPARATIONS FROM CLASSICAL APPROACH

One may think that one can augment the state with signatures and give reward at the very end of the
episode to encode the value over the entire trajectory within the classical Bellman based framework.
There are obvious drawbacks for this approach; (1) for the infinite horizon case where the terminal
state or time is unavailable, one cannot give any reward, and (2) input dimension for the value function
becomes very large with signature augmentation. Here, in addition to the above, we show separations
from the classical Bellman based approach from several point of views. Let Sπ(a, y, t) (ES(y, t))
be the S-function (expected S-function) and Qπ(a, y, s, t) (V π(y, s, t)) be the Q-function (value
function) where s represents the signature of the past path.

G.1 COST AND EXPECTATION ORDER

If the cost c is linear (e.g., the case of reduction to Bellman equation), then the cost to be mimimized
can be reformulated as

c
(
EΩ

[
Sm
(
σT
π,F (y0, T, ω)

)])
= EΩ

[
c
(
Sm
(
σT
π,F (y0, T, ω)

))]
.

However, in general, the order is not exchangable. We saw that Chen equation reduces to Bellman
equation and therefore for any MDP over the state augmented by signatures (and horizon T), it is
easy to see that there exists an interpolation, a transpotation, and a cost c such that

c (ESπm (y0, 0)) = V π(y0,1, 0).

On the other hand, the opposite does not hold in general.

22

Under review as a conference paper at ICLR 2024

Claim G.1. There exist a 3-tuple (X ,A, Pa) where Pa is the transition kernel for action a ∈ A, a set
of randomized policies (π(a|x) is the probability of taking action a ∈ A at x ∈ X under the policy
π) Π, an initial state y0, and the cost function c of signature control, such that there is no immediate
reward function r that satisfies

argmin
π∈Π

c (ESπm (y0, 0)) = argmin
π∈Π

V π(y0,1, 0).

Proof. Let X = Y = R, A = {a−1, a1}, T = N, y0 = 0, T = 1 and

Pa−1
(0,−1) = 1, Pa1(0, 1) = 1.

Also, let Π = {π1, π2, π3} where

π1(a1|0) = 1, π2(a−1|0) = 1, π3(a1|0) = 0.5, π3(a−1|0) = 0.5,

and let c : T 1(X) → R≥0 be

c(s) = |s1|.

The optimal policy for signature control is then π3, i.e.,

{π3} = argmin
π∈Π

c (ESπm (y0, 0)) .

Now, because we have

V π1(y0,1, 0) = EΩa−1
[r(a−1, y0, ω)] ,

V π2(y0,1, 0) = EΩa1
[r(a1, y0, ω)] ,

V π3(y0,1, 0) =
EΩa−1

[r(a−1, y0, ω)] + EΩa1
[r(a1, y0, ω)]

2
,

possible immediate reward to consider are only EΩa−1
[r(a−1, y0, ω)] and EΩa1

[r(a1, y0, ω)]. It is
straightforward to see that

π3 ∈ argmin
π∈Π

V π(y0,1, 0)

only if

EΩa−1
[r(a−1, y0, ω)] = EΩa1

[r(a1, y0, ω)] .

However, for any reward function satisfying this equation we obtain

{π3} ≠ argmin
π∈Π

V π(y0,1, 0).

G.2 SAMPLE COMPLEXITY

We considered randomized policies class above. What if the dynamics is deterministic (Ω is a
singleton)? For deterministic finite horizon case, technically, the cost over path can be represented
by both the cost function with S-function and Q-function. The difference is the steps or sample
complexity required to find an optimal path. Because S-function captures strictly more information
than Q-function, it should show sample efficiency in certain problems even for deterministic case.
Here, in particular, we show that there exists a signature control problem which is more efficiently
solved by the use of S-function than that of Q-function. (We do not discuss typical lower bound
arguments of RL sample complexity; giving certain convergence guarantees with lower bound
arguments is an important future work.)

To this end, we define Signature MDP:
Definition G.1 (Finite horizon, time-dependent signature MDP). Finite horizon, time-dependent
signature MDP is the 8-tuple (X ,A,m, {P}t, F, {r}t, T, µ) which consists of

• finite or infinite state space X

23

Under review as a conference paper at ICLR 2024

• discrete or infinite action space A

• signature depth m ∈ Z>0

• transition kernel Pa,t on X × X for action a ∈ A and time t ∈ [T]

• signature is updated through concatenation of past path and the immediate path which is the
interpolation of the current state and the next state by F

• reward rt which is a time-dependent mapping from X × Tm(X)×A to R for time t ∈ [T]

• positive integer T ∈ Z>0 defining time horizon

• initial state distribution µ

Further, we call an algorithmQ-table (S-table) based if it accesses state x exclusively throughQ-table
(S-table) for all x ∈ X . Now, we obtain the following claim.
Claim G.2. There exists a finite horizon, time-dependent signature MDP with a set of deterministic
policies Π and with a known reward {r}t such that the number of samples (trajectories) required in
the worst case to determine an optimal policy is strictly larger for any Q-table based algorithm than
a S-table based algorithm.

