
A Comparison of Abstraction Heuristics for Rubik’s Cube

Clemens Büchner1, Patrick Ferber1,2, Jendrik Seipp3, Malte Helmert1

1University of Basel, Switzerland
2Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

3Linköping University, Sweden
{clemens.buechner, patrick.ferber, malte.helmert}@unibas.ch, jendrik.seipp@liu.se

Abstract

Since its invention in 1974, the Rubik’s Cube puzzle fasci-
nates people of all ages. Its rules are simple: the player gets
a scrambled cube and rotates the six faces until each face
contains only stickers of one color. Nevertheless, finding a
short sequence of rotations to solve the cube is hard. We
present the first model of Rubik’s Cube for general problem
solvers. To obtain a concise model, we require conditional ef-
fects. Furthermore, we extend counterexample-guided Carte-
sian abstraction refinement (CEGAR) to support factored ef-
fect tasks, a class of planning tasks with a specific kind of
conditional effects which includes Rubik’s Cube. Finally, we
evaluate how newer types of abstraction heuristics compare
against pattern database (PDB) heuristics, the state-of-the-art
for solving Rubik’s Cube. We find that PDBs still outper-
form the more general Cartesian and merge-and-shrink ab-
stractions. However, in contrast to PDBs, Cartesian abstrac-
tions yield perfect heuristics up to a certain problem difficulty.
These findings raise interesting questions for future research.

Introduction
In classical planning, we aim to find (short) paths in large,
deterministic transition systems. In general, this means that
we search for a sequence of actions leading from the initial
state of the problem to a state which satisfies some goal con-
dition. Rubik’s Cube is a difficult classical planning problem
which also enjoys prominence in the general public. The tra-
ditional Rubik’s Cube consists of 27 small cubes called cu-
bies colored differently on each face. The cubies are stacked
in the shape of a larger 3 × 3 × 3 cube. In every dimension
(horizontal, vertical, and depth), the cube has 3 layers which
can be rotated independently. Rotating a layer changes the
colors on the faces of Rubik’s Cube. Given an arbitrarily ro-
tated Rubik’s Cube with colors scrambled all over its faces,
the goal is to find a sequence of rotations which brings all
faces to show a single color only.

Rubik’s Cube has approximately 4.3 · 1019 reachable
states; too many to find solutions using blind search. To
solve such hard classical planning tasks, heuristic search has
proven a very successful method (e.g., Bonet and Geffner
2001; Hoffmann and Nebel 2001; Helmert and Domsh-
lak 2009; Richter and Westphal 2010; Helmert et al. 2014;
Domshlak, Hoffmann, and Katz 2015). A heuristic is a func-
tion that estimates the cost from a given state to the closest

?

Figure 1: The classic 3× 3× 3 Rubik’s Cube, scrambled on
the left and solved on the right.

goal state. In the case of Rubik’s Cube, the cost to the goal is
the number of rotations required to reach the goal. The guid-
ance of a good heuristic helps the search to focus on states
that are likely part of a shortest solution.

One family of heuristics are abstraction heuristics (Seipp
and Helmert 2018). An abstraction is an equivalence relation
between states. The states of the original problem within the
same equivalence class are mapped to a single abstract state.
Each transition in the original problem induces a transition
between the corresponding abstract states in the abstrac-
tion. Since the abstract problem generally has fewer states
but preserves transitions between concrete states, it is easier
to solve than the original problem. Moreover, the cost of a
shortest path between two concrete states is lower-bounded
by the cost of a shortest path between the corresponding ab-
stract states. Abstraction heuristics therefore use the abstract
goal distance as an admissible estimate of the goal distance
in the original problem.

The state-of-the-art for finding optimal solutions for Ru-
bik’s Cube are pattern database (PDB) heuristics (Korf
1997; Culberson and Schaeffer 1998). PDBs are abstraction
heuristics and were developed in the 90’s. Since then, do-
main abstractions (Hernádvölgyi and Holte 2000), Carte-
sian abstractions (Seipp and Helmert 2018), and merge-and-
shrink (M&S) abstractions (Sievers and Helmert 2021) have
been introduced to classical planning. These methods dif-
fer in the way they map states to abstract states and can
be ordered by increasing generality: PDBs, domain abstrac-
tions, Cartesian abstractions, and M&S abstractions. This
raises the question how the more general abstractions com-
pare against the less general PDBs for Rubik’s Cube.

Our contribution is three-fold. First, we show how Carte-
sian abstractions can be generated for factored effect tasks, a
class of planning tasks where all operators exclusively have



conditional effects which are conditioned only on the vari-
able they change. Second, we model Rubik’s Cube in finite-
domain representation (Helmert 2009). This enables us to
use common general problem solvers on Rubik’s Cube. To
avoid the enormous number of ground operators in this prob-
lem, our model requires conditional effects which are the
reason for the generalization of Cartesian CEGAR in the first
place. Third, we compare the different abstraction heuristics
against one another on Rubik’s Cube tasks. We leave out do-
main abstractions in this analysis because we are not aware
of any techniques to generate them in a principled way.

