
Grammar-Based Code Representation: Is It a Worthy Pursuit for LLMs?

Anonymous ACL submission

Abstract

Grammar serves as a cornerstone in program-001
ming languages and software engineering, pro-002
viding frameworks to define the syntactic space003
and program structure. Existing research004
demonstrates the effectiveness of grammar-005
based code representations in small-scale mod-006
els, showing their ability to reduce syntax er-007
rors and enhance performance. However, as008
language models scale to the billion level or be-009
yond, syntax-level errors become rare, making010
it unclear whether grammar information still011
provides performance benefits. To explore this,012
we develop a series of billion-scale Grammar-013
Coder models, incorporating grammar rules in014
the code generation process. Experiments on015
HumanEval (+) and MBPP (+) demonstrate016
a notable improvement in code generation ac-017
curacy. Further analysis shows that grammar-018
based representations enhance LLMs’ ability019
to discern subtle code differences, reducing020
semantic errors caused by minor variations.021
These findings suggest that grammar-based022
code representations remain valuable even in023
billion-scale models, not only by maintaining024
syntax correctness but also by improving se-025
mantic differentiation.026

1 Introduction027

Context-free grammars are the fundamental way028

to specify the syntactic space of a programming029

language, and with the grammar specified, a pro-030

gram can be parsed into a syntax tree, revealing its031

structure (Aho et al., 1986). Building on this foun-032

dation, leveraging grammatical knowledge (e.g.,033

grammar rules) to pre-train large language mod-034

els (LLMs) has emerged as a promising strategy for035

code-related tasks, such as code generation (Zhu036

et al., 2024; Sun et al., 2020; Guo et al., 2020).037

Existing research has explored grammar-based038

code representation (Jiang et al., 2021; Guo et al.,039

2022; Wang et al., 2021a; Zhu et al., 2024; Sun040

et al., 2020; Xiong and Wang, 2022; Rabinovich 041

et al., 2017), where each grammar rule serves as 042

an identity token, and a sequence of grammar rules 043

and terminal tokens represents the program. Fig- 044

ure 1 illustrates a program that determines whether 045

the sum of two integers is odd (top left), along 046

with its corresponding abstract syntax tree (AST) 047

representation (right) and grammar-based represen- 048

tation (bottom left). The grammar-based represen- 049

tation is derived by performing a preorder traversal 050

on the AST. Each grammar rule is extracted inde- 051

pendently (e.g., module → function_definition’), 052

while terminals are tokenized using a standard tok- 053

enizer (e.g., get’). Grammar-based representation 054

has been shown to be effective in preventing syntax 055

errors in encoder-decoder architecture (Zhu et al., 056

2024). Moreover, it facilitates program analysis 057

and enables the pruning of incorrect branches (e.g., 058

filtering out type-error programs (Xiong and Wang, 059

2022; Zhu et al., 2023)) during code generation, 060

thereby enhancing accuracy. Due to these bene- 061

fits, many code generation models adopt grammar- 062

based representation (Sun et al., 2019; Zhu et al., 063

2024). 064

However, as language models scale to the billion- 065

parameter level and beyond, extensive pre-training 066

on large code datasets enables them to implic- 067

itly learn syntax rules, making syntax errors in- 068

creasingly rare (OpenAI, 2024; Yang et al., 2024; 069

Team, 2024; DeepSeek-AI et al., 2024). For ex- 070

ample, even 1B scale models, such as DeepSeek- 071

Coder (Guo et al., 2024) and Qwen2.5 (Team, 072

2024), achieve high accuracy in code generation, 073

consistently producing syntactically valid code. 074

This phenomenon suggests that large models are 075

able to understand the structure of the program 076

and raises a critical question: Is grammar-based 077

code representation still beneficial for billion-scale 078

LLMs? 079

To answer this question, we conduct an exper- 080

iment comparing grammar-based representation 081

1

Checks the parity of two integers' sum

Solution (Python):

module

Problem:

def get_sum_parity (a, b):
 return (a + b) % 2

function_definition

name parameters
body

identifier

get _sum _parity

identifier

a b

return_statement

binary_operator

parenthesized_expression

left right

binary_operator

+

left right%

module function_definition function_definition name; parameters; body

get _sum _parityname identifier parameters identifier

b

a

parameters identifier body return_statement

return_statement binary_operator binary_operator left % right left ...

identifier

a

identifier

b

identifier

2

...

2 3

5 6 74 8 9

10 11 13

14 15 16

Grammar-Based Representation

Abstract Syntax Tree:

[BOS]
1

identifier end

parameters end
12

Figure 1: An example of a grammar representation. The top-left part presents a programming problem along with
its corresponding Python solution. The right part illustrates the abstract syntax tree (AST) representation of the
Python code. The bottom-left section presents the grammar-based representation.

