
Improved Logical Reasoning of Language Models
via Differentiable Symbolic Programming

Hanlin Zhang * 1 Jiani Huang * 2 Ziyang Li 2 Mayur Naik 2 Eric Xing 1 3

Abstract
Pre-trained large language models (LMs) strug-
gle to perform logical reasoning reliably despite
advances in scale and compositionality. In this
work, we tackle this challenge through the lens
of symbolic programming. We propose DSR-
LM, a Differentiable Symbolic Reasoning frame-
work where pre-trained LMs govern the percep-
tion of factual knowledge, and a symbolic module
equipped with provenance generates top-k proofs
by deductive reasoning. In contrast to works that
rely on hand-crafted logic rules, our differentiable
symbolic reasoning architecture efficiently learns
weighted rules to further improve LMs. DSR-LM
is scalable, interpretable, and allows easy inte-
gration of prior knowledge, thereby supporting
extensive symbolic programming to robustly de-
rive a logical conclusion. Our experiments show
that DSR-LM leads to improved logical reasoning
of pre-trained LMs and outperforms a spectrum
of competitive baselines even under systematic
distribution shifts on sequence lengths.

1. Introduction
Pre-trained LMs have demonstrated remarkable predictive
performance but they tend to generate harmful, inconsistent,
untruthful, or toxic outputs (Weidinger et al., 2021), in part
because they largely lack capabilities of systematic under-
standing and reasoning about factual knowledge (Elazar
et al., 2021; Hase et al., 2021; Valmeekam et al., 2022). In
particular, several works have observed that logical incon-
sistency is a significant weakness of LMs (Kassner et al.,
2020; Helwe et al., 2021; Creswell et al., 2022) even in a
confined problem space (Zhang et al., 2022). Such observa-
tions are notable evidence that pre-trained LMs are far from
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human-level understanding.

In this work, we seek to tackle the above challenges and
focus on improving the deductive logical reasoning pro-
cess of LMs. Our approach has the same key objectives
as neuro-symbolic programming (Chaudhuri et al., 2021):
compositionality, consistency, interpretability and easy in-
tegration of prior knowledge. Existing neuro-symbolic
works (Rocktäschel & Riedel, 2017; Manhaeve et al., 2018;
Zhang et al., 2019) target various confined problem spaces
and are therefore not suitable for improving pre-trained LMs.
To this end, we develop DSR-LM, which supports a tight
integration of pre-trained LMs and differentiable symbolic
reasoning to leverage the advantages of both worlds.

DSR-LM integrates LMs with differentiable symbolic pro-
gramming in a principled manner: the LM governs the per-
ception of (relation, subject, object) tuples, and
the symbolic program efficiently and deductively reasons
with desirable encoded logical rules to generate the top-k
proofs via forward chaining for predicting the truth of a
query tuple. Specifically, the LM predicts the pairwise re-
lations of entities mentioned in each input sentence. With
those probabilistic input facts, the symbolic module lever-
ages the framework of provenance for deductive databases
(Cheney et al., 2009) to generate top-k proofs in a compo-
sitional manner for rule-based logic operations in Datalog.
To overcome the common limitation of reliance on human-
crafted logical rules (Huang et al., 2021; Nye et al., 2021),
we propose to efficiently learn weighted rules from noisy
inputs in an end-to-end differentiable manner.

We conduct extensive experiments showing that DSR-
LM can consistently improve the logical reasoning capa-
bility of pre-trained LMs. Moreover, we show that DSR-
LM can induce logic rules that are amenable to human un-
derstanding to explain decisions given only a few schemas.
As generalization over long-range dependency is a signifi-
cant weakness of transformer-based language models (Lake
& Baroni, 2018; Tay et al., 2020), we highlight that in sys-
tematic, long-context scenarios, where most pre-trained or
neural approaches fail to generalize compositionally, our
model can still achieve considerable performance gains.
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Input Text

Richard's daughter,
Kelley, made a dinner for her
sister, Kimberley. Dorothy
went to her brother Richard's
birthday party. Anne went
shoe shopping with her sister
Kimberley. Julia decided to
give her uncle, Benjamin, a
call on his birthday. Frank
took his son Charles and his
daughter Rachel out for
pizza.  Julia enjoys playing
cards with her brother.

Query

query(Dorothy, Anne)

Question

What is the relationship between
Anne and Dorothy?

Query Output

0.01::d(daughter, Dorothy, Anne) 

0.02::d(father, Dorothy, Anne)
0.00::d(son, Dorothy, Anne) 
... 
0.84::d(niece, Dorothy, Anne)
0.00::d(mother-in-law, Dorothy, Anne)
0.00::d(father-in-law, Dorothy, Anne)

Learned Rules

1.0::transitive(daughter, daughter, granddaughter)

1.0::transitive(daughter, sister, daughter)

...

1.0::transitive(brother, daughter, niece)

Probabilistic Input Facts

0.92::context(daughter, Richard, Kelly) 
0.05::context(sister, Richard, Kelly) 
... 
0.89::context(sister, Anne, Kimberley)

Figure 1. A motivating example where “Anne is the niece of Dorothy” should be logically inferred from the context.