Our experimental evaluation reveals that PDBs are still
the strongest technique for finding optimal solutions for Ru-
bik’s Cube, even though we are unable to use Korf’s (1997)
large patterns. Among all compared heuristics, the PDB
heuristic based on our adaption of Korf’s patterns still solves
the most problems from our newly generated Rubik’s Cube
benchmarks. The heuristic accuracy, however, is surpassed
by our adaption of the CEGAR algorithm for generating
Cartesian abstractions (Seipp and Helmert 2018). M&S ab-
stractions are the least successful for Rubik’s Cube accord-
ing to our findings. This is counter-intuitive, as one might
expect that the more general abstraction classes should re-
sult in better problem solvers. We discuss why this might
not be the case for our case study of Rubik’s Cube towards
the end of the paper.

Background
Classical Planning We consider classical planning tasks
in finite-domain representation (Helmert 2009), an exten-
sion of the SAS+ formalism (Bäckström and Nebel 1995)
with conditional effects. A planning task is a 4-tuple Π =
〈V,O, sI , s?〉. V is a finite set of variables. Each variable
V ∈ V has a finite domain dom(V ). We call a variable-
value assignment V 7→ v with V ∈ V and v ∈ dom(V ) an
atom. A partial state s is a function over a set of variables
vars(s) ⊆ V and assigns each variable V ∈ vars(s) a value
v = s[V ] ∈ dom(V ). A partial state s where vars(s) = V
is a state. S(Π) is the set of all states of Π. We sometimes
treat (partial) states as sets of atoms. O is a finite set of op-
erators. Each operator o ∈ O has a precondition pre(o)
which is a partial state, a finite set of effects eff(o), and a
cost cost(o) ∈ R+

0 . Each effect is a triple 〈c, V, v〉 where c
is a partial, possibly empty, state called the effect condition,
V ∈ V is a variable, and v ∈ dom(V ) is the new value for
V . An operator o is applicable in state s iff pre(o) ⊆ s. Ap-
plying an applicable operator o in state s, called progression
and written as sJoK, leads to a successor state s′. For each
variable V ∈ V , s′[V ] is defined as

s′[V ] = sJoK[V ] =

{
v if ∃〈c, V, v〉 ∈ eff(o) : c ⊆ s
s[V ] otherwise.

(1)
This definition assumes that effects are conflict-free, i.e., it
is never ambiguous which value is assigned to a variable.
More formally, for each state s and each applicable operator
o, there are no tuples 〈c1, V, v1〉, 〈c2, V, v2〉 ∈ eff(o) with
c1 ⊆ s and c2 ⊆ s and v1 6= v2. Finally, sI ∈ S(Π) is the
initial state and s? is a partial state called the goal.

We also need the notion of regression. While progres-
sion provides for a state s and an operator o the successor
state sJoK = s′, regression provides for a state s′ and an
operator o the set of predecessor states regr(s′, o) such that
s ∈ regr(s′, o) iff sJoK = s′.

An operator sequence π = 〈o1, . . . , on〉 is applicable
in a state s0 if every operator oi is applicable in si−1 and
si = si−1JoiK in turn. We write sJπK to denote the final
state that results from applying π in s. The cost of an oper-
ator sequence π is the sum of the costs of its operators, i.e.,
cost(π) =

∑n
i=1 cost(oi). We call an operator sequence π

a plan if it is applicable in sI and sIJπK ⊇ s?. A plan π is
optimal if its cost is minimal among all plans.

A transition system T = 〈S,L, T, sI , S?〉 is an edge-
labeled, directed graph with nodes S, transition labels
L, transitions T ⊆ S × L × S, initial node sI ∈
S, and goal nodes S? ⊆ S. Every planning task
Π = 〈V,O, sI , s?〉 induces a transition system T (Π) =
〈S(Π),O, T (Π), sI , {s ∈ S(Π) | s? ⊆ s}〉 where T (Π) =
{〈s, o, s′〉 | s, s′ ∈ S(Π), o ∈ O, pre(o) ⊆ s, s′ = sJoK}.

An (optimal) plan for Π corresponds to a (shortest) path
from sI to its closest goal node in T (Π) and vice versa. Most
algorithms today use progression to find (shortest) paths in
T (Π). One such algorithm is A∗ (Hart, Nilsson, and Raphael
1968) which systematically explores the transition system
and uses a heuristic function to estimate the cost to reach the
goal for each node. A∗ in particular comes with the guaran-
tee that if the heuristic is admissible, i.e., it never overesti-
mates the cost to the goal, then the path it finds is optimal.

Abstractions Let T = 〈S,L, T, sI , S?〉 be a transition
system. An abstraction α : S → Sα maps the states of
T to a set of abstract states Sα. The induced transition sys-
tem is T α = 〈Sα,L, Tα, α(sI), {α(s) | s ∈ S?}〉 where
Tα = {〈α(s), o, α(s′)〉 | 〈s, o, s′〉 ∈ T}. By construction,
every path in T is a path in T α. Consequently, the length
of a shortest path between state α(s) and α(s′) in T α is a
lower bound on the length of a shortest path between state s
and s′ in T . Thus, the abstract goal distance for a given state
is an admissible estimate of the true goal distance.

