
Answer or Reasoning: Where is the LLM’s Memory Anchor?

Anonymous ACL submission

Abstract001

While Large Language Models (LLMs) demon-002
strate impressive reasoning capabilities, grow-003
ing evidence suggests much of their success004
stems from memorized answer-reasoning pat-005
terns rather than genuine inference. In this006
work, we investigate a central question: are007
LLMs primarily anchored to final answers or008
to the textual pattern of reasoning chains? We009
propose a five-level answer-visibility prompt010
framework that systematically manipulates an-011
swer cues and probes model behavior through012
indirect, behavioral analysis. Experiments013
across state-of-the-art LLMs reveal a strong014
and consistent reliance on explicit answers.015
The performance drops by 26.90% when an-016
swer cues are masked, even with complete017
reasoning chains. These findings suggest that018
much of the reasoning exhibited by LLMs may019
reflect post-hoc rationalization rather than true020
inference, calling into question their inferen-021
tial depth. Our study uncovers the answer-022
anchoring phenomenon with rigorous empirical023
validation and underscores the need for a more024
nuanced understanding of what constitutes rea-025
soning in LLMs.026

1 Introduction027

In recent years, Large Language Models (LLMs)028

enhanced by Chain-of-Thought (CoT) (Wei et al.,029

2022) have achieved remarkable success across030

tasks such as code generation and natural language031

understanding (Zhao et al., 2023; Jiang et al., 2024;032

Chang et al., 2024). Within this progress, mathe-033

matical reasoning (Ahn et al., 2024) has emerged034

as a definitive proving ground, with models gener-035

ating multi-step solutions spanning from elemen-036

tary arithmetic to graduate-level proofs. However,037

recent empirical evidence indicates that many of038

these reasoning chains stem not from genuine infer-039

ence, but from the recitation of answer-reasoning040

patterns memorized during training (Xie et al.,041

2024; Yan et al., 2025).042

This pattern of memorization can be exacer- 043

bated by the widespread data contamination in 044

large-scale pretraining corpora (Li et al., 2023; Xu 045

et al., 2024; Chen et al., 2025a). This memoriza- 046

tion inflates headline accuracy while obscuring the 047

absence of genuine inference, because each pat- 048

tern binds the final answer to a pre-written reason- 049

ing chain. Although the shortcut boosts perfor- 050

mance on familiar problems, it also enlarges the 051

training–testing gap (Xie et al., 2023; Kang et al., 052

2024). As illustrated in Figure 1, even minor input 053

perturbations can induce brittle, systematic fail- 054

ures—reflecting behavior anchored to surface-level 055

patterns rather than flexible, abstract reasoning. De- 056

veloping such deeper reasoning remains difficult, 057

since current training methods primarily reward 058

fitting to data rather than fostering generalizable 059

reasoning skills. 060

This reliance on learned patterns restricts models 061

from truly grasping the logic of novel problems, 062

highlighting a critical and underexplored question: 063

Are LLMs primarily anchored to final answers or 064

to learned solution templates—namely, the textual 065

patterns of their reasoning chains? 066

In this work, we aim to address this fundamental 067

question. A central challenge is the opaque nature 068

of modern LLMs. These models largely operate as 069

"black boxes" (Zhao et al., 2024; Yang et al., 2025), 070

limiting direct visibility into their internal mem- 071

ory traces. Consequently, it remains unclear what 072

these models have memorized or how this infor- 073

mation is utilized during inference. To overcome 074

this limitation, we employ an indirect, behavioral 075

methodology. Specifically, our approach involves 076

systematically manipulating the visibility and form 077

of final answers and reasoning steps within model 078

inputs. By analyzing how these manipulations im- 079

pact model outputs, we infer whether model behav- 080

ior is primarily driven by memorized answers or 081

adherence to learned solution templates. 082

To operationalize this investigation, our method- 083

1



Figure 1: When confronted with an unseen yet similar problem, an LLM often recalls a memorized answer–reasoning
pattern, overlooking task-specific nuances and producing an incorrect output. The underlying cause of this reliance
remains unclear: is the recall anchored to the final answer or to the reasoning chain?