2. Related Works
Logical Reasoning with LMs. Pre-trained LMs have been
shown to struggle with logical reasoning over factual knowl-
edge (Kassner et al., 2020; Helwe et al., 2021; Talmor et al.,
2020a). For example, LMs cannot consistently predict the
answer fly given the queries with the same meaning: “Birds
can [MASK]” and “Birds are able to [MASK]”; LMs also
tend to fail catastrophically with logical relationships, e.g.
rules including negation “(giraffe, is, tall)⇐⇒ (giraffe, is
not, short) (Kassner et al., 2020). There is encouraging
recent progress in using transformers for reasoning tasks
(Zhou et al., 2020; Clark et al., 2021; Wei et al., 2022;
Chowdhery et al., 2022; Zelikman et al., 2022) but these
approaches usually require a significant amount of compu-
tation for re-training and human annotations on reasoning
provenance (Zhou et al., 2020; Wei et al., 2022). Moreover,
their entangled nature with natural language makes it fun-
damentally hard to achieve robust inference over symbolic
factual knowledge (Greff et al., 2020).

There are other obvious remedies for LMs’ poor reasoning
capability. Ensuring that the training corpus contains a suf-
ficient amount of exemplary episodes of sound reasoning
reduces the dependency on normative biases and annotation
artifacts (Talmor et al., 2020b; Betz et al., 2020; Hase et al.,
2021). Heuristics like data augmentation are also shown to
be effective (Talmor et al., 2020b). But the above works
require significant efforts for crowdsourcing and auditing
training data. Our method handily encodes a few proto-
types/templates of logic rules and is thus more efficient in
terms of human effort. Moreover, our goal is fundamentally
different from theirs in investigating the tight integration of
neural and symbolic models in an end-to-end manner.

Neuro-Symbolic Reasoning. Neuro-symbolic approaches
are proposed to integrate the perception of deep neural com-
ponents and the reasoning of symbolic components. Repre-

sentative works can be briefly categorized into regulariza-
tion (Xu et al., 2018), program synthesis (Mao et al., 2018),
and proof-guided probabilistic programming (Rocktäschel
& Riedel, 2017; Manhaeve et al., 2018; Zhang et al., 2019;
Huang et al., 2021). To improve compositionality of LMs
over natural language, previous works propose to parame-
terize grammatical rules (Kim, 2021; Shaw et al., 2021) but
show that those hybrid models are inefficient and usually
underperform neural counterparts. In contrast to the above
works, we focus on improving LMs’ reasoning over logi-
cal propositions with tight integration of their pre-trained
knowledge.

3. Method
Problem Formulation. Each data-point in the dataset is
a 3-tuple containing context c, query q, and the answer r.
Figure 1 shows an instance which we will use as our running
example. The context c is a sequence of natural language
sentences within which there will be a set of entities, possi-
bly referenced by 3rd person pronouns. These sentences hint
at the relationships between entities. For example, “Diane
is taking her brother Brad out for a late dinner” implies that
Brad is Diane’s brother and Diane is Brad’s sister. The query
q, on the other hand, is a tuple of two entities, denoting the
relationship between whom we want to infer. The expected
relation is stored in the answer r, which will be one of a
confined set of possible relations R, allowing us to treat the
whole problem as an ∣R∣-way classification problem. We
focus only on the problems where the desired relation is
not explicitly stated in the context, but need to be deduced
through a sequence of reasoning. The derivation process
for our running example is demonstrated in the proof tree
shown below:
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brother(Dorothy, Richard) daughter(Richard, Kelly)
niece(Dorothy, Kelly) sister(Kelly, Anne)

niece(Dorothy, Anne)

This problem poses the following major challenges: (i) The
way in which relationships are expressed can vary a lot in
natural language, indicating a need for large pre-trained LM
to understand the meaning of these phrases. For example,
one might use “John, the father’s father of Alice, is taking
her to...” to imply that John is the grandfather of Alice.
(ii) To predict the relationship between the two entities in
the desired query, multi-hop reasoning is needed. In fact,
the number of facts needed to deduce the final outcome
is denoted by a parameter k. Usually, the larger the k is,
the longer the context will be, and the reasoning will be
even harder. (iii) Further, to test the ability for systematic
generalization, we train on contexts with k = 2 and k = 3
while we test our model on longer contexts upto k = 10.
(iv) We might not possess a knowledge base where the
rules such as “father’s father is grandfather” are explicitly
written, requiring us to learn the rules along with the relation
extraction. (v) During training, unlike the common practice
of many previous neuro-symbolic approaches (Mao et al.,
2018), we do not obtain supervision for any intermediate
relation: only the final answer relations for the queries are
used for training. This imposes additional challenges to
LMs since we do not have intermediate weak supervisions
for modeling long-context dependencies in our settings.