There are three common abstraction heuristics: pattern
databases (PDBs), Cartesian abstraction heuristics, and
merge-and-shrink (M&S) heuristics.

PDBs are based on projections. The projection φP (s) of a
(partial) state s onto a set of variablesP ⊆ V (called pattern)
is {V 7→ v | (V 7→ v) ∈ s, V ∈ P}. φP is an abstraction
and induces an abstract transition system T φP . For every ab-
stract state of T φP , a PDB calculates and stores its distance
to the goal. When queried for a state s, the PDB returns the
stored value for φP (s).

Cartesian abstractions are a generalization of PDBs. Let
V = {V1, . . . , Vn} be the set of variables andAi ⊆ dom(Vi)
be subsets of their domains. Then A = A1 × · · · × An
is a Cartesian set which represents the states {s ∈ S(Π) |
s[Vi] ∈ Ai}. We define A[Vi] = Ai. An abstraction is called
Cartesian if all its abstract states are Cartesian sets.

Cartesian abstractions can be obtained by using
counterexample-guided Cartesian abstraction refine-
ment (CEGAR, Seipp and Helmert 2018). CEGAR starts



with an abstract transition system T α with a single abstract
state. Afterwards, it iteratively generates a plan πα for T α,
executes πα on the original task until it finds a flaw, and then
refines T α by splitting the abstract state where πα failed
such that the flaw does not occur in future iterations. This
refinement loop repeats until some stopping criterion (e.g.,
timeout) is reached. The final abstract transition system is
used as heuristic like in the PDB setting. If at any point no
plan exists, then T α is unsolvable and so is the original
task. If at any point there is no flaw, then the plan is also a
solution to the original task. For a transition 〈A, o,B〉 ∈ πα
and the concrete state s, there are two kinds of flaws: (1)
o is not applicable in s and (2) sJoK 6∈ B. To refine the
latter flaw, we require the regression of an operator and an
abstract state, i.e., a set of abstract states regr(B, o) from
which we reach B via the operator o. For more information
regarding the refinement, we refer the reader to Seipp and
Helmert (2018).

M&S (Sievers and Helmert 2021) produces even more
general abstractions. The algorithm starts with a pool of ab-
stract transition systems. Initially, this pool contains for ev-
ery variable V ∈ V the abstract transition system T π{V } of
the projection π{V }. M&S iteratively merges two transition
systems T 1 and T 2 from the pool by replacing them with
their cross product T ⊗. If necessary, T ⊗ is shrunk by com-
bining some of its states to reduce the memory footprint.
These steps are repeated until exactly one abstract transition
system is left in the pool. As for PDBs, the perfect heuristic
is calculated and stored for every state s of the final abstract
transition system and used as heuristic for the state of the
original transition system.

Cartesian Abstraction Refinement for
Factored Effect Tasks

Seipp and Helmert (2018) introduced counterexample-
guided Cartesian abstraction refinement (CEGAR) for clas-
sical planning. Their theory is limited to planning tasks with-
out conditional effects, i.e., they require c = ∅ for all effects
〈c, V, v〉 ∈ eff(o) for all operators o ∈ O. In this section, we
extend this theory to a more general kind of planning tasks
that we call factored effect tasks.

Factored Effect Tasks
The structure of our planning task model for Rubik’s Cube
(see next section) has a distinctive characteristic: every ef-
fect is conditioned only on the variable it changes. Besides
Rubik’s Cube, this characteristic is useful to model other
permutation problems such as the 15-puzzle, the pancake
problem, genome rearrangement, and more. We define fac-
tored effect tasks to describe arbitrary planning tasks with
this characteristic as follows.
Definition 1. Factored Effect Operator.
An operator o ∈ O is a factored effect operator if every
effect e ∈ eff(o) is a triple e = 〈{V 7→ v}, V, v′〉 for some
v, v′ ∈ dom(V ) with v 6= v′. We abbreviate the notation to
e = 〈V, v, v′〉.

We write vars(eff(o)) = {V | 〈V, v, v′〉 ∈ eff(o)} to de-
note all variables affected by o. Furthermore, we require

that all factored effect operators o satisfy v1 6= v2 for
all pairs 〈V, v1, v′1〉, 〈V, v2, v′2〉 ∈ eff(o) affecting the same
variable V for all V ∈ V , which guarantees that o is
conflict-free.
Definition 2. Factored Effect Task.
A factored effect task is a planning task Π = 〈V,O, sI , s?〉
where all o ∈ O are factored effect operators.