and token-based representation approaches on 1.3B082

and 1.5B parameter models, respectively. The re-083

sults demonstrate that grammar-based models (i.e.,084

GrammarCoder-1.3B-Base and GrammarCoder-085

1.5B-Base) significantly outperform token-based086

models, even though token-based models rarely087

make syntax errors. For example, on the MBPP088

dataset (Austin et al., 2021), GrammarCoder-1.3B-089

Base achieves an almost seven percentage point090

improvement in Pass@1 compared to DeepSeek-091

Coder-1.3B-Base trained on the same data. This092

suggests that grammar rules enhance code genera-093

tion beyond syntax correction, even in billion-scale094

models.095

The result leads to a second question: Why do096

grammar-based models improve performance if097

token-based models already produce syntactically098

correct code?099

To investigate this question, we examine the dif-100

ferences between grammar-based and token-based101

code representations. Our analysis reveals that mi-102

nor token-level modifications can lead to substan-103

tial semantic shifts, rendering correct programs104

incorrect. In contrast, while these subtle variations105

may appear insignificant at the token level, they of-106

ten map to clear structural differences in grammar-107

based representations, enabling the model to dis-108

tinguish more effectively between correct and in-109

correct code. Experimental results further confirm110

a correlation between higher performance and the111

ability of grammar-based code representation to112

amplify representational differences for semantic113

shifts, indicating that grammar-based representa- 114

tion helps mitigate such semantic issues. 115

Our main contributions are as follows: 116

• We are the first to conduct an experiment on 117

grammar-based code representation in billion- 118

scale LLMs, finding that it remains effective 119

compared to token-based approaches. 120

• We are the first to explain the effectiveness 121

of grammar-based representation beyond syn- 122

tax correctness and validate our hypothesis 123

through empirical experiments, demonstrating 124

its role in enhancing code semantic differenti- 125

ation. 126

• We release a series of code LLMs trained with 127

grammar rules, providing a valuable resource 128

for further research (GrammarCode, 2025). 129

2 GrammarCoder 130

2.1 Model Overview 131

We propose GrammarCoder, a grammar- 132

based model built on a decoder-only architec- 133

ture (Vaswani et al., 2017; Radford et al., 2018), 134

which excels in auto-regressive tasks like code 135

generation, completion, and translation (OpenAI, 136

2024; Guo et al., 2024; Team, 2024; Hui et al., 137

2024; DeepSeek-AI et al., 2024). To enhance its 138

ability of code generation, we apply continued 139

pre-training and instruction tuning on existing 140

code model weights (i.e., DeepSeek-Coder-1.3B- 141

Base and Qwen2.5-1.5B-Base), expanding its 142

2

knowledge base. A.1 provides the configuration of143

the base model we used. In this section, we first144

introduce our grammar-based code representation.145

Then, we describe our training strategy and corpus.146

2.2 Grammar-Based Code Representation147

The main idea of grammar-based code represen-148

tation is to guide the model in generating gram-149

mar rules rather than merely producing a sequence150

of normal tokens. Traditional code LLMs primar-151

ily rely on token-level composition to construct152

complete code text. In contrast, grammar-based153

models first generate a complete AST by compos-154

ing grammar rules and then reconstruct executable155

code from it, thereby enhancing the model’s under-156

standing of code structure and logic. Specifically,157

normal tokens are obtained using the byte pair en-158

coding (BPE) algorithm, which learns tokenized159

representations from text corpora, forming a vo-160

cabulary Vnormal = {t1, t2, . . . , tm}. This follows161

the standard approach used in natural language162

model training. To integrate grammar information163

in code representation, we introduce grammar rule164

sequences, which represent the step-by-step deriva-165

tion process of an AST. We define a grammar rule166

vocabulary Vrule = {r1, r2, . . . , rk}, where each167

rule encodes a structural transformation in code168

generation. Unlike token-based representations,169

grammar rule sequences explicitly capture logical170

dependencies and hierarchical structures, providing171

a more structured view of code. By integrating172

normal tokens Vnormal with grammar rules Vrule, the173

model can leverage syntactic rules to strengthen174

its understanding of code structure. For example,175

in the bottom-right section of Figure 1, the solid-176

boxed elements represent grammar rules that guide177

the construction of the AST (e.g., ‘parameters →178

identifier’), ensuring that the generated structure ad-179

heres to syntax constraints. Meanwhile, the dashed-180

boxed elements denote normal tokens (e.g., ‘get’181

and ‘a’), which fill in leaf nodes such as variable182

names and string literals. These tokens can be183

directly reused from existing BPE tokenization,184

preserving syntactic correctness while maintaining185

flexibility in code generation.186

GrammarCoder assigns a unique ID to each187

normal token and grammar rule, storing them in188

one vocabulary. For example, in the first 10 to-189

kens of Figure 1, IDs 2, 3, 4, 8, and 10 represent190

grammar rules, while IDs 1, 5, 6, 7, and 9 cor-191

respond to normal tokens. Given a base model192

vocabulary of size m and k grammar rules, the193

extended vocabulary of GrammarCoder, denoted 194

as Vgrammar, has a total size of m + k. With this 195

grammar-augmented vocabulary, raw code text is 196

converted into a grammar-based representation, en- 197

abling the model to learn beyond token-level gen- 198

eration through syntax-aware parsing. Unlike tra- 199

ditional models that rely solely on normal tokens, 200

imposing weak constraints, GrammarCoder incor- 201

porates grammar rules, aligning serialized code 202

directly with the preorder traversal of its AST. 203

2.3 Training Strategy 204

We train the grammar-based code representation us- 205

ing a next-token prediction strategy, a fundamental 206

approach for auto-regressive language models. The 207

core idea is to predict the most probable next to- 208

ken given a prefix sequence, continuing the process 209

until the full content is generated. In the training 210

process, we treat the grammar-based representation 211

of each code file as the training sample, using the 212

sequence encoded by Vgrammar. The model learns 213

to predict the next most probable token (whether 214

a normal token or a grammar rule) based on the 215

tokens generated so far. Formal descriptions in A.2. 216

This training strategy enables the model to dy- 217

namically incorporate grammar rules during code 218

generation, allowing the final output adhere to syn- 219

tax constraints and AST structures. 220

2.4 Training Corpus 221

We organize our training corpus in two stages: base 222

model training and instruction tuning. Python is 223

selected as the primary programming language 224

for data collection due to its rich syntax and 225

widespread use in diverse programming paradigms. 226

This makes it an ideal candidate for evaluating the 227

effectiveness of grammar-based representations. 228

For base model training, we sample 10B tokens 229

of Python code from TheStackV2 (Lozhkov et al., 230

2024) dataset as the primary training data. Addi- 231

tionally, inspired by previous studies (Huang et al., 232

2024), we sample 0.5B tokens of self-contained 233

code textbooks from open-source datasets (Huang 234

et al., 2024; Nakamura et al., 2025) to enhance 235

the model’s adaptability to real-world interactive 236

scenarios, bridging the gap between standard pre- 237

training and practical applications. 238

For instruction tuning, we leverage publicly 239

available instruction datasets (Huang et al., 2024; 240

Nakamura et al., 2025) and employ the data synthe- 241

sis (Wei et al., 2024a,b) approach to collect a total 242

of 6B tokens of instruction data. This ensures the 243

3

Model HumanEval(+) MBPP(+)

Original

DeepSeek-Coder-1.3B-Base 34.8 (28.7) 56.7 (47.9)
Qwen2.5-1.5B-Base 37.2 (32.9) 60.2 (49.6)

Normal Token-Based CPT

DeepSeek-Coder-1.3B-Base (CPT) 43.9 (39.6) 61.4 (51.3)
Qwen2.5-1.5B-Base (CPT) 50.6 (42.7) 60.3 (51.1)

Grammar-Based CPT

GrammarCoder-1.3B-Base 63.4 (57.3) 68.3 (56.9)
GrammarCoder-1.5B-Base 63.4 (59.1) 64.8 (55.3)

Table 1: Comparison of code generation performance
between token-based and grammar-based models. The
CPT refers to continued pre-training, while the SFT
denotes supervised fine-tuning.