Methodology Overview. To overcome the difficulties listed
above, we make the following design decisions. First,
we adopt and fine-tune a large pre-trained LM such as
RoBERTa to perform the basic relation prediction over
shorter windowed contexts. This way, we can ensure that
LMs are reasoning about similar-length-context when k be-
comes larger during test time. From here, we generate a
probabilistic database containing relations extracted from
natural language context and rules that are either to-be-learnt
or obtained from a knowledge base. This database is then
fed to a differentiable logical reasoning engine that will
perform multi-hop reasoning that yields a predicted relation
distribution over R. It allows us to pass predicted results
into a loss function such as binary-cross-entropy (BCE) to
be compared with the ground-truth at the end. Since the log-
ical reasoning module is fully differentiable, we obtain an
end-to-end training loop that can back-propagate gradients
to fine-tune the LM and learn the rules with suitable learning
objectives. Figure 1 provides a conceptual illustration of the
workflow.

Neural Perception. Since LMs have strong pattern recog-
nition capabilities for tasks like Named-Entity-Recognition
(NER) and Relation Extraction (RE) (Tenney et al., 2019;
Soares et al., 2019), we adopt them as our neural compo-
nents in DSR-LM. The goal of perception of LMs is to
extract relations of mentioned entities, which obtains a dis-

tribution of relations between every pair of entities in each
windowed context. We assume a finite set of relations R to
be classified. For example in CLUTRR (Sinha et al., 2019),
we have 20 kinship relations including mother, son, uncle,
father-in-law, etc. The entity pairs are directional. That is,
the relation of Diane to Brad is not the same as the relation
of Brad to Diane. Consequently, if a windowed context
contains n distinct names, we will predict n(n − 1) individ-
ual distributions of relations. Note that, for a given pair of
entities there might not be any implied relationship between
them. Therefore we would need to employ a (∣R∣ + 1)-
way classification where the additional class represents “no
relation” between the two entities.

In practice, the windowed contexts are split based on simple
heuristics of “contiguous one to three sentences that contain
at least two entities”, to account for coreference resolution.
The windowed contexts can be overlapping and we allow
the reasoning module to deal with noisy and redundant data.
Our relation extraction module is implemented by adding
an MLP classifier after the LM, accepting a concatenation
of the embedding of the two entities and the aggregated
embedding of the whole windowed context.

Symbolic Reasoning. The symbolic reasoning module
combines the information from multiple windowed texts
and deduces the answer for the query by performing
multi-hop reasoning. Conceptually, we represent a rela-
tion between two entities extracted from the context as
an arity-3 fact, context(r, s, o) , to denote that the
object o is related to subject s with the relation r. For
example, “Dorothy went to her brother Richard’s birth-
day party” should be represented by two ground-truth
facts, context(brother, Dorothy, Richard) , and
context(sister, Richard, Dorothy) . During infer-
ence time, since we are predicting a probabilistic distribution
over all possible relations between Dorothy and Richard,
we will obtain two sets of disjunctive facts, one of which is
shown below:

0.01::ctx(son, Dorothy, Richard);
0.01::ctx(daughter, Dorothy, Richard);
. . .
0.90::ctx(brother, Dorothy, Richard);
. . .
0.01::ctx(motherinlaw, Dorothy, Richard);
0.01::ctx(none, Dorothy, Richard)

We model these facts as disjunctive facts because exactly
one of them could be true. This helps the reasoning engine
to rule out dubious reasoning chains. Assuming there are
m windowed contexts extracted from c and maximum n
entities extracted from each windowed context, we generate
in total O(mn(n − 1)(∣R∣ + 1)) probabilistic facts that are
then passed to our reasoning module.

Now the role of our reasoning module is to combine
these base facts to deduce the answer for the expected
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query. For the CLUTRR dataset, it suffices to define
the higher-order predicate called transitive . Tran-
sitivity defines how two known relations can be con-
nected to derive the third relation. As an example,
the rule “father’s mother is grandmother” is encoded as
transitive(father, mother, grandmother) – this
is equivalent to saying, if B is A’s father, and C is B’s
mother, then C is A’s grandmother. We manually crafted 92
transitivity triplets which are treated as an external knowl-
edge base for this setup, and the full Scallop program for
CLUTRR is shown in Figure 4.

In a more generalized setting, a single “transitive” defini-
tion would not suffice. Therefore, we add in a few other
higher-order predicates as shown in Table 1. To account
for negation, we create helper relations (e.g. “negchild”)
to denote the nonexistence of its positive counterpart (e.g.
“child”), and use the predicate negation to connect them.
With this set of rules, our program is expressive enough to
encode all the logic and rules used in the dataset presented
in RuleBERT (Saeed et al., 2021).

Predicate Example
symmetric symmetric(spouse)

transpose transpose(husband, wife)

implies implies(mother, parent)

negation negation(child, negchild)

Table 1. Example higher-order predicates.

