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Abstract

Adversarial examples pose a significant challenge to the robustness, reliability and1

alignment of deep neural networks. We propose a novel, easy-to-use approach to2

achieving high-quality representations that lead to adversarial robustness through3

the use of multi-resolution input representations and dynamic self-ensembling of4

intermediate layer predictions. We demonstrate that intermediate layer predictions5

exhibit inherent robustness to adversarial attacks crafted to fool the full classifier,6

and propose a robust aggregation mechanism based on Vickrey auction that we7

call CrossMax to dynamically ensemble them. By combining multi-resolution8

inputs and robust ensembling, we achieve significant adversarial robustness on9

CIFAR-10 and CIFAR-100 datasets without any adversarial training or extra data,10

reaching an adversarial accuracy of ≈72% (CIFAR-10) and ≈48% (CIFAR-100)11

on the RobustBench AutoAttack suite (L∞ = 8/255) with a finetuned ImageNet-12

pretrained ResNet152. This represents a result comparable with the top three13

models on CIFAR-10 and a +5 % gain compared to the best current dedicated14

approach on CIFAR-100. Adding simple adversarial training on top, we get15

≈78% on CIFAR-10 and ≈51% on CIFAR-100, improving SOTA by 5 % and16

9 % respectively and seeing greater gains on the harder dataset. We validate our17

approach through extensive experiments and provide insights into the interplay18

between adversarial robustness, and the hierarchical nature of deep representations.19

We show that simple gradient-based attacks against our model lead to human-20

interpretable images of the target classes as well as interpretable image changes.21

As a byproduct, using our multi-resolution prior, we turn pre-trained classifiers and22

CLIP models into controllable image generators and develop successful transferable23

attacks on large vision language models.24

1 Introduction25

Adversarial examples in the domain of image classification are small, typically human-imperceptible26

perturbations P to an image X that nonetheless cause a classifier, f : X → y, to misclassify the27

perturbed image X + P as a target class t chosen by the attacker, rather than its correct, ground truth28

class. This is despite the perturbed image X + P still looking clearly like the ground truth class to a29

human, highlighting a striking and consistent difference between machine and human vision (first30

described by Szegedy et al. [2013]). Adversarial vulnerability is ubiquitous in image classification,31

from small models and datasets [Szegedy et al., 2013] to modern large models such CLIP [Radford32

et al., 2021], and successful attacks transfer between models and architectures to a surprising degree33

[Goodfellow et al., 2015] without comparable transfer to humans.34
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Figure 1: We use a multi-resolution decomposition (a) of an input image and a partial decorrelation of
predictions of intermediate layers (b) to build a classifier (c) that has, by default, adversarial robustness
comparable or exceeding state-of-the-art (f), even without any adversarial training. Optimizing inputs
against it leads to interpretable changes (d) and images generated from scratch (e).
We hypothesize that the existence of adversarial attacks is due to the significant yet subtle mismatch35

between what humans do when they classify objects and how they learn such a classification in36

the first place (the implicit classification function in their brains), and what is conveyed to a neural37

network classifier explicitly during training by associating fixed pixel arrays with discrete labels (the38

learned machine classification function).39

In this paper, we take a step towards aligning the implicit human and explicit machine classification40

functions, and consequently observe very significant gains in adversarial robustness against standard41

attacks as a result of a few, simple, well-motivated changes, and without any explicit adversarial42

training. While, historically, the bulk of improvement on robustness metrics came from adversarial43

training [Chakraborty et al., 2018], comparably little attention has been dedicated to improving the44

model backbone, and even less to rethinking the training paradigm itself. Our method can also45

be easily combined with adversarial training, further increasing the model’s robustness cheaply.46

Beyond benchmark measures of robustness, we show that if we optimize an image against our models47

directly, the resulting changes are human interpretable, suggesting at least much-harder-to-find48

instances of noise-like superstimuli that we usually find by attacking a model. This suggests an49

overall higher-quality, natural representations being learned by the model.50

We operate under what what we call the Interpretability-Robustness Hypothesis: A model whose51

adversarial attacks typically look human-interpretable will also be adversarially robust. The aim52

of this paper is to support this hypothesis and to construct first versions of such robust classifiers,53

without necessarily reaching their peak performance via extensive hyperparameter tuning.54

Firstly, inspired by biology, we design an active adversarial defense by constructing and training a55

classifier whose input, a standard H ×W × 3 image, is stochastically turned into a H ×W × (3N)56

channel-wise stack of multiple downsampled and noisy versions of the same image. The classifier57

itself learns to make a decision about theseN versions at once, mimicking the effect of microsaccades58

in the human (and mammal) vision systems. Secondly, we show experimentally that hidden layer59

features of a neural classifier show significant decorrelation between their representations under60

adversarial attacks – an attack fooling a network to see a dog as a car does not fool the intermediate61

representations, which still see a dog. We aggregate intermediate layer predictions into a self-62

ensemble dynamically, using a novel ensembling technique that we call a CrossMax ensemble.63

Thirdly, we show that our Vickrey-auction-inspired CrossMax ensembling yields significant gains64

in adversarial robustness when ensembling predictors as varied as 1) independent brittle models, 2)65

predictions of intermediate layers of the same model, 3) predictions from several checkpoints of66

the same model, and 4) predictions from several self-ensemble models. We use the last option to67

gain ≈ 5% in adversarial accuracy at the L∞ = 8/255 RobustBench’s AutoAttack on top of the best68

models on CIFAR-100. When we add light adversarial training on top, we outperform current best69

models by ≈ 5% on CIFAR-10, and by ≈ 9% on CIFAR-100, showing a promising trend where the70

harder the dataset, the more useful our approach compared to brute force adversarial training (see71

Figure 4).72
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2 Key Observations and Techniques73

In this section we will describe the three key methods that we use in this paper. In Section 2.174

we introduce the idea of multi-resolution inputs, in Section 2.2 we introduce our robust CrossMax75

ensembling method, and in Section 2.3 we showcase the de-correlation between adversarially induced76

mistakes at different layers of the network and how to use it as an active defense.
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Figure 2: Combining channel-wise stacked augmented and down-sampled versions of the input image
with robust intermediate layer class predictions via CrossMax self-ensemble. The resulting model
gains a considerable adversarial robustness without any adversarial training or extra data.