ology centers on designing a systematic series of084

prompts for CoT reasoning. These prompts pre-085

cisely vary the explicitness of final answers within086

reasoning chains, creating a spectrum of conditions087

ranging from fully visible answers, through partial088

answer masking, to the complete removal of an-089

swer cues. Such controlled manipulations, while090

holding other prompt variables constant, enable us091

to rigorously quantify performance changes and092

thereby assess the model’s dependency.093

Our experiments consistently reveal a striking094

trend: models with explicit access to correct an-095

swers demonstrate substantially improved perfor-096

mance, often achieving near-perfect accuracy. In097

contrast, once the final answer is methodically098

obscured or answer-containing sentences are re-099

moved—even when the complete reasoning struc-100

ture is preserved—performance declines markedly.101

This pronounced performance gradient strongly in-102

dicates that LLMs’ memories are predominantly103

anchored to answers rather than the textual patterns104

of their reasoning chains.105

The implications of our findings are considerable 106

and contribute meaningfully to ongoing scholarly 107

debates regarding the authenticity of reasoning in 108

LLMs. Our results suggest that the widely-used 109

CoT reasoning patterns generated by LLMs may of- 110

ten function as post-hoc rationalizations (Arcuschin 111

et al., 2025) rather than reflecting genuine inferen- 112

tial steps. This reliance on answers compromises 113

the models’ robustness and significantly impairs 114

their generalization ability, especially when en- 115

countering out-of-distribution or subtly perturbed 116

problems. 117

This study makes three primary contributions: 118

• Present comprehensive evidence across 119

state-of-the-art LLMs showing that answer 120

anchoring, rather than reasoning-template 121

recall, is the dominant memory mechanism. 122

• Introduce a five-level prompt framework that 123

isolates answer cues from reasoning chains to 124

diagnose memory anchoring behavior. 125

• Demonstrate the tenacity of answer anchoring 126
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via conflict and warning-based prompts that127

