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ABSTRACT

Transferring representational knowledge of a model to another is a wide-ranging
topic in machine learning. Those applications include the distillation of a large
supervised or self-supervised teacher model to a smaller student model or self-
supervised learning via self-distillation. Knowledge distillation is an original
method to solve these problems, which minimizes a cross-entropy loss between the
prototypical probabilistic outputs of teacher and student networks. On the other
hand, contrastive learning has shown its competency in transferring representations
as they allow students to capture the information of teacher representations. In this
paper, we amalgamate the advantages of knowledge distillation and contrastive
learning by modeling the critic of a contrastive objective by the prototypical proba-
bilistic discrepancy between two features. We refer to it as prototypical contrastive
predictive coding and present efficient implementation using the proposed objective
for three distillation tasks: supervised model compression, self-supervised model
compression, and self-supervised learning via self-distillation. Through extensive
experiments, we validate the effectiveness of our method compared to various
supervised and self-supervised knowledge distillation baselines.

1 INTRODUCTION

In machine learning, knowledge distillation (KD) is a problem that aims to transfer the knowledge
from one network (a teacher) to another one (a student). The original method introduced by Hinton
et al. (2015); Buciluǎ et al. (2006) minimizes the cross-entropy between the probabilistic outputs
of teacher and student networks. Even though the simplicity of its implementation, many other
distillation methods cannot easily outperform KD. Therefore the concept of knowledge distillation
has been expanded to various machine learning tasks other than supervised model compressions, such
as self-supervised learning (Caron et al., 2020; 2021) or self-supervised model compression (Fang
et al., 2021). Those methods rely on minimizing the discrepancy of probabilistic outputs of teacher
and student networks, thus require a function that maps a data or feature into a probability space. It is
straightforward to use a linear mapping for it, which we refer to a prototypes.

On the other hand, contrastive learning has its merits in capturing correlations and high-order
dependencies over teacher representations as they are trained by pulling the positives and pushing
over the negatives. Especially, contrastive objectives such as NCE (Gutmann & Hyvärinen, 2010) or
CPC (as known as InfoNCE) (Oord et al., 2018; Bachman et al., 2019; Hjelm et al., 2018) are proven
to be a lower bound to the mutual information allowing student network to capture the information
from the teacher representations. While many methods (Chen et al., 2020b;c) used those objectives for
representation learning, Tian et al. (2019) proposed contrastive representation distillation (CRD) and
demonstrated the effectiveness of contrastive learning in transferring knowledge from one network to
another.

However, the current contrastive learning requires large negative samples with careful sampling. To
ameliorate, we combine the prototypical method and contrastive objective to inherit their advantages.
To that end, we propose prototypical contrastive predictive coding (ProtoCPC), which utilizes the
prototypes to generate probability distribution and model the critic by the discrepancy between
two probabilistic outputs. Furthermore, our ProtoCPC objective is a lower bound to the mutual
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information between teacher and student representations alike CPC. But unlike CPC, it does not
require commodious negative samples or careful sampling policies.

Given the ProtoCPC objective, we present efficient applications on three distillation tasks: super-
vised model compression, self-supervised model compression, and self-supervised learning via
self-distillation. While ProtoCPC is simple in its implementation, we observe that it significantly
boosts the performance of representation distillation. Our method outperforms KD, and partially
outperform CRD on CIFAR-100 and ImageNet. Moreover, our method achieves state-of-the-art
performance on transferring various self-supervised teacher representations to a small self-supervised
model. Lastly, by construing self-supervised learning as a self-distillation, we validate the effective-
ness of ProtoCPC in representation learning. Our contributions are following:

• We propose a novel prototypical contrastive objective for transferring representational
knowledge between models.

• We apply the proposed objective to three distillation tasks: supervised model compression,
self-supervised model compression, and self-supervised learning via self-distillation.

• Experiments show the effectiveness of our method in various representation distillation
benchmarks, especially achieving state-of-the-art performance in supervised/self-supervised
model compression.

2 METHOD

2.1 PROTOTYPICAL CONTRASTIVE PREDICTIVE CODING

Given data x with a random variable x ∼ X , let the teacher network fT and the student network
fS , where they map x into RDT and RDS respectively. Also let T and S be random variables for
representation fT (X) and fS(X) respectively. One can transfer the representational knowledge of
T to S by maximizing the mutual information I(T ;S), where it is defined by the KL-divergence
between the joint distribution p(T, S) and the product of marginal distribution p(T )p(S). However,
as estimation and optimization of mutual information is challenging, many approaches count on
maximizing variational lower bound to the mutual information (Poole et al., 2019). The contrastive
predictive coding (Oord et al., 2018), or as known as InfoNCE is a guaranteed lower bound to the
mutual information (Oord et al., 2018; Tian et al., 2020; Bachman et al., 2019; Song & Ermon,
2020), and has shown its competency in both representation learning (He et al., 2020; Chen et al.,
2020b;c) and representation distillation (Tian et al., 2019). Formally, given a zs ∼ S with a
positive zt ≡ zt0 and N − 1 negatives {ztj}N−1j=1 sampled from T , i.e. (zt, zs) ∼ p(T, S) and
{(ztj , zs)}N−1j=1 ∼ p(T )p(S), the following inequality holds for any critic h : RDT × RDS → R+:

I(T ;S) ≥ E
[

log
h(zt, zs)

1
N

∑N−1
j=0 h(ztj , zs)

]
(1)

Previous works set the critic by the exponential of cosine similarity between two unit feature vectors,
i.e. h(zt, zs) = exp(−zt · zs) where zt and zs are `2-normalized. Theoretically, the lower bound
becomes tighter as N →∞. In practice, the CPC objective requires using extremely large batch size
or memory buffer that stores the negatives as it requires pairwise computation between zs and ztjs.

