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Abstract

Living with Type 1 Diabetes (T1D) is a constant balancing act, requiring patients
to make complex decisions based on endless streams of data. While Artificial
Pancreas Systems (APS) powered by Reinforcement Learning (RL) have shown
promise in automating insulin delivery, their "black-box" nature makes it hard
for patients and doctors to trust them fully. This paper presents LLM-TI1D, a
groundbreaking approach that combines the precision of RL with the clear, human-
like reasoning of Large Language Models (LLMs) to create a more transparent and
reliable insulin pump controller. By training an expert RL system and then distilling
its knowledge into fine-tuned Llama 3.1 8B and Qwen3 8B models using a LoRA
architecture, we developed a controller that not only matches or surpasses the
RL system’s performance but also explains its decisions in plain, understandable
language. Tested on the FDA-approved UVA/Padova T1D simulator, the LLM
controllers deliver excellent blood sugar control while giving patients clear, data-
driven insights they can trust. This hybrid system transforms a complex algorithm
into an approachable "copilot," paving the way for safer, more understandable, and
patient-centered Al solutions for managing chronic conditions like T1D.

1 Introduction

Type 1 Diabetes (T1D) is a chronic autoimmune disease requiring individuals to perform a continuous,
life-long optimization problem [[1]]: maintaining blood glucose levels within a narrow, healthy range
(70 180m~g/dL) (3.9-10 mmol/L) through exogenous insulin administration [2, 3]. Maintaining
optimal blood glucose levels is a lifelong challenge, as both low blood glucose (hypoglycemia) and
high blood glucose (hyperglycemia) can harm health and, in severe cases, lead to life-threatening
conditions. The total time spent within this range is known as Time in Range (TIR) [4] (see Figure [2).
The complexity of this task is immense, influenced by meals, exercise, stress, and hormonal changes,
creating a significant cognitive load for millions worldwide [5}, 16]].

Modern Artificial Pancreas Systems (APS) have begun to alleviate this burden by automating basal
insulin delivery using traditional controllers like PID and MPC. More recently, Reinforcement
Learning (RL) has emerged as a promising frontier, with its ability to learn complex, personalized
control policies from data, adeptly handling the non-linear dynamics and delays inherent in the
human glucoregulatory system [7, |8]]. Studies using state-of-the-art algorithms like Proximal Policy
Optimization (PPO) have shown that RL agents can learn effective insulin dosing strategies without
manual carbohydrate counting, a major leap towards a fully automated system.

However, this technological advance faces a profound human barrier: the trust deficit. RL policies
are fundamentally opaque. An RL agent cannot explain why it recommended a specific insulin
dose—a decision with immediate safety implications. For a patient or a clinician, ceding control
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Figure 1: System Disgram for LLM-T1D

of life-sustaining therapy to a black box is an unacceptable risk. This lack of interpretability is the
single greatest obstacle to the widespread adoption of advanced Al in critical healthcare applications.

This paper proposes a paradigm shift to solve this challenge. Inspired by recent successes in distilling
RL policies for complex physical systems like data center cooling, we introduce a framework to
create a transparent, explainable, and trustworthy insulin pump controller. Our core innovation is
to distill the implicit, numerical knowledge of an expert RL policy into the explicit, reasoning
framework of a Large Language Model (LLM) Figure|[T] By training an LLM on the decisions of a
high-performing RL agent, we create a controller that retains the nuanced performance of its "teacher"
while gaining the crucial ability to articulate its decision-making process in natural language.

Our main contributions are:

* A Hybrid RL LLM Control Framework: First to adapt and apply a policy distillation
methodology to create an explainable LLM-based controller for T1D insulin management,
merging the optimization strengths of RL with the interpretability of LLMs.

* Trustworthy and Explainable AI: This solution demonstrates that the LLM controller
can generate clear, data-driven rationales for its insulin dosing decisions, transforming it
from a black box into an intelligent "copilot” that builds patient trust and facilitates safer
human-in-the-loop oversight.

