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Abstract

Humans can communicate and observe media with different modalities, such as
texts, sounds, and images. For robots to be more generalizable embodied agents,
they should be capable of following instructions and perceiving the world with
adaptation to diverse modalities. Current robotic learning methodologies often
focus on single-modal task specification and observation, thereby limiting their
ability to process rich multi-modal information. Addressing this limitation, we
present an end-to-end general-purpose multi-modal system named Any-to-Policy
Embodied Agents. This system empowers robots to handle tasks using various
modalities, whether in combinations like text-image, audio-image, text-point cloud,
or in isolation. Our innovative approach involves training a versatile modality net-
work that adapts to various inputs and connects with policy networks for effective
control. Because of the lack of existing multi-modal robotics datasets for evaluation,
we assembled a comprehensive real-world dataset encompassing 30 robotic tasks.
Each task in this dataset is richly annotated across multiple modalities, providing
a robust foundation for assessment. We conducted extensive validation of our
proposed unified modality embodied agent using several simulation benchmarks,
including Franka Kitchen and Maniskill2, as well as in our real-world settings. Our
experiments showcase the promising capability of building embodied agents that
can adapt to diverse multi-modal in a unified framework.

1 Introduction

What is the ultimate form of robots? It should possess the ability to both listen and read, learn from
demonstrations, and perceive the three-dimensional world with an understanding of time. While
recent advancements in robot learning have explored various modalities for task specification and
environmental perception – such as text, speech, images, videos, and point clouds – most prior
research has approached these modalities as distinct challenges.

An expanding field of research within artificial intelligence, spanning various disciplines, indicates that
simultaneous learning across different modalities, such as vision-language [1, 2, 3, 4, 5], video-text [6,
7, 8, 9, 10, 11], and vision-touch [12, 13, 14, 15], leads to the development of more comprehensive
and effective representations. The enriched representations derived from this approach lead to a more
profound comprehension of each modality on a standalone basis. This multi-faceted concept finds
backing in a number of cognitive science and psychology studies [16, 17], which propose that human
learning is significantly enhanced when it integrates multiple cues, compared to relying on a single
modality in isolation. By adopting this multi-modal approach, which leverages the collective strength
of various senses or inputs, we emulate the natural human method of information acquisition and
processing, indicating a path toward a more integrative methodology in robotics.
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Figure 1: The overall framework of Any2Policy. The Any2Policy framework is structured to handle
multi-modal inputs, accommodating them either separately or in tandem at the levels of instruction
and observation. We design embodied alignment modules, which are engineered to synchronize
features between different modalities, as well as between instructions and observations, ensuring a
seamless and effective integration of diverse input types.

Building on the proven success of multi-modal learning in various disciplines, our goal is to develop
a multi-modal embodied agent capable of processing a wide array of instruction and observation
modalities. Our method, referred to as Any-to-Policy Robot Model (abbreviated as Any2Policy),
is illustrated in Figure 1. The Any2Policy architecture is structured in two primary components.
Initially, we harness multi-modal encoders to extract relevant features from the input. These features
are then transformed into standardized token representations, ensuring uniformity at the neural
network level via projection layers. In the second component, we introduce embodied alignment,
which processes multi-modal signals, enriched with specific instructions. These signals are routed to
encoders following projection, ultimately leading to the generation of actions for manipulation.

In support of this project, we are releasing a substantial real-world dataset consisting of 30 tasks,
where each task includes 30 trajectories, all annotated with multi-modal instructions and observations,
mirroring the setup used in our experiments. The purpose of this dataset is to foster and encourage
future research in the area of multi-modal embodied agents.

We have demonstrated the efficacy of our Any2Policy approach through rigorous testing against
this benchmark. The results clearly indicate that Any2Policy is highly adept at interpreting and
responding to a variety of modalities. We further conduct experiments on two simulated robotics
benchmarks to reinforce the strong generalizability of our approach compared to existing methods.
Our project is at any2policy.github.io/.

In summary, our contributions are the follows:

• We introduce any-to-policy models that enable a unified embodied agent to process various
combinations of modalities, effectively facilitating instruction and perception of the world.

• We present novel embodied alignment learning techniques designed to seamlessly align
instructions and observations, enhancing both the effectiveness and efficiency of policy
learning.

• We offer a multi-modal dataset tailored for robotics, encompassing 30 distinct tasks. This
dataset covers a wide spectrum of modalities in both instruction and observation.