Rule Learning. For CLUTRR, specifying 92 transitive
rules manually could be time-consuming. With a differen-
tiable reasoning engine like Scallop, it is possible to do this
in a smarter way. In CLUTRR, since there are 20 basic kin-
ship relations, we have a finite space containing 203 = 8K
possible transitive facts. We treat all 8K transitivity facts
probabilistic and to be learnt, and therefore we store them
inside a tensor of size 20 × 20 × 20. During training, we
will allow gradients to be back-propagated to this transitivity
tensor too so that these weights can be learnt simultaneously.
In this case, the user does not specify any transitivity fact
manually and everything is learnt on the fly. We can ran-
domly initialize this tensor but with a range such as [0,0.1],
since otherwise an insensible transitive fact may be getting
a random high weight while it effectively does nothing for
reasoning. The insensible transitive fact will obtain no gra-
dient during training and the weight will be kept very high,
making us unable to differentiate it from the other sensible
transitive facts.

There are a few catches here. First, 8K transitive facts for
CLUTRR is a lot that can slow down the training time. In
real life, we use multinomial sampling to retrieve 150 tran-
sitive facts for training. During testing, we simply pick the
top 150 facts from this. The sampling step shrinks the train-

ing time from 30 minutes per epoch to 10 minutes. These
numbers are picked based on our knowledge of roughly
92 transitive facts that are essential to reasoning. When
such knowledge is absent, one can set this number freely
by treating it as another hyper-parameter. Secondly, during
end-to-end training, it is possible to lose the semantic mean-
ing of individual relations. That is, the relation we perceive
as “sister” might not be used to represent “sister” internally,
which will reduce the interpretability of the learnt model.
There are ways to distill the true mapping or regularize the
rules being learnt, but for the sake of this experiment, we
keep it to the bare minimum and do not interpret the rules
learnt. Lastly, the learning of rules and the fine-tuning of
the underlying LM should happen separately with different
learning rates – fine-tuning LM is an intricate process that
requires a very small learning rate, while rules should be
learnt with larger learning rates since gradients are directly
back-propagated onto the weights. This can be realized by
employing two separate optimizers, one for fine-tuning and
the other for rule learning.

4. Experiments
We evaluate DSR-LM on the CLUTRR and DBpedia-INF
datasets. We show that DSR-LM has accurate and gener-
alizable long-range reasoning ability, and it overcomes the
limitation of Scallop that hand-crafted rules must be pro-
vided through its rule learning feature. We refer readers to
Appendix A for a full set of setups.

4.1. Experimental Setup

Reasoner. We use Scallop (Huang et al., 2021) to perform
the differentiable probabilistic reasoning. To enable logic
reasoning with negation, as needed in the DBpedia-INF
dataset, we use the topbottomkclauses provenance
with k set to 3 throughout all the experiments.

Pre-trained Language Models (PLMs) for Fine-tuning.
We used the HuggingFace pre-trained w2v-google-news-
300, RoBERTaBASE, and DeBERTaBASE as the pretrained
language models. We finetune RoBERTaBASE and
DeBERTaBASE during the training process with binary cross
entropy loss. Note that although GPT-3 supports fine-tuning,
it does not suit the end-to-end learning pipeline with Scallop,
as the differentiable logical reasoning engine needs access
to the underlying LM for back-propagating gradients.

4.2. Multi-hop Question Answering

Baselines. We compare DSR-LM with a spectrum of base-
lines from purely neural to logically structured. The base-
lines include pretrained large language models (BERT (Ken-
ton & Toutanova, 2019) and RoBERTa (Liu et al., 2019)),
non-LM counterparts (BiLSTM (Hochreiter & Schmidhu-
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Figure 2. CLUTRR overall performance, including
GPT-3 with ZS and ZS-CoT setup.
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Figure 3. CLUTRR systematic generalization. Models except GPT-3* are trained
on k ∈ {2,3}. All models are tested on k ∈ {2, . . . ,10}.

ber, 1997; Cho et al., 2014) and BERT-LSTM), structured
models (GAT (Veličković et al., 2018), RN (Santoro et al.,
2017), and MAC (Hudson & Manning, 2018)), and an-
other neuro-symbolic model (RuleBert (Saeed et al., 2021)).
The structured models include those models with relational
inductive biases, while the neuro-symbolic model uses a
logical reasoning engine for regularization.

Accuracy and Generalizability. We evaluate DSR-LM on
the CLUTRR dataset and DBpedia-INF dataset, as reported
in Figure 2 and Table 7.

In the CLUTRR experiment, DSR-LM achieves the best
performance among all the models. A fine-grained gener-
alizability study reveals that although all models’ perfor-
mance decline as the length of the test sequence increases,
the pure neural-based models decrease the fastest, as shown
in Figure 3. The experimental result aligns with previous
observations that sequence models are not robust under com-
positional or systematic distribution shifts (Lake & Baroni,
2018). In the DBpedia-INF experiment, DSR-LM outper-
forms RuleBert on generalizability by 37% in terms of over-
all performance.

Ablation Study. Since DSR-LM has a model agnostic archi-
tecture, we study how the choice of different language mod-
els impacts the reasoning performance. As shown in Table 2,
the two transformer-based models have on-par performance
and outperform the word2vec one. However, note that the
word2vec-based model still has better performance than all
baselines other than GAT. Besides the higher final accuracy,
the pre-trained transformer-based language model also ac-
celerates the training process. Both DSR-LM-RoBERTa and
DSR-LM-DeBERTa reach their best performance within 10
epochs, while the DSR-LM-w2v-BiLSTM model requires
40 epochs to be trained.