test LLMs’ resistance to answer cue overrides.128

2 Related Work129

2.1 Memorization and Reasoning of LLMs130

Reasoning is widely recognized as a key capability131

of LLMs. However, recent work challenges this132

view, suggesting that much of the performance at-133

tributed to reasoning may instead stem from memo-134

rizing training data patterns (Xie et al., 2024; Jiang135

and Ferraro, 2024; Qiu et al., 2024; Chen et al.,136

2025b). These findings call into question how of-137

ten LLMs reason rather than retrieve.138

Studies in the mathematical domain particu-139

larly underscore this concern. Across diverse140

tasks—including noisy rule induction, subtly141

rephrased problems, and logic puzzles—LLMs con-142

sistently tend to rely on memorized solution tem-143

plates (Li et al., 2025; Huang et al., 2025; Xie et al.,144

2024). (Yan et al., 2025) further substantiated these145

observations. Their work demonstrates that even146

high-performing LLMs often recite templates for147

elementary problems and exhibit significant per-148

formance degradation under minor perturbations.149

Our work offers a finer-grained perspective on this150

memorization. We investigate whether LLMs’ re-151

call is primarily anchored to final answers or to the152

textual structure of reasoning chains, aiming for153

deeper mechanistic insights.154

2.2 Behavioral Probing via Input155

Manipulation156

The inherent black-box (Cheng et al., 2024; Zhao157

et al., 2024; Yang et al., 2025) nature of LLMs158

makes direct inspection of their internal mecha-159

nism impractical. Consequently, behavioral prob-160

ing via input manipulation has emerged as a key161

strategy to understand these opaque systems. This162

approach involves systematically altering model163

inputs and observing the resultant output changes164

to infer underlying processes. Prior work has ex-165

plored a variety of such manipulations. Some166

studies focus on numerical and linguistic pertur-167

bations (Li et al., 2024; Zhou et al., 2024; Shrestha168

et al., 2025; Chatziveroglou et al., 2025). Others169

adjust element order (Pezeshkpour and Hruschka,170

2024; Chen et al., 2024b; Guan et al., 2025) or em-171

ploy masking and deletion of key content (Wu et al.,172

2024; Chen et al., 2024a; Fan et al., 2025). Fur-173

thermore, some evaluations integrate multiple ma-174

nipulation strategies (Liang et al., 2022; Zhu et al.,175

2023). Distinctly, our work establishes an admit- 176

tedly artificial yet diagnostically critical scenario: 177

providing the correct final answer with the input 178

problem. This approach leverages LLMs’ post-hoc 179

rationalization to generate high-quality reasoning 180

chains, thereby creating unique conditions to com- 181

pare the impacts of explicit answers versus the rea- 182

soning chains on model performance. 183

3 Investigating Memory Binding in 184

Reasoning Models 185

This section details our methodology for investi- 186

gating whether LLMs primarily anchor memory 187

to final answers or to learned solution templates. 188

We employ an indirect approach, systematically 189

manipulating input elements related to answer and 190

reasoning visibility (as illustrated in Figure 2) to 191

infer underlying model dependencies. 192

The section is organized as follows: we first 193

present a motivating example (Section 3.1), then de- 194

tail our specific hypothesis and experimental design 195

(Section 3.2), and finally outline the experimental 196

setup including datasets, models, and evaluation 197

metrics (Section 3.3). 198

3.1 Illustrative Example: Dependency on 199

Answer Visibility 200

Consider a simple reasoning problem, illustrated 201

in Figure 2, that asks whether removing one side 202

of a square alters its corner count. Despite its sim- 203

plicity, the models’ predictions vary dramatically 204

with how answer cues are presented in the prompt. 205

The models answer correctly (e.g., "four corners") 206

when the solution is explicit ((a) Answer-Explicit 207

or (b) Answer-Embedded-Reasoning). However, 208

performance sharply deteriorates when these ex- 209

plicit cues are obscured. For example, masking the 210

answer token (c) or removing answer-relevant sen- 211

tences (d) typically leads to failure. In such cases, 212

the models might incorrectly predict "five corners". 213

This stark contrast underscores the models’ pro- 214

nounced dependence on explicit answers, even on 215

such an elementary task. Their sensitivity to read- 216

ily available answers appears to overshadow the 217

reasoning process itself. Such behavior directly 218

motivates our central investigation: are these mod- 219

els primarily recalling memorized answers, or are 220

they merely following the textual patterns of pro- 221

vided reasoning chains (i.e., solution templates)? 222
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Figure 2: Schematic of LLMs responses to a reasoning task under systematically manipulated input prompts that
vary answer visibility. The model predicts correctly when the answer is explicitly provided, either directly (a) or
embedded within the reasoning chain (b). However, performance sharply declines when these explicit answer cues
are obscured by masking (c) or by removing answer-related sentences from the reasoning chain (d), highlighting a
strong dependency on readily available answers.