* Demonstrated Performance and Safety: We validate our approach using the FDA-
approved UVA/Padova T1D simulator [9], showing our hybrid controller achieves excellent
glycemic control, comparable to or exceeding the expert RL baseline, while providing a new
layer of insight.

* A Pathway to Patient Empowerment: We argue that this explainable Al approach is
a crucial step toward not only safer adoption but also greater patient understanding and
engagement in their own care.

2 Problem Definition
Automated glucose control in T1D can be modeled as a Partially Observable Markov Decision
Process (POMDP), defined by the tuple:

(8*,8,0,A,P,R),

where the true physiological state is not fully observed and must be inferred from noisy sensor data.

2.1 State Space

The environment is defined as a Partially Observable Markov Decision Process (POMDP). Observed
states include current and historical glucose measurements, insulin delivery, and meal announcements:

8t = (Gr—ket It—kets Mt —k:t)
where k is set to one hour. This captures the effect of insulin action and variability in meal timing.

Including history provides essential context on glucose trends and insulin-on-board.



2.2 Action Space

The agent selects an action a;, which is mapped to an insulin infusion Ip,mp (U) delivered by the
pump. The effect can be summarized by:

a;—1
Ipump = Imax ° 677( ¢ )

This exponential mapping allows fine-grained control of small basal doses and rapid delivery of larger
boluses.

2.3 Reward Function

The objective is to maximize Time in Range (TIR), defined as the percentage of time spent within
70-180 mg/dL. The reward is derived from the Blood Glucose Risk Index (RI), which assigns
exponentially higher penalties to deviations outside the target range, with particularly severe penalties
for hypoglycemia (g; < 39 mg/dL). The agent maximizes expected average reward over an infinite
horizon, reflecting the continuous, life-long nature of diabetes management.

Risp.ap) — | 719000 ges1 < 39 mg/dL
10 (= RI(gi+1)+ 100), otherwise.

This penalizes hypoglycemia heavily while rewarding safe glucose ranges.

2.4 MDP Formulation

Table 1: MDP Formulation for Glucose Control

States S Glucose history, insulin history, meal announcements
Actions A Insulin infusion (basal + bolus)
Reward R —RI(g) with severe penalty for g < 39 mg/dL

While the RL agent’s objective is to optimize this numerical reward function, the overarching clinical
goal is to develop a system that is not only effective but also safe, reliable, and trustworthy. An
optimal policy from a purely mathematical standpoint is useless if the patient cannot trust it enough
to use it. Therefore, our problem extends beyond policy optimization to include the generation of
faithful, understandable explanations for the agent’s actions.

Our approach bridges the gap between complex numerical optimization and clear, human-readable
reasoning through a multi-stage framework, LLM-T1D, designed to optimize blood glucose control
in Type 1 Diabetes (T1D) management.

3 Methodology

3.1 Generating an Expert Policy with Reinforcement Learning

We begin by training an expert control policy using Proximal Policy Optimization (PPO) [10], a
state-of-the-art model-free reinforcement learning (RL) algorithm. The PPO agent is trained in a
simulated environment using the Simglucose simulator, which implements the FDA-approved UVA/-
Padova T1D model [9]. By interacting with simulated T1D patients under diverse and challenging
meal scenarios [L1]], the agent learns a policy 7rr.(a: | s¢) that maximizes average rewards. This
results in a robust, optimized policy that serves as the “expert teacher” for our large language model
(LLM) controller.

3.2 Distilling RL Expertise into an LLM Controller

The core innovation lies in transferring the RL agent’s implicit knowledge into an LLM through
supervised fine-tuning, enabling transparent reasoning. This stage involves three key steps:
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Figure 2: Glucose levels and Time in Range (TIR) [7]]

* Dataset Generation: We run the trained expert policy 7gy, for 20,000 of timesteps in the
Simglucose simulator, collecting a large dataset of expert state-action trajectories (s, ag, 7).