Proof. Let the first MDP M1 be given by T = 3, X = Y :=
{[0, 0], [1, 1], [2, 2], [2, 3], [−1, 1], [0, 1], [4, 0]} ⊂ R2, A := {a1, a2}, m = 2, F is linear
interpolation of any pair of points, µ([0, 0]) = Pr[y0 = [0, 0]] = 1, and

Pa1,0([0, 0], [1, 1]) = Pa1,1([1, 1], [2, 2]) = Pa1,2([2, 2], [2, 3]) =

= Pa2,0([0, 0], [−1, 1]) = Pa2,1([−1, 1], [2, 2]) = Pa2,2([2, 2], [4, 0]) = 1

Also, let {r}t satisfy that

∀t ∈ [T − 1] : rt = 0, rT−1(x, s, a) = |s+1,2|,

where s+ is the signature of entire path that is deterministically obtained from state x at time T − 1,
past path signature s, and action a (note we do not know the transition but only the output |s+1,2|).
The possible deterministic trajectories (or policies) of state-action pairs are the followings:

(([0, 0], a1), ([1, 1], a1), ([2, 2], a1), ([2, 3]))

(([0, 0], a1), ([1, 1], a2), ([2, 2], a1), ([2, 3]))

(([0, 0], a1), ([1, 1], a1), ([2, 2], a2), ([4, 0]))

(([0, 0], a1), ([1, 1], a2), ([2, 2], a2), ([4, 0]))

(([0, 0], a2), ([−1, 1], a1), ([2, 2], a1), ([2, 3]))

(([0, 0], a2), ([−1, 1], a2), ([2, 2], a1), ([2, 3]))

(([0, 0], a2), ([−1, 1], a1), ([2, 2], a2), ([4, 0]))

(([0, 0], a2), ([−1, 1], a2), ([2, 2], a2), ([4, 0])) .

The optimal trajectories are the last two. Let the second MDP M2 be the same as M1 except that

Pa2,2([2, 2], [2, 3]) = 1.

Suppose we obtain Q-table for the first six trajectories of M1. At this point, we cannot distinguish
M1 and M2 exlusively from the Q-table; hence at least one more trajectory sample is required to
determine the optimal policy for any Q-table based algorithm. On the other hand, suppose we obtain
S-table for the first six trajectories of M1. Then, the S-table at state x = [2, 2] with depth m ≥ 1
determines the transition at x = [2, 2] for both actions; hence, we know the cost of the the last two
trajectories without executing it.

H OTHER NUMERICAL EXAMPLES: SANITY CHECK

In this section, we present several numerical examples backing the basic properties of Chen equation.

24

Under review as a conference paper at ICLR 2024

Figure 7: Left: A concatenated transformed path; under tree-like equivalence, the signature cor-
responding to this path is the same as that of the entire transformed path from time 0 to 5. As
such, the area surrounded by such path represents the cumulative reward. Right: comparisons of (1)
ground-truth path, (2) the path following approximated one-step dynamics, and (3) the reconstructed
path from erroneous signatures.

Table 3: Observation vector for each state; rounded off to two decimal places.
State 1 2 3 4 5 6 7 8 9 10

o1 1.92 4.38 7.80 2.76 9.58 3.58 6.83 3.70 5.03 7.73
o2 6.22 7.85 2.73 8.02 8.76 5.01 7.13 5.61 0.14 8.83

o1 + o2 8.14 12.23 10.53 10.78 18.34 8.59 13.96 9.31 5.17 16.55

H.1 S-TABLES: DYNAMIC PROGRAMMING

Consider a MDP where the number of states |Y| = 10. Suppose each state y is associated with a
fixed vector o := [o1, o2] ∈ R2 sampled from a uniform distribution over [0, 10]2. The observations
are listed in Table 3. Given a deterministic policy π that maps the current state to a next state, and the
fixed initial state y0, consider the value∫

0<τ2<T

∫
0<τ1<τ2

do1do2 (H.1)

along the path made by linearly interpolating the sequence of o. Through dynamic programming of
S-function, we obtain a S-table of the signature element corresponding to the value (H.1). The table
is shown in Table 4. The S-value of each state for time 0 computed by dynamic programming is
indeed the same as what is computed directly by rollout.

Next, using the same setup as above, we suppose that the reward at a state is the sum of the two
observations o1 and o2 (see Table 3); for the same deterministic policy, we construct the value table
and compare it to the S-table created by the interpolation and the transformation of paths presented
in Section E. Both are indeed the same, and are shown in Table 5.

As an example, the transformed path from an initial state “2” is given in the left side of Figure 7.

Chen optimality: To see Chen optimality, suppose there are only three policies (i.e., |Π| = 3) for
simplicity. All of the three policies are the same except for the transition at state “8”; which are to “1”,
“2” and “3”, respectively. Starting from the initial state “2”, the three paths up to time step 5 are given
by 2 → 10 → 8 → 1 → 5 → 7, 2 → 10 → 8 → 2 → 10 → 8, and 2 → 10 → 8 → 3 → 6 → 9.
Then, we see that Chen optimality equation (E.2) holds for t = 2 and state “8”, and the optimal cost
is equal to 0.85.

25

Under review as a conference paper at ICLR 2024

Table 4: S-table of the value (H.1) rounded off to two decimal places for the example MDP path
from each state and over time horizon 5.

1 2 3 4 5 6 7 8 9 10

0 -7.17 -6.10 -20.00 -2.27 37.55 -5.14 -4.34 -0.38 -14.38 -5.23
1 -15.79 -1.80 -19.32 -9.84 11.84 -6.23 16.11 -2.67 -13.05 3.04
2 2.03 -3.43 -14.11 -14.15 20.73 1.33 3.79 -3.43 -12.84 -3.43
3 -0.54 -2.67 12.21 -6.65 -2.02 -4.18 6.40 3.04 -7.66 -1.80
4 9.73 1.63 -4.82 -13.32 2.24 -3.54 -1.81 -0.76 -9.48 6.47
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: S-table for the transformed path of rewards from each state and over time horizon 5. This is
the same as the value table computed using Bellman update.