Cartesian CEGAR
There are two obstacles to using the original Cartesian CE-
GAR procedure (Seipp and Helmert 2018) in the presence
of general conditional effects: (1) The regression of a Carte-
sian set with respect to an operator with conditional effects is
not necessarily Cartesian (violation of Seipp and Helmert’s
Property 4); (2) It is impossible to infer which facts hold af-
ter applying an operator without a concrete state as context
(required for Seipp and Helmert’s Algorithm 5). We show in
the following two theorems that these two obstacles disap-
pear when considering factored effect tasks.
Theorem 1. The regression of a Cartesian set with respect
to a factored effect operator is Cartesian.

Proof. Let B = B1 × · · · × Bn be a Cartesian set repre-
senting an abstract state over variables V = {V1, . . . , Vn}
where Bi ⊆ dom(Vi). A factored effect operator o changes
the value of a variable independent of the other variables.
Hence, we can reason about all variables individually.

Let us consider the regression of the single variable Vi.
There are two justifications for b ∈ Bi after applying o in an
abstract state A = A1 × · · · × An: either b ∈ Ai and there
is no effect 〈Vi, b, x〉 ∈ eff(o) or 〈Vi, a, b〉 ∈ eff(o) where
a ∈ Ai. This leads to the following definition of possible
values A′i preceding Bi.

A′i = {b ∈ Bi | @〈Vi, b, x〉 ∈ eff(o)}∪
{a | ∃〈Vi, a, b〉 ∈ eff(o) : b ∈ Bi}

Since we can only reachB from states where o is applicable,
Ai is restricted to values satisfying the precondition of o.

Ai =

{
A′i ∩ {pre(o)[Vi]} if Vi ∈ vars(pre(o))

A′i otherwise
Then, the regression of Cartesian set B with respect to

factored effect operator o ∈ O is regr(B, o) = A1 × · · · ×
An. Clearly, Ai ⊆ dom(Vi) and thus regr(B, o) is Carte-
sian.

To address (2), we redefine the post-function of Seipp and
Helmert (2018). The post-function describes a partial state
which holds after applying an operator o. In the absence of
conditional effects this is the effect united with the precondi-
tion on the variables unchanged by the effect. In the presence
of conditional effects, this is insufficiently specified, because
we do not know which effect conditions could be satisfied.
We extend the post-function such that it requires an addi-
tional argument, namely the abstract stateA = A1×· · ·×An
on which o is applied:

post(A, o) =

n×
i=1

⋃
a∈prior(Ai,o)

{
{b} if 〈Vi, a, b〉 ∈ eff(o)
{a} otherwise

(2)



where × denotes the generalized Cartesian product and
prior(Ai, o) captures which values of Ai allow applying o.
More formally, prior(Ai, o) is defined as follows:

prior(Ai, o) =


∅ if Vi ∈ pre(o) ∧ pre(o)[Vi] /∈ Ai
{a} if Vi ∈ pre(o)∧

a = pre(o)[Vi] ∈ Ai
Ai otherwise (i.e., if Vi /∈ pre(o)).

(3)
Recall that operators are conflict-free and hence at most one
effect 〈V, v, v′〉 exists for each atom V 7→ v in Equation 2.
Clearly it holds that post(A, o)[V ] ⊆ dom(V ) for all V ∈ V
which means post(A, o) is a Cartesian set.
Theorem 2. The Cartesian set post(A, o) describes exactly
the successor states of factored effect operator o applied in
any concrete state of the abstract stete A where o is appli-
cable.

Proof. We need to show two properties: (1) for all s ∈ A
with pre(o) ⊆ s there is an s′ = sJoK ∈ post(A, o); (2) for
all s′ ∈ post(A, o) there is an s ∈ A with pre(o) ⊆ s and
sJoK = s′. Due to the characteristics of factored effect oper-
ators, we can again reason about each variable individually.

(1) Let s ∈ A be a concrete state such that pre(o) ⊆ s and
let us consider variable Vi. If Vi ∈ vars(pre(o)), then
s[Vi] ∈ {s[Vi]} = prior(Ai, o) and if Vi /∈ vars(pre(o)),
then s[Vi] ∈ Ai = prior(Ai, o).
We continue by rewritig the definition of the successor
state s′ = sJoK of Equation 1 for the special case of fac-
tored effect operators as follows:

s′[V ] =

{
v if 〈V, s[V ], v〉 ∈ eff(o)
s[V ] otherwise

Since this corresponds to the case distinction in Equa-
tion 2 and because s[Vi] ∈ prior(Ai, o) it follows that
s′[Vi] ∈ post(A, o)[Vi].

(2) Let s′ ∈ post(A, o). From Equation 2 it follows that
prior(Ai, o) 6= ∅ for all variables. Hence, for each vari-
able Vi it must either hold that Vi ∈ vars(pre(o)) and
pre(o)[Vi] ∈ Ai, or Vi /∈ pre(o).
In both cases, it directly follows that there exists a value
v ∈ Ai such that s[Vi] = v. For the former case,
v = pre(o)[Vi] and for the latter case v can be chosen
arbitrarily from Ai.
Note that it is not important whether there is an effect
〈Vi, v, s′[Vi]〉 ∈ eff(o) because if there is an effect, then
s[Vi] = v due to the effect condition and otherwise
s[Vi] = s′[Vi] = v.