2 Related Work

Multi-Modal Learning. Recent large vision language models (VLMs) use pretrained image encoders
as part of the larger model; some pretrain it with supervised classification, some use the pretrained
CLIP encoders [18], and some with custom multi-modal pretraining. Inspired by GPT-4, which has
been released and demonstrates many advanced multi-modal abilities, recent models present more
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lightweight versions of VLM that align the image inputs with a large language model using proper
instructional tuning [19, 20, 21, 22]. These vision-language models also showcase many advanced
multi-modal capabilities after the alignment. Another line of research [23, 24, 25, 26, 27, 28]
seeks to demonstrate the transformer’s capability to deal with multiple modalities in a single neural
network and then perform image generation, video-question answering, and multi-turn dialogue,
graph learning [29, 30, 31] according to the input modalities. Different from these prior works, we
focus on robotics. Our design multi-modal input includes both instruction and observation, which
potentially makes the robot more generalizable to diverse scenarios.

Embodied agent with Diverse Modalities. The study of embodied AI has been extensively explored
through instruction and observation methods. A series of studies concentrate on learning using varied
task specifications. This includes language-conditioned policy learning [32, 33, 34, 35, 36, 37, 32, 38,
39, 40], instruction following agents [41, 42] with 3D observation [43, 44, 45, 46, 47], visual goal-
reaching [48, 49, 50, 51], video demonstrations [52, 53, 54, 55, 56, 34, 57, 58], or combination with
multiple modalities [59, 60, 61]. Notably, most systems are specialized for certain task specifications,
with few like VIMA and MUTEX engaging with multiple modalities, albeit focusing on a single
observation type.

Representation learning is critical in high-dimensional control settings, particularly when managing
visual observation spaces. Recent advancements in this field have explored different modalities in
feature learning for robotics, especially for images with the unsupervised pretrained visual repre-
sentation [62, 63, 64, 65, 66, 67, 68, 69], or using visual encoders from pretrained vision-language
models [70, 71, 72, 73, 74, 75, 76, 77] for robotics [78, 79, 80, 33, 81, 82, 59, 83, 84, 61]. These
approaches often neglect instruction or rely solely on text-based instruction, lacking exploration of
diverse instructional modalities.

Our proposed Any2Policy framework differs from previous work by focusing on both instruction
and observation levels and utilizing various modalities. This approach aims to enhance learning
and inference for embodied agents, offering a more holistic and integrated perspective compared to
earlier, more modality-specific research.

Robot Manipulation and Datasets. A diverse array of robot manipulation tasks necessitates various
skills and task specification formats, including instruction following [32], one-shot imitation [85],
rearrangement [86], reasoning [87, 88, 89], and planning [90, 91]. Most existing datasets predomi-
nantly feature 2D images for observations and, in some cases, include language instructions to prompt
specific robotic actions, as seen in datasets like Franka-Kitchen [92] and CALVIN [93]. VIMA-
Bench [59] introduces a dataset that combines language instructions with images in multimodal
prompts. Meanwhile, Maniskill [94] provides 3D visual information, enabling models to interpret
point clouds as observations. Our dataset, RoboAny, stands out as the first to support a comprehensive
range of modalities in robotics. It encompasses both instructions and observations across images,
videos, audio, language, and point clouds, offering unparalleled diversity in robotic task specification
and learning.

3 Methodology

Our objective is to develop a comprehensive policy capable of executing a variety of tasks, utilizing a
dataset of demonstrations that are annotated with multi-modal instructions and observational data
from various sources such as images, videos, point clouds, text, and speech. We acknowledge that
the modality of task specifications and observations may differ depending on the specific scenario,
and our approach is tailored to adapt flexibly to these varying modalities.

We start with a formal description of our settings and provide mathematical annotations. For each
task T ∈ {T1, T2, · · · , Tn}, we assume that the embodied agents learn from demonstrations obtained
through teleoperation, Di = {di, · · · , dm}, where m is the number of demonstrations for task
Ti. Each demonstration dji presents the form of a sequence of observations and expert actions,
dji = [(s, o, a)ji ], where a ∈ A denotes the actions, s ∈ S represent instruction, and o ∈ O is the
observation.