1 2 3 4 5 6 7 8 9 10

0 62.20 63.97 54.20 50.76 49.03 56.39 43.20 66.89 61.75 59.65
1 53.61 54.65 40.23 32.42 43.86 45.61 35.07 50.33 51.22 47.41
2 43.09 38.10 21.89 24.28 35.27 31.65 29.90 38.10 40.44 38.10
3 32.30 25.87 13.76 19.11 24.75 13.30 21.31 28.79 26.50 21.55
4 18.34 16.55 8.60 10.53 13.96 5.17 10.78 12.23 8.14 9.31
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

H.2 ERROR EXPLOSIONS

We also elaborate on error explosion issues. To see an approximation error on one-step dynamics
could lead to error explosions along time steps in terms of signature values, suppose that the ground
truth dynamics is given by xt+1 = f(xt) := [x1.1t,1 , x

1.1
t,2] within the state space R2. Suppose also that

the learned dynamics is f̂(x) = f(x) + [ϵ, ϵ] where ϵ = 0.1. Let S10(σ) be the signatures (up to
depth 10) of the path from the initial state [2.0, 1.2] ∈ R2 up to (discrete) time steps 10; and S10(σ̂)

be the signatures of the path generated by f̂ . On the other hand, suppose the approximated signatures
are given by Ŝ = S10(σ) + (ϵ, . . . , ϵ). Then, treating T 10(R2) as a vector in R2+22+...+210 , we
compare the Euclidean norm errors of S10(σ̂) and Ŝ against S10(σ). The results are 4.52 and 147.96;
which imply that the one-step dynamics based approximation could lead to much larger errors on
signatures of the expected future path. Note, we assumed that each scalar output suffers from an error
ϵ, which may not be the best comparison.

Although it is not required in Chen formulation, we reconstruct the path from the erroneous signatures
and compare it against the path following f̂ . We use three nodes (including the fixed initial node)
to reconstruct the path by minimizing the Euclidean norm of the difference between the erroneous
signatures and the signatures of the path generated by linearly interpolating the candidate three nodes
(with signature depth 10). We use Adam optimizer (Kingma & Ba, 2014) with step size 0.3 and
execute 100 iterations. The paths are plotted again in this appendix for reference in the right side of
Figure 7; the reconstructed path is still close to the ground-truth one.

H.3 GENERATING SIMILAR PATHS

Here, we present an application of signature cost to similar path generations (which we did not
mention in the main text). To this end, we define the operator ⋄ by

α ⋄A := (a0, αa1, α
2a2, . . .)

for A ∈ T ((X)). Now, given a reference path σ0 in the space R4 which represents a path over x, y
positions and difference to the next positions, mimicking velocity, we consider generating a path σ∗

with α > 0 which minimizes the cost

∥S4(σ
∗)− α ⋄ S4(σ0)∥2Rd+d2+...+d4 .

26

Under review as a conference paper at ICLR 2024

Figure 8: Top: setting different scale α and generating respective optimal path which is expected
to be similar to the reference path. Left is for a parabola curve and Right is for a circle. Down: as
gradient-based optimization iteration number increases, the generated path scales up while being
similar to the orignal path.

We use Adam optimizer with step size 0.1 and update iterations 500, and the generated path is an
interpolation of 50 nodes. Figure 8 Top shows the optimized paths for different scales of α. Using
the difference (or velocity) term is essential to recover an accurate path with only the depth 3 or 4.

Besides, when the cost is a weighted sum of deviation from the scaled signature and the scale factor
itself, we see that as optimization progresses the generated path scales up while being similar to the
original reference path. In particular, we use the cost

∥Sm(σ∗)− α ⋄ Sm(σ0)∥2Rd+d2+...+dm − α,

by treating α as a decision variable as well. It uses the same parameters as above except that we use
depth 3 here. The result is plotted in Figure 8 Down, where the generated paths after gradient steps
100, 300, 500, 1000 are shown.

H.4 ADDITIONAL SIMPLE ANALYSIS OF SIGNATURES

Given two different paths σ1 : [0, T] → X and σ2 : [0, T] → X , we plot the squared Euclidean dis-
tance between the signatures of those two paths up to each time step, i.e., ∥S(σ1|[0,t])−S(σ2|[0,t])∥2
for t ∈ [0, T]. We test linear paths (T = 2.0 and two paths x = 0.5t, x = −0.3t) and sinusoid paths
(T = 2.0 and two paths x = sin(tπ), x = sin(2tπ)), and we consider two different base kernels
(linear and RBF with bandwidth 0.5), and two cases, namely, the 1D case where X = R and the 2D
case where X = R2 which is augmented with time. We use dyadic order 3 for computing the PDE
kernel. The plots are given in Figure 9. From the figure, we see that 1D cases only depend on the
start and end points, which confirms the theory; and for 2D cases, the first depth signature terms are
still dominant.

27

Under review as a conference paper at ICLR 2024

Figure 9: Left: linear paths comparison. Right: sinusoid paths comparison. Top: squared norm of the
cumulative difference; for linear base kernel, RBF kernel, and for the 1D case and 2D case. Down:
illustrations of two different paths.

Figure 10: Illustration of the terminal S-function used in this work.

Also, using RBF kernels (with narrow bandwidths), the deviation of a pair of paths becomes clarified
even if they are close in the original Euclidean space.