77

2.1 The multi-resolution prior78

Drawing inspiration from biology, we use multiple versions of the same image at once, down-sampled79

to lower resolutions and augmented with stochastic jitter and noise. We train a model to classify this80

channel-wise stack of images simultaneously. We show that this by default yields gains in adversarial81

robustness without any explicit adversarial training.82

We turn an input image X of full resolution R ×R and 3 channels (RGB) into its N variations of83

different resolutions r×r for r ∈ ρ. For CIFAR-10 and CIFAR-100, we are (arbitrarily) choosing res-84

olutions ρ = {32, 16, 8, 4} and concatenating the resulting image variations rescaleR (rescaler(X))85

channel-wise to a R×R× (3|ρ|) augmented image X̄ . This is shown in Figure 7. Similar approaches86

have historically been used to represent images, such as Gaussian pyramids introduced in [Burt and87

Adelson, 1983]. To each variant we add 1) random noise both when downsampled and at the full88

resolution R × R (in our experiments of strength 0.1 out of 1.0), 2) a random jitter in the x − y89

plane (±3 in our experiments), 3) a small, random change in contrast, and 4) a small, random90

color-grayscale shift. This can also be seen as an effective reduction of the input space dimension91

available to the attacker, as discussed in [Fort, 2023].92

2.2 CrossMax robust ensembling93

The standard way of ensembling predictions of multiple networks is to either take the mean of their94

logits, or the mean of their probabilities. This increases both the accuracy as well as predictive95

uncertainty estimates of the ensemble [Lakshminarayanan et al., 2017, Ovadia et al., 2019]. Such96

aggregation methods are, however, susceptible to being swayed by an outlier prediction by a single97

member of the ensemble or its small subset. This produces a single point of failure. The pitfalls of98

uncertainty estimation and ensembling have been highlighted in [Ashukha et al., 2021], while the99

effect of ensembling on the learned classification function was studied by Fort et al. [2022].100

We draw our intuition from Vickrey auctions [Wilson, 1977] which are designed to incentivize truthful101

bidding. Viewing members of ensembles as individual bidders, we can limit the effect of wrong,102

yet overconfident predictions by using the 2nd highest, or generally kth highest prediction per class.103

This also produces a cat-and-mouse-like setup for the attacker, since which classifier produces the104

kth highest prediction for a particular class changes dynamically as the attacker tries to increase that105

prediction. A similar mechanism is used in balanced allocation [Azar et al., 1999] and specifically106

in the k random choices algorithm for load balancing [Mitzenmacher et al., 2001]. Our CrossMax107

aggregation is shown in Algorithm 1.108
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2.3 Only partial overlap between the adversarial susceptibility of intermediate layers109
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Figure 3: The impact of adversarial attacks (L∞ = 8/255, 128 attacks) against the full classifier on
the accuracy and probabilities at all intermediate layers for an ImageNet-1k pretrained ResNet152
finetuned on CIFAR-10 via trained linear probes.

A key question of both scientific and immediately practical interest is whether an adversarially110

modified image X ′ that looks like the target class t to a classifier f : X → y also has intermediate111

layer representations that look like that target class. In [Olah et al., 2017], it is shown via feature112

visualization that neural networks build up their understanding of an image hierarchically starting113

from edges, moving to textures, simple patterns, all the way to parts of objects and full objects114

themselves. This is further explored by Carter et al. [2019]. Does an image of a car that has been115

adversarially modified to look like a tortoise to the final layer classifier carry the intermediate features116

of the target class tortoise (e.g. the patterns on the shell, the legs, a tortoise head), of the original117

class car (e.g. wheels, doors), or something else entirely? We answer this question empirically.118

In Figure 3 we showcase this effect using an ImageNet-pretrained ResNet152 [He et al., 2015]119

finetuned on CIFAR-10. Images attacked to look like some other class than their ground truth (to120

the final layer classification) do not look like that to intermediate layers, as shown by the target class121

probability only rising in the very last layers (see Figure 3). We can therefore confirm that indeed the122

activations of attacked images do not look like the target class in the intermediate layers, which offers123

two immediate use cases: 1) as a warning flag that the image has been tempered with and 2) as an124

active defense, which is strictly harder.125

3 Training and Experimental Results126

In this section we present in detail how we combine the previously described methods and techniques127

into a robust classifier on CIFAR-10 and CIFAR-100. We start both with a pretrained model and128

finetune it, as well as with a freshly initialized model. It turns out that finetuning a pre-existing model129

for robustness is technically easier and faster, therefore we predominantly focus on this approach.130

However, to demonstrate that the success of our technique does not simply come from massive131

pretraining, we also train a model from scratch. The concrete details of the model and training can be132

found in Appendix A.133

3.1 Adversarial vulnerability evaluation134

To make sure we are using as strong an attack suite as possible to measure our networks’ robustness135

and to be able to compare our results to other approaches, we use the RobustBench [Croce et al.,136

2020] library and its AutoAttack method, which runs a suite of four strong, consecutive adversarial137

attacks on a model in a sequence and estimates its adversarial accuracy (e.g. if the attacked images138

were fed back to the network, what would be the classification accuracy with respect to their ground139

truth classes). To evaluate our models using the hardest method possible, we ran the AutoAttack140

with the rand flag that is tailored against models using randomness. The results without adversarial141

training are shown in Table 1 and with adversarial training at Table 2. The visual representation of142

the results is presented in Figure 4.143
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3.2 Multi-resolution finetuning of a pretrained model144

Standard Multi-res
backbone

Multi-res
self-ensemble

Ensemble of multi-res
 self-ensembles

0

20

40

60

80
Ac

cu
ra

cy
 (%

)

0.0%

41.4%

46.9% 53.1%

68.0% 71.9%

78.1%
Clean test accuracy 90.2%

#1 SOTA 73.7%

Finetuned ResNet152 on CIFAR-10 under L = 8/255 attacks

Adversarial
training
Original
train set

(a) CIFAR-10

Standard Multi-res
backbone

Multi-res
self-ensemble

Ensemble of multi-res
 self-ensembles

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

0.0%

25.0%

37.5%
46.3%
47.9%

48.2%

51.3%

Clean test accuracy 67.7%

#1 SOTA 42.7%

Finetuned ResNet152 on CIFAR-100 under L = 8/255 attacks

Adversarial
training
Original
train set

(b) CIFAR-100

Figure 4: Adversarial robustness evaluation for finetuned ResNet152 models under L∞ = 8/255
attacks of RobustBench AutoAttack (rand version, which is stronger against our models). On
CIFAR-10, a CrossMax 3-ensemble of our self-ensemble multi-resolution models reaches #3 on the
leaderboard, while on CIFAR-100 a 3-ensemble of our multi-resolution models is #1, leading by
≈+5 % in adversarial accuracy. When we add light adversarial training, our models surpass SOTA on
CIFAR-10 by ≈+5 % and on CIFAR-100 by a strong ≈+9 %.