On the other hand, we project feature vectors into a probability space. To do that, we append a linear
prototypes WT ∈ RDT×K and WS ∈ RDS×K at the top of fT and fS so that they have same output
dimension of K. For brevity, let z̄s = WSzs and z̄t = WT zt and T̄ , S̄ be random variables for z̄t
and z̄s respectively. Then we set probability of student ps by K-categorical distribution defined by
the softmax operator on z̄s = WSzs with temperature τs > 0:

p(k)s =
exp

(
z̄
(k)
s /τs

)∑K
k′=1 exp

(
z̄
(k′)
s /τs

) . (2)

Similarly we define probability of teacher ptj with temperature τt > 0. Then we define the critic
between z̄t and z̄s by the negative exponential of cross-entropy between ps and pt, i.e.,

h(z̄t, z̄s) = e−H(pt,ps) = e
∑K

k=1 p
(k)
t log p(k)

s . (3)
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Then h is a positive bounded function and is maximized when pt matches with ps. Then by plugging
Eq. 3 into Eq. 1, it follows that

I(T ;S) ≥ I(T̄ ; S̄) ≥ E
[

log
e−H(pt,ps)

1
N

∑N−1
j=0 e−H(ptj ,ps)

]
(4)

= E
[

log
exp(pt · z̄s/τs)

1
N

∑N−1
j=0 exp

(
ptj · z̄s/τs

)] (5)

≥ E
[

log
exp(pt · z̄s/τs)

1
N

∑N−1
j=0

∑K
k=1 p

(k)
tj exp

(
z̄
(k)
s /τs

)] (6)

= E
[

log
exp(pt · z̄s/τs)∑K

k=1 q
(k) exp

(
z̄
(k)
s /τs

)] , IProtoCPC, (7)

where q(k) = 1
N

∑N−1
j=0 ptj is a mean of teachers’ probability which we call a prior. The first in-

equality is from data processing inequality, the second equality is from crossing out the constant term,
and third inequality is from Jensen’s inequality. We define Prototypical Contrastive Predictive
Coding (ProtoCPC) objective IProtoCPC in Eq. 7. In addition, we define ProtoCPC loss LProtoCPC by
the negative of ProtoCPC objective, thus minimizing ProtoCPC loss is equivalent to a variational
maximization of mutual information between student and teacher representations.

Relationship with CPC While many lower bounds to the mutual information were proposed,
Tschannen et al. (2019) observe that the tightness of bound does not necessarily imply a better
representation learning performance. From then, many works focused on analyzing the components
of contrastive objective itself which are responsible for the empirical success. Wang & Isola (2020)
argued that the contrastive loss is composed of alignment and uniformity loss, where alignment loss
accounts for the similarity of two positive features, and uniformity loss measures how the features
are scattered in the unit hypersphere and show that both losses are important in contrastive learning.

We draw an analogy on ProtoCPC by dissecting into alignment and uniformity losses. Since the
alignment loss is straightforward, we focus on the uniformity loss. We show that one can interpret
the uniformity loss LProtoCPC-Unif by the re-substitution entropy estimator of zs via a von-Mises Fisher
kernel density estimation (vMF-KDE) (Ahmad & Lin, 1976):

LProtoCPC-Unif = Ezs∼S
[

log

K∑
k=1

q(k) exp(z̄(k)s /τs)

]
= Ezs∼S

[
log

K∑
k=1

q(k) exp(wk · zs/τs)
]

(8)

= Ezs∼S [log p̂vMF-KDE(zs)] + logZvMF = −Ĥ(zs) + logZvMF, (9)

where each wk is a k-th column of WS and acts as a mean direction of k-th vMF distribution and
q(k) acts as a prior for each k-th vMF distribution. The p̂vMF-KDE is thus the mixture of K vMF
distribution with prior q(k) and then the uniformity loss is a re-substitution entropy Ĥ(zs). The ZvMF
is a normalizing constant for vMF distribution. Remark that the uniformity loss of CPC objective is
also a re-substitution entropy with vMF-KDE, but the mean directions are given by negative samples
ztj and the prior is uniform. It shows that the ProtoCPC objective allows modeling of complex
mixture of vMF distribution by exploiting prior term and using prototypes remove the dependency on
negative samples.

Prior momentum Since ProtoCPC is contrastive, it requires sufficient negatives to perform learning.
However, unlike CPC, ProtoCPC only requires prior q that accounts for the negatives. Therefore, we
use exponential moving average (EMA) on prior q for better estimation. At each iteration, we update
q by following update rule:

q(k) ← mpq
(k) + (1−mp)

1

N

N∑
j=1

p
(k)
tj , (10)

where mp > 0 is a momentum rate. The prior momentum allows better estimation of prior term
regardless of the size of negative samples.
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Figure 1: Demonstration of three distillation tasks using proposed ProtoCPC objective. (a) Compressing a
supervised model, (b) compressing a self-supervised model, (c) self-supervised learning via self-distillation. Our
method is a contrative objective with the probability distributions where it is mediated by the prototypes. The
figures of white color is training parameters while gray colors are frozen throughout the training. The dashed
lines represent the copying of parameters such as exponential moving average (EMA).