model is better aligned with instruction-following244

tasks, improving its ability to handle real-world245

programming scenarios. A.3 provides detailed in-246

formation about the training datasets.247

3 Experiments248

To evaluate the performance of grammar-based249

code representations, we develop two sets of250

models, one with grammar-based code represen-251

tation and one with token-based code represen-252

tation. These models are built through contin-253

ued pre-training from open-source code models,254

DeepSeek-Coder-1.3B-Base and Qwen2.5-1.5B,255

on high-quality code data. We begin by evaluat-256

ing these models on code generation tasks, which257

are among the most widely recognized and com-258

monly used benchmarks for assessing code-related259

capabilities (i.e., Experiment I in 3.1).260

To further explore the differences between261

grammar-based and token-based representations,262

we analyze the reason contributing to the perfor-263

mance gains of grammar-based representation (i.e.,264

Experiment II in 3.2).265

3.1 Experiment I: Performance on Code266

Generation267

Evaluation Benchmarks. We use Hu-268

manEval (Chen et al., 2021) and MBPP (Austin269

et al., 2021), the most widely used datasets for270

code generation tasks, as evaluation benchmarks.271

HumanEval contains 164 tasks, while MBPP272

includes 500 testing tasks, both equipped with273

built-in test cases for evaluation. EvalPlus (Liu274

et al., 2023) extends these datasets by introducing275

stricter test cases to improve assessment robustness.276

We conduct evaluations using both the original277

benchmark test cases and their EvalPlus-enhanced278

versions, denoted by a "+" suffix.279

Baselines. To evaluate the effectiveness of 280

grammar-based code representation, we select 281

DeepSeek-Coder-1.3B (Guo et al., 2024) and 282

Qwen2.5-1.5B (Team, 2024) as baseline models 283

and perform continued pre-training. DeepSeek- 284

Coder-1.3B, trained on high-quality large-scale 285

code datasets, serves as a strong representative of 286

the code model. Meanwhile, Qwen2.5-1.5B-Base, 287

despite being a general-purpose model, demon- 288

strates competitive performance on code-related 289

tasks, making it a valuable point of comparison. 290

Metrics. We adopt Pass@1 as the evaluation met- 291

ric. Specifically, for each problem, the model gener- 292

ates a single code sample, which is deemed correct 293

if it passes all predefined unit tests. The Pass@1 294

score is calculated as: 295

Pass@1 =
Number of problems solved correctly

Total number of problems
296

Implementation Details. GrammarCoder mod- 297

els are trained with 8 NVIDIA H800 GPUs. During 298

the base model training phase, we adopt a two-stage 299

learning rate strategy, following approaches from 300

OpenCoder (Huang et al., 2024) and MiniCPM (Hu 301

et al., 2024). Initially, we use a higher learning rate 302

of 3e-4 to accelerate convergence to a reasonable 303

parameter range. The learning rate is reduced to 304

5e-5 in the annealing stage for further performance 305

optimization. During the instruct model training 306

phase, we set the learning rate to 5e-5 and trained 307

on an instruction dataset to improve generaliza- 308

tion in instruction understanding and code tasks. 309

Throughout the training process, we apply 100 310

warm-up steps and use a cosine learning rate sched- 311

uler to ensure smooth learning rate adjustments, 312

maintaining training stability and efficiency. Ad- 313

ditionally, during both token-based and grammar- 314

based continued pre-training, we utilize the same 315

settings to ensure a fair comparison. 2.4 and A.3 316

provide the detailed information of training dataset. 317

Results. Table 1 presents our main experimen- 318

tal results, showing that the GrammarCoder-base 319

model significantly outperforms both the original 320

model and the token-based model trained on the 321

same datasets. For example, on the HumanEval 322

dataset, GrammarCoder-1.3B-Base achieves 82% 323

and 44% improvements over DeepSeek-Coder- 324

1.3B-Base and DeepSeek-Coder-1.3B-Base (CPT), 325

respectively. Notably, after performing con- 326

tinued pre-training on the training dataset, both 327

4

Model HumanEval HumanEval+ MBPP MBPP+

Base Models

DeepSeek-Coder-1.3B-Base (Guo et al., 2024) 34.8 28.7 56.7 47.9
Qwen2.5-1.5B-Base (Team, 2024) 37.2 32.9 60.2 49.6
OpenCoder-1.5B-Base (Huang et al., 2024) 54.3 49.4 70.6 58.7
Yi-Coder-1.5B (AI et al., 2025) 41.5 32.9 27.0 22.2
CodeGemma-2B-Base (Team et al., 2024) 26.8 20.7 55.6 46.6
StarCoder2-3B (Lozhkov et al., 2024) 31.7 27.4 60.2 49.1
CodeGemma-7B-Base (Team et al., 2024) 44.5 41.5 65.1 52.4
StarCoder2-7B (Lozhkov et al., 2024) 35.4 29.9 54.4 45.6

GrammarCoder-1.3B-Base 63.4 57.3 68.3 56.9
GrammarCoder-1.5B-Base 63.4 59.1 64.8 55.3

Instruct Models

DeepSeek-Coder-1.3B-Instruct (Guo et al., 2024) 65.9 60.4 64.3 54.8
Qwen2.5-1.5B-Instruct (Team, 2024) 61.6 49.4 63.2 55.6
OpenCoder-1.5B-Instruct (Huang et al., 2024) 72.5 67.7 72.7 61.9
Yi-Coder-1.5B-Chat (AI et al., 2025) 67.7 63.4 68.0 59.0
Phi-3-Mini-4K-3.8B-Instruct (Abdin et al., 2024) 64.6 59.1 65.9 54.2
CodeGemma-7B-Instruct (Team et al., 2024) 60.4 51.8 70.4 56.9

GrammarCoder-1.3B-Instruct 70.7 64.0 71.2 58.7
GrammarCoder-1.5B-Instruct 73.2 68.3 73.3 61.1

Table 2: Performance of various base models and instruct models on HumanEval and MBPP.

the token-based and grammar-based models ex-328

hibit performance gains. Moreover, even without329

grammar-based representation, neither the original330

token-based model nor the continued pre-trained331

model produces syntax errors, with syntax cor-332

rectness nearly reaching 100%. Occasional syn-333

tax errors (fewer than three) only occur due to334

random variations on the HumanEval and MBPP335

datasets. Despite this near-perfect syntax correct-336

ness, the grammar-based model still demonstrates337

superior performance, indicating that incorporating338

grammar rules provides additional benefits beyond339

merely preventing syntax errors.340

Building on the base model, we further con-341

duct supervised instruction tuning to enhance the342

model’s adaptability to instruction-based tasks. Ta-343

ble 2 compares the performance of GrammarCoder344

with current state-of-the-art code models of similar345

or larger scales. Experimental results show that346

grammar-based code representation achieves per-347

formance comparable to the best token-based mod-348

els. For example, on the HumanEval (+) dataset,349

both the base and instruct versions of Grammar-350

Coder outperform other models (e.g., CodeGemma-351

7B and Yi-Coder-1.5B), while the instruct ver-352

sion achieves performance on par with OpenCoder.353

However, on the MBPP+ dataset, GrammarCoder-354

Base does not surpass OpenCoder-Base, which355

may be attributed to differences in training data vol-356

ume and quality during the base model pre-training357

stage. OpenCoder benefits from training on over358

900B tokens of high-quality data, whereas Gram- 359

marCoder is pre-trained on only around 10B tokens 360

in grammar-based representation. This suggests 361

that while grammar-based representation proves to 362

be effective, the scale and quality of training data 363

also play a crucial role in achieving state-of-the-art 364

performance. Future work can explore expanding 365

the amount of high-quality code data processed into 366

grammar-based representations to further enhance 367

model performance. 368

3.2 Experiment II: Understanding the 369

Performance Difference 370

Experiment Design. While our experimental re- 371

sults demonstrate that grammar-based representa- 372

tion enhances code generation, it remains crucial 373

to understand what drives this improvement, espe- 374

cially given that syntax errors are already rare in 375

billion-scale LLMs. To explore the reason behind 376

these results, we focus on why grammar-based rep- 377

resentations help mitigate semantic errors beyond 378

preventing syntactic errors, aiming to uncover their 379

role in reducing overall mistakes. Analyzing the 380

different representation results, we observe that 381

grammar-based representation may amplify differ- 382

ences between correct and incorrect programs that 383

appear minimal at the token level. This height- 384

ened sensitivity to fine-grained variations may help 385

prevent LLMs from behaving like “careless pro- 386

grammers”, who often make mistakes by overlook- 387

ing subtle details. By capturing these distinctions 388

more effectively, grammar-based models could re- 389

5

parenthesized_expression

left right

binary_operator

+

left right%

identifier

a

identifier

b

identifier

2

name parameters body

identifier

get

_sum

_parity

identifier

a b

return_statement

binary_operator

left

right

binary_operator

%

right+

identifier

a

identifier

2

left

identifier

b

Checks the parity of
two integers' sum
def get_sum_parity (a, b):
 return (a + b) % 2

Checks the parity of
two integers' sum
def get_sum_parity (a, b):
 return a + b % 2

Error Correct

module

function_definition

identifier

get

_sum

_parity a b binary_operator

end

name parameters body

identifier identifier return_statement

module

function_definition

identifier end

Figure 2: An example showing the differences of code representations between error and correct code.