The instruction of task Ti is specified with four modalities: text instructions s ∈ {L1
i , L

2
i , · · · , Lk

i },
audio instruction s ∈ {A1

i , A
2
i , · · · , Ak

i }, image goal instruction s ∈ {M1
i ,M

2
i , · · · ,Mk

i } and
video demonstration s ∈ {V 1

i , V
2
i , · · · , V k

i }. Similarly, the observation of task Ti, is detailed by
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Figure 2: The architecture of embodied alignment and policy network.

m alternative perceiver, each with three modalities: image o ∈ {m1
i ,m

2
i , · · · ,mk

i }, point cloud
o ∈ {p1i , p2i , · · · , pki }, and video o ∈ {v1i , v2i , · · · , vki }. Capital letters are used to denote instructions,
while lowercase letters represent observations.

Our objective is to develop a multi-task policy, denoted as π(a|s, o), which generates continuous
actions a in response to the current observation o and given instruction s. The policy aims to profi-
ciently execute n tasks included in the training dataset D under new initial conditions, such as varying
positions of objects. Moreover, a critical aspect of this policy is its capacity to generalize effectively
to environments, entities, and tasks that have not been previously encountered or represented in the
training data.

3.1 Overall Architecture

A pivotal characteristic of an Any2Policy agent is its capacity to leverage multi-modal information
throughout its training phase, exhibiting the ability to operate competently when restricted to a single
modality. It adapts its comprehension and actions to suit the available sensory input. This versatility
brings complexities in crafting multi-modal models, requiring careful consideration in their design to
ensure seamless adaptability and robust performance. To address these, we introduce two modules: 1)
Multimodal encoders to promote cross-modal interactions of all modalities into a shared latent space
for instruction and observation, individually, and 2) Embodied alignment to take in the instruction
token and merged with observation tokens via cross-attention. We provide an overview in Figure 2.

Multimodal Encoder. There are many choices for the multi-modal encoders, for instance, CLIP [18]
for language and vision transformer for images. Specifically, we denote the encoder as a mapping
function P (·), and for each modality, we need a particular model to extract useful modality-agnostic
representation to prepare for policy learning. To make our framework more consistent, we would like
to share the encoder if the instruction and observation have the same modality. Then, we would have
five modality encoders for text, audio, image, video, and point cloud, respectively.

Using different backbone models for each modality can be cumbersome and hard to maintain. Thus,
we leverage existing well-established models, ImageBind [25], a unified high-performance encoder
across five modalities, to encode inputs of various modalities. With the help of ImageBind, we are
spared from managing many numbers of heterogeneous modal encoders. Notably, the multi-modal
encoders extract semantically meaningful representations from the input modality, which aims to
provide essential knowledge to the policy learning networks for accurate manipulation.
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Embodied Alignment. We leverage a projection layer to map different modalities’ feature represen-
tations from P (x) into unified representations. In particular, we want to avoid heavy computational
costs during training, so that we freeze all the layers in ImageBind, and only keep the projection
layers learnable. This operation is kept the same for both the instruction segment and the observation
segment.

As a result, the projection layers ensure that the tensor of different modalities are in the same form.
Nevertheless, the process is fraught with challenges, 1) aligning distinct modalities within a segment,
particularly when diverse types such as images and point clouds coexist, is difficult. Simultaneously,
it’s vital to control computational costs, which can escalate with the addition of modalities, and 2)
the integration of instructions with observations is complex. This complexity arises partly because
instructions and observations don’t always correspond one-to-one; often, a single instruction relates
to multiple observation frames, and for most time steps, observations exist without accompanying
instructions. Additionally, the modality gap between instruction and observation can be an obstacle
in creating effective feature representations for manipulation tasks.

To address the first challenge, we employ a transformer architecture. Each modality undergoes
tokenization, with the token count varying between modalities. For example, images and videos
typically require more tokens to encapsulate visual information. We use 81 tokens for images, 81× t
for videos (where t represents the number of frames), and 256 tokens for point clouds. For text and
audio, a single token is generally sufficient due to their shorter length. It’s important to note that the
computational demands of self-attention layers increase quadratically with the number of tokens,
leading to potentially high inference costs for visual modalities. Therefore, it is crucial to use model
compression methods [95, 96, 97, 98, 99, 100, 101, 102, 103, 104] to reduce the computational cost.

We follow RT-1 [35] to utilize TokenLearner [105] for pruning redundant visual tokens. We apply
TokenLearner individually to each visual modality, such as images, videos, and point clouds. After
token pruning, the token count for images and videos is reduced to 8, while for point clouds, it’s
brought down to 16. These tokens are then amalgamated, using a modality token to distinguish
between different modalities. We insert a modality token between every two modalities. We also use
absolute position embedding to maintain the token order. Consequently, the maximum token count,
when integrating all three visual modalities, is significantly reduced to as few as 34 (8+8+16+2),
substantially enhancing computational efficiency. For the transformer model, we use one Transformer
block with self-attention and feed-forward networks.

