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Abstract

Training and evaluating language models increasingly requires the construction
of meta-datasets – diverse collections of curated data with clear provenance. Nat-
ural language prompting has recently lead to improved zero-shot generalization
by transforming existing, supervised datasets into a variety of novel instruction
tuning tasks, highlighting the benefits of meta-dataset curation. While successful
in general-domain text, translating these data-centric approaches to biomedical
language modeling remains challenging, as labeled biomedical datasets are sig-
nificantly underrepresented in popular data hubs. To address this challenge, we
introduce BIGBIO a community library of 126+ biomedical NLP datasets, currently
covering 13 task categories and 10+ languages. BIGBIO facilitates reproducible
meta-dataset curation via programmatic access to datasets and their metadata,
and is compatible with current platforms for prompt engineering and end-to-end
few/zero shot language model evaluation. We discuss our process for task schema
harmonization, data auditing, contribution guidelines, and outline two illustrative
use cases: zero-shot evaluation of biomedical prompts and large-scale, multi-task
learning. BIGBIO is an ongoing community effort and is available at this URL.

1 Introduction

In large-scale language modeling, creating meta-datasets – diverse collections of curated data with
clear provenance – is a foundational component of self-supervised machine learning, The sources of
these data have significant impact on downstream model behaviors such as performance on domain-
specific tasks [16], recapitulating biases present in data [56, 20], and few-shot generalization [39].
While early language models were pretrained using only unlabeled, web-crawled data [37, 8], recent
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models such as T0 have demonstrated performance gains in zero-shot classification by also training
on task data encoded as natural language prompts for instruction tuning [42, 50, 53]. Here, existing
labeled datasets are transformed into prompted training examples, which redefine classification
tasks as generative, text completion tasks [36]. Related findings from massive, multi-task learning
(MTL) [1] further highlight the benefits of using a pre-finetuning step to incorporate existing labeled
task data into language modeling.

The importance of carefully controlling the data a language model is exposed to during training
highlights how meta-dataset curation is critical for state-of-the-art language modeling. This process
aligns with the principles of data-centric machine learning, which focuses on workflows for curating
training data to improve model performance. Prompting offers new opportunities for constructing
meta-datasets that capture desirable language reasoning skills. In the general NLP domain, data-
centric methods have benefited from community efforts such as Hugging Face’s datasets hub [26],
which provides easy, programmatic access to thousands of datasets and their attributes. However,
biomedical datasets are significantly underrepresented in popular dataset hubs [14] creating challenges
in reproducibly accessing, curating, and remixing biomedical data for prompting and other use cases.

To help address these challenges, we introduce BIGBIO (BigScience Biomedical), a community library
for programmatically accessing biomedical NLP datasets at scale and encouraging reproducibility
when generating meta-datasets. BIGBIO was developed as part of BigScience, a year-long workshop
on large language modeling, and codifies many lessons of the biomedical working group as we
developed dataset curation strategies. BIGBIO is, to the best of our knowledge, the largest public
collection of curated and unit-tested biomedical NLP datasets.

A summary of our contributions:

• Programmatic access to 126+ unit-tested, biomedical datasets, covering 13 tasks, 10+
languages, and providing structured metadata for key attributes on provenance and licensing.

• Support for multiple lightweight schemata, which preserve the dataset as released and
provide harmonized access for prompt engineering and cross-dataset integration.

• Community tools and guides for contributing new datasets.
• BIGBIO is built upon Hugging Face’s datasets library, integrating with PromptSource [3], a

prompt engineering system and repository, and the EleutherAI Language Model Evaluation
Harness [17] to support rapidly designing and evaluating prompts on biomedical tasks.

We illustrate the utility of BIGBIO in two representative use cases: (1) zero-shot, prompted biomedical
language model evaluation; and (2) large-scale MTL using 107 tasks. In our zero-shot evaluation
of 14 language models, ranging from 220M to 176B parameters, we find that only the T0 family
consistently outperformed a simple majority class baseline for question answering and entailment.
We found GPT-3 performed best for prompted biomedical entity recognition, formulated as as
summarization task, in some cases doubling performance over T0 models. Our MTL experiments
suggest prompting may be a key component to facilitating transfer learning across tasks common in
biomedical NLP. In both use cases, we substantially lower the engineering costs required to construct
the meta-datasets commonly utilized for language modeling and other machine learning applications.

2 Related Work

BIGBIO is a data-centric approach to natural language processing in the biomedical domain. We
briefly overview related work in these two areas.

2.1 Data-Centric Machine Learning

Data-centric machine learning emphasizes the thoughtful curation of data as centrally important to
the development of models. Multiple arguments for this emphasis have been advanced. Paullada et
al. [33] survey many aspects, including mitigating biases and annotation artifacts in training data that
lead models to rely on spurious correlations that do not generalize to other datasets, and addressing
representational harms in which certain people are under, over, or misrepresented. Sambasivan et
al. [41] document prevalent “data cascades,” situations in AI and machine learning practice in which
low-quality data causes downstream problems in high-stakes applications. Biderman and Scheirer [4]
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make several recommendations for improved data practices, including auditing and documenting
datasets. Rogers [40] outlines issues with models that can be exacerbated by low-quality data. This
encompasses for instance: learning spurious patterns, being vulnerable to basic input perturbations,
and struggling with rare inputs. BIGBIO is motivated by these same arguments, hence its emphasis
on careful metadata curation and harmonized task schemata.