Assignment of teacher probability While KD used softmax operator for both probabilities of
teacher and student networks, many self-supervised methods (Asano et al., 2019; Caron et al., 2020)
reported that the softmax operator can lead to collapse, i.e. every representation fall into the same
one. To compromise, many prototypical self-supervised methods resort on Sinkhorn-Knopp iterative
algorithm by formulating the assignment of teacher probability as an optimal transport problem:

argmax
Pt

〈Pt, Zt〉+ τtH(Pt), s.t. Pt ∈ RN×K+ , Pt1K = 1N , P
>
t 1N =

N

K
1K , (11)

where Zt is a matrix whose rows are ztj , H(Pt) =
∑N−1
j=0

∑K
k=1−p

(k)
t log p

(k)
t is a entropy and

τt > 0 is a temperature that controls the smoothness of distribution. Then the Eq. 11 can be solved by
only few steps of Sinkhorn-Knopp iteration (Cuturi, 2013; Altschuler et al., 2017) which iteratively
projects Pt into following form:

p
(k)
tj =

βke
z
(k)
tj /τt∑K

k′=1 βk′e
z
(k′)
tj /τt

, (12)

where βk is a normalizing constant. We refer this to Sinkhorn-Knopp (SK) operator. The SK operator
allows each prototype to be non-zero, i.e. q(k) is non-zero for each k. In practice, we only conduct a
few steps of SK iterations.

2.2 APPLICATIONS OF PROTOCPC TO DISTILLATION TASKS

Fig. 1 depicts explanation on how we structure prototypical contrastive learning for three distillation
tasks we consider: supervised model compression, self-supervised model compression and self-
distillation.
Supervised model compression Given a (supervised) pre-trained teacher network fT , the goal of
supervised model compression is to train a smaller student network fS by utilizing the representational
knowledge from the teacher. To do that, Hinton et al. (2015) proposed to minimize the knowledge
distillation loss, where it is a weighted sum of the supervised loss and the distillation loss. Here,
the supervised loss is a conventional cross-entropy loss between the one-hot label and the output
of fS . The distillation loss is a cross-entropy between teacher’s probability output pt and student’s
probability output ps. Formally, it is given by following:

min
fS

E(x,y)∼(X,Y )

[
LSup(fS(x), y) + βτ2H(pt(x), ps(x))

]
, (13)

where y is a label, pt(x) and ps(x) are computed by the softmax operator on each fT (x) and fS(x)
with temperature τ > 0, and β is a balancing weight. Our approach is to replace the distillation loss
by the ProtoCPC loss and use SK operator for pt. Then our loss becomes following:

min
fS

E(x,y)∼(X,Y )

[
LSup(fS(x), y) + βτ2LProtoCPC(pt(x), ps(x))

]
. (14)
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Remark that since the supervised networks already contain prototypes at the last layer, we use
prototypes for both supervised learning and distillation at the same time. Note that CRD (Tian
et al., 2019) uses binary contrastive loss for distillation loss by maintaining a large memory buffer of
negative samples. Also, CRD requires an additional linear layer to implement inner-product critic.
However, our method conducts contrastive learning without additional training of embeddings or
storing a memory buffer of negative samples.

Self-supervised model compression Given a large self-supervised pre-trained teacher network gT ,
the goal of self-supervised model compression is to transfer the representational knowledge of gT to
a smaller self-supervised student network. Fang et al. (2021) first proposed SEED, where the student
network is trained by minimizing the cross-entropy loss between the similarity score of teacher and
student. The similarity score is computed by the pairwise computation over a memory buffer filled
with features of the teacher network.

Our approach uses prototypes to generate the probabilistic output of teacher and student represen-
tations, and use ProtoCPC loss for effective distillation. Let the pre-trained teacher network gT be
a composition of base encoder fT and the projection head hT . Then we train student network gS ,
where it is composed of smaller encoder fS and projection head hS of the same architecture as hT .
Then we append prototypes WT and WS for each gT and gS to ensure that they have the same output
of dimension K. Given a data x, we train the student network by minimizing the ProtoCPC loss
between the probability of teacher pt(x) and probability of student ps(x). For ps we use softmax
operator with temperature τs > 0 and for pt we use SK operator with temperature τt > 0 over the
batch of samples. Then the objective is given by following:

min
gS ,WS

Ex∼X
[
LProtoCPC(pt(x), ps(x))

]
. (15)

We can further use multi-crops data augmentation (Caron et al., 2020), where it augments multiple
small crops of a data during the training to expedite the training. Let x̃j ∼ M(x) be small local
crops with transformationM, then the self-supervised model compression with multi-crops is given
by following:

min
gS ,WS

Ex∼X,x̃j∼A(x)

[
LProtoCPC(pt(x), ps(x)) +

∑
j

LProtoCPC(pt(x), ps(x̃j))

]
. (16)

For prototypes of teacher network WT , we copy the parameters of WS to WT at each iteration. This
allows our method to apply to any self-supervised teacher networks. Note that if the teacher network
is trained by prototypical methods such as DINO (Caron et al., 2021) or SwAV (Caron et al., 2020),
we can re-use the pre-trained prototypes for WT . We present ablation studies on setting prototypes
for WT .

Self-distillation Additionally, we show that ProtoCPC loss can enhance the representation learn-
ing of a self-supervised model, where we interpret it as a self-distillation method. We built on
DINO (Caron et al., 2021), which is the state-of-the-art method in self-supervised learning that first
regarded the self-supervised learning as a knowledge distillation problem.