GPT-3 Baselines. We conduct experiments on the

Model Accuracy (%)
DSR-LM-w2v-BiLSTM 40.39 ± 0.06

DSR-LM-RoBERTa 52.20 ± 4.07
DSR-LM-DeBERTa 51.57 ± 1.10

Table 2. CLUTRR Ablation study: We compare the performance
of DSR-LM using different LMs.

Model Accuracy (%)
DSR-LM-RoBERTa 52.20 ± 4.07
DSR-LM-No-Rule 51.48 ± 0.57

Table 3. CLUTRR Ablation study: We compare the performance
of DSR-LM, one with hand-crafted rules and one with no hand-
crafted rule but learnt all of them.

CLUTRR dataset with GPT-3 under the Zero-Shot (GPT-
3 ZS) and Few(5)-Shot (GPT-3 5S) (Brown et al., 2020),
as well as Zero-Shot-CoT (GPT-3 ZS-CoT) (Kojima et al.,
2022a) settings.

5. Concluding Remarks
In this work, we investigate how to improve LMs’ logical
reasoning capability using differentiable symbolic reasoning.
Through extensive experiments, we demonstrate the effec-
tiveness and utility of DSR-LM over challenging scenarios
where widely deployed large LMs fail to reason reliably.
We hope our work can lay the groundwork for exploring
neuro-symbolic programming techniques to improve the
robustness of LMs. One potential future work is using tem-
poral logic to model dynamic semantics and state tracking
in dialog systems – identifying the user’s intent and parame-
ters in each dialog act, and using them to drive the learning
agent’s actions consistently (Andreas et al., 2020).
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A. Additional Experimental Setups
CLUTRR. The CLUTRR (Sinha et al., 2019) dataset consists of kinship reasoning questions. Given a context that describes
a family’s routine activity, the goal is to deduce two-family members’ relationship that is not explicitly mentioned in the
story. Although the dataset is synthetic, the sentences are crowd-sourced and hence there is a considerable amount of
naturalness inside the dataset. The family kinship graph is synthetic and the names of the family members are randomized.
Therefore, we have the following symbolic information at hand:

1. the full kinship graph corresponding to the story,
2. 92 hand-crafted rules for deriving relationships from known facts, and
3. a query representing the question.

We seek to use this symbolic information for a controlled study, but in a general setting where we compare with other
baselines, none of this information is available. Additionally, we have the CLUTRR dataset being divided into different
difficulties measured by k, the number of facts used in the reasoning chain. For training, we only have 10K data points with
5K k = 2 and another 5K k = 3, meaning that we can only receive supervision on data with short reasoning chains. The
testing dataset, on the other hand, contains 1.1K data-points with k ∈ {2, . . . ,10}.

DBpedia-INF. The DBpedia-INF dataset is a curated subset of the evaluation dataset used in RuleBert (Saeed et al., 2021).
Similar to CLUTRR, it is generated synthetically with the purpose to test the reasoning capability of LMs. Given a synthetic
passage describing the relation between entities, and soft rules between the entities, we target to deduce the relationship
between any two entities. The symbolic program of DBpedia-INF consists of 26 predicates, 161 soft rules mined from
DBpedia, and 16 rules defining the negation and symmetricity between the predicates. The difficulty of the questions is
represented in terms of chaining depth from D ∈ {0, . . . ,5}. The longer the chaining depth is, the harder the question.
Compared to the exact dataset used in Rulebert, we clean it in order to ensure the question-answer pairs are logically
consistent and probabilistically correct. Here is an example data-point from the original dataset that is logically inconsistent:

c ∶ Alice is not Bob’s successor.
q ∶ Is Bob not Alice’s successor?
a ∶ False

The logical fallacy is that the original dataset is generated assuming at least one of “successor(Alice, Bob)” and “succes-
sor(Bob, Alice)” is true. In reality, it might be the case that Alice and Bob are unrelated to each other and neither of these
two facts need be true. Additionally, the sentences presented in this dataset appear to be simple and thus will be less noisy
and less natural.

// Relation declaration
type context(rela: usize, subject: String, object: String)
type query(subject: String, object: String)
type transitive(r1: usize, r2: usize, r3: usize)

// Transitive facts that are specified manually; when learnt, we remove these facts
rel transitive = { /* ... 92 transitivity facts */ }

// Rules to derive the final answer
rel derive(r, s, o) = context(r, s, o)
rel derive(r3, x, z) = derive(r1, x, y), derive(r2, y, z), transitive(r1, r2, r3),

x != z
rel answer(r) = query(s, o), derive(r, s, o)

Figure 4. An illustrative example of a Scallop program used in the CLUTRR reasoning task.

Hardware. We perform all the experiments on a server with two 20-core Intel Xeon CPUs, four GeForce RTX 2080 Ti
GPUs, and 768 GB RAM.