Data quality has a large impact on model performance. Deduplicating data leads to more accurate
and more robust models with faster convergence. [9, 25]. For instance, cleaning up the consistency
of answer response strings was reported to improve biomedical question answering [55]. Duplication
contamination is a serious risk in biomedical datasets, which often iteratively build or extend prior
annotations, introducing risk of test leakage in evaluation [13]. As we describe in §3, BIGBIO’s
centralization of data in a unified format enables systematic data quality checks.

Data governance is also an important issue when curating biomedical language data. Jernite et al. [22]
survey many aspects of the governance of language data, and propose a framework for distributed
governance of large language corpora. Vayena et al. [46] describe models of data governance that
enable biomedical research while respecting patient privacy. Jones et al. [23] propose data governance
standards for clinical text data with personally identifiable information. Some of these issues are not
directly applicable to BIGBIO, which currently only includes loaders for datasets that are compliant
with the United States Health Insurance Portability and Accountability Act (HIPAA) as public
research datasets. Further, BIGBIO is not itself a repository of data, but a centralized repository of
data loaders and metadata, meaning that future dataset creators can programmatically define how a
dataset should be accessed and share this information with the community.

2.2 Biomedical Benchmarks

Task-specific benchmark datasets are common in biomedical workshops like BioNLP and BioCre-
ative [24, 21]. However, these datasets typically assess a restricted set of skills learned by a model.
Several recent efforts have focused on curating larger collections of datasets and tasks to evaluate the
performance of biomedical NLP models. BLUE (Biomedical Language Understanding Evaluation) is
a benchmark for 10 datasets representing 5 tasks [34]. BLURB (Biomedical Language Understanding
and Reasoning Benchmark) includes 13 datasets and 7 tasks [19]. HunFlair provides harmonized
access to 23 NER datasets, but imposes assumptions on preprocessing choices (e.g., tokenization)
[49]. Most benchmarks provide no multilingual data. CBLUE is the only non-English benchmark
consisting of 8 datasets and tasks for Chinese biomedical language [57].

Multiple biomedical prompt datasets have been released for few and zero-shot classification.
NATURAL-INSTRUCTIONSv2 provides 1600+ task instructions for a variety of domains, includ-
ing 30 tasks for medicine and healthcare [48]. BoX provides natural language instructions for 32
datasets and 9 tasks, where instructions consist of an explanation, a prompt, and a collection of
example input/outputs [32]. Agrawal et al. [2] released 2 datasets for zero-shot clinical information
extraction.

BIGBIO differs from previous efforts by focusing on the infrastructure and curation required to
reproducibly generate meta-datasets. Existing benchmarks provide consistent mechanisms for
evaluating machine learning performance, however they do not support consistent tooling to access
and ingest data into machine learning workflows. This is a serious limitation in practice, especially as
novel training and evaluation strategies increasingly require transforming input data. We emphasize
direct, easy and programmatic access to datasets with community curation to build open tools for
data loading. We have curated detailed metadata about tasks, e.g., languages, licensing and other
aspects of dataset provenance. We provide harmonized views of datasets by task schema, enabling
easier integration into workflows, while also imposing minimal assumptions on NLP preprocessing
decisions like sentence splitting and tokenization. Existing benchmarks typically fix preprocessing
choices, creating challenges when comparing end-to-end workflows common in prompting.

3 The BIGBIO Framework

This research effort was initiated as part of BigScience, a year-long workshop on the creation of
very large language models, comprised of over 1000 researchers from 60 countries and dozens
of working groups. The BigScience biomedical working group consisted of machine learning
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Figure 1: BIGBIO’s data-centric workflow. Datasets are hosted by their original owners to preserve
data governance. Community curation focuses on shared code for reproducibly loading, preprocessing,
and harmonizing data. These standardized datasets can then be integrated into workflows that further
transform and curate meta-datasets for downstream use cases, e.g., training large language models.

researchers and other stakeholders interested in the curation of biomedical data for language modeling.
BIGBIO reflects the lessons and best practices we learned while developing a framework for more
easily and reproducibly generating biomedical NLP meta-datasets.

Fig.1 outlines BIGBIO’s data-centric workflow, which emphasises reproducible preprocessing, meta-
data access, and quality assurance checks via community dataset curation. Dataset creators contribute
data loaders that define the terms by which the community accesses the data. Datasets themselves
remain hosted by their original owners, preserving existing data governance. BIGBIO supports
loading public datasets hosted online and private datasets that can only be loaded locally in secure
environments. We outline the community curation process in detail below and discuss downstream
meta-dataset generation techniques that benefit from data-centric practices.