duce such semantic errors, leading to higher perfor-390

mance in code generation tasks.391

To validate this hypothesis, we design a new392

set of experiments focusing on subtle semantic393

changes that are likely to be overlooked by both394

humans and token-based models. Specifically, we395

investigate (1) whether grammar-based represen-396

tation amplifies these differences, and (2) whether397

grammar-based models can better capture these398

changes. These experiments aim to provide deeper399

insight into how grammar-based representation im-400

proves the model’s ability to distinguish between401

correct and error code, making it more effective402

in avoiding semantic errors and improving perfor-403

mance.404

First, we conduct a quantitative analysis to ex-405

plore the potential differences between grammar-406

based and token-based representations. Specifi-407

cally, we encode code snippets that are similar at408

the token level but semantically different using both409

representation strategies and compare their edit dis-410

tance when transforming one code into another.411

Next, we train separate grammar-based and412

token-based code semantic classifiers to evaluate413

the impact of grammar-based representations on414

semantic classification. By training classification415

models on differently represented code datasets,416

we examine the extent to which each representa-417

tion affects the model’s ability to capture semantic418

differences.419

Finally, we assess whether the differences intro-420

duced by grammar rules contribute to performance421

improvements, confirming their effectiveness in422

enhancing LLMs.423

Result 1: Grammar-Based Representation Am-424

plifies Subtle Token-Level Differences. We an-425

alyze whether grammar-based representation am-426

plifies subtle differences by comparing the edit dis-427

Precision Recall F1-Score

DeepSeek-Coder-1.3B-Base 71.99 62.77 67.06
DeepSeek-Coder-1.3B-Instruct 74.20 65.59 69.63
Qwen2.5-1.5B-Base (Team, 2024) 72.16 64.97 68.38
Qwen2.5-1.5B-Instruct 71.42 67.32 69.31
Condor-1.3B (Liang et al., 2024) 74.39 72.40 73.38

GrammarCoder-1.3B-Base 77.39 81.30 79.30
GrammarCoder-1.5B-Base 72.34 76.50 74.36

Table 3: The performance of semantic classification
tasks.