We demonstrate that this quickly leads to very significant adversarial robustness that matches and in145

some cases (CIFAR-100) significantly improves upon current best, dedicated approaches, without146

using any extra data or adversarial training. We see stronger gains on CIFAR-100 rather than CIFAR-147

10, suggesting that its edge might lie at harder datasets, which is a very favourable scaling compared148

to brute force adversarial training.149

The steps we take are as follows: 1) Take a pretrained model (in our case ResNet18 and ResNet152150

pretrained on ImageNet) 2) Replace the first layer with a fresh initialization that can take in 3N151

instead of 3 channels 3) Replace the final layer with a fresh initialization to project to 10 (for CIFAR-152

10) or 100 (for CIFAR-100) classes 4) Train the full network with a small (this is key) learning rate153

for a few epochs.154

We find that using a small learning rate is key, which could be connected to the effects described for155

example in Thilak et al. [2022] and Fort et al. [2020]. While the network might reach a good clean156

test accuracy for high learning rates as well, only for small learning rates will it also get significantly157

robust against adversarial attacks, as shown in Figure 9. In Table 1 we present our results of finetuning158

an ImageNet pretrained ResNet152 on CIFAR-10 and CIFAR-100 for 10 epochs at the constant159

learning rate of 3.3× 10−5 with Adam followed by 3 epochs at 3.3× 10−6. The details of our light160

adversarial finetuning are discussed in Appendix B.161

3.3 Visualizing attacks against multi-resolution models162

+ =

99% @ c=57 “pear” perturbation 98% @ c=0 “apple”

(a) Pear to apple

+ =

99% @ c=23 “cloud” perturbation 99% @ c=49 “mountain”

(b) Cloud to mountain

Figure 5: Examples of an adversarial attack on an image towards a target label. We use simple
gradient steps with respect to our multi-resolution ResNet152 finetuned on CIFAR-100. The resulting
attacks use the underlying features of the original image and make semantically meaningful, human-
interpretable changes to it. Additional examples available in Figure 21.

We wanted to visualize the attacks against our multi-resolution models. In Figure 5 we start with a163

test set image of CIFAR-100 (a pear, cloud, camel and elephant) and over 400 steps with SGD and164

η = 1 minimize the loss with respect to a target class (apple, mountain, rabbit and dinosaur). We165
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allow for large perturbations, up to L∞ = 128/255, to showcase the alignment between our model166

and the implicit human visual system classification function. In case of the pear, the perturbation167

uses the underlying structure of the fruit to divide it into 2 apples by adding a well-placed edge. The168

resulting image is very obviously an apple to a human as well as the model itself. In case of the cloud,169

its white color is repurposed by the attack to form the snow of a mountain, which is drawn in by a170

dark sharp contour. In case of the elephant, it is turned into a dinosaur by being recolored to green171

and made spikier – all changes that are very easily interpretable to a human.172

(a) c = 0 apple (b) c = 35 girl (c) c = 46 man
(d) c = 47
maple

(e) c = 49
mountain

Figure 6: Examples of adversarial attacks on our multi-resolution ResNet152 finetuned on CIFAR-
100. The attacks are generated by starting from a uniform image (128,128,128) and using gradient
descent of the cross-entropy loss with SGD at η = 1 for 400 steps towards the target label.

In Figure 6 we start with a uniform gray image of color (128, 128, 128) and by changing it to173

maximize the probability of a target class with respect to our model, we generate an image. The174

resulting images are very human-interpretable. We also generated 4 examples per CIFAR-100 class175

for all 100 classes in Figure 23 to showcase that we do not cherrypick the images shown.176

4 Discussion and Conclusion177

Our work demonstrates that taking inspiration from biology and stochastically translating an input178

image into a multi-resolution stack of inputs that are classified simultaneously by a model leads to179

higher-quality, natural representations, significant adversarial robustness, and human-interpretable180

attacks. Combining this with a novel, robust ensembling method inspired by Vickrey auctions that181

we call CrossMax, we demonstrate that we can further improve the model’s adversarial robustness182

by combining its intermediate layer predictions into a self-ensemble. This is due to our empirical183

observation that intermediate layer representations are not fooled by attacks against the classifier as a184

whole, and that their induced errors are only partially correlated.185

We are able to match the current state-of-the-art adversarial accuracy results on CIFAR-10 and surpass186

them by ≈ 5% CIFAR-100 on a strong adversarial benchmark RobustBench without any extra data187

or dedicated adversarial training, that is usually needed to produce a robust model. When we add188

light adversarial training on top, we see that our methods are complementary to it and that we surpass189

the best models on CIFAR-10 by ≈ 5% and by a very significant ≈ 9% on CIFAR-100, taking it190

from ≈ 40% to ≈ 50% in a single step. Our methods seem to perform better on the harder dataset,191

suggesting a favourable scaling compared to the usual brute force adversarial training.192

Our approach not only enhances robustness but also aligns the learned representations more closely193

with human visual processing, leading to more interpretable and reliable models. We demonstrate194

this by optimizing images against the outputs of our classifier directly and obtaining either human-195

interpretable changes, when applied to an existing image, or completely new, interpretable images,196

when starting from a uniform, empty image. This is in stark contrast to the usual result of such a197

procedure which would be a noise-like picture that would look very convincing to the network but198

would not resemble anything to a human.199
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A Model and training details303

Figure 7: An image input being split into N progressively lower resolution versions that are then
stacked channel-wise, forming a 3N -channel image input to a classifier.

The pretrained models we use are the ImageNet [Deng et al., 2009] trained ResNet18 and ResNet152304

[He et al., 2016]. Our hyperparameter search was very minimal and we believe that additional gains305

are to be had with a more involved search easily. The only architectural modification we make is to306

change the number of input channels in the very first convolutional layer from 3 to 3N , where N is307

the number of channel-wise stacked down-sampled images we use as input. We also replaced the308

final linear layer to map to the correct number of classes (10 for CIFAR-10 and 100 for CIFAR-100).309

Both the new convolutional layer as well as the final linear layer are initialized at random. The batch310

norm [Ioffe and Szegedy, 2015] is on for finetuning a pretrained model (although we did not find a311

significant effect beyond the speed of training).312

We focused on the CIFAR-* datasets [Krizhevsky, 2009, Krizhevsky et al.] that comprise 50,000313

32× 32× 3 images. We arbitrarily chose N = 4 and the resolutions we used are 32× 32, 16× 16,314

8 × 8, 4 × 4 (see Figure 7). We believe it is possible to choose better combinations, however, we315

did not run an exhaustive hyperparameter search there. The ResNets we used expect 224 × 224316

inputs. We therefore used a bicubic interpolation to upsample the input resolution for each of the317

12 channels independently.318

To each image (the 32× 32× 3 block of RGB channels) we add a random jitter in the x− y plane in319

the ±3 range. We also add a random noise of standard deviation 0.2 (out of 1.0). We believe that320

the biological jitter and noise are key aspects of a successful robust classifier, and therefore want to321

mimic their function here as well.322

For training from scratch, we use a standard ResNet18 with the modifications above. We chose it323

since we primarily wanted to show the effect of multi-resolution inputs and multi-layer prediction324

aggregation rather than to find the maximum possible performance. We turn off batch normaliza-325

tion [Ioffe and Szegedy, 2015] not to conflate the effects we are exploring. While it is possible that326

additional architectural choices could lead to more robustness (as convincingly demonstrated in Peng327

et al. [2023]), we wanted to show the effect of our multi-resolution and self-ensemble choices in328

isolation.329

All training is done using the Adam [Kingma and Ba, 2015] optimizer at a flat learning rate η that we330

always specify. Optimization is applied to all trainable parameters and the batch norm is turned on in331

case of finetuning, but turned off for training from scratch.332

Linear probes producing predictions at each layer are just single linear layers that are trained on top333

of the pre-trained and frozen backbone network, mapping from the number of hidden neurons in334

that layer (flattened to a single dimension) to the number of classes (10 for CIFAR-10 and 100 for335