This leads to Algorithm 1 which is an adaption of Al-
gorithm 5 by Seipp and Helmert (2018). While Seipp and
Helmert distinguish three cases, we have only one case for
two reasons. (1) Their first case is obsolete because our
definition of prior(Ai, o) in Equation 3 takes care of un-
satisfied preconditions; setting prior(Ai, o) to ∅ results in
post(A, o)[Vi] = ∅ and trivially the cut with Bi is empty in

Algorithm 1: Transition check. Returns true iff fac-
tored effect operator o induces at least one transition
between abstract states A and B.

1 function CHECKTRANSITION(A, o,B)
2 for each Vi ∈ V do
3 if post(A, o)[Vi] ∩Bi = ∅ then
4 return false
5 return true

Line 3 of Algorithm 1. (2) Their third case is obsolete be-
cause vars(post(A, o)) = V .

Rubik’s Cube Model
Rubik’s Cube is a permutation puzzle invented by Ernő Ru-
bik in 1974 (see Figure 1). It is a 3-dimensional cube with 6
faces. The cube is sliced into 3 layers in each dimension,
resulting in 27 smaller cubes called cubies. The faces of
the cubies are called facelets and each cubie is colored dif-
ferently on all its facelets. The puzzle is solved when all
facelets on the same face of the cube have the same color.
Each layer can be rotated by multiples of 90° around the cu-
bie in its center. Rotating a layer rearranges the cubies and
changes the colors on the faces. In an initial configuration of
the puzzle, the cube is scrambled by an arbitrary, unknown
sequence of rotations. The goal is to find a sequence of ro-
tations which leads to the solved state where all faces show
a single color. Simple algorithms exist which find such se-
quences (Kociemba 1992), but finding a shortest such se-
quence is challenging.

We describe some properties of Rubik’s Cube in the fol-
lowing list:

(1) Rotating a layer changes the position and orientation of
its cubies, but never reveals new facelets. The number
and colors of visible facelets never changes for any cubie.

(2) There are 4 kinds of cubies differing by the number of
visible facelets: 1 inner cubie not visible at all; 6 cen-
ter cubies showing 1 facelet; 12 edge cubies showing 2
facelets; and 8 corner cubies showing 3 facelets.

(3) Rotating the middle layer of any dimension is equiva-
lent to rotating the other layers of the same dimension in
the opposite direction. Hence, we forbid rotating the mid-
dle layer without changing the possible configurations of
Rubik’s Cube. As a consequence, the center cubies never
change their position and we can use them to identify the
cube faces.

(4) There are 12 positions for the edge cubies and 8 positions
for the corner cubies. Each position can be described us-
ing the faces it touches.

(5) At each position, edge cubies can occur in 2 possible ori-
entations and corner cubies can occur in 3 possible ori-
entations.

Based on these observations, we model Rubik’s Cube as
a family of factored effect tasks Πi = 〈Ve ∪ Vc,O, si, s?〉.
We address the faces as front (F ), back (B), left (L), right
(R), up (U ), and down (D). Fi denotes the faces which lie



on the i-th dimension of Rubik’s Cube: F1 = {F,B}, F2 =
{L,R}, F3 = {U,D}. Furthermore, F =

⋃
i Fi is the set

of all faces and the faces adjacent to some f ∈ Fi is Af =
F \Fi. We denote the face that follows face f ′ in clockwise
turn order from the perspective of face f as Af [f ′], e.g.,
AF [U ] = R.

Vc contains 8 variables representing the corner cubies.
According to observations (4) and (5) they can be described
by their position using the three faces they touch and by one
of three possible orientations. Hence, the domain of a cor-
ner cubie Vc ∈ Vc is dom(Vc) = {〈{f1, f2, f3}, o〉 | f1 ∈
F1, f2 ∈ F2, f3 ∈ F3, o ∈ {1, 2, 3}}. Similarly, Ve contains
12 variables representing the edge cubies. To describe the
edge cubies, we require their position described by the two
faces they touch and their orientation. Hence, the domain of
an edge cubie Ve ∈ Ve is dom(Ve) = {〈{f1, f2}, o〉 | f1 ∈
Fi, f2 ∈ Fj , i 6= j, o ∈ {1, 2}}.

O has one operator rotate(f, angle) for each face f ∈ F
and for the angles 90° (clockwise), 180° (half-turn), and
270° (counter-clockwise). All operators o ∈ O are always
applicable, i.e., pre(o) = ∅. An operator rotate(f, angle)
changes the position and rotation of all cubies on f .

We start by describing the effect of rotate(f1, 90). We
first model how the cubies on face f1 change their po-
sition. A corner cubie at position {f1, f2, f3} moves to
{f1,Af1 [f2],Af1 [f3]}. More specifically, the faces f2 and
f3 are updated to the next face in clockwise direction (from
the perspective of f1). Similarly, an edge cubie at position
{f1, f2} moves to position {f1,Af1 [f2]}.