tances between semantically different code snip- 428

pets under grammar-based and token-based rep- 429

resentations. CodeNanoFix (Liang et al., 2024) 430

dataset is used to measure the edit distance, pro- 431

viding a quantitative assessment of how grammar- 432

based and token-based approaches represent code. 433

This dataset consists of 1,000+ programming prob- 434

lems and nearly 100,000 code sample pairs with 435

minimal token differences but significant semantic 436

variations. A subset of 120 programming prob- 437

lems and 3,583 sample pairs serve as the test set. 438

Each sample in the dataset consists of error code 439

submitted by human programmers while solving a 440

problem, along with its corrected version modified 441

by the programmer, both exhibiting minimal token- 442

level differences. Since the differences between er- 443

ror and corrected code typically involve subtle yet 444

crucial semantic changes, such as control flow mod- 445

ifications, variable scope adjustments, and operator 446

usage corrections, this dataset is well-suited for an- 447

alyzing the differences between token-based and 448

grammar-based representations. To mitigate the 449

impact of outliers, we focus on code pairs with min- 450

imal token-level differences (edit distance less than 451

50, covering 91.18% of the CodeNanoFix’s test 452

set). Additionally, we use GrammarCoder-1.3B’s 453

vocabulary to produce grammar-based representa- 454

tions and DeepSeek-Coder-1.3B’s vocabulary to 455

produce token-based representations, ensuring a 456

6

fair comparison is made with the maximum over-457

lap of shared tokens.458

The results show that grammar-based represen-459

tation typically produces larger edit distances com-460

pared to token-based representation. Specifically,461

the average edit distance from error to correct code462

at the token level is 14.33, while for grammar-based463

representations, it increases to 27.43, a 91.18% in-464

crease. B.1 shows the edit distance distribution for465

error-correct code pairs. Figure 2 presents a con-466

crete example, where the left side shows an error467

code snippet caused by neglecting operator prece-468

dence, while the right side displays the correct ver-469

sion. At the token level, the difference between the470

two codes consists of only two characters (i.e., ‘(’471

and ‘)’), resulting in an edit distance of 2. However,472

at the grammar representation level, the change473

in operator precedence leads to significant differ-474

ences in the AST structure and the grammar rules475

applied, increasing the edit distance to 6. B.2 also476

presents the further analysis results of the LLM’s477

generated outputs on CodeNanoFix, which reveal478

similar conclusions. These results indicate that the479

introduction of grammar rules amplifies represen-480

tation differences that may be overlooked at the481

token level. Consequently, the grammar-based rep-482

resentation provides a more distinct encoding of483

correct and incorrect code, allowing the model to484

better capture semantic variations.485

Result 2: Grammar-Based Representation486

Strengthens Semantic Distinction. We evaluate487

whether grammar-based models more effectively488

capture these changes by training classifiers using489

different code representation approaches. Specifi-490

cally, we use CodeNanoFix as a dataset for a seman-491

tic classification task, evaluating the model’s ability492

to distinguish between semantically correct and in-493

correct code. By training classifiers to identify code494

correctness, we examine whether grammar-based495

representations improve the model’s understanding496

of code semantics. To ensure a fair comparison, we497

select baselines that align with GrammarCoder’s498

architecture. Specifically, we use its corresponding499

base models, DeepSeek-Coder-1.3B and Qwen2.5-500

1.5B, along with Condor-1.3B (Liang et al., 2024),501

a model specifically designed for the CodeNanoFix502

classification task. Precision, Recall, and F1 score503

are utilized as key metrics for classification perfor-504

mance. Precision evaluates the accuracy of correct505

code predictions, Recall measures the model’s abil-506

ity to identify the actual correct code, and F1 score507

provides a balanced assessment of overall classifi- 508

cation performance. Similar to Condor, Grammar- 509

Coder is fine-tuned on the CodeNanoFix dataset to 510

enhance its understanding of code semantics and 511

alignment with problem descriptions. In the im- 512

plementation, a classification layer is added to the 513

original model to output probability scores, with 514

0.5 sets as the classification threshold. Code snip- 515

pets with scores above 0.5 are considered correct, 516

while those below are classified as errors. During 517

fine-tuning, the learning rate is set to 5e-5 to ensure 518

stable optimization for the code classification task. 519

Table 3 illustrates the impact of different code 520

representation approaches on the model’s ability 521

to determine code semantic correctness. The re- 522

sults indicate that incorporating grammar rules sig- 523

nificantly enhances the model’s ability to distin- 524

guish correct from incorrect code. For example, 525

GrammarCoder-1.3B-Base and GrammarCoder- 526

1.5B-Base improve F1 scores by 18.25% and 527

8.75%, respectively, compared to their base models 528

DeepSeek-Coder-1.3B-Base and Qwen-1.5B-Base. 529

These results demonstrate that the incorporation 530

of grammar rules enables the model to more pre- 531

cisely differentiate token-level similar but seman- 532

tically distinct code snippets, improving its ability 533

to recognize subtle semantic differences. Further- 534

more, even compared to Condor, the current best- 535

performing model on the CodeNanoFix dataset, 536

GrammarCoder-1.3B-Base achieves nearly nine 537

percentage points higher Recall and improves the 538

F1 score by almost six percentage points. Notably, 539

both Condor and GrammarCoder-1.3B-Base are 540

trained from the same baseline model, DeepSeek- 541

Coder-1.3B-Base. This further highlights the ef- 542

fectiveness of grammar-based representation in dis- 543

tinguishing semantic differences caused by subtle 544

token-level changes in code. 545

Result 3: Correlation Between Representation 546

and Performance. We conduct a correlation 547

analysis to examine whether the increase in edit 548

distance is related to GrammarCoder’s ability to 549

distinguish between semantically correct and incor- 550

rect code. A chi-square test confirms a statistically 551

significant correlation, with GrammarCoder-1.3B- 552

Base and GrammarCoder-1.5B-Base achieving p- 553

values of 0.0051 and 0.0006, respectively. As a p- 554

value below 0.05 indicates statistical significance, 555

the results suggest that grammar-based represen- 556

tation contributes to performance improvements 557

by amplifying structural differences in code. B.3 558

7

also presents case studies where the token-based559

model’s generated outputs can be corrected with560

minor modifications at the token level. This abil-561

ity brought by grammar-based representation helps562

prevent the model from exhibiting oversight-prone563

tendencies akin to a “careless programmer,” where564

minor but critical details are ignored, potentially565

leading to semantic errors. As a result, grammar-566

based representation not only improves the model’s567

understanding of code semantics but also enhances568

overall performance in code generation.569

4 Related Work570

4.1 Large Language Models for Code571

Since the release of ChatGPT-3.5 (cha, 2022)572

sparked a new wave of interest in LLMs, increasing573

focus has been on training and utilizing LLMs for574

code-related tasks. These models can be broadly575

categorized into two types. The first category con-576

sists of general-purpose models, which perform577

well in various natural language tasks, while also578

showing strong capabilities in code-related tasks.579

Examples of models in this category include Chat-580

GPT (OpenAI, 2024), Gemini (Reid et al., 2024),581

Claude (Anthropic, 2025), Qwen (Team, 2024),582

and DeepSeek (Bi et al., 2024). The second cate-583

gory comprises models specifically trained on code584

data, including models such as CodeLlama (Roz-585

ière et al., 2024), OpenCoder (Huang et al., 2024),586

and DeepSeek-Coder (Guo et al., 2024). Com-587

pared to general-purpose models, these special-588

ized models can achieve comparable or superior589

performance on code-related tasks with fewer pa-590

rameters and offer broader support for less com-591

mon programming languages. However, regard-592

less of whether they have been specifically trained593

for code-related tasks, these models represent pro-594

gramming languages in the same way as natural595

language—using token sequences. This hinders the596

model’s ability to recognize the inherent structural597

information of programming languages. Therefore,598

we leverage the grammar-based code representa-599

tion to train GrammarCoder, which enhances the600

model’s ability to capture structural information601

inherent in programming languages.602

4.2 Grammar-Based Code Representation603

Many models attempt to incorporate grammar-604

based information into code representations (Sun605

et al., 2019; Guo et al., 2022; Zhu et al., 2024; Sun606

et al., 2020; Xiong and Wang, 2022; Rabinovich607

et al., 2017). These models have been validated on 608

relatively small-scale models (fewer than 220M 609

parameters), demonstrating that grammar-based 610

representation helps prevent syntax errors and en- 611

hances code generation performance. For exam- 612

ple, GrammarT5 (Zhu et al., 2024) is a pre-trained 613

model based on grammatical rules. It is trained 614

based on CodeT5 (220M) (Wang et al., 2021b) 615

with an encoder-decoder architecture using the 616

same training data, demonstrating that grammar- 617

based representations can enhance model perfor- 618

mance. However, with the emergence of LLMs, 619

models’ size has expanded rapidly, and decoder- 620

only architectures have gradually become main- 621

stream. It’s unclear whether grammar-based rep- 622

resentations remain effective in larger-scale (e.g., 623

billion-size) decoder-only models. Moreover, be- 624

yond preventing grammatical errors, it remains un- 625

clear whether grammar-based representations pro- 626

vide any additional benefits. Therefore, we bridge 627

these gaps by training and evaluating grammar- 628

based representations in billion-scale decoder-only 629

models. Additionally, we explore why grammar- 630

based representation remains effective when syntax 631

errors are rare in LLMs, providing insights into its 632

broader impact on model performance. 633

5 Conclusion 634

In this paper, we introduce GrammarCoder, a se- 635

ries of models trained using grammar-based code 636

representations. To evaluate whether this approach 637

remains effective even when billion-scale models 638

basically no longer make syntax errors, we assess 639

GrammarCoder on widely used code generation 640

benchmarks, HumanEval(+) and MBPP(+). Ex- 641

perimental results show that after continued pre- 642

training on the same datasets, GrammarCoder sig- 643

nificantly outperforms models trained with normal 644

token-based representations. To further investigate 645

why grammar-based code representations are ef- 646

fective, we first quantify the differences between 647

grammar-based and token-based approaches in rep- 648

resenting code. Additionally, we train a classi- 649

fication model to assess their ability to capture 650

subtle code variations. Our findings reveal that 651

while modern LLMs rarely make syntax errors, 652

grammar-based representations still enhance their 653

ability to distinguish fine-grained token-level dif- 654

ferences. This reduces semantic errors caused by 655

minor variations and ultimately improves model 656

performance in code-related tasks. 657

8

References658

2022. Chatgpt: Optimizing language models for dia-659
logue. Accessed: 2023-01-16.660

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed661
Awadallah, Ammar Ahmad Awan, Nguyen Bach,662
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat663
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,664
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav665
Chaudhary, Dong Chen, Dongdong Chen, Weizhu666
Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng,667
Parul Chopra, Xiyang Dai, Matthew Dixon, Ro-668
nen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao,669
Min Gao, Amit Garg, Allie Del Giorno, Abhishek670
Goswami, Suriya Gunasekar, Emman Haider, Jun-671
heng Hao, Russell J. Hewett, Wenxiang Hu, Jamie672
Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi,673
Xin Jin, Nikos Karampatziakis, Piero Kauffmann,674
Mahoud Khademi, Dongwoo Kim, Young Jin Kim,675
Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi676
Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui677
Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu,678
Weishung Liu, Xiaodong Liu, Chong Luo, Piyush679
Madan, Ali Mahmoudzadeh, David Majercak, Matt680
Mazzola, Caio César Teodoro Mendes, Arindam Mi-681
tra, Hardik Modi, Anh Nguyen, Brandon Norick,682
Barun Patra, Daniel Perez-Becker, Thomas Portet,683
Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang684
Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy,685
Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil686
Salim, Michael Santacroce, Shital Shah, Ning Shang,687
Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia688
Song, Masahiro Tanaka, Andrea Tupini, Praneetha689
Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan690
Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel691
Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia692
Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu,693
Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang,694
Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu,695
Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen696
Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan697
Zhang, and Xiren Zhou. 2024. Phi-3 technical report:698
A highly capable language model locally on your699
phone. Preprint, arXiv:2404.14219.700

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.701
1986. Compilers: Principles, Techniques, and Tools.702
Addison-Wesley series in computer science / World703
student series edition. Addison-Wesley.704

01. AI, :, Alex Young, Bei Chen, Chao Li, Chengen705
Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang,706
Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang,707
Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Sen-708
bin Yang, Shiming Yang, Wen Xie, Wenhao Huang,709
Xiaohui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng710
Nie, Yanpeng Li, Yuchi Xu, Yudong Liu, Yue Wang,711
Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu, and Zonghong712
Dai. 2025. Yi: Open foundation models by 01.ai.713
Preprint, arXiv:2403.04652.714

Anthropic. 2025. Introducing the next generation of715
claude.716

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 717
Bosma, Henryk Michalewski, David Dohan, Ellen 718
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 719
Charles Sutton. 2021. Program synthesis with large 720
language models. Preprint, arXiv:2108.07732. 721

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, 722
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, 723
Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scal- 724
ing open-source language models with longtermism. 725
arXiv preprint arXiv:2401.02954. 726

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 727
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 728
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 729
Greg Brockman, Alex Ray, Raul Puri, Gretchen 730
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 731
try, Pamela Mishkin, Brooke Chan, Scott Gray, 732
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 733
Kaiser, Mohammad Bavarian, Clemens Winter, 734
Philippe Tillet, Felipe Petroski Such, Dave Cum- 735
mings, Matthias Plappert, Fotios Chantzis, Eliza- 736
beth Barnes, Ariel Herbert-Voss, William Hebgen 737
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 738
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 739
William Saunders, Christopher Hesse, Andrew N. 740
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 741
Morikawa, Alec Radford, Matthew Knight, Miles 742
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 743
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 744
Sutskever, and Wojciech Zaremba. 2021. Evaluating 745
large language models trained on code. 746