CIFAR-100). We trained them using the same learning rate as the full network for 1 epoch each.336

B Adversarial finetuning337

Adversarial training, which adds attacked images with their correct, ground truth labels back to338

the training set, is a standard brute force method for increasing models’ adversarial robustness.339

[Chakraborty et al., 2018] It is ubiquitous among the winning submissions on the RobustBench leader340

board, e.g. in Cui et al. [2023] and Wang et al. [2023]. To verify that our technique does not only341

somehow replace the need for dedicated adversarial training, but rather that it can be productively342

combined with it for even stronger adversarial robustness, we re-ran all our finetuning experiments343

solely on adversarially modified batches of input images generated on the fly.344
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In all cases, we see an additive benefit of adversarial training on top of our techniques. In particular,345

for CIFAR-10 we outperform current SOTA by approximately 5 % while on CIFAR-100 and by346

approximately 9 % on CIFAR-100, which is a very large increase. The fact that our techniques benefit347

even from a very small amount of additional adversarial training (units of epochs of a single step348

attack) shows that our multi-resolution inputs and intermediate layer aggregation are a good prior for349

getting broadly robust networks.350

B.1 Training from scratch351

Figure 8: The image spectrum of gen-
erated multi-resolution attacks. The ad-
versarial attacks generated over multiple
resolutions at once end up showing very
white-noise-like distribution of powers
over frequencies (the slope for natural
images is ≈ −2). This is in contrast
with standard noise-like attacks.

We train a ResNet18 from scratch on CIFAR-10 as a back-352

bone, and then train additional linear heads for all of its353

intermediate layers to form a CrossMax self-ensemble. We354

find that, during training, augmenting our input images X355

with an independently drawn images X ′ with a randomly356

chosen mixing proportion p as (1− p)X + pX ′ increases357

the robustness of the trained model. This simple augmen-358

tation technique is known as mixup and is described in359

Zhang et al. [2018]. We believe that this works well due360

to our multi-resolution inputs that are the correct prior for361

robustness, and show that without them such mixing does362

not increase robustness. For finetuning a pretrained model,363

however, this is not needed.364

For our ResNet18 model trained from scratch on CIFAR-365

10, we keep the pairs of images that are mixed in mixup366

fixed for 20 epochs at a time, producing a characteristic367

pattern in the training accuracies. Every 5 epochs we368

re-draw the random mixing proportions in the [0, 1/2]369

range. We trained the model for 380 epochs with the370

Adam optimizer [Kingma and Ba, 2015] at learning rate371

10−3 and dropped it to 10−4 for another 120 epochs. The372

final checkpoint is the weight average of the last 3 epochs.373

The training batch size is 512. These choices are arbitrary374

and we did not run a hyperparameter search over them.375

The results on the full RobustBench AutoAttack suite of attacks for CIFAR-10 are shown in Table 1376

for self-ensemble constructed on top of the multi-resolution ResNet18 backbone (the linear heads on377

top of each layer were trained for 2 epochs with Adam at 10−3 learning rate).378
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Figure 9: Finetuning a pretrained model with multi-resolution inputs. The left panel shows the
test accuracy and adversarial accuracy after the first two attacks of RobustBench AutoAttack at
L∞ = 8/255 after 3 epochs of finetuning an ImageNet pretrained ResNet152. The middle panel
shows the effect of training epoch for a single finetuning run at the learning rate η = 1.7× 10−5. The
right panel shows a hysteresis-like curve where high test accuracies are both compatible with low and
high adversarial accuracies. The test accuracies are over the full 10,000 images while the adversarial
accuracies are evaluated on 128 test images.
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C Results tables379

rand RobustBench AutoAttack
L∞ = 8/255 # samples (%)

Dataset Adv. Model Method # Test Adv APGD→ APGD
train acc acc CE DLR

CIFAR-10 × ResNet18* Self-ensemble 1024 76.94 64.06 51.56 44.53

CIFAR-10 × ResNet152 Multi-res backbone 128 89.17 41.44 32.81 21.88
CIFAR-10 × ResNet152 3-ensemble 128 91.06 67.97 61.72 59.38
CIFAR-10 × ResNet152 Self-ensemble 128 87.14 53.12 50.00 43.75

CIFAR-10 × ResNet152 3-ensemble of
self-ensembles 128 90.20 71.88 68.75 68.75

CIFAR-10 X [30] SOTA #1 73.71

CIFAR-100 × ResNet152 Multi-res backbone 128 65.70 25.00 21.88 13.28
CIFAR-100 × ResNet152 3-ensemble 128 66.63 47.66 39.06 37.50

CIFAR-100 × ResNet152 Self-ensemble 512 65.71 46.29
±2.36

34.77
±2.09

30.08
±2.13

CIFAR-100 × ResNet152 3-ensemble of
self-ensembles 512 67.71 48.16

±2.65
40.63
±2.11

37.32
±1.98

CIFAR-100 X [28] SOTA #1 42.67
Table 1: Full randomized (=the strongest against our approach) RobustBench AutoAttack adversarial
attack suite results for 128 test samples at the L∞ = 8/255 strength. In this table we show the results
of attacking our multi-resolution ResNet152 models finetuned on CIFAR-10 and CIFAR-100 from an
ImageNet pretrained state without any adversarial training or extra data for 20 epochs with Adam at
η = 3.3× 10−5. We use our CrossMax ensembling on the model itself (self-ensemble), the final 3
epochs (3-ensemble), and on self-ensembles from 3 different runs (3-ensemble of self-ensembles).
We also include results for a ResNet18 trained from scratch on CIFAR-10. Despite its simplicity, our
method gets adversarial robustness of≈ 72% on CIFAR-10 (ranking #3 on RobustBench leaderboard)
and ≈ 48% on CIFAR-100, surpassing current best models by +5%. Unlike other approaches, we do
not use any extra data or adversarial training and our models gain adversarial robustness by default.
Additional adversarial training helps, as shown in Table 2.

rand RobustBench AutoAttack
L∞ = 8/255 # samples (%)

Dataset Adv. Model Method # Test Adv APGD→ APGD
train acc acc CE DLR

CIFAR-10 X ResNet152 Multi-res backbone 128 87.19 46.88 34.38 32.03
CIFAR-10 X ResNet152 Self-ensemble 128 84.58 67.94 64.06 54.69