» Textualization: We developed a deterministic Textualization Engine (TE) that converts
numerical data into natural language prompts formatted in JSON [12]]. Each prompt captures
the system’s state, including current and historical glucose readings and past insulin doses,
paired with the expert action taken by the RL agent. This produces a dataset D = (x¢, ¥t ),
where z; is the textualized state and y, is the textualized expert action.

* LLM Fine-Tuning: We use this textualized dataset to fine-tune open-source LLMs (Llama
3.1 8B and Qwen3 8B) using Parameter-Efficient Fine-Tuning (PEFT) with LoRA [13].
The LLM is trained via supervised learning to minimize the negative log-likelihood of the
expert action ¥, given the state prompt x;:

Lsrr(0) =— > logma(ys | 24)

(z4,y:)€ED

This process enables the LLM to emulate the expert RL policy’s behavior [14].

To achieve a robust and intelligent system, we combine the strengths of the RL policy and the
fine-tuned LLM into a hybrid controller, enhancing both performance and interpretability.

3.3 Textualization Engine (TE)

The Textualization Engine (TE) is a critical component that bridges the numerical world of Rein-
forcement Learning (RL) with the language-based world of Large Language Models (LLMs). It acts
as a deterministic translator, converting structured numerical state-action data into natural language
prompts that LLMs can process and learn from. RL agents operate on arrays of numbers (e.g., glucose
levels), whereas LLMs reason over text; the TE enables this alignment.

Key Functions

* Dataset Construction: Running an expert RL policy for thousands of steps yields state—
action pairs {(s¢, a;)}. The TE transforms each s; into a descriptive text prompt x; and
each a; into a target response y;, producing a dataset used for LLM fine-tuning.

D ={(z, 1)},

* Structured Prompt Formatting: The TE outputs not just sentences but structured prompts
(JSON). A typical prompt includes:

1. Instruction Block: A directive that defines the LLM’s role and output format (e.g., “You
are an expert insulin dosing assistant. Output must be in Units of insulin.”).

2. Input/State Block: Clearly labeled system state (e.g., glucose: 195 mg/dL, trend: rising,
insulin on board: 2.5 U).
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Figure 3: Performance comparison of glucose control algorithms (MEAN + SD)

3. Response Block: For the LLM’s textualized action.

By systematically translating numerical data into structured prompts, the TE enables the LLM to
absorb the implicit knowledge of an RL policy while providing natural language outputs. This dual
role supports both high-performance control and human-understandable explanations, laying the
foundation for safe and trustworthy Al in healthcare and beyond.

3.4 Handling of Different Data Types by the TE

The Textualization Engine (TE) standardizes diverse data types into labeled, human-readable
formats, within structured JSON prompts. This ensures that numerical and symbolic information
from the simulation environment is presented to the LLM with sufficient context for reasoning and
learning.

Continuous Values

For continuous variables (e.g., glucose levels), the TE:

* Adds Labels and Units: Each value is paired with descriptive text and its unit. Glucose
values include (mg/dL).

* Provides Contextual Hierarchy: Values are placed in logical groupings to preserve the

system’s structure.

Time-Series Data

Temporal context is critical for detecting trends. The TE:

* Formats as Arrays: Historical measurements are represented as lists (e.g.,
"glucose_history_mg_dL": [180, 165, 150]).

» Uses Descriptive Labels: Arrays are clearly named so the LLM can recognize sequences
and reason about trends (e.g., rising vs. falling glucose).

By meticulously labeling, structuring, and contextualizing continuous, categorical, and temporal
data, the TE delivers a rich, unambiguous representation of the environment. This allows the LLM
to capture the implicit decision logic of the expert RL policy while producing outputs that remain
interpretable to humans.



Table 2: Performance comparison of glucose control algorithms (Mean £ SD).