Let the student network be the composition of a base encoder fθS , we append projection head hθS
consists of MLP layers and a prototypical layer WθS . Then we set the teacher by the momentum
encoder (He et al., 2020; Chen et al., 2020b; Grill et al., 2020; Caron et al., 2021) on the student
network, where it is a composition of encoder fθT , projection head hθT , and prototype WθT . We use
EMA for the weights of teacher network, where it is update by θt → λθt + (1− λ)θs, where λ is a
momentum rate. Within the training, we generate a pair of views (x1, x2) from a data x ∼ X and
they are passed to each student and teacher networks. Then we compute ProtoCPC loss between the
probability of teacher network pt(x1) and probability of student network ps(x2), and symmetrically
between pt(x2) and ps(x1). The objectives are given by:

min
θs

Ex∼X,x1,x2∼A(x)

[
1

2
LProtoCPC

(
pt(x1), ps(x2)

)
+

1

2
LProtoCPC

(
pt(x2), ps(x1)

)]
, (17)

where A(·) is a data augmentation operator. Note that multi-crops data augmentation can be further
applied.
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3 RELATED WORK

Contrastive learning There is a large body of works on contrastive objectives for representation
learning. The contrastive objectives such as CPC (Oord et al., 2018; Song & Ermon, 2020; Bachman
et al., 2019; Hjelm et al., 2018) and multi-view data augmentation (Tian et al., 2020) are keys
for the success of contrastive representation learning. With sophisticated implementation such as
momentum encoder (He et al., 2020; Chen et al., 2020b; Grill et al., 2020), or caching negative
samples (Wu et al., 2018; Chen et al., 2020b;c) had dramatically reduced the gap between self-
supervised and supervised models. While the contrastive objectives are proven to be a lower bound
to the mutual information (Poole et al., 2019; Song & Ermon, 2020), some studies attribute that the
success of representation learning to the contrastive objective itself rather than the tightness of mutual
information estimation (Bachman et al., 2019). Then many works focus on analyzing the contrastive
objective itself (Wang & Isola, 2020) or count on the metric-learning perspective of contrastive
learning that deviates into different objectives (Grill et al., 2020; Chen & He, 2021; Zbontar et al.,
2021; Bardes et al., 2021). The key difference between many contrastive objectives and our method
is that their discrepancy measure is given by the `2-norm of two features, while our method projects
feature into a probability space and characterize the discrepancy with probabilistic measure. Our
work is also related to methods that use clustering for representation learning (Tian et al., 2017;
Zhuang et al., 2019; Li et al., 2020), which have been developed into prototypical methods (Asano
et al., 2019; Li et al., 2020; Caron et al., 2020; 2021).

Knowledge distillation The idea that transferring the large pre-trained model’s representation into
a smaller one has been embodied by knowledge distillation (Hinton et al., 2015; Buciluǎ et al., 2006).
Then various distillation criteria or utilization of intermediate feature maps were studied to enhance
the performance (Romero et al., 2014; Zagoruyko & Komodakis, 2016a; Tung & Mori, 2019; Peng
et al., 2019; Ahn et al., 2019; Park et al., 2019; Passalis & Tefas, 2018; Heo et al., 2019; Kim et al.,
2018; Yim et al., 2017; Huang & Wang, 2017). However, many of them were not able to outperform
KD by far. Recently, Tian et al. (2019) introduced contrastive representation distillation (CRD)
which utilizes binary contrastive objective for distillation loss and shows the empirical superiority on
various knowledge distillation benchmarks.

Moreover, recent studies focus on distilling the knowledge of large self-supervised models to the
smaller ones using the concept of knowledge distillation (Fang et al., 2021; Shen et al., 2021;
Noroozi et al., 2018; Chen et al., 2020a). Fang et al. (2021) proposed self-supervised representation
distillation (SEED) which used features of teacher networks to compute probability distribution for
distillation. One can interpret SEED as the prototypical method where prototypes are given by the
queue of teacher features.

4 EXPERIMENT

4.1 SUPERVISED MODEL COMPRESSION

Setup We experiment on CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al.,
2009) with various teacher-student combinations such as ResNet (He et al., 2016) and Wide
ResNet (WRN) (Zagoruyko & Komodakis, 2016b). We compare with various distillation base-
lines such as KD (Hinton et al., 2015) and CRD (Tian et al., 2019).

Results on CIFAR-100 Table 1 and Table 2 compare top-1 accuracies of our method on super-
vised model compression on CIFAR-100. Table 1 investigates teachers and students of the same
architectural style, while Table 2 is focused on students and teachers from different architectures. We
observe that our ProtoCPC consistently outperforms KD and other distillation methods, yet ProtoCPC
is on par with CRD where it also uses a contrastive learning method for distillation. Remark that
CRD requires a large memory buffer of negative samples with careful sampling according to the class
information and additional training of embeddings. However, our ProtoCPC does not require massive
negative samples and additional training of linear embeddings since we use the last linear layer as
prototypes for our ProtoCPC.
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Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet 73.58 (↓) 72.24 (↓) 69.21 (↓) 68.99 (↓) 71.06 (↓) 73.50 (↑) 71.02 (↓)
AT 74.08 (↓) 72.77 (↓) 70.55 (↓) 70.22 (↓) 72.31 (↓) 73.44 (↑) 71.43 (↓)
SP 73.83 (↓) 72.43 (↓) 69.67 (↓) 70.04 (↓) 72.69 (↓) 72.94 (↓) 72.68 (↓)
CC 73.56 (↓) 72.21 (↓) 69.63 (↓) 69.48 (↓) 71.48 (↓) 72.97 (↓) 70.71 (↓)
VID 74.11 (↓) 73.30 (↓) 70.38 (↓) 70.16 (↓) 72.61 (↓) 73.09 (↓) 71.23 (↓)
RKD 73.35 (↓) 72.22 (↓) 69.61 (↓) 69.25 (↓) 71.82 (↓) 71.90 (↓) 71.48 (↓)
PKT 74.54 (↓) 73.45 (↓) 70.34 (↓) 70.25 (↓) 72.61 (↓) 73.64 (↑) 72.88 (↓)
AB 72.50 (↓) 72.38 (↓) 69.47 (↓) 69.53 (↓) 70.98 (↓) 73.17 (↓) 70.94 (↓)
FT 73.25 (↓) 71.59 (↓) 69.84 (↓) 70.22 (↓) 72.37 (↓) 72.86 (↓) 70.58 (↓)
FSP 72.91 (↓) n/a 69.95 (↓) 70.11 (↓) 71.89 (↓) 72.62 (↓) 70.23 (↓)
NST 73.68 (↓) 72.24 (↓) 69.60 (↓) 69.53 (↓) 71.96 (↓) 73.30 (↓) 71.53 (↓)
CRD 75.48 (↑) 74.14 (↑) 71.16 (↑) 71.46 (↑) 73.48 (↑) 75.51 (↑) 73.94 (↑)
ProtoCPC 75.79 (↑) 74.23 (↑) 71.41 (↑) 71.04 (↑) 73.55 (↑) 75.02 (↑) 73.79 (↑)
KD+CRD 75.64 (↑) 74.38 (↑) 71.63 (↑) 71.56 (↑) 73.75 (↑) 75.46 (↑) 74.29 (↑)
ProtoCPC+CRD 75.92 (↑) 74.75 (↑) 70.99 (↑) 71.47 (↑) 73.52 (↑) 75.55 (↑) 74.40 (↑)