3.2 Hypothesis and Experimental designs223

Motivated by the behavioral patterns observed224

in Section 3.1, we hypothesize that LLMs rely225

more strongly on explicit final-answer cues than on226

learned solution templates.227

Directly verifying this hypothesis via internal228

state inspection is generally infeasible due to the229

black-box nature of LLMs. We therefore adopt an230

indirect, prompt-based intervention framework to231

probe this dependency. This framework involves232

systematically manipulating the explicitness of fi-233

nal answer cues in prompts and observing the corre-234

sponding impact on model performance. Through235

comparative analysis across these controlled vari-236

ations, we can infer the primary anchor of the237

model’s memory binding.238

To operationalize this, we define five prompt con-239

ditions that create a graduated spectrum of answer240

cue visibility:241

Answer-Explicit (AE): The prompt provides242

the problem and its correct final answer explicitly243

(Figure 2a), offering maximal answer-cue visibility.244

Answer-Embedded-Reasoning (AER): The245

prompt provides the correct answer, but it is em-246

bedded within a full reasoning chain derived from247

the AE prompt (Figure 2b). 248

Answer-Masked-Reasoning (AMR): The 249

prompt provides the full reasoning chain, but every 250

occurrence of the final answer is replaced by a 251

placeholder (e.g., [MASK]), while sentences hinting 252

at the answer may remain (Figure 2c). 253

Answer-Removed-Reasoning (ARR): The 254

prompt provides a pruned reasoning chain in which 255

any sentence or clause that directly states—or un- 256

mistakably reveals—the final answer has been com- 257

pletely removed (Figure 2d). 258

Answer-Free (AF): The prompt provides only 259

the problem statement, without any supplementary 260

answer or reasoning cues. 261

This systematic design, which ranges from ex- 262

plicit answer provision (AE, AER) to the almost 263

complete removal of answer cues within the rea- 264

soning chain (AMR, ARR, AF), allows a precise 265

assessment of the model’s sensitivity to answer 266

visibility. Performance comparisons across these 267

variants reveal whether successful predictions arise 268

mainly from memorized final answers or from en- 269

gagement with learned solution templates. A steep 270

drop in accuracy as answer cues fade would indi- 271

cate a stronger dependence on those answers than 272

on the reasoning template itself. 273
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3.3 Experimental Setup274