Cognitive Computations. 2024. Code-290k-sharegpt- 747
vicuna. 748

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, 749
Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu, Yukun 750
Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao 751
Bi, Zihui Gu, Hanwei Xu, Damai Dai, Kai Dong, 752
Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, 753
Zhewen Hao, Bingxuan Wang, Junxiao Song, Deli 754
Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin 755
Liu, Qiushi Du, Wenjun Gao, Xuan Lu, Qinyu Chen, 756
Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang 757
Zhao, Chong Ruan, Fuli Luo, and Wenfeng Liang. 758
2024. Deepseek-coder-v2: Breaking the barrier of 759
closed-source models in code intelligence. Preprint, 760
arXiv:2406.11931. 761

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 762
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 763
Akhil Mathur, Alan Schelten, Amy Yang, Angela 764
Fan, et al. 2024. The llama 3 herd of models. arXiv 765
preprint arXiv:2407.21783. 766

GrammarCode. 2025. Grammarcode. 767

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming 768
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross- 769
modal pre-training for code representation. In Pro- 770
ceedings of the 60th Annual Meeting of the Associa- 771
tion for Computational Linguistics (Volume 1: Long 772
Papers), pages 7212–7225. 773

9

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://www.worldcat.org/oclc/12285707
https://arxiv.org/abs/2403.04652
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://anonymous.4open.science/r/GrammarCoder

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu774
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey775
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-776
bert: Pre-training code representations with data flow.777
arXiv preprint arXiv:2009.08366.778

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,779
Kai Dong, Wentao Zhang, Guanting Chen, Xiao780
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:781
When the large language model meets programming–782
the rise of code intelligence. arXiv preprint783
arXiv:2401.14196.784

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu785
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxi-786
ang Huang, Weilin Zhao, et al. 2024. Minicpm:787
Unveiling the potential of small language models788
with scalable training strategies. arXiv preprint789
arXiv:2404.06395.790

Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Li-791
uyihan Song, Yang Xu, J. Yang, J. H. Liu, Chenchen792
Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang793
Zhang, Jie Fu, Qian Liu, Ge Zhang, Zili Wang, Yuan794
Qi, Yinghui Xu, and Wei Chu. 2024. Opencoder:795
The open cookbook for top-tier code large language796
models. Preprint, arXiv:2411.04905.797

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-798
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,799
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,800
Yichang Zhang, An Yang, Rui Men, Fei Huang,801
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-802
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren803
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech-804
nical report. Preprint, arXiv:2409.12186.805

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and806
Lei Lyu. 2021. Treebert: A tree-based pre-trained807
model for programming language. In Proceedings808
of the Thirty-Seventh Conference on Uncertainty in809
Artificial Intelligence, volume 161 of Proceedings of810
Machine Learning Research, pages 54–63. PMLR.811

Qingyuan Liang, Zhao Zhang, Chen Liu, Zeyu Sun,812
Wenjie Zhang, Yizhou Chen, Zixiao Zhao, Qi Luo,813
Wentao Wang, Yanjie Jiang, et al. 2024. Condor:814
A code discriminator integrating general semantics815
with code details. arXiv preprint arXiv:2412.17429.816

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-817
ming Zhang. 2023. Is your code generated by chat-818
GPT really correct? rigorous evaluation of large lan-819
guage models for code generation. In Thirty-seventh820
Conference on Neural Information Processing Sys-821
tems.822

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-823
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,824
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,825
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur826
Zucker, Younes Belkada, Zijian Wang, Qian Liu,827
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-828
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue829
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,830

Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, 831
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, 832
Niklas Muennighoff, Xiangru Tang, Muhtasham 833
Oblokulov, Christopher Akiki, Marc Marone, Cheng- 834
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, 835
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas 836
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten 837
Scholak, Sebastien Paquet, Jennifer Robinson, Car- 838
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat- 839
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz 840
Ferrandis, Lingming Zhang, Sean Hughes, Thomas 841
Wolf, Arjun Guha, Leandro von Werra, and Harm 842
de Vries. 2024. Starcoder 2 and the stack v2: The 843
next generation. Preprint, arXiv:2402.19173. 844

Taishi Nakamura, Mayank Mishra, Simone Tedeschi, 845
Yekun Chai, Jason T Stillerman, Felix Friedrich, Pra- 846
teek Yadav, Tanmay Laud, Vu Minh Chien, Terry Yue 847
Zhuo, et al. 2025. Aurora-m: Open source continual 848
pre-training for multilingual language and code. In 849
Proceedings of the 31st International Conference on 850
Computational Linguistics: Industry Track, pages 851
656–678. 852

OpenAI. 2024. Chatgpt. 853

Maxim Rabinovich, Mitchell Stern, and Dan Klein. 854
2017. Abstract syntax networks for code genera- 855
tion and semantic parsing. In Proceedings of the 856
55th Annual Meeting of the Association for Compu- 857
tational Linguistics (Volume 1: Long Papers), pages 858
1139–1149. 859

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya 860
Sutskever, et al. 2018. Improving language under- 861
standing by generative pre-training. 862

Machel Reid, Nikolay Savinov, Denis Teplyashin, 863
Dmitry Lepikhin, Timothy P. Lillicrap, Jean-Baptiste 864
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan 865
Firat, Julian Schrittwieser, Ioannis Antonoglou, Ro- 866
han Anil, Sebastian Borgeaud, Andrew M. Dai, Katie 867
Millican, Ethan Dyer, Mia Glaese, Thibault Sotti- 868
aux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, 869
Yuanzhong Xu, James Molloy, Jilin Chen, Michael 870
Isard, Paul Barham, Tom Hennigan, Ross McIl- 871
roy, Melvin Johnson, Johan Schalkwyk, Eli Collins, 872
Eliza Rutherford, Erica Moreira, Kareem Ayoub, 873
Megha Goel, Clemens Meyer, Gregory Thornton, 874
Zhen Yang, Henryk Michalewski, Zaheer Abbas, 875
Nathan Schucher, Ankesh Anand, Richard Ives, 876
James Keeling, Karel Lenc, Salem Haykal, Siamak 877
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Ro- 878
man Ring, Stephen Spencer, Eren Sezener, and et al. 879
2024. Gemini 1.5: Unlocking multimodal under- 880
standing across millions of tokens of context. CoRR, 881
abs/2403.05530. 882

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 883
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 884
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy 885
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna 886
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron 887
Grattafiori, Wenhan Xiong, Alexandre Défossez, 888

10

https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://proceedings.mlr.press/v161/jiang21a.html
https://proceedings.mlr.press/v161/jiang21a.html
https://proceedings.mlr.press/v161/jiang21a.html
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://www.openai.com/chatgpt
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530

Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-889
tin, Nicolas Usunier, Thomas Scialom, and Gabriel890
Synnaeve. 2024. Code llama: Open foundation mod-891
els for code. Preprint, arXiv:2308.12950.892

Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li,893
and Lu Zhang. 2019. A grammar-based structural894
cnn decoder for code generation. In Proceedings of895
the AAAI conference on artificial intelligence, vol-896
ume 33, pages 7055–7062.897

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili898
Mou, and Lu Zhang. 2020. Treegen: A tree-based899
transformer architecture for code generation. In Pro-900
ceedings of the AAAI Conference on Artificial Intelli-901
gence, volume 34, pages 8984–8991.902