Controller CH(“)“%‘(‘)‘I‘I*::ﬁng TIR (Adults) (%) TIR (Adolescents) (%) Failure Rate (%)
BBHE (Baseline) Yes 02 L 125 AL 123 0.00
RL Expert (PPO) No 691+ 105 637 + 14.0 4.93
LLM (Qwen3 SB) No 713498 651+ 13.5 2.15
LLM (LLaMA 3.1 $B) No 735+ 92 66.8 + 12.9 131

3.5 Explainable Control for Patient Trust

After producing a;, the LLM is prompted to justify its choice in natural language, enabling trans-
parency:

{ "context": { "current_glucose": "195 mg/dL",
"trend": "rising rapidly",
"glucose_history": [180,165,150,145],
"last_meal": "30 minutes ago (optional)",
"insulin_on_board": "2.5U" },
"decision": { "action": "Deliver 1.2U correction bolus" },
"instruction": "Explain why this decision was made

in simple terms for a patient." }

The LLM generates a clear rationale, providing the crucial “why” behind each action, thereby
transforming an opaque algorithm into a trusted, collaborative copilot.

4 Results

We validated our framework on the Simglucose implementation [15]] of the FDA-approved UVA/-
Padova T1D simulator [9] across the 10-subject adult and 10-subject adolescent cohorts, which
represent the variability of a real T1D population.

Experimental Setup: Models were evaluated over 100 24-hour simulations per subject, using
a challenging meal protocol with a significant amount of carbohydrates daily. We compare four
controllers based on Time in Range (TIR %) and Failure Rate % (severe hypoglycemia):

1. Basal-Bolus Human Error (BBHE), a clinical baseline requiring manual CHO counting with
simulated human error

2. Expert RL (PPO) agent;
3. Fine-tuned Qwen3 8B LLM controller;
4. Fine-tuned LLaMA 3.1 8B controller.

Quantitative Performance: The results, summarized in Table[2|and Figure [3| demonstrate that our
approach achieves explainability without compromising on high performance. The LLaMA 3.1 8B
controller achieves the highest Time in Range (TIR) for the adult cohort (73.5%) and is statistically
comparable to the BBHE baseline, despite requiring no carbohydrate counting, which is a tedious
manual process. Crucially, it outperforms the standalone RL expert by a small margin, suggesting
the LLM provides a beneficial reasoning layer. It also reduces the rate of catastrophic failures (e.g.,
severe hypoglycemia) compared to the RL expert, highlighting its potential for improved safety.

Qualitative Performance: Generating Trust through Explanation: The key result of our work is
the controller’s ability to provide clear, actionable explanations. The following provides explanations
for the decision, patient-friendly rationales, detailed explanations, and insights and recommendations.
This transforms the patient’s interaction with their device from passive to active understanding.



LLM-Generated Decision & Explanation

Observation: Glucose is 210 mg/dL and rising 60 minutes after a meal. The last insulin dose
was 2 hours ago.

Action: Deliver a correction bolus of 1.5 Units.

LLM Explanation: “Your glucose is currently high and still rising after your recent meal.
To help bring it back into your target range, I am delivering a small correction dose of 1.5
units. This dose is calculated to be strong enough to lower your glucose without causing a
rapid drop or ‘crashing’ later.”

Validity: A human evaluation confirms this rationale is clinically sound, appropriate for the
situation, and communicates the controller’s intent effectively to the patient.

Short Explanation (Patient-Friendly Rationale)

Obs: (current_glucose: 195, trend: ‘'rising”, time_since_meal_min: 45, glu-
cose_history_mg_dL: [180, 165, 150])
Act: (insulin_dose_U: 1.2)

Explanation: Your glucose is high and still rising after your recent meal. I’'m giving you a
small correction dose of 1.2 units to help guide your blood sugar back toward your target
range.

Validity (Human Evaluation):

This explanation is clear, concise, and uses patient-friendly language. It correctly identifies
the reason for the correction (post-meal hyperglycemia) and explains the action without
causing alarm. It effectively communicates the system’s intent.