The second major challenge is how to align instruction with observation. We seek the help of cross-
attention. Specifically, when we are presented with an observation sequence, Po, and an instruction
sequence, Ps, we project Po into the key (K) and Ps into the value (V). We create a set number of
learnable query (Q) embedding as input for the cross-attention. This learnable query embedding
aims to adapt different modalities for efficient fusion between instruction and observation. This setup
enables us to align the two tensors through a cross-attention mechanism, mathematically represented
as:

hi = Softmax(
QiK

T
i√

dh
Vi) (1)

In this equation, dh denotes the dimensionality, and the construction of the query, key, and value
components aligns with the standard framework utilized in BERT [106]. The elegance of the method
lies in its ability to effectively incorporate relevant representations from the instruction into the
observation, thus ensuring a more coherent and informative interaction between the two. In our
experiments, we use 16 queries, where the dimension of queries corresponds to the cross-attention
layers.

Policy Networks. Designing a multi-task policy comes with its share of challenges, and one critical
aspect involves choosing an appropriate conditioning mechanism. In our framework, the policy
networks are conditioned based on the observation sequence and occasionally an instruction sequence.
As aforementioned, this conditioning is achieved through a series of cross-attention layers, which
establish connections between the policy network and the input modalities. Each Transformer block
comprises self-attention, cross-attention, and a feed-forward network. Additionally, we incorporate
residual connections that link the higher layers with the input rollout trajectory sequence. We append
one history action token to the model, similar to VIMA approach [59]. It is important to note that
the instruction aligns with the observation at every time step. To optimize efficiency, we store the
instruction’s representation to avoid repetitive computations. The decoder is constructed using L
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”Pick cube”

“Pick up red cube on the left side” “Open the top cover”

”Pick up toy polar bear 
and place to box”

“Pick up red cube in the middle”

”Pick up toy zebra 
and place to box”

”Pick up cube place to left box”

”Pick up cube place to right box”

Workspace Setup

Figure 3: This is the setup of our Franka real robot. We have compiled examples of several tasks. To
facilitate better understanding for our readers, we provide only the language-based versions of these
task descriptions.

Transformer blocks. Finally, we append a Multi-layer Perceptron (MLP) layer to generate continuous
actions. We use behavior cloning mean squared loss as the optimization objective.

3.2 Dataset Construction

In our pursuit to develop a robot model that allows input with any modality, we have established a
new dataset featuring a range of tasks, each accompanied by multiple instructions and observations
tailored to real-world scenarios. We developed two workstations, one of which is depicted in Figure 3.
This dataset comprises n = 30 distinct tasks. These tasks vary from straightforward pick-and-place
actions, such as “pick up the yellow cube,” and “place the toy bear in the blue box to the right,” to more
complex contact-rich tasks like “open the drawer” as well as tasks demanding to reason, for instance,
“sort the cube with the same color.” Although all tasks are executed within the same environment,
they involve a variety of objects selected from a set of 70. Each task is exemplified through m = 30
human-collected trajectories. Further, every task is annotated with k = 5 distinct instructions. To
generate these diverse instructions, we utilized GPT-4, creating prompts to formulate alternative
descriptions. We have carefully filtered these descriptions to ensure they accurately represent the
specific task-relevant objects, avoiding any potential confusion due to synonyms. Additionally, we
have incorporated speech signals from various characters of the Amazon Polly service to enrich
our dataset with diverse speech descriptions. In terms of observation, we recorded the video during
our data collection process. The depth information captured in these recordings was then converted
into point cloud data, enabling detailed analysis and application of the collected data. All data are
collected via teleoperation. For long-horizon tasks, we operated the robot to move back to the initial
state and then start the next move. In the appendix, we provide detailed descriptions of our hardware
for two workstations and more qualitative examples of our collected data.

4 Experiments

This section aims to demonstrate the generalizability of our proposed Any2Policy agent. We evaluate
our method in two setups. Initially, we conduct experiments in a real-world setting using our own
collected dataset, which comprises various modalities. This is aimed at demonstrating the efficacy
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Table 1: Comparison with modality-specific models in real-world experiments.