CIFAR-10 X ResNet152 3-ensemble of
self-ensembles 128 87.00 78.13 73.44 72.65

CIFAR-10 X [30] SOTA #1 73.71

CIFAR-100 X ResNet152 Multi-res backbone 128 62.72 37.50 32.03 22.66

CIFAR-100 X ResNet152 Self-ensemble 512 58.93 47.85
±2.66

36.72
±3.01

33.98
±2.72

CIFAR-100 X ResNet152 3-ensemble of
self-ensembles 512 61.17 51.28

±1.95
44.60
±2.00

43.04
±1.97

CIFAR-100 X [28] SOTA #1 42.67
Table 2: Full randomized (=the strongest against our approach) RobustBench AutoAttack adversarial
attack suite results for 128 test samples at the L∞ = 8/255 strength. In this table we show the results
of attacking our multi-resolution ResNet152 models finetuned on CIFAR-10 and CIFAR-100 from an
ImageNet pretrained state with light adversarial training.
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D Additional Insights and Applications380

We want to support our multi-resolution input choice as an active defense by demonstrating that381

by reversing it and representing an adversarial perturbation explicitly as a sum of perturbations at382

different resolutions, we get human-interpretable perturbations by default.383

E Single-resolution adversarial attacks384

Natural images contain information expressed on all frequencies, with an empirically observed385

power-law scaling. The higher the frequency, the lower the spectral power, as ∝ f−2 [van der Schaaf386

and van Hateren, 1996].387

While having a single perturbation P of the full resolution R×R theoretically suffices to express388

anything, we find that this choice induces a specific kind of high frequency prior. Even simple neural389

networks can theoretically express any function [Hornik et al., 1989], yet the specific architecture390

matters for what kind of a solution we obtain given our data, optimization, and other practical choices.391

Similarly, we find that an alternative formulation of the perturbation P leads to more natural looking392

and human interpretable perturbations despite the attacker having access to the highest-resolution393

perturbation as well and could in principle just use that.394

F Multi-resolution attacks395

+ … += + … + + … +

Figure 10: The result of expressing an image as a set of resolutions and optimizing it towards the
CLIP embedding of the text ’a photo of a nuclear explosion’. The plot shows the resulting sum of
resolutions (left panel, marked with ρ) and selected individual perturbations Pr of resolutions 2× 2,
8× 8, 32× 32 and 128× 128. The intensity of each is shifted and rescaled to fit between 0 and 1 to
be recognizable visually, however, the pixel values in the real Pr fall of approximately as r−1.

Figure 11: An attack on vision lan-
guage models. GPT-4 sees Rick Ast-
ley from his famous "Never Gonna
Give You Up" music video tree. See
Table 3 and 4 for details.

We express the single, high resolution perturbation P as a sum396

of perturbations P =
∑
r∈ρ rescaleR(Pr), where Pr is of the397

resolution r × r specified by a set of resolutions ρ, and the398

rescaleR function rescales and interpolates an image to the full399

resolution R×R. When we jointly optimize the set of pertur-400

bations {Pr}r∈ρ, we find that: a) the resulting attacked image401

X +
∑
r∈ρ rescaleR(Pr) is much more human-interpretable,402

b) the attack follows a power distribution of natural images.403

When attacking a classifier, we choose a target label t and404

optimize the cross-entropy loss of the predictions stemming405

from the perturbed image as if that class t were ground truth. To406

add to the robustness and therefore interpretability of the attack407

(as hypothesized in our Interpretability-Robustness Hypothesis),408

we add random jitter in the x-y plane and random pixel noise,409

and design the attack to work on a set of models.410

An example of the multi-resolution sum is show in Figure 12.411

There we use a simple Stochastic Gradient Descent [Robbins and Monro, 1951] optimization with the412

learning rate of 5× 10−3 and a cosine decay schedule over 50 steps. We add a random pixel noise413

of 0.6 (out of 1), jitter in the x-y plane in the ±5 range and a set of all perturbations from 1× 1 to414

224× 224 interpolated using bicubic interpolation [Keys, 1981]. In Figure 12 we see that despite415

the very limited expressiveness of the final layer class label, we can still recover images that look like416

the target class to a human. We also tested them using Gemini Advanced and GPT-4, asking what417
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(a) c = 309 bee (b) c = 37 box turtle (c) c = 895 warplane (d) c = 979 valley

(e) c = 974 geyser (f) c = 975 lakeside (g) c = 795 ski (h) c = 980 volcano

Figure 12: Examples of images generated as attacks on ImageNet-trained classifiers. These images
were generated by minimizing the cross-entropy loss of seven pretrained classifiers with respect to
the target ImageNet class. Spatial jitter in the ±5 pixel range and pixel noise of standard deviation
0.6 were applied during SGD optimization with learning rate 5× 10−3 over 50 steps with a cosine
schedule. The perturbation was expressed as a sum of perturbations at all resolutions from 1× 1 to
224× 224 that were optimized at once.

100% geyser
    0% lakeside

 75% geyser
 25% lakeside

 50% geyser
 50% lakeside

 25% geyser
 75% lakeside

    0% geyser
100% lakeside

Figure 13: Optimizing towards a probability vector with a sliding scale between c = 974 geyser and
c = 975 lakeside. Optimizing against pretrained classifiers generated semantically blended image of
the two concepts.

the AI model sees in the picture, and got the right response in all 8 cases. To demonstrate that we418

can generate images beyond the original 1000 ImageNet classes, we experimented with setting the419

target label not as a one-hot vector, but rather with target probability p on class t1 and 1− p on t2.420

For classes c = 974 (geyser) and c = 975 (lakeside) we show, in Figure 13 that we get semantically421

meaningful combinations of the two concepts in the same image as we vary p from 0 to 1. p = 1/2422

gives us a geyser hiding beyond trees at a lakeside. This example demonstrates that in a limited way,423

classifiers can be used as controllable image generators.424

G Multi-resolution attack on CLIP425

The CLIP-style [Radford et al., 2021] models map an image I to an embedding vector fI : I → vI426

and a text T to an embedding vector fT : T → vT . The cosine between these two vectors corresponds427

to the semantic similarity of the image and the text, cos(vI , vT ) = vI · vT /(|vI ||vT |). This gives us428

score(I, T ) that we can optimize.429

Adversarial attacks on CLIP can be thought of as starting with a human-understandable image X0 (or430

just a noise), and a target label text T ∗, and optimizing for a perturbation P to the image that tries to431

increase the score(X0 + P, T ∗) as much as possible. In general, finding such perturbations is easy,432

however, they end up looking very noise-like and non-interpretable. [Fort, 2021a,b].433
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(a) Just a 224 × 224 per-
turbation alone.

(b) Adding random noise
to optimization.

(c) Adding random jitter
to optimization.

(d) Adding all resolutions
from 1× 1 to 224× 224.

Figure 14: The effect of adding noise, jitter, and a full set of resolutions to an adversarial attack on
CLIP towards the text ’a beautiful photo of the University of Cambridge, detailed’. While using just
a plain perturbation of the full resolution in Figure 14a, as is standard in the typical adversarial attack
setup, we get a completely noise-like image. Adding random noise to the pixels during optimization
leads to a glimpse of a structure, but still maintains a very noise-like pattern (Figure 14b). Adding
random jitter in the x-y plane on top, we can already see interpretable shapes of Cambridge buildings
in Figure 14c. Finally, adding perturbations of all resolutions, 1× 1, 2× 2, . . . , 224× 224, we get a
completely interpretable image as a result in Figure 14d.