Table 1: Top-1 test accuracy (%) of student networks on CIFAR-100 with various distillation methods (our
method denoted by ProtoCPC). (↑) denotes outperformance over KD and bold font denotes the best accuracy
within the baseline. Note that ProtoCPC always outperform KD as well as other baselines except CRD. Our
ProtoCPC outperforms CRD in 4 out of 7 benchmarks. We also provide results on combining ProtoCPC and
CRD, showing that our method is compatible with CRD as they learn different structure. The results are averaged
over 5 runs.

Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
ShuffleNetV1

resnet32x4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.6 64.6 70.36 70.5 71.82 70.5

KD 67.37 67.35 73.81 74.07 74.45 74.83
FitNet 64.14 (↓) 63.16 (↓) 70.69 (↓) 73.59 (↓) 73.54 (↓) 73.73 (↓)
AT 59.40 (↓) 58.58 (↓) 71.84 (↓) 71.73 (↓) 72.73 (↓) 73.32 (↓)
SP 66.30 (↓) 68.08 (↑) 73.34 (↓) 73.48 (↓) 74.56 (↑) 74.52 (↓)
CC 64.86 (↓) 65.43 (↓) 70.25 (↓) 71.14 (↓) 71.29 (↓) 71.38 (↓)
VID 65.56 (↓) 67.57 (↑) 70.30 (↓) 73.38 (↓) 73.40 (↓) 73.61 (↓)
RKD 64.52 (↓) 64.43 (↓) 71.50 (↓) 72.28 (↓) 73.21 (↓) 72.21 (↓)
PKT 67.13 (↓) 66.52 (↓) 73.01 (↓) 74.10 (↑) 74.69 (↑) 73.89 (↓)
AB 66.06 (↓) 67.20 (↓) 70.65 (↓) 73.55 (↓) 74.31 (↓) 73.34 (↓)
FT 61.78 (↓) 60.99 (↓) 70.29 (↓) 71.75 (↓) 72.50 (↓) 72.03 (↓)
NST 58.16 (↓) 64.96 (↓) 71.28 (↓) 74.12 (↑) 74.68 (↑) 74.89 (↑)
CRD 69.73 (↑) 69.11 (↑) 74.30 (↑) 75.11 (↑) 75.65 (↑) 76.05 (↑)
ProtoCPC 69.09 (↑) 69.50 (↑) 74.32 (↑) 75.24 (↑) 76.50 (↑) 76.28 (↑)
KD+CRD 69.94 (↑) 69.54 (↑) 74.58 (↑) 75.12 (↑) 76.05 (↑) 76.27 (↑)
ProtoCPC+CRD 69.77 (↑) 70.79 (↑) 74.95 (↑) 76.01 (↑) 76.27 (↑) 76.82 (↑)

Table 2: Top-1 test accuracy(%) of student networks on CIFAR-100 of a various distillation methods (ours is
ProtoCPC) for transfer across very different teacher and student architectures. ProtoCPC outperforms KD and
all other methods except CRD. Our method outperforms CRD on 4 out of 6 benchmarks. We also observe that
combining ProtoCPC and CRD boosts the performance significantly. Average over 3 runs.

Results on ImageNet In Table 3, we compare our ProtoCPC to different distillation methods such
as AT (Zagoruyko & Komodakis, 2016a) and Online-KD (Lan et al., 2018) on ImageNet, where
pre-trained ResNet-34 is used for teacher and ResNet-18 is a student. We observe that ProtoCPC
outperforms various knowledge distillation baselines such as KD, and is slightly better than CRD.
Remark that our method is simpler in its implementation and shows better performance than CRD.
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Teacher Student AT KD SP CC Online KD CRD ProtoCPC

Top-1 26.69 30.25 29.30 29.34 29.38 30.04 29.45 28.83 28.54
Top-5 8.58 10.93 10.00 10.12 10.20 10.83 10.41 9.87 9.49

Table 3: Top-1 and Top-5 error rates (%) of student network ResNet-18 on ImageNet validation set. For fair
comparison, we use same setting as in Tian et al. (2019). We compare our ProtoCPC with KD (Hinton et al.,
2015), AT (Zagoruyko & Komodakis, 2016a), SP (Tung & Mori, 2019), CC (Peng et al., 2019), Online KD (Lan
et al., 2018), and CRD (Tian et al., 2019).