Dataset Our experiments are conducted on the275

text-only subset of RoR-Bench (Recitation-over-276

Reasoning Benchmark) (Yan et al., 2025), which277

is designed to evaluate the robustness of LLM278

reasoning under subtle input perturbations. RoR-279

Bench is constructed by applying controlled edits280

to 158 original Chinese questions spanning arith-281

metic, logic, optimization, and commonsense rea-282

soning. We evaluate models on these edited Chi-283

nese prompts to preserve the benchmark’s intent.284

For clarity, illustrative examples from the bench-285

mark in this paper are translated into English.286

The RoR-Bench problems are well-suited to our287

prompt-intervention framework for several reasons.288

First, they are concise and unambiguous. Sec-289

ond, they feature minimal surface complexity with290

clearly defined final answers. Finally, they have a291

low likelihood of training-data contamination.292

While RoR-Bench also includes a set of visual293

problems, we leave the investigation of answer-294

reasoning dependence in multi-modal models to295

future work.296

Prompt Design For each problem, we generate297

five distinct prompt variants, corresponding to the298

conditions in Section 3.2. Our central manipulation299

targets the presentation of answer-related content,300

while all other prompt elements, such as the prob-301

lem description and overall format, are kept fixed.302

This controlled approach ensures that observed dif-303

ferences in model behavior are attributable solely304

to how answer information is provided.305

In the AMR condition, each answer phrase in306

the chain is automatically replaced with a [MASK]307

placeholder using GPT-4o-1120 (Hurst et al., 2024).308

This process ensures contextually appropriate and309

consistent substitutions (see Appendix A.3 for310

masking details).311

Models We evaluate a set of models with312

long thinking process: Deepseek-R1 (Guo et al.,313

2025), OpenAI-o3 (OpenAI, a), OpenAI-o3-mini-314

high (OpenAI, b), OpenAI-o4-mini-high (OpenAI,315

a), QWQ-32B (Team, 2025), Grok3-Mini-Beta-316

high (xAI), Grok3-Mini-Fast-Beta-high (xAI),317

Gemini-2.5 Flash Preview-0417 (Kavukcuoglu,318

2025), Gemini-2.5 Pro Preview (Gem, 2025), and319

Claude 3.7 Sonnet (Anthropic, 2025).320

A key distinction in our experimental protocol321

relates to the models’ ability to expose intermediate322

reasoning steps. Models such as Deepseek-R1,323

Grok, and QWQ-32B offer this visibility and are324

thus evaluated under all five prompt conditions. 325

In contrast, models from the OpenAI and Gemini 326

families provide no such readily accessible traces, 327

so we evaluate them only in the AE and AF settings, 328

which do not necessitate inspection of those traces. 329

All models are prompted in a zero-shot setting. 330

To ensure deterministic outputs, the temperature 331

parameter is uniformly set to 0 for all experiments. 332

Evaluation We evaluate model-generated re- 333

sponses for answer accuracy by assigning a binary 334

score. A response receives 1 if it exactly matches 335

the ground-truth answer, and 0 otherwise. All out- 336

puts are scored automatically. Following the evalu- 337

ation protocol established by Yan et al. (2025), we 338

employ GPT-4o-1120 as an automated verifier. De- 339

tails of this verifier, including the specific prompt, 340

are provided in Appendix A.1. This protocol is de- 341

signed to quantify how model performance varies 342

under the five prompt conditions. 343

4 Experiments 344

This section presents our empirical investigation, 345

structured around three interconnected inquiries de- 346

signed to dissect the nature and strength of memory 347

anchoring in LLMs: 348

• Are LLMs primarily anchored to final answers 349

or learned reasoning templates (Section 4.1) ? 350

• If answers and reasoning templates conflict, 351

which do LLMs prioritize? (Section 4.2) ? 352

• What is the depth of LLMs’ memory anchor- 353

ing to the dominant cue? (Section 4.3) ? 354

4.1 Where Is Memory Bound: Answer or 355

Reasoning? 356

We evaluate model performance across five pro- 357

gressively constrained conditions that systemati- 358

cally reduce both explicit and implicit answer cues 359

from the prompt. This design directly assesses the 360

extent to which final answers, relative to reasoning 361

templates, guide model behavior. 362

As shown in Table 1, accuracy declines mono- 363

tonically as answer visibility decreases. Under the 364

AE condition, models achieve high performance, 365

with an average accuracy of 84.75%. Top-tier mod- 366

els such as DeepSeek-R1 (93.04%) and Claude 367

3.7 Sonnet (93.67%) approach near-perfect scores. 368

When the answer is only embedded in the reason- 369

ing chain (AER), accuracy drops to 76.96%. This 370

suggests that implicit cues within reasoning chains, 371
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Table 1: Performance comparison of various reasoning models across different prompt conditions.

Models Answer
Explicit

Answer-Embedded
Reasoning

Answer-Masked
Reasoning

Answer-Removed
Reasoning

Answer
Free

Deepseek-R1 (Guo et al., 2025) 93.04% 84.18% 55.06% 46.84% 23.42%
OpenAI-o3 (OpenAI, a) 86.08% – – – 25.95%
OpenAI-o3-mini-high (OpenAI, b) 92.41% – – – 25.95%
OpenAI-o4-mini-high (OpenAI, a) 79.11% – – – 28.48%
QWQ-32B (Team, 2025) 85.44% 81.65% 58.23% 40.51% 25.32%
Grok3-Mini-Beta-high (xAI) 86.71% 70.25% 59.49% 50.63% 33.54%
Grok3-Mini-Fast-Beta-high (xAI) 88.61% 71.52% 60.76% 52.53% 32.28%
Gemini-2.5 Flash Preview-
0417 (Kavukcuoglu, 2025) 72.15% – – – 27.22%

Gemini-2.5 Pro Preview (Gem, 2025) 70.25% – – – 31.01%
Claude 3.7 Sonnet (Anthropic, 2025) 93.67% 77.22% 55.70% 41.77% 28.48%

Avg. Performance 84.75%
(±8.36%)

76.96%
(±6.10%)

57.85%
(±2.43%)

46.46%
(±5.29%)

28.17%
(±3.26%)

Avg. Decrease N/A -7.79% -26.90% -38.29% -56.58%

Table 2: Explicit Citation of the Provided Answer in the
AE Condition.

Models Citation Rate

Deepseek-R1 (Guo et al., 2025) 12.03%
OpenAI-o3 (OpenAI, a) 8.86%
OpenAI-o3-mini-high (OpenAI, b) 12.66%
OpenAI-o4-mini-high (OpenAI, a) 13.29%
QWQ-32B (Team, 2025) 6.96%
Grok3-Mini-Beta-high (xAI) 38.61%
Grok3-Mini-Fast-Beta-high (xAI) 39.87%
Gemini-2.5 Flash Preview-
0417 (Kavukcuoglu, 2025) 25.32%