GPT-3 prompts design. For Zero-Shot, we use the prompt “So B is A’s:” for the query pair (A,B) to ask GPT-3
to complete the relationship between A and B. We pick the phrase in the first line or before the first period from the
completion text, and compare it directly with the ground truth relation. For the Few(5)-Shot setting, we randomly select 5



Improved Logical Reasoning of Language Models via Differentiable Symbolic Programming

data-points from the training dataset used for other models (k ∈ [2,3]) to serve as the examples. We use the same prompt for
Few-Shot as the Zero-Shot. For the Zero-Shot-CoT setting, we use the prompt “Who is B to A? Let’s think step by step” to
suggest GPT-3 to auto-complete while working out a reasoning chain. Under this setup, it is impossible to compare the
answer to the ground truth automatically. Therefore, we manually check through the whole testing dataset of CLUTRR.
Interestingly, ZS scores 28.6% accuracy on CLUTRR while ZS-CoT scores 25.6%, suggesting that the chain-of-thought
prompting might not be helping the actual reasoning. In fact, there are many cases where GPT-3 favors complication over
simplicity: GPT-3 frequently answers “stepdaughter”, “stepmother”, and “adopted son”, while the real answers are simply
“daughter”, “mother”, and “son”. Additionally, GPT-3 could be deriving the correct result for the wrong reason, e.g. “Jeffrey
is Gabrielle’s son, which would make William her grandson, and Jeffrey’s brother.” While we count the final answer to be
correct (William is Jeffrey’s brother), there is a clear inconsistency in the reasoning chain: William cannot be Gabrielle’s
grandson and Jeffrey’s brother simultaneously, given that Jeffrey is Gabrielle’s son. Lastly, we observe that, unlike other
methods that see an accuracy drop as k becomes larger, ZS and ZS-CoT stay relatively consistent, suggesting that the size of
context and the reasoning chain have a seemingly low impact on GPT-3’s performance, as shown in Figure 3.

Failure case analysis. In Table 4, we showcase the failure cases of large LMs for logical inference, where Zero-shot-CoT
denotes zero-shot chain-of-thoughts (Kojima et al., 2022b).

B. Additional Experimental Results
B.1. Failure case analysis.

We showcase in Appendix Table 4 that even state-of-the-art large LMs are prone to logical fallacies. On the other hand,
the failure case of our method usually occurs in the stage of relation extraction. For example, for the following sentence
“Christopher and Guillermina are having a father-daughter dance”, our relation extractor fails to recognize the father-daughter
relationship but rather thinks Christopher and Guillermina have a husband-wife relationship. We require most of the relation
extraction to be correct in order to avoid a cascading error and derive the correct final result. As the error rate on individual
relation extraction accumulates, it leads to the observed drop in accuracy as k becomes larger.

B.2. Rule Learning

DSR-LM can automatically learn weighted rules from data. In the following series of experiments, we seek to understand a)
the quality of the learnt symbolic rules from a dataset, and b) the end-to-end question-answering performance without any
given rule. We evaluate the rule learning performance of DSR-LM quantitatively and qualitatively on the CLUTRR dataset.
Specifically, we target to learn the transitivity rule in kinship graphs, for example, the rule “father’s mother is grandmother”
encoded as transitive(father, mother, grandmother) .

Setup. There are two common usages of rule learning: a) mine high-level rules from a given set of knowledge base, and b)
perform question and answering directly without hand-crafted rules. We thus set up the two experiments correspondingly:

Rule Learning: Given the ground truth kinship graphs of the context, the query and query results, learn a set of kinship
transitivity rules.

QA-No-Rule: Given the natural language context, the question, and the answer, simultaneously learn to extract relations
between entities and learn the transitive rules to combine relations and derive the desired answer.

Training Setup. Since the CLUTRR dataset consists of 20 different relations, and a transitivity relationship is defined over 3
relations, there are 8K possible transitivity facts over these relations. We attach a randomized confidence score from [0,0.1]
to each possible transitivity rule, and the confidence scores are updated through back-propagation. Specifically, the learning
process encourages the rules that yield the correct query result and suppresses the rules that lead to wrong answers. To
avoid the exponential blow-up caused by injecting all the 8K rules in the reasoning engine, we sample 150 rules according
to their weights during the training time and deterministically use of the top 150 learnt rules during the test time. For the
QA-No-Rule setup, the confidence score of rules, the MLP classifier for relation extraction, and the underlying LM are learnt
and updated simultaneously during training. To account for their difference, we employ two Adam optimizers ARL and
ARE. ARE is used for optimizing models for relation extraction, and thus will take as parameters the MLP classifier and the
underlying LM. It has a low learning rate 0.00001 since it needs to fine-tune LMs. ARL, on the other hand, will take as a
parameter the confidence score tensor for the transitive rules, and is set to have a higher learning rate of 0.01.