4.2 SELF-SUPERVISED MODEL COMPRESSION

Setup We experiment distillation of various self-supervised networks to ResNet-18 (He et al.,
2016) on ImageNet (Deng et al., 2009) without class labels. We consider following self-supervised
teacher networks: MoCo-v2 (Chen et al., 2020b) pre-trained ResNet-50, SwAV (Caron et al., 2020)
pre-trained ResNet-50 and DINO (Caron et al., 2021) pre-trained ResNet-50 and vision trans-
former (Dosovitskiy et al., 2020). We train for 100 epochs and we additionally conduct experiments
on using multi-crops data augmentation for SwAV and DINO pre-trained ResNet-50 networks. For
evaluation, we follow linear evaluation protocol which conducts supervised learning on the linear
layer appended at the top of the frozen feature and k-nearest neighbor classification (k-NN).

Main results Table 4 show the main results of our self-supervised model compression compared to
self-supervised learning (SSL) of itself. We observe that ProtoCPC outperforms SSL with a large
margin, especially showing superior performance in k-NN classification. Note that our method works
well for various self-supervised teacher networks and even works well when the teacher and student
networks are of different architectures (vision transformer teacher to ResNet student).

MoCo ResNet-50 SwAV ResNet-50 DINO ResNet-50 DINO DeiT-S/16

Linear k-NN Linear k-NN Linear k-NN Linear k-NN

Teacher 71.1 61.9 75.3 65.7 75.3 67.5 77.0 74.3

Supervised 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5
SSL 52.5 36.7 57.5 48.2 58.2 50.3 58.2 50.3
ProtoCPC 61.1 55.6 63.1 57.7 63.5 60.3 65.5 63.2

Table 4: Main result of our ProtoCPC on distillation of various self-supervised teacher models to ResNet-18.
The teacher models are MoCo (Chen et al., 2020b) ResNet-50, SwAV (Caron et al., 2020) ResNet-50 and
DINO (Caron et al., 2021) ResNet-50 and DeiT small with patch size 16. The self-supervised denotes the result
of self-supervised learning on ResNet-18 with the same method of teacher network.

Teacher Method Epochs Linear k-NN

MoCo SEED 200 60.5 49.1
ProtoCPC 100 61.1 55.6

SwAV

SEED 100 61.1 -
SEED 200∗ 62.6 -
ProtoCPC 100 63.1 57.7
ProtoCPC 100∗ 63.9 57.0

DINO ProtoCPC 100 63.5 60.3
ProtoCPC 100∗ 65.3 60.7

Table 5: Comparison of our method with SEED. ∗ de-
notes training with multi-crops. Every teacher networks
are ResNet-50 and student networks are ResNet-18.

Comparison with SEED Table 5 compares
our method with SEED (Fang et al., 2021), an
original method for self-supervised model com-
pression. We observe that our method consis-
tently outperforms SEED in both k-NN and lin-
ear evaluation with the same teacher network
applied. Although training for shorter epochs,
our method achieves outperforms SEED. When
the teacher is pre-trained by SwAV, our method
outperforms SEED without using multi-crops
data augmentation, and the gap becomes larger
when we use multi-crops as well. When using
DINO self-supervised teacher and multi-crops
data augmentation, we achieve the best results
in representation learning of ResNet-18.

4.3 SELF-DISTILLATION

Setup We evaluate our ProtoCPC objective in self-supervised learning, where we cast it as a self-
distillation. We follow DINO (Caron et al., 2021) for experimental procedures, where the teacher
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network is set by the momentum encoder, and linear prototypes are attached to the features to distill
the knowledge.

Architecture Method Linear k-NN

ResNet-50 DINO 70.9 62.3
ProtoCPC 71.8(+0.9) 63.7(+1.4)

DeiT-S/16 DINO 74.0 69.3
ProtoCPC 75.0(+1.0) 70.6(+1.3)

Table 6: Results of representation learning trained by
DINO (Caron et al., 2021) and ProtoCPC (ours). All
experiments are run by ours with 100 epochs.

mp 0.0 0.9 0.99

Linear 73.4 75.0 74.5
k-NN 69.6 70.6 70.5

Table 7: Ablations on ProtoCPC loss with prior momen-
tum rate mp on DeiT-S/16 trained for 100 epochs.

We change the loss function from cross-entropy
loss to ProtoCPC loss without any adjustment
in other settings. We use a prior momentum
rate of 0.9 for ProtoCPC loss. We evaluate on
both ResNet-50 and DeiT-S/16, where DINO
performs well on both architectures. For evalu-
ation, we report the results of linear evaluation
protocol and k-nn classification.

Results Table 6 compare the performance
of representation learning of our method and
DINO. We observe that ProtoCPC enhances the
performance of representation learning without
the adjustment of hyper-parameters. Also, in
Table 7, we demonstrate the effect of prior mo-
mentum rate mp and observe that non-zero mp

results in better representation learning.

4.4 ABLATION STUDY

Cross-entropy v.s. ProtoCPC and Softmax v.s. Sinkhorn-Knopp The original KD is imple-
mented by cross-entropy loss between the softmax output of the teacher and student network. Our
method uses ProtoCPC loss and SK operator for teacher network. We provide ablation studies on the
choice of the loss function and probability assignment operator on the subset of supervised model
compression tasks. In Table 8, we observe that using the SK operator boosts the performance of KD,
and using ProtoCPC loss further enhances the performance.