Gemini-2.5 Pro Preview (Gem, 2025) 19.62%
Claude 3.7 Sonnet (Anthropic, 2025) 20.25%

while helpful, are still weaker than explicitly pro-372

vided answers. The decline becomes even more373

substantial in the AMR setting, where the answer374

token is masked. Here, the average accuracy drops375

sharply to 57.85%, indicating a strong reliance on376

the visible answer tokens. The most pronounced377

decline is observed in DeepSeek-R1, which drops378

from 84.18% to 55.06%, a nearly 30-point decrease,379

underscoring a heavy dependence on token-level380

answer visibility.381

This vulnerability extends beyond explicit an-382

swer tokens, as reasoning chains often include383

paraphrased or derived sentences that imply the384

answer. Consequently, in ARR, excising such385

answer-related sentences further reduces accuracy386

to 46.46%. Finally, in the AF condition, where387

no answer or reasoning cues are provided, perfor-388

mance collapses to a 28.17% baseline.389

This trajectory indicates that LLM memory is390

predominantly anchored to final answers, rather391

than to the textual patterns of reasoning templates.392

Providing an explicit answer (AE) yields a substan- 393

tial 56.58% improvement over the AF baseline, far 394

surpassing the 29.68% gain observed when only 395

a masked answer is embedded within a reasoning 396

chain(AMR). The 26.90% margin between AE and 397

AMR highlights the disproportionate influence of 398

explicit presented answers, confirming their domi- 399

nant role in guiding model responses. 400

Beyond this primary finding, further analysis re- 401

veal additional aspects of LLM behavior. One strik- 402

ing observation is the model’s tendency to perform 403

post-hoc rationalization—generating plausible rea- 404

soning chains to support an already-known answer. 405

For instance, with the generated reasoning chains, 406

models achieve 76.96% accuracy. Yet, when the 407

final answer token is masked (AMR), performance 408

drops by 19.11%, despite the reasoning chain be- 409

ing intact. This suggests that reasoning steps alone 410

are insufficient for robust inference, and that much 411

of the observed “reasoning” may reflect retrospec- 412

tive alignment rather than forward derivation. Such 413

behavior may lead to an overestimation of LLMs’ 414

independent inferential capabilities. 415

Interestingly, Table 2 details another notable be- 416

havior observed under the AE condition: the rates 417

at which models explicitly cite the provided answer. 418

Citation judgments are conducted automatically us- 419

ing GPT-4o-1120 (see Appendix A.2 for prompt 420

details). These citation rates are generally modest 421

and exhibit considerable variation across different 422

models, ranging, for instance, from 6.96% (QwQ- 423

32B) to 39.87% (Grok-3 mini fast Beta-high). This 424

finding suggests that even when a model clearly 425

benefits from the inclusion of an explicit answer, 426

it does not consistently acknowledge or integrate 427
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Table 3: Analysis of Incorrect Answers with Correct Reasoning and Vice Versa.

Models Wrong Answer
+ Wrong Reasoning

Wrong Answer
+ Right Reasoning

Right Answer
+ Wrong Reasoning

Deepseek-R1 (Guo et al., 2025) 6.96% 39.24% 52.53%
QWQ-32B (Team, 2025) 10.13% 40.51% 53.16%
Grok3-Mini-Beta-high (xAI) 7.59% 50.00% 57.59%
Grok3-Mini-Fast-Beta-high (xAI) 6.33% 51.90% 55.06%
Claude 3.7 Sonnet (Anthropic, 2025) 9.49% 25.32% 64.56%

Avg. Performance 8.10% (±1.64%) 41.39% (±10.59%) 56.58% (±4.88%)