If we again express P = rescale224(P1)+rescale224(P2)+ · · ·+P224, where Pr is a resolution r×r434

image perturbation, and optimize score(X0 + rescale224(P1) + rescale224(P2) + · · · + P224, T
∗)435

by simultaneously updating all {Pr}r, the resulting image X0 +
∑
r∈[1,224] rescaleR(Pr) looks like436

the target text T ∗ to a human rather than being just a noisy pattern. Even though the optimizer could437

choose to act only on the full resolution perturbation P224, it ends up optimizing all of them jointly438

instead, leading to a more natural looking image. To further help with natural-looking attacks, we439

introduce pixel noise and the x-y plane jitter, the effect of which is shown in Figure 14.440

We use SGD at the learning rate of 5× 10−3 for 300 steps with a cosine decay schedule to maximize441

the cosine between the text description and our perturbed image. We use the OpenCLIP models442

[Ilharco et al., 2021, Cherti et al., 2023] (an open-source replication of the CLIP model [Radford443

et al., 2021]). Examples of the resulting "adversarial attacks", starting with a blank image with 0.5444

in its RGB channels, and optimizing towards the embedding of specific texts such as "a photo of445

Cambridge UK, detailed, and "a photo of a sailing boat on a rough sea" are shown in Figure 16. The446

image spectra are shown in Figure 8, displaying a very natural-image-like distribution of powers. The447

resulting images look very human-interpretable.448

(a) Original (b) Albert Einstein (c) Queen Elizabeth (d) Nikola Tesla

Figure 15: Starting with an image of Isaac Newton and optimizing a multi-resolution perturbation
towards text embeddings of Albert Einstein, Queen Elizabeth and Nikola Tesla leads to a change in the
face of the person depicted. This demonstrates how semantically well-targeted such multi-resolution
attacks are. All 4 images are recognizable as the target person to humans as well as GPT-4o and
Gemini Advanced.

Starting from a painting of Isaac Newton and optimizing towards the embeddings of "Albert Ein-449

stein", "Queen Elizabeth" and "Nikola Tesla", we show that the attack is very semantically targeted,450

effectively just changing the facial features of Isaac Newton towards the desired person. This is451

shown in Figure 15. This is exactly what we would ideally like adversarial attacks to be – when452

changing the content of what the model sees, the same change should apply to a human. We use a453

similar method to craft transferable attacks (see Figure 11 for an example) against commercial, closed454

source vision language models (GPT-4, Gemini Advanced, Claude 3 and Bing AI) in Table 3, in455
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which a turtle turns into a cannon, and in Table 4, where Stephen Hawking turns into the music video456

Never Gonna Give You Up by Rick Astley. The attacks also transfer to Google Lens, demonstrating457

that the multi-resolution prior also serves as a good transfer prior and forms an early version of a458

transferable image vision language model jailbreak. This is a constructive proof to the contrary of the459

non-transferability results in Schaeffer et al. [2024].460

(a) Ancient Rome (b) Cambridge, UK
(c) Prague Castle in
spring (d) Oxford, UK

(e) sailing ship on stormy
sea

(f) the Whirlpool Galaxy,
M51

(g) a large ship cannon fir-
ing

(h) African savanna with
animals and trees

Figure 16: Examples of images generated with the multi-resolution prior, jitter and noise with the
OpenCLIP models. The text whose embedding the image optimizes to approach is of the form ’A
beautiful photo of [X], detailed’ for different values of [X].

H Additional details on attack transfer between layers461

Figure 17: Transfer of adversarial attacks (L∞ = 8/255, 512 attacks) against the activations of
layer α on the accuracy of layer β for α = 0, 10, 27, 43, 53 on ImageNet-1k pretrained ResNet152
finetuned on CIFAR-10 via trained linear probes. Each panel shows the effect of designing a pixel-
level attack to confuse the linear probe at a particular layer. The blue curve is the test accuracy on the
unperturbed data, and the red line shows the accuracy on the attacked images. The accuracy drops to
0 at the layer that is directly attacked (marked in orange), showing a successful attack. The effect is
localized: attacking early layers mainly affects early layer predictions, middle layer attacks primarily
affect middle layers, and likewise attacks on the final layers (the standard regime) primarily influence
late layer performance. For more details, see Figure 19.
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I Transfer to massive commercial models462

In Table 3 we show the results of asking "What do you see in this photo?" and adding the relevant463

picture to four different, publicly available commercial AI models: GPT-41, Bing Copilot2, Claude464

3 Opus3 and Gemini Advanced4. We find that, with an exception of Gemini Advanced, even a465

L∞ = 30/255 attack generated in approximately 1 minute on a single A100 GPU (implying a cost466

at most in cents) fools these large models into seeing a cannon instead of a turtle. The attack also467

transfers to Google Lens.468

Original L∞ =
20/255

L∞ =
30/255

L∞ =
40/255

L∞ =
70/255

L∞ =
100/255

GPT-4
sea turtle
swimming

turtle swim-
ming in wa-
ter

cannon,
mounted on
stone base,
firing

cannon
with a no-
tably ornate
and rusted
appearance

cannon
mounted
on a brick
platform

stylized or
artistically
rendered
depiction of a
cannon

Bing
Copilot sea turtle

gracefully
swimming

sea turtle
gracefully
swimming

a cannon
mounted on
a stone base

cannon with
a wheel,
mounted on
a stone base

old cannon
mounted on
a brick plat-
form

color-
saturated
cannon
mounted on
wheels

Claude 3
Opus sea turtle

swimming
in clear,
turquoise
water

sea turtle
swimming
underwater

old cannon
submerged
underwater

old decora-
tive cannon
sitting on
a stone or
concrete
platform

old naval
cannon set
on a stone
or brick
platform

artistic paint-
ing or illustra-
tion of an old
cannon

Gemini
Ad-
vanced

sea turtle
swimming
underwater

sea turtle
swimming
underwater

sea turtle
swimming

sea turtle
swimming in
a pool

cannon
being fired
by a turtle
wearing a red
jacket

artistic inter-
pretation of a
cannon firing

Table 3: Multi-resolution adversarial attacks of increasing L∞ using OpenCLIP on an image of a sea
turtle towards the text "a cannon" tested on GPT-4, Bing Copilot (Balanced), Claude 3 Sonnet and
Gemini Advanced. All models we tested the images on were publicly available. The conversation
included a single message "What do you see in this photo?" and an image. We chose the most relevant
parts of the response.