To easily model how the orientation changes, we use a
trick. We represent the orientation of a cubie as a triple.
More specifically, we represent the orientation of a corner
cubie as a permutation of {1, 2, 3}, and the orientation of
an edge cubie as a permutation of {1, 2,#} where # rep-
resents a blank symbol. The first non-blank value identi-
fies the orientation of the cubie. If we now rotate any cu-
bie with an orientation 〈o1, o2, o3〉 around the dimension
d ∈ {1, 2, 3}, then the new orientation of the cubie is com-
puted by exchanging the elements of the triple which are not
at position d. For example, a rotation around d = 3 leads
to the new triple 〈o2, o1, o3〉. To see why this is possible,
observe that for any corner cubie, there are only three differ-
ent triples reachable at every position and for any edge cu-
bie there are only 2 triples reachable at any position. Thus,
given the cubie, its position, and its orientation, we can con-
struct the correct triple, modify it, and extract the new orien-
tation value. We call the function described in this paragraph
next orientation.

Putting everything together, the effects of a 90° rotation
of f1 are:

eff(rotate(f1, 90)) = {
〈Vc,〈{f1, f2, f3}, o〉, 〈{f1,Af1 [f2],Af1 [f3]}, o′〉〉 |

Vc ∈ Vc, f1 ∈ Fd,
o′ = next orientation(Vc, {f1, f2, f3}, o, d)

} ∪ {
〈Ve,〈{f1, f2}, o〉, 〈{f1,Af1 [f2]}, o′〉〉 |

Ve ∈ Ve, f1 ∈ Fd
o′ = next orientation(Vc, {f1, f2}, o, d)

}

Rotating a face by 180° (respectively 270°) is modeled
by replacing every occurrence of Af1 [·] by two (respec-
tively three), calls to the same function, i.e., Af1 [Af1 [·]]
(respectively Af1 [Af1 [Af1 [·]]]), and doing the same for
next orientation .

The goal state s? has a single cubie in each position and
all cubies have an orientation of 1. Any state reachable by
applying a sequence of operators can be the initial state sI .

Experiments
We evaluate the performance of heuristics based on PDBs,
Cartesian abstractions, and M&S abstractions on Rubik’s
Cube problems using the Fast Downward planning system
(Helmert 2006). We add support for factored effect tasks in
the generation of Cartesian abstractions using CEGAR. In
this section, we describe the tasks we use for our evalua-
tion, give an overview of the compared planner configura-
tions (i.e., heuristics), and evaluate their performance. Our
code, benchmarks, and data are available online (Büchner
et al. 2022).

Benchmarks
We implement a SAS+ problem generator for Rubik’s Cube
tasks according to our model. Our generator starts from the
solved configuration and applies n arbitrary rotations where
n is a user specified value. We ensure that two consecu-
tive rotations concern different faces, because such rotations
can be combined into one rotation. Nevertheless, some se-
quences of rotations can cancel each other out. Thus, n is
just an upper bound on the minimum plan length.

We generate 10 tasks for each n ∈ {1, . . . , 20} to obtain
a benchmark set with diverse difficulty levels. We choose 20
as the upper limit because Rokicki et al. (2014) show that
all Rubik’s Cube instances can be solved with at most 20
moves. We ensure the benchmark set contains no duplicates,
which leaves us with a total of 200 distinct Rubik’s Cube
instances for our evaluation.

Evaluated Heuristics
While we compare the performance of three abstraction
classes, there is a total of five configurations that we include
in our evaluation. We briefly describe them here.



Blind Heuristic We use a blind search (denoted as
BLIND) as a baseline for our investigations. It corresponds
to a breadth-first exploration of the transition system.

Pattern Database Heuristics For PDBs, the crucial deci-
sions include how to choose the patterns and how to com-
bine their individual heuristic values. Korf (1997) split the
variables into two patterns, one for the edge and one for the
corner cubies. Korf used a specialized solver explicitly de-
signed for Rubik’s Cube. In contrast, Fast Downward is a
domain-independent planner without optimizations for Ru-
bik’s Cube. Thus, it cannot fit Korf’s PDBs into memory and
we are not able to compare to this state-of-the-art approach
within this experiment. Instead, we use the largest patterns
which fit into memory for our Rubik’s Cube model. Those
consist of 4 variables. We use the following two configura-
tions for PDBs:

PDB-MAN Inspired by Korf’s approach, we have two pat-
terns containing the corner cubies: one for the cubies on
the front face and one for the cubies on the back face.
Additionally, we have three patterns for the edge cubies:
one for the cubies on the front face, one for the cubies on
the back face, and one for the cubies between the front
and back face.

PDB-SYS This configuration systematically generates all
interesting patterns up to a certain size (Pommerening,
Röger, and Helmert 2013). For Rubik’s Cube, this strat-
egy turned out to be feasible for patterns of size up to 3.

In both cases, the heuristic is the maximum over all these
patterns.