Results. In the Rule Learning experiment, we find that the learnt logic rules align well with human understanding. We
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Confidence Learnt Rules
1.154 mother(A,B)← sister(A,C) ∧ mother(C,B)
1.152 daughter(A,B)← daughter(A,C) ∧ sister(C,B)
1.125 sister(A,B)← daughter(A,C) ∧ aunt(C,B)
1.125 father(A,B)← brother(A,C) ∧ father(C,B)
1.123 granddaughter(A,B)← grandson(A,C) ∧ sister(C,B)
1.120 brother(A,B)← sister(A,C) ∧ brother(C,B)
1.117 brother(A,B)← son(A,C) ∧ uncle(C,B)
1.105 brother(A,B)← daughter(A,C) ∧ uncle(C,B)
1.104 daughter(A,B)← wife(A,C) ∧ daughter(C,B)
1.102 mother(A,B)← brother(A,C) ∧ mother(C,B)
. . . . . .

Table 6. The learned logic rules from CLUTRR dataset, showing only top 10 ranked
by their respective confidence score.

Test Depth DSR-LM RuleBert
all 95.87 72.59
0 100.0 98.40
1 100.0 54.80
2 98.4 75.20
3 89.2 64.00
4 88.1 69.89
5 100.0 72.29

Table 7. DBpedia-INF generalization evaluation.
Models are trained on 10K depth D = 0 training
datapoints, and tested on datapoints of depth D =
[0,5].

compare the top 92 most likely rules ranked by their confidence scores learnt by DSR-LM against the 92 hand-crafted rules,
and 70 of them match. We demonstrate the top-10 rules in Table 6. As can be seen from the rules, they are quite sensible
and interpretable.

In the QA-No-Rule experiment where the ground truth kinship graph is not provided, although the learnt rules do not reflect
the common sense knowledge (Table 8), we still achieve on-par performance as if the knowledge base is given (Table 3).
One possible explanation is that the neural networks learn a permutation of the entity mappings. For example, the causes
for the learned rule “grandson(A,B) ← son(A,C) ∧ grandson(C,B)” could be that neural networks mistakenly interpret the
ground truth relation “sister” as “son”.

Through this qualitative analysis, it is clear that DSR-LM provides an interface to probe the intermediate steps for an
end-to-end neural network, and in turn, enhance the model interpretability.
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k Prompt GPT-3 CoT Output Ground Truth
2 Jeffrey asked his brother William if he would come help him fix his car

next weekend. Gabrielle was delighted to see her grandson, William, at
her birthday party. Who is Jeffrey to Gabrielle? Let’s do it step by step:

Jeffrey is Gabrielle’s grandson.
William is Jeffrey’s brother.

grandson

3 Elliott felt lonely when his wife Marian was gone to see her mother Molly.
Elliott and his daughter Karen took a day off school to go to the zoo. Who
is Karen to Molly? Let’s do it step by step:

Karen is Elliott’s daughter. Molly
is Elliott’s wife’s mother. Therefore,
Karen is Molly’s granddaughter.

granddaughter

4 Frank took his daughter Julia to the park. Beverly, Emilie´s sister went
with them. Kimberley was excited because today she was going to the zoo
with her uncle Frank. Jenny spent a great day shopping with her daughter,
Kimberley. Who is Beverly to Jenny? Let’s do it step by step:

Beverly is Jenny’s sister-in-law. niece

5 Melissa and her father, Stephen, went to the marina. Stephen’s daughter,
Margaret, had purchased a boat, and they were eager to see it. Annie and
her aunt, Evelyn, went to the deli. They got a half a pound of corned beef,
and two pounds of salami. Melissa and her sister Annie were arguing over
a toy. While they were fighting, Melissa’s sister Margaret grabbed the toy,
and ran off to play with it by herself. Who is Evelyn to Melissa? Let’s do
it step by step:

Melissa’s father is Stephen. Stephen
has a daughter, Margaret. Margaret
is Annie’s aunt. Therefore, Evelyn
is Annie’s aunt, and Melissa’s great-
aunt.

aunt

6 James took his grandson Davis to the baseball game. Sharon and her son
Brian went out to lunch together yesterday. Brian and his brother Oliver
went to the park to play basketball. Davis played scrabble with his mother
Sharon and his brother Oliver. Davis asked his brother Oliver if he would
come help him fix his car next weekend. Who is James to Oliver? Let’s
do it step by step:

James is Davis’s grandfather, so he
is Oliver’s great-grandfather.

grandfather

7 George rushed to the hospital to find out that his wife and already given
birth to a boy and had named him David. Larry was playing checkers
with his brother Craig. Larry’s sister Jean was waiting to play. Judy made
mixed drinks for her son Craig. Judy’s daughter Jean was jealous because
she was n’t offered one. Jean planned a trip to the zoo for her brother,
Craig. They had a great time. George was having trouble with his divorce
because he only got to see his daughter Jean a few times a week. Who is
David to Craig? Let’s do it step by step:

George’s wife gave birth to a boy and
named him David. David is Craig’s
nephew.