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua903
Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,904
Christopher A. Choquette-Choo, Jingyue Shen, Joe905
Kelley, Kshitij Bansal, Luke Vilnis, Mateo Wirth,906
Paul Michel, Peter Choy, Pratik Joshi, Ravin Kumar,907
Sarmad Hashmi, Shubham Agrawal, Zhitao Gong,908
Jane Fine, Tris Warkentin, Ale Jakse Hartman, Bin909
Ni, Kathy Korevec, Kelly Schaefer, and Scott Huff-910
man. 2024. Codegemma: Open code models based911
on gemma. Preprint, arXiv:2406.11409.912

Qwen Team. 2024. Qwen2.5: A party of foundation913
models.914

TokenBender. 2024. code_instructions_122k_alpaca_style.915

TreeSitter. 2024. Treesitter.916

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob917
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz918
Kaiser, and Illia Polosukhin. 2017. Attention is all919
you need. Advances in neural information processing920
systems, 30.921

Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao922
Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, and Xin Jiang.923
2021a. Syncobert: Syntax-guided multi-modal con-924
trastive pre-training for code representation. arXiv925
preprint arXiv:2108.04556.926

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven927
C. H. Hoi. 2021b. Codet5: Identifier-aware uni-928
fied pre-trained encoder-decoder models for code929
understanding and generation. In Proceedings of the930
2021 Conference on Empirical Methods in Natural931
Language Processing, EMNLP 2021, Virtual Event932
/ Punta Cana, Dominican Republic, 7-11 November,933
2021, pages 8696–8708. Association for Computa-934
tional Linguistics.935

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng936
Ding, Naman Jain, Zachary Mueller, Harm de Vries,937
Leandro von Werra, Arjun Guha, and Lingming938
Zhang. 2024a. Selfcodealign: Self-alignment for939
code generation. arXiv preprint arXiv:2410.24198.940

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and941
Lingming Zhang. 2024b. Magicoder: Empowering942
code generation with oss-instruct. In Forty-first Inter-943
national Conference on Machine Learning.944

Yingfei Xiong and Bo Wang. 2022. L2s: A framework 945
for synthesizing the most probable program under a 946
specification. ACM Transactions on Software Engi- 947
neering and Methodology (TOSEM), 31(3):1–45. 948

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 949
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 950
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 951
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, 952
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin 953
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, 954
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke- 955
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, 956
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize 957
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, 958
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, 959
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, 960
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing 961
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, 962
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, 963
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni- 964
cal report. Preprint, arXiv:2407.10671. 965

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, 966
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang 967
Yue. 2024. Opencodeinterpreter: Integrating code 968
generation with execution and refinement. arXiv 969
preprint arXiv:2402.14658. 970

Qihao Zhu, Qingyuan Liang, Zeyu Sun, Yingfei Xiong, 971
Lu Zhang, and Shengyu Cheng. 2024. Grammart5: 972
Grammar-integrated pretrained encoder-decoder neu- 973
ral model for code. In Proceedings of the 46th 974
IEEE/ACM International Conference on Software En- 975
gineering, ICSE 2024, Lisbon, Portugal, April 14-20, 976
2024, pages 76:1–76:13. ACM. 977

Qihao Zhu, Zeyu Sun, Wenjie Zhang, Yingfei Xiong, 978
and Lu Zhang. 2023. Tare: Type-aware neural pro- 979
gram repair. In 2023 IEEE/ACM 45th International 980
Conference on Software Engineering (ICSE), pages 981
1443–1455. 982

A Approach Details 983

A.1 Mode Configuration 984

Config DeepSeek-Coder Qwen2.5

parameters 1.3 B 1.5 B
hidden_layer 24 28
hidden_size 2,048 1,537
intermediate_size 5,504 8,960
attention_head 16 12
vocabulary 32,256 151,936

Table 4: The main configuration of two different base
models.

Table 4 presents the key configurations of the 985

base models used in our study: DeepSeek-Coder 986

and Qwen2.5. While both models are billion-scale 987

11

https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2406.11409
https://arxiv.org/abs/2406.11409
https://arxiv.org/abs/2406.11409
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://huggingface.co/datasets/TokenBender/code_instructions_122k_alpaca_style
https://tree-sitter.github.io/tree-sitter/
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://doi.org/10.1145/3597503.3639125
https://doi.org/10.1145/3597503.3639125
https://doi.org/10.1145/3597503.3639125
https://doi.org/10.1145/3597503.3639125
https://doi.org/10.1145/3597503.3639125
https://doi.org/10.1109/ICSE48619.2023.00126
https://doi.org/10.1109/ICSE48619.2023.00126
https://doi.org/10.1109/ICSE48619.2023.00126

in terms of parameter count, they exhibit differ-988

ences in architectural details, particularly in vo-989

cabulary size. DeepSeek-Coder has a vocabulary990

size of 32,256, whereas Qwen2.5 employs a sig-991

nificantly larger vocabulary of 151,936. Since992

grammar-based representations restructure code at993

a syntactic level rather than relying solely on the994

token level, their effectiveness is not dependent on995

the original vocabulary. Therefore, this difference996

in vocabulary size can underscore the robustness997

of our grammar-based code representation. Af-998

ter incorporating grammar rules, our vocabulary999

sizes expand to 33,465 for DeepSeek-Coder and1000

153,108 for Qwen2.5. If GrammarCoder demon-1001

strates improved performance across both base1002

models, it would further indicate that grammar-1003

based approaches are adaptable to different model1004

architectures and tokenization strategies.1005

A.2 Training Objective1006

The training objective of GrammarCoder is to max-1007

imize the conditional probability of the next token1008

given the preceding sequence. The loss function of1009

training objective can be formalized as:1010

L = −
N∑
t=1

logP (xt|x1, x2, . . . , xt−1; θ)1011

, where xt represents the token (either a normal1012

token or a grammar rule from Vgrammar) at step t,1013

x1, x2, ..., xt−1 denotes the previously generated1014

sequence, θ represents the model parameters, and1015

the objective is to maximize the conditional proba-1016

bility of the correct token given the current context1017

P (xt | x1, x2, ..., xt−1).1018

This ensures that the final output adheres to syn-1019

tax constraints while effectively capturing correct1020

program logic, aligning with the preorder traversal1021

of the complete AST.1022

A.3 Training Datasets and Filter1023

Name # Samples
code_contests_instruct 4.4 M
Opencoder-sft-stage1 4.2 M
Opencoder-sft-stage2 375K
Code-290k-ShareGPT-Vicuna-Clean 285K
CodeFeedback-Filtered-Instruction 156K
code_instructions_122k_alpaca_style 121K

Table 5: Open-source instruction datasets are used in
our instruction tuning process.

Ed
it

D
is

ta
nc

e

Normal Token-Based Grammar-Based

Figure 3: Edit distance distribution across different code
representation approaches.