3.1 Community Dataset Curation

Building the Dataset Catalog Our initial efforts in the BigScience working group produced a
catalog of important biomedical datasets, key metadata, and other provenance [14]. Selection criteria
followed several principles: (1) relevance to biomedical research, (2) diversity of domains, tasks, and
languages; and (3) researcher accessibility. We used this catalog as the starting point for BIGBIO.

Task Schema Harmonization In biomedical NLP there are a proliferation of data formats (e.g.,
BioC, BRAT) but inconsistent adherence across those formats. Developing common data models
for interoperability [7], while beneficial for cross-dataset integration, risks possible information loss
when translating or harmonizing information across schemata. To develop shared infrastructure
for data ingestion and minimize information loss, we designed data loaders to support 2 dataset
views: (1) a source schema that preserves the original dataset format as faithfully as possible; and (2)
task-specific, harmonized BIGBIO schema. We developed 6 lightweight schema (see §C) supporting
common NLP tasks including knowledge base construction (KB), question answering (QA), textual
entailment (ENTAIL), text to text (T2T), textual pairs (PAIRS), and text classification (TEXT).

Unit Tests and Dataset Cleaning To safeguard correctness of data loader implementations, we
developed a testing suite of unit-tests for monitored quality issues. BIGBIO schemata are designed
to support key dataset integrity checks, such as enforcing unique IDs across elements, relational
consistency, confirming text offsets are correctly aligned within document text, etc. The unit testing
suite is runnable as part of the dataset submission process, providing feedback on diagnosing
implementation or dataset errors. Where possible, we implemented tools for common data cleaning
tasks, such as normalizing PubMed IDs (PMIDs).

Acceptance Checklist Submissions require completing a checklist of inclusion criteria before
acceptance into the project GitHub repository. The complete checklist is provided in §F and covers
metadata annotation, correctness of task choices by dataset, materialization of all data subsets defined
by the original dataset creators, and passing all unit tests. All public datasets were manually reviewed
and accepted by a BIGBIO admin. Local datasets that required manual downloading were checked if

4



an admin had appropriate authorization (e.g., several authors have PhysioNet credentials). In absence
of dataset access, data loaders were accepted contingent on providing successful unit test logs.

Iterative Improvement Most biomedical datasets involve complex labeling tasks, so even in cases
when datasets pass unit tests they may contain subtle bugs or misunderstandings that require revisiting.
To identify and improve our data loader implementations, we implemented several representative
use cases outlined in §5. Implementing these machine learning workflows enabled identifying
non-obvious dataset errors or limitations in our current schema. For example, some datasets do
not provide natural language class labels, such as labeling a relation with an internal code (CPR:6)
instead of language describing the underlying biological relationship (ANTAGONIST), which creates
challenges when writing prompts.

3.2 Meta-Dataset Generation

Data-centric methods for generating meta-datasets require adding various complex operations into
machine learning workflows. Data cleaning methods [51] handle de-duplicating data, identifying
label errors [29], and filtering toxic or biased content [28]. Unlabeled data can be weakly labeled
to define new training tasks [38, 15] and existing labeled datasets can be remixed into new forms
using prompting. Data valuation measures can be used to filter existing datasets or guide sampling
of new data [18]. Implementing these workflows to support reproducible machine learning benefits
from modular software components that connect to a standardized API for accessing raw data. For
example, developing the “P3: Public Pool of Prompts" dataset, which was used to fine-tune the T0
language models, was accelerated by a standardized dataset API that enabled scaling to 170+ datasets
and 2,000+ prompts.

However, replicating the creation of P3 using biomedical data faced several challenges. We found that
only 13% of the BIGBIO catalog was available via existing dataset APIs. The lack of programmatic
access to biomedical datasets was a prime motivation for developing BIGBIO. To demonstrate the
utility of our library for meta-dataset generation, we integrated BIGBIO with several downstream
data-centric frameworks. First, we integrated with PromptSource [3], a development environment for
prompts, to enable creating prompted representations of BIGBIO datasets. For evaluating language
models and prompts, we interface with the EleutherAI Language Model Evaluation Harness [17]. This
harness handles the loading, querying, and scoring of language models, with programmatic definitions
of how evaluations are carried out. Here BIGBIO’s unified task schemata enable standardized
evaluation schemes to be automatically applied to a wide collection of datasets.

3.3 Biomedical Hackathon

After internally testing the elements outlined in §3.1, we drafted instructional material and code
tutorials for external collaborators. We then launched an international call for participation in a
biomedical hackathon to implement all 174 datasets in the BIGBIO catalog. Participants were
recruited through Twitter. We established formal participation guidelines and corresponding credit,
including co-authorship on this manuscript, given implementation of 3 or more data loaders. The
hackathon officially ran for 2 weeks with an unofficial 2 week wrap-up period. During the official
period, we held daily office hours to help participants, running a Discord server to facilitate rapid
communication and up-to-date FAQ. At the hackathon’s conclusion, 48 participants had implemented
126 total datasets with an additional 18 dataset still undergoing quality control.