that answer into its surface-level output. Such be-428

havior highlights a disconnect between what the429

model uses and what the model says it uses, rais-430

ing questions about transparency and attribution in431

LLM-generated reasoning.432

4.2 Memory Preference Under Conflicts433

Building on the findings of LLM answer-anchoring434

(Section 4.1), we further examine memory pref-435

erence in scenarios where the final answers and436

reasoning chains conflict. Such conflicts leverage437

RoR-Bench’s design, in which each problem is438

paired with its unmodified source question. The439

RoR problem comes with a newly defined correct440

answer and corresponding reasoning chain. In con-441

trast, the answer and reasoning chain from its corre-442

sponding original version serve as incorrect yet su-443

perficially similar cues for the modified task. This444

setup enables controlled semantic conflicts between445

answer-level and reasoning-level cues. We evaluate446

model behavior under three such configurations:447

• Right Ans / Wrong Reasoning (RA/WR): the448

RoR problem’s correct answer paired with the449

original problem’s reasoning chain.450

• Wrong Ans / Right Reasoning (WA/RR): the451

original problem’s answer paired with the452

RoR problem’s own correct reasoning chain.453

• Wrong Ans / Wrong Reasoning (WA/WR): a454

baseline using both the answer and reasoning455

derived from the original problem’s solution.456

As shown in Table 3, models perform poorly457

when both the answer and reasoning are incorrect458

(the WA/WR baseline), averaging only 8.10% ac-459

curacy. In contrast, when cues conflict, models460

clearly prioritize the answer. On average, accuracy461

reaches 56.58% when the answer is correct but462

the reasoning is flawed (RA/WR), substantially ex-463

ceeding the 41.39% observed when the reasoning464

is correct but the answer is misleading (WA/RR).465

Claude 3.7 Sonnet exemplifies this trend, with its 466

accuracy reaching 64.56% in the RA/WR setting, 467

far exceeding its 25.32% in WA/RR. These results 468

highlight the dominant influence of answers, as 469

models perform better when the provided answer 470

is correct even if the supporting reasoning is not. 471

These findings collectively confirm that LLMs 472

tend to prioritize explicit answers over reason- 473

ing when faced with conflicting signals, a con- 474

clusion that strongly corroborates the answer- 475

anchoring observations. However, the fact that 476

RA/WR average performance (56.58%) remains 477

well below that of the AE condition (84.75%) in- 478

dicates that flawed reasoning still markedly im- 479

pairs performance, underscoring reasoning’s essen- 480

tial—though secondary—role. 481

4.3 Probing the Tenacity of Answer 482

Anchoring 483

To further probe the tenacity of LLMs’ dependency 484

on explicit answers, we investigate how ’warning 485

prompts’ affect reliance on such cues. Specifically, 486

we implement two variants: a soft warning and a 487

hard warning. The soft one states: "Please answer 488

the following question carefully. Note: The refer- 489

ence answers may be incorrect and are for reference 490

only. Please rely on your own independent reason- 491

ing to provide the answer that best fits the ques- 492

tion." In contrast, the hard warning removes ambi- 493

guity by asserting that "The reference answers are 494

incorrect." This setup allows us to assess whether 495

LLMs can override known but misleading answer 496

cues when prompted to distrust them. 497

Figure 3 shows warning prompts consistently 498

reduce accuracy relative to the AE baseline. Hard 499

warnings are typically more impactful than soft 500

ones, indicating that models are sensitive to warn- 501

ing intensity. However, responses vary consider- 502

ably across models. For instance, OpenAI models 503

exhibit steep declines, while Gemini models show 504

greater resilience, especially under soft warnings. 505
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Figure 3: Impact of Soft and Hard Warning prompts on LLM accuracy in an Answer-Explicit setting.