Teacher’s prototypes for self-supervised model compression For prototypical self-supervised
teachers, one can use the pre-trained prototypes for distillation. We present an ablation between using
pre-trained prototypes and copying student’s prototypes for teachers. Table 9 show the results on
distillation from SwAV ResNet-50 and DINO ResNet-50 teachers. We observe that when distilling
from SwAV teacher, using pre-trained prototypes performs better, while distilling from DINO teacher,
copying from student’s prototypes performs better. We suspect that as SwAV used single prototypes
throughout pre-training, the pre-trained prototypes contain representational knowledge. On the other
hand, the pre-trained prototypes of DINO lack such representational knowledge.

Loss pt
WRN-40-2
WRN-16-2

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

CE SM 74.92 70.67 73.08 73.33 72.98
SK 75.20 71.06 72.97 73.78 73.31

ProtoCPC SM 75.36 71.08 73.38 74.84 73.66
SK 75.79 71.04 73.55 75.02 73.79

Table 8: Ablation study of losses and assignments of pt on super-
vised model compression on CIFAR-100. We compare ProtoCPC
and cross-entropy (CE), and Sinkhorn-Knopp (SK) operator and
softmax (SM) operator. Average over 5 runs.

Teacher Method Linear k-NN

SwAV New P 60.8 54.5
Old P 63.1 57.7

DINO New P 63.5 60.2
Old P 60.3 56.6

Table 9: Ablation of setting teacher’s pro-
totypes for self-supervised model compres-
sion on ResNet-18. New P denotes copy-
ing student’s prototype and Old P denotes
using pre-trained prototypes.

5 CONCLUSION

In this paper, we propose prototypical contrastive predictive coding, a simple yet effective method
for the distillation of a network by combining the prototypical method and contrastive learning. Our
experiments show the effectiveness of our objective on various applications such as supervised/
self-supervised model compression and self-supervised learning by self-distillation.
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A DETAILS IN EXPERIMENTS

A.1 PSEUDOCODE FOR PROTOCPC LOSS

The PyTorch style pseudo-code for our ProtoCPC is demonstrated in Algorithm 1.

Algorithm 1 ProtoCPC loss PyTorch-style pseudocode.

# tps, tpt: student and teacher temperatures
# m: prior momentum rate
prior = torch.ones(1, K) # initialize prior with uniform
def ProtoCPC(zt, zs):

zt = zt.detach()
pt = SK(zt / tpt)
zs = zs / tps

prior = m*prior + (1-m)* K * torch.mean(pt, dim=0) # sum of prior is always K

loss_align = -torch.sum(pt * zs, dim=1)
loss_unif = torch.logsumexp(zs + torch.log(prior), 1)
loss = loss_align + loss_unif
return loss.mean()

A.2 SUPERVISED MODEL COMPRESSION

Many of followings are borrowed from CRD (Tian et al., 2019).

A.2.1 OTHER METHODS

We compare to the following other state-of-the-art methods from the literature:

1. Knowledge Distillation (KD) (Hinton et al., 2015)
2. Fitnets: Hints for thin deep nets (Romero et al., 2014)
3. Attention Transfer (AT) (Zagoruyko & Komodakis, 2016a)
4. Similarity-Preserving Knowledge Distillation (SP) (Tung & Mori, 2019);
5. Correlation Congruence (CC) (Peng et al., 2019)
6. Variational information distillation for knowledge transfer (VID) (Ahn et al., 2019)
7. Relational Knowledge Distillation (RKD) (Park et al., 2019)
8. Learning deep representations with probabilistic knowledge transfer (PKT) (Passalis &

Tefas, 2018)
9. Knowledge transfer via distillation of activation boundaries formed by hidden neurons (AB)

(Heo et al., 2019)
10. Paraphrasing complex network: Network compression via factor transfer (FT) (Kim et al.,

2018)
11. A gift from knowledge distillation: Fast optimization, network minimization and transfer

learning (FSP) (Yim et al., 2017)
12. Like what you like: Knowledge distill via neuron selectivity transfer (NST) (Huang & Wang,

2017)
13. Contrastive representation distillation (CRD) (Tian et al., 2019)

A.2.2 NETWORK ARCHITECTURES

• Wide Residual Network (WRN) (Zagoruyko & Komodakis, 2016b). WRN-d-w represnets
wide resnet with depth d and width factor w.

• resnet (He et al., 2016). We use resnet-d to represent cifar-style resnet with 3 groups of
basic blocks, each with 16, 32, and 64 channels respectively. In our experiments, resnet8 x4
and resnet32 x4 indicate a 4 times wider network (namely, with 64, 128, and 256 channels
for each of the block)
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• ResNet (He et al., 2016). ResNet-d represents ImageNet-style ResNet with Bottleneck
blocks and more channels.

• MobileNetV2 Sandler et al. (2018). In our experiments, we use a width multiplier of 0.5.
• vgg (Simonyan & Zisserman, 2014). the vgg net used in our experiments are adapted from

its original ImageNet counterpart.
• ShuffleNetV1 (Zhang et al., 2018), ShuffleNetV2 (Ma et al., 2018). ShuffleNets are proposed

for efficient training and we adapt them to input of size 32x32.

A.2.3 IMPLEMENTATION DETAILS

All methods evaluated in our experiments use SGD.

• For CIFAR-100, we initialize the learning rate as 0.05, and decay it by 0.1 every 30 epochs
after the first 150 epochs until the last 240 epoch. For MobileNetV2, ShuffleNetV1 and
ShuffleNetV2, we use a learning rate of 0.01 as this learning rate is optimal for these models
in a grid search, while 0.05 is optimal for other models.

• For ImageNet, we follow the standard PyTorch practice but train for 10 more epochs. Batch
size is 64 for CIFAR-100 or 256 for ImageNet.