4 The BIGBIO Dataset

Table 1: Summary statistics for BIGBIO. Note datasets may contain multiple schema.
KB TEXT PAIRS QA ENTAIL T2T ALL

Datasets 84 21 12 9 4 7 126
Public Datasets 73 12 12 8 1 6 105
Private Datasets 11 9 0 1 3 1 21

PubMed Datasets 64 7 3 5 0 1 77
Languages 7 4 1 1 1 4 10

Tasks 5 1 2 1 1 3 13
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Figure 2: Treemap visualization of BIGBIO’s 126 datasets and 13 task categories, denoted by color.

We provide a bigbio Python package that supports streamlined loading of 126 biomedical datasets
covering 13 tasks grouped into 6 schema types for a total of 24 million examples comprising 18
trillion characters. To the best of our knowledge, BIGBIO is the largest single collection of curated
and unit tested biomedical NLP datasets. Figure 2 visualizes the datasets and tasks in BIGBIO and
Table 1 provides dataset counts by schema and key attributes. Publicly available datasets (105/126)
can be automatically downloaded. The remaining 21 datasets require further access approvals, but
can be loaded locally after securely downloading files. This restriction is common in clinical datasets,
which require credentialing and training on how to handle protected health information.

Metadata Summary Overall 10 languages are represented, with English being the majority (83%)
followed by Spanish (6.5%), French (2.9%), Chinese (2.2%), and German (1.4%). Japanese, Dutch,
Portuguese, Swedish, and Vietnamese are each present in one dataset. Creative Commons licenses
are used more frequently than any other type covering 44 (35%) of datasets with 8 (6.3%) using the
non commercial use (NC) option. In 34 (27%) of datasets, the license is unknown, corresponding to
cases where dataset authors did not choose or clearly denote a license. The remaining licenses are a
mixture of open source and custom data use agreements. See Appendix §D for a complete summary.

5 Use Cases

We describe two downstream use cases of BIGBIO to showcase the utility of the library. In the
first, we evaluate zero-shot performance of prompted language models on 10 biomedical tasks. In
the second, we train a large-scale biomedical multi-task learning (MTL) model using 107 tasks.
Both cases were run using an 8x A40 and 4x RTX 3090 compute node. BLOOM and OPT models
were evaluated on a 4xA100 80GB node using LLM.int8()[11]. Expanded results, experimental
details, and additional use cases are described in Appendices §J zero-shot evaluation, §K MTL, §H
de-duplication, and §I data visualization.

5.1 Zero-Shot Evaluation of Prompted Language Models

Datasets and Prompt Engineering We selected 10 representative datasets from BIGBIO:
BIOSSES (semantic textual similarity), BioASQ (yes/no question answering), GAD (relation ex-
traction), SciTail (textual entailment), MedNLI (clinical textual entailment), and 5 NER tasks (BC5-
Chemical, BC5-Disease, BC2GM, JNLPBA, NCBI Disease) from the BLURB benchmark. For each
dataset, we wrote 5 prompts using PromptSource to reflect the original classification task, using task
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Figure 3: Zero-shot generalization to biomedical tasks. Box plots show pooled accuracy differences
between a majority class baseline and zero-shot prediction for BioASQ, SciTail, MedNLI, and GAD.
Points are per-prompt scores. T0 is the only family to consistently outperform the majority baseline.

templates already available in PromptSource when possible. NER tasks were formulated as text
translation tasks, similar to TANL [31], where the output is a list of all entities found in the prompted
text. We did not perform any iterative prompt tuning to improve performance of templates.

Models and Baselines We evaluated 14 pretrained language models, ranging from 220 million to
176B billion parameters: SciFive-base/large [35], GPT Neo-1.3B [6], GPT-2 [36], GPT-J-6B [47], the
T0 family [42], the base T5 model used to train T0 [37], GPT-NeoX-20B [5], OPT-66B [58], GPT-3
(text-davinci-002) [30], and BLOOM [52]. We focus on autoregressive and sequence-to-sequence
language models due to their strong performance in text generation tasks. We included models that
were exposed to PubMed text during pretraining (SciFive, GPT Neo-1.3B, GPT-J-6B) and models that
were only pretrained on web crawled text (T5, T0 family, GPT-2, OPT, BLOOM). For classification
tasks, we report a majority class baseline, defined as a rule-based classifier that always predicts
the majority class. Where possible, to contextualize scores, we also report fine-tuned state-the-art
(fine-tuned SOTA) performance as reported in the literature [44, 54, 35]. We did not evaluate OPT or
BLOOM on NER tasks due to their high compute costs, e.g., 35 hours per dataset and model.