brother

8 Anthony went to the bakery with his uncle Roger to pick up some bread for
lunch. Anthony loved going to the store with his mom Mary. She always
bought him snacks Charles would n’t let his son Floyd go to the park
by himself. Floyd’s brother Anthony offered to go with him. Faye was
hoping to travel out of state to visit her son Cecil. Ellie’s brother, Charles,
was doing his best to find the best flight. Mary and her son Anthony went
out to lunch together yesterday. Cecil took her sister, Christine, out to
dinner for her birthday. Who is Roger to Christine? Let’s do it step by
step:

Cecil is Faye’s son, so Faye is
Christine’s mother-in-law. Chris-
tine is married to Faye’s son, so
Christine is Faye’s daughter-in-law.
Charles is Ellie’s brother, so Charles
is Christine’s brother-in-law. An-
thony is Charles’s son, so Anthony
is Christine’s nephew. Roger is An-
thony’s uncle, so Roger is Christine’s
brother-in-law.

uncle

9 Gino bought gifts for his lovely sister, Jami. Michele and William left
that evening to go bowling. Ethel and her son, Gordon, went to the park,
and had a wonderful time. Manuel’s father, Kenneth, thought his son
was a monster. Meanwhile Michele thought her son Manuel was a little
angel. Gino, Kenneth’s other son, agreed with his dad. William asked his
brother Larry if he would come help him fix his car next weekend. Joseph
was so happy for his brother, Larry, getting a promotion. Gordon and his
uncle Joseph went to the movies Sunday after church and got popcorn
and candy while they were there. Who is Jami to Ethel? Let’s do it step
by step:

1. Jami is Gino’s sister. 2. Ethel is
Gino’s mother. 3. Therefore, Jami is
Ethel’s daughter-in-law.

niece

Table 4. Qualitative analysis of GPT-3 Zero-Shot-CoT on the CLUTRR dataset. The novelty comes from the sentence marked in orange.
Queries that are of interest are marked in blue. Correct answer in the output is marked green and incorrect ones are marked red.
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Confidence Rule
1.153661847 mother(A,B) ← sister(A,C) ∧ mother(C,B)
1.151766777 daughter(A,B) ← daughter(A,C) ∧ sister(C,B)
1.124880195 sister(A,B) ← daughter(A,C) ∧ aunt(C,B)
1.12450707 father(A,B) ← brother(A,C) ∧ father(C,B)

1.123031497 granddaughter(A,B) ← grandson(A,C) ∧ sister(C,B)
1.119753957 brother(A,B) ← sister(A,C) ∧ brother(C,B)
1.117262602 brother(A,B) ← son(A,C) ∧ uncle(C,B)
1.104628563 brother(A,B) ← daughter(A,C) ∧ uncle(C,B)
1.10367167 daughter(A,B) ← wife(A,C) ∧ daughter(C,B)

1.101553082 mother(A,B)← brother(A,C) ∧ mother(C,B)
1.101539135 brother(A,B) ← father(A,C) ∧ son(C,B)
1.095460534 sister(A,B) ← mother(A,C) ∧ daughter(C,B)
1.071032643 sister(A,B) ← father(A,C) ∧ daughter(C,B)
1.070597649 son(A,B)← son(A,C) ∧ brother(C,B)
1.069653988 uncle(A,B)← father(A,C) ∧ brother(C,B)
1.066023946 daughter(A,B) ← son(A,C) ∧ sister(C,B)
1.060760975 brother(A,B)← brother(A,C) ∧ brother(C,B)
1.056373119 grandson(A,B) ← husband(A,C) ∧ grandson(C,B)
1.054644465 sister(A,B) ← son(A,C) ∧ aunt(C,B)
1.05249536 grandmother(A,B) ← sister(A,C) ∧ grandmother(C,B)

1.049931884 granddaughter(A,B) ← granddaughter(A,C) ∧ sister(C,B)
1.049800634 grandmother(A,B)← brother(A,C) ∧ grandmother(C,B)
1.047104836 grandson(A,B)← granddaughter(A,C) ∧ brother(C,B)
1.045552254 grandfather(A,B)← mother(A,C) ∧ father(C,B)
1.036108494 son(A,B)← daughter(A,C) ∧ brother(C,B)
1.034998536 sister(A,B)← brother(A,C) ∧ sister(C,B)
1.028737187 grandmother(A,B)← mother(A,C) ∧ mother(C,B)
1.027377605 grandfather(A,B) ← sister(A,C) ∧ grandfather(C,B)
1.019370079 brother(A,B)← mother(A,C) ∧ son(C,B)
1.01684773 granddaughter(A,B) ← wife(A,C) ∧ granddaughter(C,B)

Table 5. Showcase of the learned logic rules with top@30 confidence of DSR-LM rule learning.

Confidence Learnt Rules
1.164 grandson(A,B) ← son(A,C) ∧ grandson(C,B)
1.116 father(A,B) ← sister(A,C) ∧ daughter(C,B)
1.099 brother(A,B) ← niece(A,C) ∧ niece(C,B)
1.092 nephew(A,B) ← sister(A,C) ∧ sister(C,B)
1.048 brother(A,B) ← wife(A,C) ∧ daughter-in-law(C,B)
. . . . . .

Table 8. The top 5 logic rules learned under the QA-No-Rule setting, ranked by their confidence score.