I DETAILS ON THE CHOICE OF TERMINAL S-FUNCTIONS

In this section, we present the details of the choice of terminal S-functions. Other than the one used
in the main text (illustrated in Figure 10), another example of T Sm is given by

T Sm(x, s, σ) ∈ argmin
u∈Tm(X)

ℓ (s⊗m Sm(σ)⊗m u) + ℓreg(u). (I.1)

If this computation is hard, one may choose T Sm(x, s, σ) = 1; or for path tracking problem, one
may choose the signature of a straghtline between the endpoint of σ∗ and the endpoint of σ. These
three examples are shown in Figure 11

Terminal S-function and surrogate costs: For an application to MPC problems, we analyze
the surrogate cost ℓ, regularizer ℓreg, and the terminal S-function T S in Algorithm 1. Suppose the
problem is to track a given path with signature s∗ (m = ∞). Fix the cost ℓ to ℓ(s) = ∥s− s∗∥2 −
w1∥s∥2 and ℓreg to ℓreg(s) = w2∥s∥2, where w1, w2 ∈ R≥0 are weights.

28

Under review as a conference paper at ICLR 2024

Figure 11: Illustrations of example terminal S-functions when given target path to track. σT
t is the

transformed past path whose signature is st. The left shows (I.1); the future path ignores any dynamic
constraints and the optimal virtual path is computed. The middle is for the case that the signature is 1.
The right is the case where straightline between the endpoint of the target path and the state at time
t+ Ta is the terminal path.

Here, ℓreg regularizes so that the terminal path becomes shorter, i.e., the agent prefers progressing
more with accuracy sacrifice. The term w1∥s∥2 for ℓ is used to allow some deviations from the
reference path.

Fact I.1 (cf. (Hambly & Lyons, 2010; Boedihardjo & Geng, 2019)). For the signature S(σ) =
(1, s1, s2, . . .) of a path σ of finite variation on X with the length |σ| <∞, it follows that

∥sk∥X⊗k ≤ |σ|k

k!
.

For sufficiently well-behaved path (see (Hambly & Lyons, 2010; Boedihardjo & Geng, 2019) for
example), the limit exists:

lim
k→∞

∥|σ|−kk!sk∥2X⊗k ≤ 1.

If the norm is the projective norm, the limit is 1.

From this, we obtain

∥S(σ)∥2 =

∞∑
k=0

∥sk∥2X⊗k ≤
∞∑
k=0

(
|σ|k

k!

)2

≤

(∞∑
k=0

|σ|k

k!

)2

= e2|σ|,

and for a zero length path, i.e., a point, we obtain 1 = ∥S(σ)∥2 = e2|σ|. Therefore, while one could
use (k!∥sk∥X⊗k)

1/k for large k as a proxy of |σ|, we simply use ∥S(σ)∥2.

We compare the following three different setups with the same surrogate cost and regularizer (w1 =
0, w2 = 1): (1) terminal path is the straightline between the endpoints of the rollout and the reference
path, (2) terminal path is computed by nested optimization (see (I.1)), and (3) terminal path is given
by the subpath of the reference path from the end time of the rollout. The comparisons are plotted
in Figure 12. In particular, for the reference path (linear x = t or sinusoid x = sin(tπ)) over time
interval [0, 3], we use 20 out of 50 nodes to generate subpaths upto the fixed time 1.2. We use Adam
optimizer with step size 0.1; and 300 update iterations for all but the type (2) above, which uses 30
iterations both for outer and inner optimizations.

From the figure, our example costs ℓ and ℓreg properly balance accuracy and length of the rollout
subpath.

J EXPERIMENTAL SETUPS

Here, we describe the detailed setups of each experiment and show some extra results.

29

Under review as a conference paper at ICLR 2024

Figure 12: Top: green line is generated by the same approach as the one used in this work; orange one
does inner optimization to obtain the optimal terminal S-function and the red line uses the straightline
as the terminal path. Down: comparison of the costs for the three subpaths and two other longer paths
using the same choice of the terminal path as that in this work. As expected, longer subpath has lower
score thanks to the regularizer cost.

J.1 SIMPLE POINTMASS MPC

Define X := [0, 100] × [0, 100] × [0, 5] × [0, 5]. The dynamics is approximated by the Euler
approximation:

pt+1 = PX [pt + vt∆t] ,

where p is the 2D position and v is the 2D velocity and PX : R4 → X is the orthogonal projection.

A feasible reference path for the obstacle avoidance goal reaching task is generated by RRT* with local
CEM planner (wiring of nodes is done through CEM planning with some margin). The parameters
used for RRT* and CEM planner are shown in Table 6. The generated reference path is shown in
Figure 13 Left.

The reference path is then splined by using natural cubic spline (illustrated in Figure 14; using package
(https://github.com/patrick-kidger/torchcubicspline); using only the path
over positions (2D path), we run signature MPC. The time duration of each action is also opti-
mized at the same time. For comparsion we also run a MPC with zero terminal S-function case. Note
we are using RBF kernel for signature kernels, which makes this terminal S-function choice less
unfavorable.

Figure 13 Middle shows the zero terminal S-function case; which tracks well but with slight deviation.
Right shows that of the best choice of terminal S-function.

The parameters for the signature MPC is given in Table 7. Here, scaling of the states indicates that
we multiply the path by this value and then compute the cost over the scaled path. Note we used

30

https://github.com/patrick-kidger/torchcubicspline

Under review as a conference paper at ICLR 2024

Figure 13: Left: suboptimal feasible path generated by RRT* with local CEM planner. Middle:
signature MPC with zero terminal S-function. Purple is the splined reference path and the green is
the executed one. Right: signature MPC with the best choice of terminal S-function.