Evaluation Protocol Models were evaluated using a BigScience prompted evaluation library.
All evaluations used the canonical test split where possible, otherwise we used BLURB’s test set
definitions. Performance for BIOSSES is reported using Pearson’s correlation after casting outputs to
numbers. For NER tasks, since calculating entity-level F1 would require defining a heuristic string
alignment between source text and output list, we report ROUGE-1[27], which measures matching
unigrams between the predicted and true entity lists. All other tasks use accuracy.

Results Fig. 3 shows that T5 and GPT model families often fail to generalize to biomedical text,
regardless of parameter count or exposure to biomedical text during pretraining. However, the T0
family demonstrated somewhat surprising generalization capabilities, as these models were not
exposed to any biomedical tasks during pretraining or prompted fine-tuning. Tables 2 and 3 includes
performance statistics for all language models and datasets. For classification tasks, we replicate the
finding in Sanh, et al. (2021) that models using more prompted pretraining tasks demonstrate better
generalization, finding that T0++ performed best overall. Non-T0 models frequently performed worse
than a simple majority class baseline and in many cases predicted completions were pathological,
i.e., emitting the same answer for all prompts. For NER tasks, we find that GPT-3 performs best
overall, however T0 consistently outperforms non-T0 language models of similar parameter counts.
On BioASQ and SciTail using T0++, the best prompts performed very well, falling 0.5 and 8.2 points
short of state of the state-of-the-art supervised models. The remaining datasets posed significant
challenges for all models, although further manual prompt tuning or applying methods for automated
prompt learning [12] could result in better performance.

Since both the T0 family and the latest version of GPT-3 were trained using instruction tuning,
comparing these models’ generalization to biomedical text opens up questions around the role prompt
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Table 2: Zero-shot classification performance of prompted language models
BIOSSES BioASQ SciTail MedNLI GAD
(Pearson) (Accuracy) (Accuracy) (Accuracy) (Accuracy)

Model Params Avg Best Avg Best Avg Best Avg Best Avg Best

SciFive-Base† 220M 17.9 52.2 35.9 41.4 60.1 60.4 63.7 66.8 51.9 53.7
SciFive-Large† 770M 15.3 44.7 30.7 32.9 59.8 60.4 61.6 66.7 47.4 47.4

GPT-Neo-1.3B† 1.3B 36.4 36.4 43.9 67.1 50.7 60.4 43.0 64.0 47.9 51.3
GPT-2 1.5B 10.9 19.5 38.4 60.0 50.4 60.4 54.1 66.0 47.4 47.6

GPT-J-6B† 6B 0.2 32.1 40.6 67.1 51.6 60.3 46.3 62.8 48.2 52.1

T0_3B 3B 0.9 0.9 63.9 72.9 69.9 84.5 64.6 76.2 47.7 48.7
T5 v1.1-xxl 11B -6.1 30.5 64.9 67.9 54.1 60.7 52.4 65.5 52.1 52.6

T0 11B 27.2 32.0 86.4 89.3 72.3 88.6 68.8 78.4 55.1 56.6
T0+ 11B 35.2 40.7 84.3 90.7 71.0 87.9 68.9 79.7 52.4 53.9

T0++ 11B 26.9 26.9 94.1 94.3 71.6 87.0 74.2 81.4 53.5 55.4

GPT-NeoX-20B† 20B -14.8 -6.5 41.3 67.1 50.5 59.8 48.6 62.4 47.9 51.3
OPT-66B 66B - - 43.0 67.9 44.7 52.3 38.1 48.6 48.3 52.4

GPT-3 175B 47.3 64.5 73.0 92.1 52.0 61.4 * * 48.4 50.9
BLOOM 176B 0.5 17.7 40.9 67.1 52.4 59.6 64.0 66.9 48.8 51.9

Majority Class - 67.1 60.4 66.7 52.6
Fine-tuned SOTA 94.5 94.8 96.8 86.6 84.9
† pretraining included PubMed/PubMed Central documents. * DUA prevents API usage.

Table 3: Zero-shot NER performance of prompted language models
BC5-Disease BC5-Chemical NCBI Disease BC2GM JNLPBA

(ROUGE-1 F1)

Model Params Avg Best Avg Best Avg Best Avg Best Avg Best

SciFive-Base† 220M 2.6 7.1 1.9 4.6 2.1 4.8 4.1 9.6 7.9 16.1
SciFive-Large† 770M 5.4 8.7 5.1 7.5 7.0 9.7 9.4 13.1 14.7 21.0

GPT-Neo-1.3B† 1.3B 5.6 7.2 4.0 6.1 6.0 8.6 6.5 7.7 11.4 16.9
GPT-2 1.5B 5.2 7.7 4.4 6.6 5.7 7.5 8.3 10.3 12.7 17.4

GPT-J-6B† 6B 4.9 7.3 3.4 5.0 5.0 9.1 7.1 10.5 10.9 17.4

T0_3B 3B 38.6 41.2 23.1 26.5 28.5 34.0 22.0 23.4 16.7 23.7
T5 v1.1-xxl 11B 3.3 3.7 3.1 3.8 4.3 5.6 5.0 5.9 7.2 10.0