Notably, DeepSeek-R1 uniquely maintains 51.3%506

accuracy even with a hard warning.507

This accuracy reduction, when models are508

warned against a correct answer, suggests a de-509

gree of instructability, as models attempt to heed510

warnings. Yet, the answer’s influence remains tena-511

cious, with models like DeepSeek-R1 and Claude512

3.7 Sonnet under hard warning still outperform513

their AF scores. In contrast, others suffer sharper514

declines. For some, hard warnings push accuracy515

near or below AF levels, suggesting that conflicting516

cues can severely disrupt processing. These varied517

responses reflect how differently models anchor to518

answers when challenged.519

Ultimately, these experiments with skepticism-520

inducing prompts underscore the tenacity of answer521

anchoring in LLMs. While models show some re-522

sponsiveness to instructions intended to weaken523

this reliance, the influence of the provided answer524

remains substantial—even when explicitly discred-525

ited. That LLMs struggle to fully disengage from526

salient answer cues, including correct ones they527

are warned to distrust, highlights their fundamen-528

tally answer-centric behavior. This reinforces the529

primary thesis that LLM memory and processing530

are predominantly bound to answers, revealing the531

significant extent of this dependency when directly532

challenged by such countervailing instructions. 533

5 Conclusion 534

In this work, we systematically investigate the na- 535

ture of memory anchoring in LLMs when solving 536

reasoning tasks. By manipulating the visibility of 537

final answers within prompts, we uncover a pro- 538

found and consistent pattern: LLM performance is 539

predominantly anchored to the explicit presence of 540

final answers rather than to the textual patterns of 541

the reasoning steps themselves. 542

Furthermore, we demonstrate that while LLMs 543

can generate seemingly coherent reasoning when 544

answers are provided, their ability to deduce correct 545

answers solely from reasoning chains remains lim- 546

ited. These findings are reinforced by experiments 547

showing LLMs’ preference for explicit answers 548

even when cues conflict, and by the tenacious na- 549

ture of this answer dependency despite designed 550

warnings to suppress it. These results suggest that 551

the reasoning exhibited by LLMs may often be a 552

form of post-hoc rationalization around a known or 553

anticipated answer, rather than independent infer- 554

ence. This challenges common assumptions about 555

LLM reasoning depth and underscores the need to 556

rethink how reasoning capabilities are evaluated. 557
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Limitations Our investigation primarily uses the558

text-only RoR-Bench dataset (Yan et al., 2025),559

focusing on specific reasoning types. The gener-560

alizability of our findings to other domains, lan-561

guages, or modalities (such as visual reasoning)562

warrants further exploration. Moreover, our core563

experimental manipulation—providing the answer564

with the input prompt—is an artificial setup. While565

diagnostically powerful for isolating variables, its566

divergence from typical real-world LLM interac-567

tions suggests that other probing techniques might568

reveal additional facets of model reasoning.569
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A Appendix759

A.1 Prompt for the Judge760

761

762

763

For all experiments, we consistently used the764

same Chinese evaluation prompt for GPT-4o-1120765

as the judge. For clarity, English translations ac-766

company each presented case. Crucially, we adopt767

the prompt design from (Yan et al., 2025). Please768

refer to Figure A.1 for the specific prompt used.769

This design emphasizes the directive "do not ques-770

tion the ground truth answer." The inclusion of this771

specific instruction is vital, as its absence leads the772

LLMs to critique the problem formulation itself,773

rather than evaluate the student’s response, even774

when the ground truth is clearly provided.775

776
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A.2 Judge Prompt for Answer Citation777

778

779

780

781

782

783

We use a dedicated evaluation prompt for GPT-784

4o-1120 to judge whether a model’s response ex-785

plicitly cites the provided standard answer. As the786

original prompts and answers are in Chinese, we787

use a Chinese prompt for judging and provide the788

corresponding English translation alongside.789

This prompt plays a crucial role in identifying790

whether the model is merely solving the problem791

or actively acknowledging the given answer. It792

emphasizes the detection of phrases such as “the793

answer is...” or “according to the answer...”, and794

only assigns credit when citation is made explicit.795

Without this explicit checking prompt, LLMs often796

produce valid responses without ever referencing797

the known answer, making it difficult to distinguish798

true citation behavior from general correctness.799

800
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A.3 Prompt for the Answer Masking801

802

803

804

805

806

807

To support our masking experiments, a dedicated808

prompt using GPT-4o-1120 systematically elimi-809

nates all explicit and semantically equivalent ref-810

erences to the answer from reasoning chains. This811

process targets a comprehensive range of answer812

expressions—covering diverse linguistic, numeri-813

cal, unit-quantified, ordinal, conclusive, and uncer-814

tainty forms—replacing each with [MASK], poten-815

tially multiple times per sentence if warranted. This816

automated masking preserves the structure of the817

original reasoning while fully suppressing answer-818

related content. Such precise control is essential819

for preventing subtle answer leakage and ensuring820

the integrity of answer-agnostic evaluations.821
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