Figure 14: Illustrations of natural cubic spline. We down-sampled the reference path with skip
number 10. Then, with weight w = 0.5, step size 0.01, using Adam optimizer, we optimized the path
to obtain a spline with iteration number 150.

torchdiffeq package (Chen et al., 2018; 2021) of PyTorch (Paszke et al., 2017) to compute rollout,
and the evaluated points are of switching points of actions, and it replans when the current action
repetition ends.

J.2 INTEGRAL CONTROL EXAMPLES

Our continuous time system of two-mass, spring, damper system is given by

v̇1 = − (k1 + k2)p1
m1

− (b1 + b2)v1
m1

+
k2p2
m1

+
b2v2
m1

+
a1
m1

+ w1,

v̇2 =
k2p1
m2

+
b2v1
m2

− k2p2
m2

− b2v2
m2

+
a2
m1

+ w2,

where u1, u2 ∈ [−1, 1] are control inputs, and ws are disturbances. The actual parameters are listed
in Table 8. We augment the state with time that obviously follows ṫ = 1. We obtain an approximation
of the time derivative of signatures by

∂S2(σt)

∂t
≈ S2(σt ∗ σt,t+∆t)− S2(σt)

∆t
,

31

Under review as a conference paper at ICLR 2024

Table 6: RRT* and CEM parameters.
max distance to the sample 10.0 goal state sample rate 0.2
safety margin to obstacle 0.0 γ to determine neighbors 1.0

CEM distance cost quadratic CEM obstacle penalty 1000
CEM elite number 3 CEM sample number 8

CEM iteration number 3 numpy random seed 1234

Table 7: Parameters for the signature MPCs of point-mass (shared values for zero terminal S-function
and the best choice ones).

static kernel RBF/scale 0.5 dyadic order of PDE kernel 2
scaling of the states 0.05 update number of PyTorch 20
step size for update 0.2 number of actions N 3

weight w1 0 regularizer weight w2 8.0
maximum magnitude of control 1.0

where σt is the path from time 0 to t, and σt,t+∆t is the linear path between the current state and the
next state (after ∆t), and ∆t = 0.1 is the discrete time interval.

By further augmenting the state with signature S2(σt), we compute the linearized dynamics around
the point p = v = 02 and the unit signature.

P control (the state includes velocities, so it might be viewed as PD control) is obtained by computing
the optimal gain for the system over p and v by using the cost p⊤p+ v⊤v+0.01u⊤u. For PI control,
we use the linearized system over p, v and s2,5, s2,15 (corresponding to integrated errors for p1 and
p2), and the cost is p⊤p + v⊤v + s22,5 + s22,15 + 0.01u⊤u. We added −0.0001I to the linearized
system to ensure that the python control package (https://github.com/python-control/
python-control) returns a stabilizing solution.

The unknown constant disturbance is assumed zero for planning, but is 0.03 (on both acceleration
terms) for executions; the plots are given in Figure 15. It reflects the well-known behaviors of P
control and PI control.

We also list the parameters used for signature MPCs described in Section 6; the execution horizon is
15.0 sec, and the reference is the signature of the linear path over the zero state along time interval
from 0 to 25.0 (we extended the reference from 15.0 to 25.0 to increase stability). The control inputs
are assumed to be fixed over planning horizon, and are actually executed over a planning interval.
The number of evaluation points when planning is given so that the rollout path is approximated by
the piecewise linear interpolation of those points (e.g., for planning horizon of 1.0 sec with 5 eval
points, a candidate of rollout path is evaluated evenly with 0.2 sec interval).

The signature cost is the squared Euclidean distance between the reference path signature and the
generated path signature upto depth 1 or 2; the terminal path is just a straighline along the time axis,
staying at the current state.

The parameters used for signature MPCs are listed in Table 9; note the truncation depths for signatures
are 1 and 2, respectively. The plots are given in Figure 15.

J.3 PATH TRACKING WITH ANT

We use DiffRL package (Xu et al., 2021) Ant model.

Reference generation: We generate reference path over 2D plane with the points

[0.0, 0.0], [2.6,−3.9], [5.85,−1.95], [6.5, 0.0], [5.85, 1.95],

[2.6, 3.9], [0.0, 3.51], [−3.25, 0.0], [−6.5,−3.9], [−6.5, 4.55]

32

https://github.com/python-control/python-control
https://github.com/python-control/python-control

Under review as a conference paper at ICLR 2024

Figure 15: Two-mass spring, damper system. Solid lines are for the position and velocity of the first
mass, and dashed lines are for the second mass. Black lines are without signatures, and the blue lines
are with the elements of the second degree signatures corresponding to the integrated errors. Top: P
control and PI control under no disturbance. Middle: signature MPCs using signatures upto depth 1
and 2 under no disturbance case; both converge to the zero state well. Down: signature MPCs under
unknown disturbances; the one upto depth 2 converges to zero state while the one upto depth 1 does
not because the depth 2 signature terms correspond to the integrated errors to mimic PI controls.

and we obtain the splined path with 2000 nodes (skip number 1, weight for smoothness 0.5, iteration
number 150 with Adam optimizer). Also, to use for the terminal path in MPC planning, we obtain
rougher one with 200 nodes.