T0 11B 46.5 58.8 30.8 43.9 38.6 56.0 24.0 29.5 16.2 23.5
T0+ 11B 44.4 54.0 29.4 40.7 36.3 50.1 25.0 27.1 11.1 25.2

T0++ 11B 43.1 49.1 28.6 35.2 36.2 47.7 25.1 25.7 13.3 19.7

GPT-NeoX-20B† 20B 5.7 10.3 3.5 5.5 5.5 8.9 7.0 9.9 8.9 13.0
GPT-3 175B 40.5 63.3 36.9 60.8 40.4 66.7 39.1 64.5 37.7 48.6

templates play in enabling transfer learning across domains. Our biomedical prompts are largely
based on general domain templates used to tune T0, so these prompts are more “in-distribution"
than completely novel prompts, even when populated with biomedical text. This likely gives an
advantage to T0 when evaluating performance. GPT-3 instruction tuning likely takes a different form,
potentially explaining why performance was generally lower for non-NER tasks when using GPT-3.

5.2 Large-Scale Multi-Task Learning

Recent work on multi-task learning has found that incorporating an additional pre-finetuning step (i.e,
after pretraining but before finetuning) can lead to better learned representations and performance
improvements that scale linearly with the number of MTL tasks [1]. However, pre-finetuning
requires using a large number (15+) of heterogeneous tasks, a scale of MTL that is underexplored in
biomedical NLP. We investigate the impact of massive MTL on biomedical pre-finetuning using 67
BIGBIO datasets to materialize 107 training tasks.
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Data Materialization We train and evaluate a multi-task learning model using the MaChAmp
MTL framework [45]. We generated training and evaluation splits using 106 datasets that were
available in the BIGBIO repository when we started the MTL experiment. From these 106 datasets,
we filtered out datasets that: were non-English; had known implementation bugs; included silver-
standard annotations; or were document-level or multilabel classification datasets. For the 67
remaining datasets, we extracted data for 8 task types: Named Entity Recognition, Text Classification,
Question Answering, Coreference Resolution, Event Detection, Event Argument Extraction, Relation
Extraction and Semantic Textual Similarity, yielding 107 tasks (dataset/task type combinations).

Training Protocol We train a single encoder-only transformer model with a separate classification
head for each of the 107 tasks. We initialize the encoder with BioLinkBERT-base [54]. We follow
the strategy Aghajanyan et al. (2021) outlined in MUPPET and use task-heterogeneous batching. At
each training step, we sample 32 different tasks and select 16 examples for each of them leading to a
total batch size of 512. We train the model to convergence, which takes less than 50 epochs and then
select the best performing checkpoint based on validation performance.

Evaluation Protocol We evaluate our model on a subset of dataset from the BLURB benchmark.
We select all four datasets that are contained in our MTL training data and have the same splits in the
MTL data as in BLURB. For all datasets, we use the version in the MaChAmp format, which differ in
tokenization, sentence splitting and label space from the official BLURB versions. After prediction,
we postprocess the results to match the BLURB label space. While this introduces confounders that
makes direct comparison complicated, e.g., different choices in sentence splitting and tokenization,
we include prior state-of-the-art results for the same model size [54] as a point of orientation. We
additionally compare with a version of our MTL model that we fine-tune on the training data of the
evaluation dataset using the MaChAmp default hyperparameters.

Results MTL results are reported in Table 4. MTL+Finetuning results are reported as the mean
and standard deviation of 3 different random seeds. For contextualizing scores, we also include
state-of-the-art LinkBERT-base results. The MTL model performs markedly worse than the state-of-
the-art LinkBERT model, with differences between 1.5 and 11.2 percentage points (pp) F1. However,
additional fine-tuning only on the evaluation dataset narrows the gap between LinkBERT and the
MTL model significantly with a maximum difference of 3.2 pp F1. This confirms the results of
[1] that models trained using large-scale MTL setting are a suitable basis for further fine-tuning.
However, the failure of the fine-tuned model to perform better than state-of-the-art indicates that more
research on the conditions in which large-scale MTL pre-finetuning may improves results is required.

Table 4: F1 scores of the MTL model evaluation
Dataset Task MTL MTL+Finetuning LinkBERT-base

NCBI-Disease NER 80.2 87.5 ± 0.9 *88.2
BC5CDR-Disease NER 78.5 84.8 ± 0.3 *86.1
BC5CDR-Chemical NER 92.2 94.4 ± 0.3 *93.8
ChemProt RE 66.4 74.3 ± 0.1 *77.6
* indicates that comparing results is complicated by different preprocessing choices across benchmarks.

We suspect several possible explanations for our lower performance. First, more exploration of task
head configurations could lead to better performance. MUPPET found that some tasks benefited
from using a separate classification head while others resulted in severe overfitting. We did not
systematically explore different task head configurations due to computational cost. Second, our
biomedical task mixture is different than MUPPET, which focused on general reasoning tasks (e.g.,
summarization, reading comprehension). Biomedical datasets, in contrast, are skewed towards
information extraction-style tasks [14]. We hypothesize the paucity of similar reasoning-type datasets
in biomedical NLP may impact the overall benefit of using MTL with task head approaches.