Figure 18 compares attacks on robust and brittle models.469

J Attack transfer between layers470

This setup also allows us not only to investigate what the intermediate classification decision would471

be for an adversarially modified image X ′ that confuses the network’s final layer classifier, but also to472

generally ask what the effect of confusing the classifier at layer α would do to the logits at a layer β.473

The results are shown in Figure 17 for 6 selected layers to attack, and the full attack layer × read-out474

layer is show in Figure 19.475

1chatgpt.com
2bing.com/chat
3claude.ai/
4gemini.google.com

17

chatgpt.com
bing.com/chat
claude.ai/
gemini.google.com


Original L∞ =
20/255

L∞ =
30/255

L∞ =
40/255

L∞ =
70/255

L∞ =
100/255

GPT-4
Stephen
Hawking

Stephen
Hawking

Never Gonna
Give You Up

Never Gonna
Give You Up

Never Gonna
Give You Up

singer or per-
former, possi-
bly Rick Ast-
ley

Bing
Copilot individual

sitting in a
wheelchair

individual
sitting on a
bench

individual
sitting down,
holding a
microphone,
singing

person
seated, hold-
ing a musical
instrument

two individu-
als in an in-
door setting

person in
front of a
microphone,
singing

Claude 3
Opus elderly

man in a
wheelchair

man in a
wheelchair,
smiling

young
man with
blonde hair,
vintage-style
microphone,
singing

young man
with blond
hair, 1980s
pop music

music video,
1980s, singer

music video,
1980s fashion

Gemini
Ad-
vanced

Refused to
answer.

Refused to
answer.

Refused to
answer.

Refused to
answer.

Refused to
answer.

Refused to an-
swer.

Table 4: Multi-resolution adversarial attacks of increasing L∞ using OpenCLIP on an image of
Stephen Hawking towards the embedding of an image from the famous Rick Astley’s song Never
Gonna Give You Up from the 1980s tested on GPT-4, Bing Copilot (Balanced), Claude 3 Sonnet and
Gemini Advanced. All models we tested the images on were publicly available. The conversation
included a single message "What do you see in this photo?" and an image. We chose the most relevant
part of the response. Unfortunately, Gemini refused to answer, likely due to the presence of a human
face in the photo.

We find that attacks designed to confuse early layers of a network do not confuse its middle and476

late layers. Attacks designed to fool middle layers do not fool early nor late layers, and attacks477

designed to fool late layers do not confuse early or middle layers. In short, there seems to be roughly478

a 3-way split: early layers, middle layers, and late layers. Attacks designed to affect one of these do479

not generically generalize to others. We call this effect the adversarial layer de-correlation. This480

de-correlation allows us to create a self-ensemble from a single model, aggregating the predictions481

resulting from intermediate layer activations. To make sure that the ensemble is robust, we use the482

CrossMax method described in Section 2.2 and Algorithm 1. While ensembling multiple equivalent483

models, we did not have to care about their different quality, however, here early layers are typically484

less accurate than late layers, as shown in Figure 3.485

In Figure 24 we show the self-ensemble robustness under adversarial attacks of different strength486

for an ImageNet pretrained ResNet152 and ViT-B/16, with linear heads at each layer separately487

finetuned on CIFAR-10. The aggregation method in Algorithm 1 provides non-zero robust accuracy488

for attacks of even L∞ = 5/255, while standard ensembling using mean logits as well as just the489

last layer prediction loses robust accuracy around 3/255. This is an early indication that CrossMax490

self-ensembling can actively use the decorrelation of intermediate layer adversarial susceptibilities491

for an active, white-box defense.492

K Visualizing attacks on multi-resolution models493
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(a) Apple (c = 0): The image generated from our
model looks like an apple to itself, the Wang et al.
[2023] robust model, and a brittle ResNet152 alike.
The attacks against Wang et al. [2023] and standard
ResNet152, on the other hand, convince only them-
selves.

(b) Girl (c = 35): The image generated from our model
looks like a girl to itself, a brittle ResNet152 alike, and
as a woman to the Wang et al. [2023] robust model.
The attacks against them, on the other hand, convince
only themselves.

Figure 18: Examples of adversarial attacks on our multi-resolution ResNet152 finetuned on CIFAR-
100 (left), the previous best model on CIFAR-100 L∞ = 8/255 on RubustBench from Wang et al.
[2023] (middle), and standard ResNet152 finetuned on CIFAR-100. The attacks are generated by
starting from a uniform image (128,128,128) and using gradient descent of the cross-entropy loss
with SGD at η = 1 for 400 steps towards the target label. The prediction results for each of the
models are shown above the images.

+ =

99% ”bicycle” RobustBench perturbation 86% “snake”

Figure 20: An example of a L∞ = 64/255 Ro-
bustBench AutoAttack on our model, changing a
bicycle into a snake in an interpretable way.

Figure 22 shows 6 examples of successfully at-494

tacked CIFAR-100 test set images for an en-495

semble of 3 self-ensemble models – our most496

adversarially robust model. When looking at497

the misclassifications caused, we can easily see498

human-plausible ways in which the attacked im-499

age can be misconstrued as the most probable500

target class. For example, a crab with a body501

resembling a mushroom cap gets a foot of a502

mushroom added by the attack, causing a mis-503

classification as 40% mushroom from a 90%504

crab. A blurry picture of a sting ray gets 3D-like shading added by the attack, making it look505

mouse-like and being classified as 30% shrew from a 90% ray. Overall, we see that the changes that506

are induced by the attacker seem to have a human-understandable explanation. Figure 20 shows507

an example of a successful L∞ = 64/255 (much larger than the standard 8/255 perturbations)508

RobustBench AutoAttack on a test image of a bicycle converting it, in a human-interpretable way, to509

a snake by re-purposing parts of the bicycle frame as the snake body.510

We are also very interested in the existence of adversarial attacks on the human visual system and511

we believe that our work should be an update against their likelihood. We use biologically inspired512

methods (multiple resolutions, jitter, noise) that work as a defense against a white-box attacker.513

When flipped around, the same ideas generate human-interpretable images. The intermediate layer514

representations could also be viewed as using shallower circuits in the brain, and their partial515

robustness might suggest the same in humans. Given that moving closer (in a very rudimentary way)516

to the human visual system in these regards gave us both a practical defense and an image generator,517

we believe that we should update against adversarial vulnerability of humans.518

L Additional experiments for CrossMax519

To demonstrate experimentally different characteristics of prediction aggregation among several520

classifiers, we trained 10 ResNet18 models, starting from an ImageNet pretrained model, changing521

their final linear layer to output 10 classes of CIFAR-10. We then used the first 2 attacks of the522

RobustBench AutoAttack suite (APGD-T and APGD-CE; introduced by Croce and Hein [2020] as523

particularly strong attack methods) and evaluated the robustness of our ensemble of 10 models under524

adversarial attacks of different L∞ strength. The results are shown in Figure 25.525

The aggregation methods we show are 1) our CrossMax (Algorithm 1) (using median since the 10526

models are expected to be equally good), 2) a standard logit mean over models, 3) median over527
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Figure 19: Attack transfer between layers of the ResNet154 model pre-trained on ImageNet-1k. The
individual linear heads were finetuned on CIFAR-10 on top of the frozen model.