Instruction → Observation Text → Image Text → Video Text → Point Cloud Audio → Image Audio → Video Audio → Point Cloud

Any2Policy 51 57 62 49 55 57
Modality-Specific 39 42 47 26 48 50

Instruction → Observation Image → Image Image → Video Image → Point Cloud Video → Image Video → Video Video → Point Cloud

Any2Policy 56 63 38 46 57 36
Modality-Specific 45 47 45 39 46 28

Table 2: Comparison with Any2Policy framework without embodied alignment in real-world experi-
ments

Instruction → Observation Text → Image Text → Video Text → Point Cloud Audio → Image Audio → Video Audio → Point Cloud

Any2Policy 51 57 62 49 55 57
- Embodied Alignment 26 18 31 27 20 16

Instruction → Observation Image → Image Image → Video Image → Point Cloud Video → Image Video → Video Video → Point Cloud

Any2Policy 56 63 38 46 57 36
- Embodied Alignment 15 29 28 15 9 11

of our approach across a wide range of instruction and observation modalities. Subsequently, we
assess the performance of our method on three simulated benchmarks. Each benchmark is limited
to one or a small number of modalities. This phase aims to establish that, by leveraging training on
cross-modal information, our method can still deliver competitive or superior results compared to
standard benchmarks, even in the presence of a single modality.

4.1 Real-World Evaluation

Evaluation Setup. We conduct our evaluations using a newly constructed dataset of multimodal
instruction and observation. The dataset is divided into training, validation, and testing subsets, with
a split of 7/1/2, respectively. We position the objects randomly, allowing tasks to be performed on
unseen objects.

Implementation details. We use an initial learning rate of 3e-5 with the AdamW [107] optimizer,
a weight decay of 1e-6, and a linearly decaying learning rate scheduler with a warm-up covering
the initial 2% of the total training time [108]. We apply a gradient clipping of 1.0. All experiments
are evaluated over 10 trials to obtain the mean success rate. The action space is the absolute joint
position.

Experiment Results. We aim to answer the following questions with our experiments.

1. Does Any2Policy outperform single-modality trained methods? We compare Any2Policy with
modality-specific approaches in Table 1. In particular, all implementations and network architecture
remain constant across both settings, except that Any2Policy is trained on a variety of modalities while
the modality-specific method is limited to particular ones. We observe that Any2Policy consistently
achieves superior performance across all instruction-observation pairs compared to the modality-
specific approach. Given that the total volume of training data is identical due to fixed training steps,
this enhanced performance is attributed to learning from multiple modalities, which aids in better
model generalization.

2. The significance of embodied alignment. The impact of embodied alignment is specifically explored
in our experiments presented in Table 2. We experiment by removing the embodied alignment module
and simply concatenating the outputs of projection layers from different modalities. TokenLearner is
still utilized to manage the memory burden of numerous tokens. The alignment between instruction
tokens and observation tokens is then achieved using an MLP layer, followed by the policy network.
Notably, there is a significant performance drop when embodied alignment is omitted.

3. Does Incorporating More Modalities Enhance Performance? A key advantage of the Any2Policy
framework is its ability to outperform modality-specific models by training on multiple modalities
for instruction-observation pairs. It raises the question: can including more modalities at the
inference stage further improve performance? Table 4 presents our experimental findings. We used
the text-image pair as the baseline, a common setup in robotics. Adding additional instructional
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Table 3: Comparison with state-of-the-art robotic models in real-world experiments.
Instruction → Observation Image → Image Text → Image Video → Image Image + Text → Image

VIMA [59] - - - 49
R3M [109] 42 - 46 -
T5 [110] - 39 - -
Any2Policy 44+2 51+12 59+13 62+13

Table 4: Ablation study on the effect of using different modalities in real-world experiments.
Method Instruction Observation Success Rate

Any2Policy

Text Image 51
Text+Audio Image 52
Text+Audio+Image End-Goal Image 60
Text+Audio+Image End-Goal + Video Demonstration Image 62

Any2Policy
Text Image 51
Text Image+Video 57
Text Image+Video+Point Cloud 66

Any2Policy
Text Image 51
Text+Video Demonstration Image+Video 63
Text+Image End-Goal Image+Point Cloud 69

modalities, such as audio, image-based end-goals, and video demonstrations, consistently increased
the success rate. Interestingly, although text and audio convey similar instructions, their combination
still yielded a slight performance improvement of 1%. For observations, significant performance
gains were observed when adding video and point cloud data, integrating temporal and 3D
spatial information. Combining multiple instructional and observational modalities also improved
performance; for example, incorporating video demonstrations in instructions and video in
observations led to a 12% increase in the success rate.