33

Under review as a conference paper at ICLR 2024

Table 8: Parameters for two-mass, spring, damper system.
k1 2.0 b1 0.05 m1 1.0
k2 1.0 b2 0.05 m2 2.0

Table 9: Parameters for the signature MPC.
kernel type truncated linear horizon for MPC 1.0 sec

number of eval points 5 update number per step 50
step size for update 0.1 planning interval 0.5 sec
number of actions 1 max horizon 25.0 sec

maximum magnitude of control 1.0

We run signature MPC (parameters are listed in Table 10) and the simulation steps to reach the
endpoint of the reference is found to be 880. Then, we run the baseline MPC; for the baseline, we
generate 880 nodes for the spline (instead of 2000). Note these waypoints are equally sampled from
t = 0 to t = 1 of the obtained natural cubic spline. We also test slower version of baseline MPC with
1500 and 2500 simulation steps (i.e., number of waypoints).

Cost and reward: The baseline MPC uses time-varying waypoints by augmenting the state with
time index. The time-varying immediate cost cbaseline to use is inspired by Peng et al. (2018):

cbaseline(x, t) = −
d∑
i=1

exp{−10(x(i) − x∗(i)(t))
2}

for time step t, where x∗(t) is the (scaled) waypoint at time t and x(i) is the ith dimension of (the
scaled state) x ∈ Rd. In addition to this cost, we add height reward for the baseline MPC:

rheight(z) = −100LeakyReLU0.001(0.37− z),

where LeakyReLU0.001 is the Leaky ReLU function with negative slope 0.001 and z is the height
of Ant. For signature MPC, in addition to the signature cost described in the main text, we also add
Bellman reward 10rheight (the scale 10 is multiplied to balance between signature cost and the height
reward).

Experimental settings and evaluations: The parameters are listed in Table 10. The parameters
used for SAC RL are listed in Table 11.

Since the model we use is differentiable, we use Adam optimizer to optimize rollout path by
computing gradients through path. Surprisingly, with only 3 gradient steps per simulation step, it
is working well; conceptually, this is similar to MPPI (Williams et al., 2017) approach where the
distribution is updated once per simulation step and the computed actions are shifted and kept for the
next planning. Also, we set the maximum points of the past path to obtain signatures to 50 (we skip
some points when the past path contains more than 50 points).

To evaluate the accuracy, we generate 2000 nodes from the spline of the reference, and we compute
the Euclidean distance from each node of the reference to the closest simulated point of the generated
trajectory. The relative cumulative deviations are plotted in Figure 16. For the same reaching time,
signature MPC is significantly more accurate. When the speed is slowed, baseline MPC becomes a
bit more accurate. Note our signature MPC can also tune the tradeoff between accuracy and progress
without knowing feasible waypoints.

Also, the performance curve of SAC RL is plotted in Figure 17 Left against the cumulative reward
achieved by the signature MPC counterpart. We see that RL shows poor performance (refer to the
discussions on difficulty of RL for path tracking problems in (Peng et al., 2018)).

34

Under review as a conference paper at ICLR 2024

Table 10: Parameters for the signature MPC for Ant. Baseline MPC shares most of the common
values except for scaling, which is 1.0 for baseline MPC.

static kernel RBF/scale 0.5 dyadic order of PDE kernel 1
scaling of the states 0.2 update number of PyTorch 3
step size for update 0.1 number of actions N 64

weight w1 0 regularizer weight w2 3.0
maximum magnitude of control 1.0

Table 11: Parameters for the SAC RL for Ant path following.

number of steps per episode 128 initial alpha for entropy 1
step size for alpha 0.005 step size for actor 0.0005

step size for Q-function 0.0005 update coefficient to target Q-function 0.005
replay buffer size 106 number of actors 64

NN units for all networks [256, 128, 64] batch size 4096
activation function for NN tanh episode length 1000

J.4 PATH TRACKING WITH FRANKA ARM END-EFFECTOR

We use DiffRL package again and a new Franka arm model is created from URDF model (Sutanto
et al., 2020).

Model: The stiffness and damping for each joint are given by

stiffness : 400, 400, 400, 400, 400, 400, 400, 106, 106,

damping : 80, 80, 80, 80, 80, 80, 80, 100, 100,

and the initial positions of each joint are

1.157,−1.066,−0.155,−2.239,−1.841, 1.003, 0.469, 0.035, 0.035.

The action strength is 60.0 N ·m. Simulation step is 1/60 sec and the simulation substeps are 64.

Reference generation: We similarly generate reference path for the end-effector position with the
points

[0.0, 0.0, 0.0], [0.1,−0.1,−0.1], [0.2,−0.15,−0.2], [0.18, 0.0,−0.18],

[0.12, 0.1,−0.12], [0.08,−0.1, 0.0], [0.05,−0.15, 0.1], [0.0,−0.12, 0.2],

[−0.05,−0.05, 0.25], [−0.1, 0.1, 0.15], [−0.05, 0.05, 0.08]

and we obtain the splined path with 1000 nodes (skip number 1, weight for smoothness 0.001,
iteration number 150 with Adam optimizer). Also, to use for the terminal path in MPC planning,
we obtain rougher one with 100 nodes. Similar to Ant experiments, we use 270 equally assigned
waypoints for the baseline MPC.

For the case with unknown disturbance, we use the same waypoints.

Experimental settings and evaluations: The parameters for MPCs are listed in Table 13. The
parameters used for SAC RL are listed in Table 14.

We again set the maximum points of the past path to obtain signatures to 50.

The unknown disturbances are added to every joint.