Cartesian Abstraction Heuristic By CEGAR we denote
the Cartesian CEGAR algorithm as discussed in this paper.
We do not limit the number of states or transitions in the
abstraction. The abstraction refinement is terminated to start
the search after at most 900 seconds or if the memory limit
is approached.

Merge-and-Shrink Heuristic The last configuration we
consider is M&S. It uses bisimulation as shrinking strat-
egy (Nissim, Hoffmann, and Helmert 2011), strongly con-
nected components as merging strategy (Sievers, Wehrle,
and Helmert 2016), and exact label reduction (Sievers,
Wehrle, and Helmert 2014). We limit the abstraction to at
most 50,000 states.

Setup
We implement our extensions in the Scorpion plan-
ner (Seipp, Keller, and Helmert 2020), an extension of
Fast Downward (Helmert 2006). Scorpion already contains
implementations of PDBs for tasks with conditional effects
as well as a version of Cartesian CEGAR using incremental
search (Seipp, von Allmen, and Helmert 2020). We use Lab
(Seipp et al. 2017) for running our experiments. We execute
A∗ searches with each of the five heuristics from above on
all 200 benchmark tasks. The experiment is conducted on
Intel Xeon-Silver 4114 processors running on 2.2 GHz with
a time limit of 30 minutes and a memory limit of 3.5 GB.

Results
The most successful heuristic in terms of solved tasks is
PDB-MAN which solves 123 tasks. PDB-SYS is almost
as successful with 119 solved tasks, followed by CEGAR
which solves 113 tasks. M&S falls behind with only 90
solved tasks and BLIND solves, as expected, the fewest
tasks, namely 66. For PDB-SYS, all failed runs are due to
the time limit. For all other configurations, the failed runs
are due to the memory limit.

None of the heuristics is able to solve problems where
the optimal solution requires more than 13 rotations. Ac-
cording to Rokicki et al. (2014), this restriction allows us to
solve only 0.0001% out of the 4.3 · 1019 possible states of
Rubik’s Cube. In comparison, Korf (1997) was able to opti-
mally solve tasks at least 18 rotations away from the goal.1
The set of initial states with optimal cost 18 or less makes up
approximately 98% of all possible initial states for Rubik’s
Cube (Rokicki et al. 2014).

Figure 2 plots the number of states expanded before the
last f -layer of A∗.2 We plot against PDB-MAN which is the
heuristic that solves the most problems. The figure reveals
that both PDB variants are similar in terms of heuristic guid-
ance, as they expand similarly many states. M&S generally
expands more states. This indicates that M&S abstractions
(using our parameters) capture less of the essence of Ru-
bik’s Cube than the simpler projections on manually chosen
variables. This is surprising given that M&S is the more gen-
eral class of abstractions. However, an important difference
is that PDBs make use of multiple abstractions and use the
highest heuristic estimate among all of them while M&S
constructs a single abstraction.

In contrast, CEGAR seems to produce very fine-grained
abstractions up to a certain size; the data points on the bot-
tom line indicate that we obtain perfect heuristic values be-
fore the last f -layer from our Cartesian abstractions. How-
ever, this changes abruptly when the problem instances be-
come harder. At some point, the guidance quickly deterio-
rates and becomes worse than the guidance of PDB-MAN.

Looking at the runtimes reveals more information about
the techniques for generating abstractions in the first place.
Figure 3 plots the runtime of all configurations against CE-
GAR because it has the most evenly distributed runtimes for
the problems of different difficulties. BLIND is faster on the
trivial tasks but is quickly outperformed by all other heuris-
tics. For PDB-MAN, PDB-SYS, and M&S, the preprocess-
ing time (approximately 10s, 77s, and 17s, respectively) re-
quired for constructing the abstractions and precomputing
the heuristic dominates the actual search time on most in-
stances. Only after a certain difficulty, the search time be-
comes visible in Figure 3, namely when the constant line
starts to ascend. Meanwhile, CEGAR allows to terminate
the construction of the abstraction early if it finds a solution

1Back in 1997, it took around four weeks to solve such prob-
lems.

2We ignore the expansions in the last f -layer, because all states
in this layer, including the goal state, have the same priority for
A∗ and it is due to random tie-breaking in which order they are
expanded.



101 103 105

101

103

105

0 uns.
0

uns.

PDB-MAN

BLIND

PDB-SYS

CEGAR
M&S

Figure 2: Number of state expansions before the last f -layer.

during the refinement step. This is an advantage that pays off
for the simpler problems but is later outmatched by the PDB
based techniques.

Discussion
Overall, the performance of CEGAR looks promising and
competitive until we reach the point where the heuristic
quality deteriorates and many state expansions are required.
Since the state space of Rubik’s Cube is huge and the solu-
tion tracing always starts from the initial state, we assume
that the abstraction is fine-grained locally around the initial
state, but becomes almost blind when reaching the borders of
that area. This is in contrast to the pattern databases, which
ignore parts of the information evenly across the entire state
space.

The poor performance of M&S is another surprising re-
sult. The initial heuristic values for M&S are the worst
among all considered heuristics and they never surpass the
value 4. Potentially, the chosen size limit of at most 50’000
abstract states is too restrictive for Rubik’s Cube.