+ =

99% @ c=8 “bicycle” perturbation 92% @ c=48 “motorbike”

(a) Bicycle to motorbike

+ =

73% @ c=40 “lamp” perturbation 61% @ c=51 “mushroom”

(b) Lamp to mushroom

+ =

63% @ c=69 “rocket” perturbation 98% @ c=9 “bottle”

(c) Rocket to bottle

+ =

54% @ c=71 “sea” perturbation 99% @ c=12 “bridge”

(d) Sea to bridge

Figure 21: Additional examples of an adversarial attack on an image towards a target label. We use
simple gradient steps with respect to our multi-resolution ResNet152 finetuned on CIFAR-100. The
resulting attacks use the underlying features of the original image and make semantically meaningful,
human-interpretable changes to it. Additional examples available in Figure 5.

models, and 4) the performance of the individual models themselves. While an ensemble of 10528

models, either aggregated with a mean or median, is more robust than individual models at all529

attack strengths, it nonetheless loses robust accuracy very fast with the attack strength L∞ and at the530

standard level of L∞ = 8/255 it drops to ≈0%. Our CrossMax in Algorithm 1 provides > 0 robust531

accuracy even to 10/255 attack strengths, and for 8/255 gives a 17-fold higher robust accuracy than532

just plain mean or median. We use this aggregation for intermediate layer predictions (changing533

median to top3) as well and see similar, transferable gains. We call this setup a self-ensemble.534
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70% sunflower
30% palm tree

100% palm tree

80% pine tree
10% skyscraper
10% mountain

80% skyscraper
20% pine tree

40% mushroom
20% crab

30% shrew
10% ray

90% crab 90% ray

80% clock
20% bowl

80% mushroom
20% spider

100% bowl 100% spider

Figure 22: Examples of successfully attacked CIFAR-100 images for an ensemble of self-ensembles –
our most robust model. We can see human-plausible ways in which the attack changes the perceived
class. For example, the skyscraper has a texture added to it to make it look tree-like.

Algorithm 1 CrossMax = An Ensembling Algorithm with Improved Adversarial Robustness

Require: Logits Z of shape [B,N,C], where B is the batch size, N the number of predictors, and
C the number of classes

Ensure: Aggregated logits
1: Ẑ ← Z−max(Z, axis = 2) {Subtract the max per-predictor over classes to prevent any predictor

from dominating}
2: Ẑ ← Ẑ −max(Ẑ, axis = 1) {Subtract the per-class max over predictors to prevent any class

from dominating}
3: Y ← median(Ẑ, axis = 1) {Choose the median (or kth highest for self-ensemble) logit per

class}
4: return Y

As an ablation, we tested variants of the CrossMax method. There are two normalization steps: A)535

subtracting the per-predictor max, and B) subtracting the per-class max. We exhaustively experiment536

with all combinations, meaning {_, A,B,AB,BA}, (robust accuracies at 4/255 are {4, 4, 0, 22, 0}%)537

and find that performing A and then B, as in Algorithm 1, is by far the most robust method. We538

perform a similar ablation for a robust, multi-resolution self-ensemble model in Table 5 and reach539

the same verdict, in addition to confirming that the algorithm is very likely not accidentally masking540

gradients.541

Aggregation fn topk2 mean

Method _ A B BA AB _ A B BA AB

Test acc 57.08 59.86 0.82 1.27 58.92 60.31 59.89 1.1 1.05 57.23
Adv acc 46.88 46.88 1.56 0.00 57.81 40.62 48.44 0.00 0.00 39.06

Table 5: CrossMax algorithm ablation. The Algorithm 1 contains two subtraction steps: A = the
per-predictor max subtraction, and B = the per-class max subtraction. This Table shows the robust
accuracies of a self-ensemble model on CIFAR-100 trained with light adversarial training, whose
intermediate layer predictions were aggregated using different combinations and orders of the two
steps. We also look at the effect of using the final topk2 aggregation vs just using a standard mean.
The best result is obtained by the Algorithm 1, however, we see that not using the topk does not
lead to a critical loss of robustness as might be expected if there were accidental gradient masking
happening.
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c=0 apple c=1 aquarium fish c=2 baby c=3 bear c=4 beaver c=5 bed c=6 bee c=7 beetle c=8 bicycle

c=9 bottle c=10 bowl c=11 boy c=12 bridge c=13 bus c=14 butterfly c=15 camel c=16 can c=17 castle

c=18 caterpillar c=19 cattle c=20 chair c=21 chimpanzee c=22 clock c=23 cloud c=24 cockroach c=25 couch c=26 crab

c=27 crocodile c=28 cup c=29 dinosaur c=30 dolphin c=31 elephant c=32 flatfish c=33 forest c=34 fox c=35 girl

c=36 hamster c=37 house c=38 kangaroo c=39 keyboard c=40 lamp c=41 lawn mower c=42 leopard c=43 lion c=44 lizard

c=45 lobster c=46 man c=47 maple tree c=48 motorcycle c=49 mountain c=50 mouse c=51 mushroom c=52 oak tree c=53 orange

c=54 orchid c=55 otter c=56 palm tree c=57 pear c=58 pickup truck c=59 pine tree c=60 plain c=61 plate c=62 poppy

c=63 porcupine c=64 possum c=65 rabbit c=66 raccoon c=67 ray c=68 road c=69 rocket c=70 rose c=71 sea

c=72 seal c=73 shark c=74 shrew c=75 skunk c=76 skyscraper c=77 snail c=78 snake c=79 spider c=80 squirrel

c=81 streetcar c=82 sunflower c=83 sweet pepper c=84 table c=85 tank c=86 telephone c=87 television c=88 tiger c=89 tractor

c=90 train c=91 trout c=92 tulip c=93 turtle c=94 wardrobe c=95 whale c=96 willow tree c=97 wolf c=98 woman

c=99 worm

Figure 23: Examples of optimizing towards all 100 CIFAR-100 classes against our multi-resolution
ResNet152 model, 4 examples for each. We use 400 simple gradient steps at learning rate η = 1 with
SGD with respect to the model, starting from all grey pixels (128,128,128). The resulting attacks are
easily recognizable as the target class to a human.
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(a) ResNet154 self-ensemble on CIFAR-10
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(b) ViT-B/16 self-ensemble on CIFAR-10

Figure 24: The robust accuracy of different types of self-ensembles of ResNet152 and ViT-B/16 with
linear heads finetuned on CIFAR-10 under increasing L∞ attack strength.
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(a) CIFAR-10
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(b) CIFAR-100

Figure 25: The robust accuracy of different types of ensembles of 10 ResNet18 models under
increasing L∞ attack strength. Our robust median ensemble, CrossMax, gives very non-trivial
adversarial accuracy gains to ensembles of individually brittle models. For L∞ = 6/255, its CIFAR-
10 robust accuracy is 17-fold larger than standard ensembling, and for CIFAR-100 the factor is
12.
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