Finally, we took the common approach of creating a unified input format by adding non-linguistic
markers to differentiate structural elements required by a task, e.g., denoting relation entities with
prefix/suffix tokens. While this unifies all inputs for training, it is unclear how well this strategy facili-
tates transfer learning across tasks. Some evidence is suggested by In-BoXBART [32], which looked
at MTL using 32 biomedical tasks reformulated as unified, text-to-text tasks using prompts. Their
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task mixture is similar to ours and their text outputs contain similar structural markers. Their vanilla
MTL method only trains on input/outputs without any additional prompt context and substantially
underperforms in corresponding single-task models, similar to our results. However, when including
prompt information, they observe consistent performance benefits over single-task models.

6 Discussion

The focus of BIGBIO on providing a unified view over a large number of diverse NLP datasets
has a number of benefits. First, it could increase the robustness of data-centric machine learning
because it allows end-to-end data generation workflows that trace data provenance and codify
assumptions on data transformations, such as checking for duplicates. Second, the unified view
allows to programatically assure quality of both the source data and the transformed datasets, as
exemplified by our suite of unit tests. Finally, it drastically reduces the amount of work required
for training or evaluating models on a large number of tasks, as can be seen in the MTL usecase,
where we had to write only 8 data transformation scripts (one for each task type) as opposed to up
to 67 (one for each dataset). Crucially, BIGBIO achieves this without making strong assumptions
about the downstream use case or type of model, e.g. by unifying tasks directly into a conditional
text generation/prompting setting.

We believe that our work provides useful suggestions on how to write data loaders for a large
number of datasets in a collaborative setting. We found a uniform view of the datasets useful for
quality assurance during implementation, because it allowed having a standard suite of unit tests.
Furthermore, the categorization of datasets into schemas allowed code reviewers to specialize in a
subset of schemas, which likely improved the quality of code reviews. Finally, we found developing
our use cases immensely helpful, because this informed design decisions for the library and helped
identify bugs in accepted data loaders.

Our work has several limitations. First, some data loaders likely contain implementation errors that
were missed by our code review and unit tests. Second, our choice of schema makes assumptions on
what structures are most useful for biomedical NLP research and thus will not represent all interesting
tasks. Third, BIGBIO reflects biases that are present in the included data sets, for instance a very
strong focus on English text as only 23 of the 126 currently implemented datasets are in a language
other than English. Finally, our use case experiments could be expanded upon, e.g., including masked
language models in our zero-shot analyses or conducting additional MTL experiments. We believe
that these limitations will be mitigated over time as researchers continue to use and improve BIGBIO.

7 Conclusion and Future Work

We introduce BIGBIO a community library of 126+ biomedical NLP datasets currently covering 12
task categories and 10+ languages. BIGBIO enables reproducible, data-centric machine learning
workflows by focusing on programmatic access to datasets and their metadata in a uniform format.
We discussed our process for task schema harmonization, data auditing, contribution guidelines and
describe two illustrative use cases of BIGBIO: zero-shot evaluation of large language models for
biomedical prompting and large-scale MTL. We believe BIGBIO poses little-to-no negative societal
impacts, as all datasets we support are public or governed by HIPAA protections as appropriate. A
chief motivation of this work is the belief that codifying dataset curation choices in code, tracking
provenance of meta-dataset curation, and other decisions around transparent training set generation
are critical to the ethical application of machine learning. In the worst case, BIGBIO might amplify
negative impacts already inherent to included datasets as it facilitates dataset access. For future
work, we plan to curate a library of prompted representations of BIGBIO tasks, including prompts
formulated like those used to train T0, as well as longer instruction sets for novel biomedical tasks.
Constructing such a library requires a framework for reproducible data ingestion which is provided
by BIGBIO.
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[43] Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
Brat: a web-based tool for nlp-assisted text annotation. In Proceedings of the Demonstrations at the 13th
Conference of the European Chapter of the Association for Computational Linguistics, pages 102–107,
2012.

13



[44] Robert Tinn, Hao Cheng, Yu Gu, Naoto Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng Gao, and
Hoifung Poon. Fine-tuning large neural language models for biomedical natural language processing.
arXiv preprint arXiv:2112.07869, 2021.

[45] Rob van der Goot, Ahmet Üstün, Alan Ramponi, Ibrahim Sharaf, and Barbara Plank. Massive choice,
ample tasks (MaChAmp): A toolkit for multi-task learning in NLP. In Proceedings of the 16th Conference
of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages
176–197, Online, April 2021. Association for Computational Linguistics.

[46] Effy Vayena and Alessandro Blasimme. Biomedical big data: New models of control over access, use and
governance. Journal of Bioethical Inquiry, 14(4):501–513, 2017.

[47] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.
https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

[48] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana
Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al. Benchmarking
generalization via in-context instructions on 1,600+ language tasks. arXiv preprint arXiv:2204.07705,
2022.