We list the results of all the disturbance cases in Table 12 as well. Also, the performance curve of
SAC RL is plotted in Figure 17 Right against the cumulative reward achieved by the signature MPC
counterpart. We see that the cumulative reward itself of SAC RL outperforms the signature MPC

35

Under review as a conference paper at ICLR 2024

Figure 16: For each node of the reference path, we compute the Euclidean distance from the closest
simulated point of the generated trajectory. Phase is from 0 to 1, corresponding to the start and
end points of the reference. Left shows the relative cumulative deviations along 2000 nodes of the
reference for Ant. It is the errors of the baseline MPC compared to the errors of signature MPC; hence
positive value shows the advantage of signature MPC. Right shows those for robotic arm experiments
with different magnitudes of disturbances added to every joint.

Table 12: All results on path tracking with a robotic manipulator end-effector. Comparing signature
control, and baseline MPC and SAC RL with equally assigned waypoints under unknown fixed
disturbance.

Deviation (distance) from reference
Disturbance (N ·m) Mean (10−2m) Variance (10−2m)

+30 1.674 0.002
+20 1.022 0.002
+10 0.615 0.001

signature control ±0 0.458 0.001
−10 0.605 0.001
−20 0.900 0.001
−30 1.255 0.002
+30 2.648 0.015
+20 1.513 0.010
+10 0.828 0.005

baseline MPC ±0 0.612 0.007
−10 1.407 0.013
−20 3.408 0.078
−30 5.803 0.209
+30 15.669 0.405
+20 10.912 0.224
+10 6.252 0.102

SAC RL ±0 3.853 0.052
−10 6.626 0.243
−20 12.100 0.557
−30 16.019 0.743

for no disturbance case for the robotics arm experiment; however it does not necessarily show better
tracking accuracy along the path.

To evaluate the accuracy, we generate 1000 nodes from the spline of the reference. The relative
cumulative deviations are plotted in Figure 16. For all of the disturbance magnitude cases, signature
MPC is more accurate. When the disturbance becomes larger, this difference becomes significant,
showing robustness of our method.

Visually, the generated trajectories are shown in Figure 18.

36

Under review as a conference paper at ICLR 2024

Table 13: Parameters for the signature MPC for robotic arm. Baseline MPC shares most of the
common values except for scaling, which is 1.0 for baseline MPC.

static kernel RBF/scale 0.5 dyadic order of PDE kernel 1
scaling of the states 10.0 update number of PyTorch 3
step size for update 0.1 number of actions N 16

weight w1 0.5 regularizer weight w2 0.5
maximum magnitude of control 1.0

Table 14: Parameters for the SAC RL for robotic arm path following.

number of steps per episode 128 initial alpha for entropy 1
step size for alpha 0.005 step size for actor 0.0005

step size for Q-function 0.0005 update coefficient to target Q-function 0.005
replay buffer size 106 number of actors 64

NN units for all networks [256, 128, 64] batch size 2048
activation function for NN tanh episode length 300

K POTENTIAL APPLICATIONS TO REINFORCEMENT LEARNING

Although we have not yet developed promising RL algorithm; the basic signature RL algorithm is
summarized in Algorithm 2. In general, the algorithm stores states, actions, and past signatures up to
depth m observed in rollout trajectories, and update S-function using Chen formulation followed by
a policy update.

Especially, in this work, we use the modified version of soft actor-critic (SAC) (Haarnoja et al., 2018)
to adapt to signature RL.

Task: The task is based on the similar path generation using signature cost. In particular, we
test Hopper for long jump. We use DiffRL Hopper model and use rl_games (Makoviichuk &
Makoviychuk, 2021) for implementations. The orignal (unit scale) reference path mimics the curve
of jumps over x-axis/height position and velocity with the points:

[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.0, 3.9], [0.3, 0.39, 3.0, 2.63], [0.6, 0.65, 3.0, 1.35],

[0.9, 0.79, 3.0, 0.08], [1.2, 0.80, 3.0,−1.20], [1.5, 0.68, 3.0,−2.47], [1.8, 0.43, 3.0,−3.74],

[2.1, 0.05, 3.0,−5.02], [2.13, 0.0, 3.0,−5.16], [2.13, 0.0, 3.0, 0.0].

Cost: The cost for the RL task is given by

ℓ(sm) = −3000 [2exp (−0.1∥sm − α ⋄ s∗m∥1) + α] ,

where s∗m is the (truncated) signature of the unit scale reference path. We use this cost for signature
RL and its negative as the reward for SAC based on Signature MDP (where the state is augmented
with signatures, and the reward, or negative cost, is added at the terminal time; hence uses traditional
Bellman updates). Note that the cost/reward to optimize for signature RL and for SAC are not exactly
the same (because of the order of expectation); but for simplicity, we will evaluate the performance
based on the reward of Signature MDP. See Section G for details.

Experimental settings: We use four neural networks for the S-function, signature cost func-
tion (using S-function), Q-function (recall Chen formulation subsumes Bellman reward), and the
policy function. The network sizes for them are [512, 512, 256], [256, 128, 64], [256, 128, 64], and
[256, 128, 64], respectively; SAC based on Signature MDP also shares the sizes of the common
networks. Parameters used for both RL algorithms are listed in Table 15.