The student is trained by a combination of cross-entropy classification objective and a knowledge
distillation objective, shown as follows:

L = αLsup + βLdistill (18)

For the weight balance factor β, we directly use the optimal value from the original paper if it is
specified, or do a grid search with teacher WRN-40-2 and student WRN-16-2. This results in the
following list of β used for different objectives:

1. KD (Hinton et al., 2015): α = 0.1, β = 0.9 and T = 4

2. Fitnets (Romero et al., 2014): α = 1, β = 100

3. AT (Zagoruyko & Komodakis, 2016a): α = 1, β = 1000

4. SP (Tung & Mori, 2019): α = 1, β = 3000

5. CC (Peng et al., 2019): α = 1, β = 0.02

6. VID (Ahn et al., 2019): α = 1, β = 1

7. RKD (Park et al., 2019): α = 1, β1 = 25 for distance and β2 = 50 for angle. For this loss,
we combine both term following the original paper.

8. PKT (Passalis & Tefas, 2018): α = 1, β = 30000

9. AB (Heo et al., 2019): β = 0, distillation happens in a separate pre-training stage where
only distillation objective applies.

10. FT (Kim et al., 2018): α = 1, β = 500

11. FSP (Yim et al., 2017): β = 0, distillation happens in a separate pre-training stage where
only distillation objective applies.

12. NST (Huang & Wang, 2017): α = 1, β = 50

13. CRD (Tian et al., 2019): α = 1, β = 0.8

Similar to KD, our ProtoCPC used α = 1, β = 1.75 and temperature T = 4. For ablation study in
Table 8, we used α = 0.1, β = 0.9 for CE losses and α = 1, β = 1.75 for ProtoCPC losses.

A.3 SELF-SUPERVISED MODEL COMPRESSION

A.3.1 PRE-TRAINED TEACHERS

• MoCo-v2 (Chen et al., 2020b) uses InfoNCE loss and momentum encoder. Since InfoNCE
requires large negatives, they pertain a large queue which updates by first-in-first-out rule
with features of momentum encoder. We used the MoCo-v2 ResNet-50 (He et al., 2016)
trained for 800 epochs.

14



Published as a conference paper at ICLR 2022

• SwAV (Caron et al., 2020) is a prototypical method that generates probability by adopting
prototypes. They generate probability of a given feature by computing similarity with
respect to prototypes and minimize the cross-entropy between probability outputs of two
different views of an image. They used Sinkhorn-Knopp iteration for probability output.
Also, they first proposed multi-crops strategy, which additionally use small crops of an
image to expedite the training. We used the SwAV ResNet-50 trained for 800 epochs with
multi-crops applied.

• DINO (Caron et al., 2021) is a prototypical method which uses momentum encoder. The
training progress is similar to SwAV except that they use momentum encoder on the
prototypes and use online centering before the softmax operator. They showed that their
method is effective in training vision transformer as well as convnet such as ResNet-50. We
used the DINO ResNet-50 and DeiT-S/16 (Dosovitskiy et al., 2020) trained for 800 epochs
with multi-crops applied.

We archive the checkpoints of teacher models from the author’s original implementation.

For each method, we also conduct self-supervised learning on ResNet-18 for fair comparison. We
used same hyper-parameters that were used to train ResNet-50 except that we trained for 100 epochs.
In Table 4, we report the results of self-supervised learning on ResNet-18.

A.3.2 NETWORK ARCHITECTURES

We set the projection heads of student network to be same as the teacher network. When teacher is
DINO DeiT, the teacher network do not contain batch normalization, but we add batch normalization
to projection heads when training ResNet-18 student. Remark that the projection heads of MoCo
and SwAV have output dimension of 128, and the projection head of DINO has output of 256. Then
we set the number of prototypes to be K = 65536 throughout the experiments. For SwAV, since we
use pre-trained prototypes, the number of prototypes is 3000. Every features are normalized before
computation with prototypes, and prototypes are normalized during the training.

A.3.3 TRAINING HYPERPARAMETERS

For probability of teacher, we use SK operator with 3 steps of iteration and τt = 0.04. For probability
of student, we set τs = 0.1. The prior momentum for ProtoCPC loss is 0.9. We use SGD optimizer
with batch size 512 and weight decay is 1e-4. The learning rate is 0.6 and is decayed by cosine
learning rate schedule to 1e-6.

A.3.4 EVALUATION

For evaluation, we use both linear evaluation protocol and k-nearest neighbor classification. For
linear evaluation protocol, we freeze the trained weight and train a linear classifier at the top of the
frozen feature. We train with SGD optimizer with batch size 256 and use learning rate of 0.3 with
100 epochs. We use cosine learning rate decay schedule and we don’t use weight decay. For k-NN
classification, we follow weighted k-NN with τ = 0.07 as done in (Wu et al., 2018).

A.4 SELF-DISTILLATION

Most of our implementation is borrowed from DINO (Caron et al., 2021). For self-distillation
experiments, we only changed cross-entropy loss to ProtoCPC loss. Detailed hyper-parameters are
following:

• ResNet-50: we used 2 layers MLP projection head with output dimension 65536. We trained
for 100 epochs with 2x224 + 6x96 multi-crops, batch size 512, learning rate 0.6 with cosine
annealing schedule, weight decay 1e-4, teacher temperature τt = 0.04, student temperature
τs = 0.1, prior momentum mp=0.9.

• DeiT-S/16: we used 3 layers MLP projection head with output dimension 65536. We trained
for 100 epochs with 2x224 + 8x96 multi-crops, batch size 512, learning rate 0.001 with
cosine annealing schedule, weight decay 1e-4, teacher temperature τt = 0.04, student
temperature τs = 0.1, prior momentum mp=0.9.
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