[49] Leon Weber, Mario Sänger, Jannes Münchmeyer, Maryam Habibi, Ulf Leser, and Alan Akbik. Hunflair:
an easy-to-use tool for state-of-the-art biomedical named entity recognition. Bioinformatics, 37(17):2792–
2794, 2021.

[50] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International Conference on
Learning Representations, 2022.

[51] Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. Data collection and quality challenges
in deep learning: A data-centric ai perspective. arXiv preprint arXiv:2112.06409, 2021.

[52] BigScience Workshop. bloom (revision 4ab0472), 2022.

[53] Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, and Zhilin Yang. Zero-
prompt: Scaling prompt-based pretraining to 1,000 tasks improves zero-shot generalization. arXiv preprint
arXiv:2201.06910, 2022.

[54] Michihiro Yasunaga, Jure Leskovec, and Percy Liang. Linkbert: Pretraining language models with
document links. arXiv preprint arXiv:2203.15827, 2022.

[55] Wonjin Yoon, Jaehyo Yoo, Sumin Seo, Mujeen Sung, Minbyul Jeong, Gangwoo Kim, and Jaewoo Kang.
Ku-dmis at bioasq 9: Data-centric and model-centric approaches for biomedical question answering. In
CEUR Workshop Proceedings, volume 2936, pages 351–359. CEUR-WS, 2021.

[56] Haoran Zhang, Amy X Lu, Mohamed Abdalla, Matthew McDermott, and Marzyeh Ghassemi. Hurtful
words: quantifying biases in clinical contextual word embeddings. In proceedings of the ACM Conference
on Health, Inference, and Learning, pages 110–120, 2020.

[57] Ningyu Zhang, Mosha Chen, Zhen Bi, Xiaozhuan Liang, Lei Li, Xin Shang, Kangping Yin, Chuanqi Tan,
Jian Xu, Fei Huang, Luo Si, Yuan Ni, Guotong Xie, Zhifang Sui, Baobao Chang, Hui Zong, Zheng Yuan,
Linfeng Li, Jun Yan, Hongying Zan, Kunli Zhang, Buzhou Tang, and Qingcai Chen. CBLUE: A Chinese
biomedical language understanding evaluation benchmark. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7888–7915, Dublin,
Ireland, May 2022. Association for Computational Linguistics.

[58] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See §3-6

(b) Did you describe the limitations of your work? [Yes] See §6

14

https://github.com/kingoflolz/mesh-transformer-jax


(c) Did you discuss any potential negative societal impacts of your work? [Yes] See §6
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] The paper is
largely empirical and does not claim new theoretical results

(b) Did you include complete proofs of all theoretical results? [N/A] The paper is largely
empirical and does not claim new theoretical results

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Abstract
and Appendix §K, §J

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix §K, §J

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See §5. Full details on replicates are in Appendix §K, §J.
We refrained from running the MTL experiments over multiple random seeds to save
compute budget.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See §5 and the Appendix §K, §J.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In addition to the

assets cited in this paper, BIGBIO builds on all included datasets. Full metadata,
including citations and licensing, for each dataset are available in the data loading
scripts that are part of the bigbio Python package

(b) Did you mention the license of the assets? [Yes] See §4 and previous answer
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See Abstract and Appendix
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See §3
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See §3.1 and §6
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] See §3.3

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] The paper did not involve research with
human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No] Crowdsourcing was arranged through non-
monetary voluntary participation(Hackathon). While the participants were not compen-
sated financially, we informed participants that their contribution would be acknowl-
edged through authorship in the resulting publication, based on the number of datasets
they have contributed. See Appendix §B for detailed authors contributions.

15


	Introduction
	Related Work
	Data-Centric Machine Learning
	Biomedical Benchmarks

	The BigBio Framework
	Community Dataset Curation
	Meta-Dataset Generation
	Biomedical Hackathon

	The BigBio Dataset
	Use Cases
	Zero-Shot Evaluation of Prompted Language Models
	Large-Scale Multi-Task Learning

	Discussion
	Conclusion and Future Work
	Appendix Overview
	Author Contributions
	Task Schema and Harmonization
	Schema Definitions
	Harmonization

	Dataset Metadata
	Unit Tests
	Global Tests
	Task-specific Tests: Knowledge Base
	Task-specific Tests: Question Answering

	Dataset Submission Checklist
	BigScience Biomedical Hackathon
	Frequently Asked Questions (FAQ)

	Assessing Dataset Overlap for De-Duplication
	Data Visualization and Exploration
	Zero-shot Language Model Evaluation
	Expanded Results
	Evaluation
	Code
	Prompt Templates
	BIOSSES
	BioASQ
	SciTail
	MedNLI
	GAD


	Large-scale Multi-Task Learning
	Conversion to MaChAmp
	Hyperparameters
	Results on Validation Sets
	Resources Used for Training

	BigBio vs. Existing Benchmarks
	Example Data Card
	BigBio Data Card