4. Comparison of Any2Policy with state-of-the-art robot models. To further assess the ef-
fectiveness of Any2Policy representations, we compare them with other robot models, as shown
in Table 3. Any2Policy consistently outperforms both T5 [110] and R3M [109] across various
modalities, highlighting the advantage of incorporating multiple modalities during training.
Furthermore, Any2Policy significantly surpasses VIMA [59], a recent method that uses text goals
and object images for task specification. This demonstrates that Any2Policy not only outperforms
single-modal counterparts, but is also highly effective in employing multiple modalities during
inference.

5. Other results. We observe that the performance of image-point cloud and video-point
cloud pairings achieves relatively lower scores compared to other modality pairs. However, when
we use text or audio as instruction, the performance of point cloud is typically better than image
or video due to its accurate position in three-dimensional space. This indicates that there is still
room to improve model performance with point cloud inputs. These results highlight the inherent
complexity of integrating visual modalities like images and videos with point cloud data, which often
requires sophisticated fusion techniques to effectively combine spatial information with traditional
2D features.

4.2 Simulation Evaluation

Dataset. Our experiments are based on the following three datasets in our simulation. These
three datasets represent three different instruction-observations modalities. Specifically, Franka
Kitchen [92] uses text-image and ManiSkill2 [94] uses text-image and text-{image, point cloud}.
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Figure 4: Performance of Any2Policy in Franka Kitchen with 10 or 25 demonstration demos.
Comparison with R3M, BLIP-2, and EmbodiedGPT. On all tasks except for Knobs-left with 25
demonstrations, we obtained superior performance over SOTA methods.

The objective of our simulated environments is to evaluate the efficacy of our proposed method under
conditions where modalities are limited.

Implementation Details. All models are trained on A100 GPUs, implemented in PyTorch [111].
The Franka-Kitchen are trained for 40K steps. We use weight decay of 1e-6, cosine learning rate
scheduler with warmup steps of 2% total steps. The gradient clip of 1.0 is also applied. We use
Adam optimizer with initial learning of 1e-3 and 3e-4 for Franka Kitchen and Maniskill-2. Note that
Maniskill-2 does not have text instructions. We augment the task description into instruction via
GPT-4. It is then tokenized and prepend with image backbone via FiLM [112].

Evaluation: We evaluate our approach using 30 rollouts from the BC learned policy. We
use the mean success rate of the final policy as our metric. When providing task suite metrics we
average the mean success rate across camera configurations.

Experimental results on Franka Kitchen. In our experiments, we benchmarked our model against
two state-of-the-art methods: R3M [109], and BLIP-2 [22], a sota vision-language model, and
Embodied-GPT [113], a multi-modal model designed for robotics. Our policy network was trained
using few-shot learning, utilizing either ten or twenty-five demonstrations. We assessed the success
rate of these models in 100 randomized evaluations across five different tasks in each benchmark.
These evaluations were conducted under two settings, each with five separate runs and from two
different camera perspectives, using only visual observations. The results, illustrated in Figures 4 for
the Franka Kitchen, clearly show that Any2Policy outperforms the baseline methods, on both 10 and
25 demonstrations, except for Knobs-left with 25 demonstrations.

5 Conclusion

Humans interact with and perceive the world through information from multiple modalities. Existing
research in robotics predominantly concentrates on policy learning using a single modality. In
contrast, this paper introduces the Any2Policy framework, which adeptly demonstrates the integration
of various sensory modalities into a cohesive model. This framework efficiently processes and
responds to multi-modal data for robotic tasks. The overall framework, coupled with its multi-modal
dataset, represents a significant advancement in the field of embodied AI. Our findings underscore
the potential of Any2Policy to augment robotic adaptability and performance, thereby highlighting
the importance of multi-modal methodologies in the development of more generalized and versatile
robotic systems.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction concisely outline our framework for retrieving
information from video to enhance visuomotor learning. Our experiments support that our
framework improves the generalization of the robot model.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: Our method contains strong assumptions that affordance in human video is
similar to manipulation. Therefore, our proposed method may not benefit non-human like
embodiment such as locomotion learning.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We have not theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the necessary information to reproduce our method, including the
training details, the dataset we used, the implementations, and the setup of our environment
for the real robot.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justfication: The data will be attached in the webpage.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Because the evaluation of robot manipulation is extremely time-consuming,
we report the average success rate over 20 trails on our real-world experiments. For the
simulation environment, we follow previous methods which report the average success rate
over 30 trails. Details are specified in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computer resources.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We specify the potential positive/negative societal impacts in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the assets and codes that we used in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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