Conclusion
We analyzed the performance of modern abstraction heuris-
tics on the famous Rubik’s Cube problem. First, we pre-
sented a model for Rubik’s Cube as a finite-domain planning
task which allows us to use general problem solvers. Our
model relies on a special kind of conditional effect where the
effect condition is concerned only with the variable changed
by the effect; when rotating a face of Rubik’s Cube, the cu-
bies change location and orientation based on their own pre-
vious location and orientation. We introduced these prob-
lems as factored effect tasks.

While conditional effects are supported in PDBs and
M&S abstractions, this is not the case for Cartesian ab-
stractions created using counterexample-guided Cartesian
abstraction refinement. Hence, we extended this theory for
factored effect tasks.

10−1 100 101 102 103

10−1

100

101

102

103

0 uns.
0

uns.

CEGAR

BLIND

PDB-MAN

PDB-SYS

M&S

Figure 3: Runtime in seconds.

Finally, we evaluated the performance of heuristic search
based on the aforementioned abstraction classes on a newly
generated benchmark set of Rubik’s Cube tasks. The ex-
periment reveals that PDBs remain the state-of-the-art for
this domain, at least in terms of overall coverage. However,
Cartesian CEGAR yields strong heuristics for problem in-
stances up to a certain difficulty. Future work should investi-
gate further what exactly the limitation is for Cartesian CE-
GAR.

A missing piece in the hierarchy of abstractions are do-
main abstractions. We are not aware of any work that gen-
erates domain abstractions for classical planning problems
in a principled way. Filling this gap would be a major ac-
complishment and could shed more light on the analysis of
abstraction heuristics for Rubik’s Cube.

Rubik’s Cube is one domain in a family of permutation
puzzles with many similarities. Other domains like slid-
ing tiles, the pancake problem, genome rearrangement, and
many more can be modeled as factored effect tasks as well.
It will be interesting to see whether the abstraction classes
compare similarly for all of these domains.

Acknowledgments

This research was supported by TAILOR, a project funded
by the EU Horizon 2020 research and innovation pro-
gramme (grant agreement no. 952215) and by the Euro-
pean Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement no. 817639). Patrick Ferber was partially sup-
ported by DFG grant 389792660 as part of TRR 248 (see
https://perspicuous-computing.science) and Jendrik Seipp
was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation.



References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence, 129(1): 5–33.
Büchner, C.; Ferber, P.; Seipp, J.; and Helmert, M. 2022.
Code, Benchmarks and Experiment Data for the ICAPS
2022 HSDIP workshop paper “A Comparison of Abstrac-
tion Heuristics for Rubik’s Cube”. https://doi.org/10.5281/
zenodo.6589227.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318–334.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A New Systematic Approach to Partial Delete Re-
laxation. Artificial Intelligence, 221: 73–114.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503–
535.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. Journal of the
ACM, 61(3): 16:1–63.
Hernádvölgyi, I. T.; and Holte, R. C. 2000. Experiments
with Automatically Created Memory-Based Heuristics. In
Choueiry, B. Y.; and Walsh, T., eds., Proceedings of the
4th International Symposium on Abstraction, Reformulation
and Approximation (SARA 2000), volume 1864 of Lecture
Notes in Artificial Intelligence, 281–290. Springer-Verlag.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Kociemba, H. 1992. Close to God’s algorithm. Cubism for
Fun, 28: 10–13.
Korf, R. E. 1997. Finding Optimal Solutions to Rubik’s
Cube Using Pattern Databases. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence (AAAI
1997), 700–705. AAAI Press.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing Perfect Heuristics in Polynomial Time: On Bisimulation
and Merge-and-Shrink Abstraction in Optimal Planning. In
Walsh, T., ed., Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), 1983–
1990. AAAI Press.

Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning.
In Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357–
2364. AAAI Press.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research, 39: 127–177.
Rokicki, T.; Kociemba, H.; Davidson, M.; and Dethridge, J.
2014. The Diameter of the Rubik’s Cube Group is Twenty.
SIAM Review, 56(4): 645–670.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research, 62: 535–577.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research, 67: 129–167.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Seipp, J.; von Allmen, S.; and Helmert, M. 2020. Incremen-
tal Search for Counterexample-Guided Cartesian Abstrac-
tion Refinement. In Beck, J. C.; Karpas, E.; and Sohrabi,
S., eds., Proceedings of the Thirtieth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2020),
244–248. AAAI Press.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. Journal of Artificial Intelligence Research,
71: 781–883.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
Label Reduction for Merge-and-Shrink Heuristics. In Brod-
ley, C. E.; and Stone, P., eds., Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence (AAAI
2014), 2358–2366. AAAI Press.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An Analy-
sis of Merge Strategies for Merge-and-Shrink Heuristics. In
Coles, A.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and San-
ner, S., eds., Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling (ICAPS
2016), 294–298. AAAI Press.