Detailed Explanation (Decision Rationale)

Obs: (current_glucose: 220, trend: ‘"stable", time_since_meal_min: 150, in-
sulin_on_board_U: 0.8, glucose_history_mg_dL: [218, 225, 222])
Act: (insulin_dose_U: 0.75)

Explanation: The primary goal is to address persistent hyperglycemia (glucose at 220
mg/dL), which is above the target range. Although the trend is stable, glucose has remained
elevated for over two hours post-meal. The system calculates a conservative correction bolus
of 0.75 units, balancing the need to reduce high glucose with the 0.8 units of insulin still
active (insulin on board). This avoids excessive “stacking” that could trigger hypoglycemia.
The decision prioritizes safety while nudging glucose down.

Validity (Human Evaluation):

This is an excellent example of the agent explaining a more complex clinical concept—insulin
stacking. It correctly identifies the key variables influencing its decision: the stable but high
glucose, the time since the meal, and the active insulin. The rationale demonstrates a safe,
conservative approach that aligns with best practices in diabetes management.
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Guidance-Oriented Explanation (Insight and Recommendation)

Obs: (current_glucose: 165, trend: "falling”, time_since_meal_min: 90, insulin_on_board_U:
1.5, last_bolus_U: 2.0, glucose_history_mg_dL: [150, 130, 200])
Act: (insulin_dose_U: 0.0)

Explanation & Guidance: Your glucose is currently in range at 165 mg/dL, but the model
detects a fast downward trend and notes 1.5 units of insulin still active from your last dose.
To avoid dropping too low, the system delivers no additional insulin.

Recommendation: This pattern suggests your last dose may have been slightly too strong.
Continue monitoring over the next two hours. If the downward trend persists, consider a
small snack (10-15 g carbohydrates) to stay safely in range.

Validity (Human Evaluation):

This explanation is outstanding. It not only justifies inaction (not dosing), a critical control
decision, but also provides insight into insulin sensitivity and prior dosing. The recommenda-
tion is safe, actionable, and empowers the patient to participate in their care. This is a perfect
example of how an explainable system can serve as an educational tool.

LLM-Generated Decision & Explanation Example:

* Observation: Glucose is 210 mg/dL and rising 60 minutes after a meal. The last insulin
dose was 2 hours ago.

e Action: Deliver a correction bolus of 1.5 Units.

* LLM Explanation: "Your glucose is currently high and still rising after your recent meal.
To help bring it back into your target range, I am delivering a small correction dose of 1.5
units. This dose is calculated to be strong enough to lower your glucose without causing a
rapid drop or ’crashing’ later."

* Clinician Validity: A human expert evaluation confirms this rationale is clinically sound,
appropriate for the situation, and communicates the controller’s intent effectively to the
patient.

S Insights

While quantitative results confirm strong performance, the deeper impact lies in transforming insulin
control from an opaque black box into a transparent, collaborative partner.

* From Black Box to Glass Box: We create an auditable AI system for healthcare, enabling
patients and clinicians to query the model’s reasoning in real time. This is not a convenience
but a prerequisite for trust and safe deployment in high-stakes care.

» Catalyst for Adoption and Safety: Explainability drives clinical acceptance. Physicians
are more willing to prescribe, and patients more likely to adopt, a system that can justify
its actions. Transparency also acts as a safety net, exposing anomalies that would remain
hidden in a purely numerical controller.

* Patient Empowerment: LLM-T1D becomes an intelligent copilot, offering not just auto-
mated dosing but also clear explanations. By articulating the *why’ behind insulin adjust-
ments, the system educates users about their metabolic responses, fostering understanding
and active engagement in care.

6 Conclusion

We presented a novel framework for building an explainable and trustworthy AI controller for
T1D, distilling the expertise of an RL policy into a reasoning LLM. This directly addresses the
long-standing barrier of trust in deploying advanced Al for clinical care.



Our LLM controller achieves strong glycemic control while providing clear, data-driven rationales for
its actions. Beyond performance, it represents a step toward autonomous systems that safely manage
the complexities of the human body. This work offers a concrete pathway for translating advanced
Al into trust-building clinical practice, empowering both patients and clinicians, for personalized
medicine beyond Type 1 Diabetes.
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