For training the base models, we primarily use 1024

high-quality Python code, aligning with our fo- 1025

cus on grammar-based code representation. Our 1026

dataset is composed of two key sources. First, we 1027

sample 10B tokens from TheStackV2 (Lozhkov 1028

et al., 2024), a large-scale code corpus that pro- 1029

vides diverse and high-quality programming sam- 1030

ples across various domains, ensuring a strong 1031

foundation in general coding patterns and struc- 1032

tures. Second, inspired by previous studies (Huang 1033

et al., 2024; Yang et al., 2024), we incorporate 1034

0.5B tokens of self-contained code textbooks from 1035

open-source repositories (Huang et al., 2024). Un- 1036

like context-dependent snippets, these samples con- 1037

sist of independent tasks and corresponding code 1038

snippets, helping the model learn to generate inde- 1039

pendent and coherent programs, bridging the gap 1040

between standard pre-training and real-world inter- 1041

active programming scenarios. 1042

For training the instruct models, we use instruc- 1043

tion data consisting of two main sources: pub- 1044

licly available instruction datasets and syntheti- 1045

cally generated instruction data. Table 5 lists the 1046

open-source instruct datasets used in our train- 1047

ing (Hu et al., 2024; Huang et al., 2024; Compu- 1048

tations, 2024; Zheng et al., 2024; TokenBender, 1049

2024), each contributing to the diversity and qual- 1050

ity of instruction tuning. All of the datasets have a 1051

permissive license for the training LLM. For syn- 1052

thetic instruct data, we use LLaMA3.1-70B as the 1053

base model to generate high-quality data, lever- 1054

aging OSS-Instruct (Wei et al., 2024b) and Self- 1055

CodeAlign (Wei et al., 2024a) as synthesis meth- 1056

ods. This approach enables us to create a large- 1057

scale instruct dataset totaling 5B tokens, further 1058

enhancing the model’s ability to follow instructions 1059

12

def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)

def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
groups = [(group[-1] + group[:-1]) if len(group) == 3 else group for group in groups]
return "".join(groups)

expression_statement

binary_operator

left + right

subscript

unary_operatoridentifier

identifier

subscript

identifier slice

unary_operatorgroup -

1

group

identifier-

1

expression_statement

binary_operator

left + right

subscript

identifier

subscript

identifier

group

slice

: :identifier

1

group 0

group [- 1] + group [: - 1] group [1 :] + group [0]

identifier

Figure 4: DeepSeek-Coder-1.3B-Base (CPT)’s generated output for Task 38 in the HumanEval dataset (left) and the
required AST modifications to correct the code (right).

def get_max_triples(n):
"""
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.

Example :
Input: n = 5
Output: 1
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
"""
count = 0
for i in range(1, n):

for j in range(i+1, n):
for k in range(j+1, n+1):

if (i*i - i + 1) + (j*j - j + 1) + (k*k - k + 1) % 3 == 0:
if ((i*i - i + 1) + (j*j - j + 1) + (k*k - k + 1)) % 3 == 0:

count += 1
return count

if_statement

condition

binary_operator ==

if A+B+C %3 ==0: ... if (A+B+C) %3 ==0: ...

left right+

left right+

binary_operator

comparison_operator

identifier

0

A

identifier

B

identifier

left right%

binary_operator

C

identifier identifier

3

consequence

...

if_statement

condition

binary_operator ==

left right%

left right+

binary_operator

comparison_operator

identifier

0

C

identifier

B

identifier

left right+

binary_operator

A

identifier

identifier

3

consequence

...

parenthesized_expression

Figure 5: DeepSeek-Coder-1.3B-Base (CPT)’s generated output for Task 147 in the HumanEval dataset (left) and
the required AST modifications to correct the code (right). For clarity, we represent identical computational units
before and after modification using A, B, and C, respectively.

effectively.1060

To ensure data quality, we apply data filtering for1061

both base models and instruct models, primarily1062

focusing on deduplication and syntax validation.1063

Deduplication is performed through string-based1064

text matching to eliminate redundant samples. For1065

syntax validation, we use Tree-sitter (TreeSitter,1066

2024) to check whether the code can be parsed1067

into a valid syntax tree; if parsing fails, the sample1068

is removed. These filtering steps help maintain1069

a high-quality and diverse instruction dataset for1070

training.1071

B Experimental Details1072

B.1 Distribution of Edit Distance1073

Figure 3 shows the edit distance distribution1074

for error-correct code pairs with small edit dis-1075

tances (less than 50, accounting for 91.18% of1076

the test set) under different code representation1077

approaches.1078

B.2 Analysis of Model Outputs 1079

While we have examined the differences between 1080

representations on existing datasets, it is also cru- 1081

cial to analyze whether grammar-based represen- 1082

tation amplifies token-level subtle differences in 1083

the model’s generated outputs. Therefore, we fur- 1084

ther analyzed the inference results of Meta-Llama- 1085

3.1-70B (Dubey et al., 2024) on the CodeNanoFix 1086

dataset, focusing on the edit distance between cor- 1087

rect and incorrect code samples for the same data 1088

samples. The results show that in 25.56% of the 1089

samples, the token-level edit distance between in- 1090

correct and correct code is relatively small (less 1091

than 50). Among these samples, the average edit 1092

distance for token-based representations is 28.04, 1093

whereas for grammar-based representations, it in- 1094

creases to 44.56. These findings suggest that even 1095

for a 70B-scale model, generating the correct code 1096

remains challenging when token-level differences 1097

are minimal. Relying solely on token-level infor- 1098

mation may not be sufficient to distinguish critical 1099

semantic differences in code. In contrast, grammar- 1100

13

based representations provide additional structural1101

information, helping the model better differenti-1102

ate between similar yet semantically distinct code1103

snippets.1104

B.3 Errors caused by subtle differences.1105

Figures 4 and 5 illustrate errors made by the token-1106

based LLM (DeepSeek-Coder-1.3B-Base (CPT))1107

on the HumanEval dataset, highlighting how these1108

mistakes can be corrected with minimal token-level1109

modifications. For example, in Figure 4, fixing the1110

error requires only adjusting the range of operations1111

within the ‘group’ list, while in Figure 5, the bug1112

can be fixed by adding a single pair of parentheses1113

to enforce the correct order of operations.1114

However, since these examples require only1115

minor token-level modifications, they may be1116

overlooked by token-based LLMs. In contrast,1117

grammar-based representations introduce larger1118

structural changes in the corresponding AST, mak-1119

ing the model more sensitive to differences be-1120

tween correct and incorrect code. These examples1121

demonstrate that grammar-based models, by explic-1122

itly organizing code through grammar rules, can1123

better capture subtle code variations. As a result,1124

grammar-based models are more effective in recog-1125

nizing and generating correct code, even in cases1126

where small token-level changes drastically alter1127

program behavior.1128

C Limitations1129

While grammar-based representations excel in code1130

understanding and generation, they might face the1131

following limitations. First, they may struggle1132

with non-standard or incomplete code. Real-world1133

datasets often contain code mixed with natural1134

language or truncated snippets, which may fail1135

AST parsing, reducing data utilization. Second,1136

grammar-based models may struggle with incom-1137

plete syntax. When dealing with incomplete vari-1138

able names or missing key symbols (e.g., brackets,1139

commas), grammar-based approaches may face1140

higher parsing or pre-processing costs. In these1141

cases, token-based approaches offer greater flexi-1142

bility.1143

Generally, grammar-based representation re-1144

mains effective in billion-scale LLMs, enhanc-1145

ing the model’s ability to capture subtle semantic1146

changes. This leads to improvements in code gen-1147

eration and semantic classification accuracy. How-1148

ever, its reliance on AST parsing introduces chal-1149

lenges in processing incomplete or syntactically 1150

incorrect code, limiting its flexibility. 1151

14

	Introduction
	GrammarCoder
	Model Overview
	Grammar-Based Code Representation
	Training Strategy
	Training Corpus

	Experiments
	Experiment I: Performance on Code Generation
	Experiment II: Understanding the Performance Difference

	Related Work
	Large Language Models for Code
	Grammar-Based Code Representation

	Conclusion
	Approach Details
	Mode Configuration
	Training Objective
	Training Datasets and Filter

	Experimental Details
	Distribution of Edit Distance
	Analysis of Model Outputs
	Errors caused by subtle differences.

	Limitations