Results: Signature RL has shown very fast increase of reward at the initial phase but then struggles
to improve while SAC based on Signature MDP shows slow but steady growth. We run 5 seeds and

37

Under review as a conference paper at ICLR 2024

Figure 17: Soft-actor-critic reinforcement learning baseline for an ant (left) and robotic arm (right)
path following experiment. The red curve shows the average cumulative rewards with standard
deviation shade over five different seed runs, and the black line is for reference of the cumulative
rewards achieved by signature control. The reward is the same (negative cost) as that used in the
baseline MPC, and the state is augmented with the time step (maximum time step is 1000 and 300
given that the goal-reaching time of signature control is 880 and 270 steps, respectively). For the ant
case, RL did not achieve comparable performance in terms of rewards. For the robotics arm case
under no disturbance, the RL outperforms signature control slightly.

Algorithm 2 Signature RL

Input: initial policy π; initial signature s0 = 1; depth m; initial approximated S-function Ŝπm;
initial distribution P0 over state space X ; time horizon T ; surrogate cost ℓ

Output: policy π∗ and its S-function Sπ∗

m

1: while not convergent do
2: Sample an initial state x0 ∼ P0

3: Run current policy π to collect trajectory data τ := (s0, x0, a0, sta0
, xta0

, ata0
, . . . , sT , xT)

4: Compute mth-depth signatures S(σ(xt, xt+ta))s for each transformed path connecting a pair
of adjacent states and action a in τ

5: Update S-function so that

Ŝπm(a, PY(xt)) ≈ E
[
Sm(σ(xt, xt+ta))⊗m Ŝπm(a′, PY(xt+ta))|ω ∈ Ωa

]
,

where the expectation is approximated by an arithmetic mean and a′ is sampled from π at xt+ta
6: Update policy by, for example, minimizing

ℓ
(
s⊗m E

[
Ŝπm(b(ω), PY(x))

])
for all pairs of (s, x)s in τ or in the buffer

7: end while
8: Output π and Ŝπm.

the plots of averaged reward/step growth are shown in Figure 19 with standard deviation shadows.
A possible reason for this is because of the lack of guarantees of convergence to the optima; and
developing signature RL algorithms that have convergence guarantees and practical scaling is a very
important future work.

The generated long jump motion of the best performance of SAC (based on Signature MDP) is shown
in Figure 20.

L COMPUTATIONAL SETUPS AND LICENCES

For all of the experiments, we used the computer with

38

Under review as a conference paper at ICLR 2024

Figure 18: Top: Left shows signature control result for robotic arm manipulator end-effector path
tracking and Right shows the baseline MPC. They are tracking the path similarly well. Down: under
disturbance −30.0. The baseline tracking accuracy is deteriorated largely while signature control is
robust against disturbance. Signature MPC tries to track the first curve stubbornly by taking time
there to retrace better. This is because the signature MPC is insensitive to waypoint designs but rather
depends on the “distance” between the target path and the rollout path in the signature space.

Table 15: Parameters for the signature RL and SAC for Hopper.

number of steps per episode 16 initial alpha for entropy 1
step size for alpha 0.005 step size for actor 0.0002

step size for Q-function 0.0005 update coefficient to target Q-function 0.005
step size for S-function 0.0002 update coefficient to target S-function 0.002

step size for signature cost function 0.002 batch size 2048
replay buffer size 106 signature depth 3

maximum magnitude of control 1.0

• Ubuntu 20.04.3 LTS

• Intel(R) Core(TM) i7-6850K CPU 3.60GHz (max core 12)

• RAM 64 GB/ 1 TB SSD

• GTX 1080 Ti (max 4; we used the same GPU for all of the experiments)

• GPU RAM 11 GB

• CUDA 10.1

39

Under review as a conference paper at ICLR 2024

Figure 19: Left shows the growth of trajectory reward along steps and Right shows that of length of
the trajectory (the episode terminates when it encounters terminal conditions) along steps. Signature
RL has shown very fast increase of reward and length of trajectory at the initial phase but then
struggles to improve. The curve is averaged over 5 seed runs and is smoothed.

Figure 20: Learned long jump motion of a hopper robot simulation of RL using the signature cost for
scaled similar path generation.

The licenses of sigkernel, torchcubicspline, signatory, DiffRL, rl_games, and Franka URDF model,
are [Apache License 2.0; Copyright [2021] [Cristopher Salvi]], [Apache License 2.0; Copyright
[Patrick Kidger and others]], [Apache License 2.0; Copyright [Patrick Kidger and others]], [NVIDIA
Source Code License], [MIT License; Copyright (c) 2019 Denys88], and [MIT License; Copyright
(c) Facebook, Inc. and its affiliates], respectively.

The computation time for each (seed) run for any of the numerical experiments was around 30 mins
to 1− 2 hours (MPC problems). For small analysis experiments, it took less than a few minutes for
each one.

40

	Introduction
	Related work
	Preliminaries
	Path signature
	Dynamical systems and path tracking

	Signature control
	Problem formulation
	Dynamic programming over signatures

	Signature MPC
	Experimental results
	Discussions
	Ethics statement
	Reproducibility Statement
	Appendix
	Tensor algebra
	Signature kernel
	Detailed problem settings
	Details of path-to-go and S-function formulations
	Details on reduction to Bellman equations
	Infinite time interval extension of Chen formulation
	Separations from classical approach
	Cost and expectation order
	Sample complexity

	Other numerical examples: sanity check
	S-tables: dynamic programming
	Error explosions
	Generating similar paths
	Additional simple analysis of signatures

	Details on the choice of terminal S-functions
	Experimental setups
	Simple pointmass MPC
	Integral control examples
	Path tracking with Ant
	Path tracking with Franka arm end-effector

	Potential applications to reinforcement learning
	Computational setups and licences

