
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TIME-AWARE WORLD MODEL:
ADAPTIVE LEARNING OF TASK DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we introduce Time-Aware World Model, a model-based approach
designed to explicitly incorporate the temporal dynamics of environments. By
conditioning on the time step size, ∆t, and training over a diverse range of ∆t
values – rather than relying on a fixed time step size – our model enables learn-
ing of both high- and low-frequency task dynamics in real-world control prob-
lems. Inspired by the information-theoretic principle that the optimal sampling
rate varies depending on the underlying dynamics of different physical systems,
our time-aware model enhances both performance and learning efficiency. Em-
pirical evaluations demonstrate that our model consistently outperforms baseline
approaches across different observation rates in various control tasks, using the
same number of training samples and iterations. We will release our source code
on GitHub once the final review decisions are made.

1 INTRODUCTION

Deep reinforcement learning (DRL), one of the most popular learning paradigms, offers a broad
range of potential applications, including robotics (Wu et al., 2023; Koh et al., 2021; Johannink
et al., 2019), autonomous vehicles (Kiran et al., 2021; Guan et al., 2024), and challenging control
tasks where classical approaches fail to deliver satisfactory performance (Prasad et al., 2017; Nhu
et al., 2023; Yang et al., 2015). In addition to model-free RL approaches, where an agent learns
to directly map current observation st to action at (Williams & Peng, 1989; Schulman et al., 2015;
2017; Haarnoja et al., 2018), there has been increasing attention on model-based RL (MBRL), which
involves training a model M to capture the underlying dynamics of a given task (Sutton, 1990;
Deisenroth & Rasmussen, 2011; Parmas et al., 2018; Kaiser et al., 2019; Janner et al., 2019), and
planning the actions by leveraging the trained modelM, which we refer to as a world model. These
model-based approaches have gained significant traction over model-free methods due to their supe-
rior sample efficiency and improved generalization capabilities (Ha & Schmidhuber, 2018; Hafner
et al., 2019; 2020; 2023; Hansen et al., 2022; 2024).

Despite the impressive performance of world models in various RL tasks, a crucial factor in handling
dynamical systems – namely the time step size, ∆t – has been overlooked in existing work, to the
best of our knowledge. Specifically, the dynamics model D : st, at → st+1, a key component of the
world model, models the state transitions. Conventional methods typically train D using experience
tuples (ot, at, ot+1, rt) collected through interactions with the environment at a fixed time step.
However, this practice presents two primary limitations (Thodoroff et al., 2022):

1. Temporal resolution overfitting: In current training pipelines, the default simulation time
step ∆t is very small (∆t = 0.0025 or frequency f = 400Hz). While smaller ∆t val-
ues are beneficial for stabilizing simulations and preventing system aliasing, world models
trained exclusively on small ∆t often suffer significant performance degradation when de-
ployed in real-world scenarios with lower observation rates (e.g., ∆t = 0.02 or f = 50Hz).
This discrepancy presents a major challenge in extending the applicability of world models
beyond simulated environments.

2. Inaccurate system dynamics: Training the dynamics modelM on a fixed time step ∆t can
lead to overfitting, as the model may not capture the true underlying dynamics of the task
without conditioning on ∆t. This can result in inaccurate state transitions and diminished
generalization capabilities.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Although some recent works have considered the effect of temporal gap on the state transitions of
the model such as (Shaj et al., 2023; Lutter et al., 2021), these works focus on improving the model
accuracy over long-horizon predictions, which consists of multiple predictions on a fixed-∆t world
model. As a result, they trained world models for a single, fixed, discretized time step ∆t without
explicitly considering the impacts of ∆t’s on the state transitions. To overcome these limitations,
we primarily focus on addressing the following question: How can we efficiently train the world
modelM to accurately capture the underlying task dynamics across varying time step sizes, while
maintaining computational efficiency?

In this work, we propose a time-aware world modelMT to address the aforementioned question.
Unlike the previous world modelsM, our model conditions estimation of the next state and reward
on ∆t, as they depend on the temporal gap between the current and next state. We formulateMT

by modifying the world model of TD-MPC2 (Hansen et al., 2024) using 4-th order Runge-Kutta
(RK4) method (Butcher, 1987) to enforce certain dynamical properties as explained in Section 4.1.
Additionally, we modify the value model to take ∆t as an extra input. We train these models using
various values of ∆t, which are log-uniformly sampled from a predefined interval.

Although one might anticipate that MT would require more training samples than M due to the
inclusion of the additional parameter ∆t, this is not necessarily the case. According to the Nyquist-
Shannon sampling theorem (Shannon, 1949; Jerri, 1977), a signal with the highest frequency f can
be reconstructed by sampling it at a minimal frequency just slightly greater than 2f . Therefore,
if the observation rate is much higher than 2f , the surplus data become redundant – i.e., do not
substantially contribute to training the world model. In general, a physical environment consists of
multiple dynamical systems of varying frequencies (Section 3.2.1). Therefore, using a mixture of
time step sizes during the training process, we effectively expose the model to different sampling
frequencies, allowing such sub-systems to be learned more efficiently (Section 3.2.3).

Inspired by the Nyquist-Shannon sampling theorem (Section 3.2.2), we empirically prove that our
time-aware model, with a mix of time steps in observation data sampled during training, achieves
much better performance on learning the world model with different time steps at inference time,
after the same amount of training time as the baseline model. We demonstrate the results on di-
verse control problems in Meta-World (Yu et al., 2020) environments. Our contributions can be
summarized as follows:

1. We highlight the importance of a time-aware world model that conditions the dynamic
modeling on the time step size ∆t, a critical quantity within a dynamical system. Specif-
ically, by taking into account the temporal information ∆t, the dynamic model learns to
capture the underlying task dynamics across a spectrum of time step sizes. This approach
is particularly suitable for real-world control problems, where the observation rate can be
varying and/or much lower than the default simulation rate.

2. Motivated by the Nyquist-Shannon sampling theorem, we propose a mixture-of-time-step
training framework for the time-aware world model without increasing the number of train-
ing steps. This approach introduces a novel perspective on training a world model by con-
sidering varying sampling rates, which can guide future works in designing more efficient
training strategies.

3. Empirically, we show that our time-aware world model can effectively solve control tasks
under varying observation rates (e.g.: ∆t = 0.03, orf = 33.3Hz) without the need for
additional data. This capability helps to narrow the gap between simulation environments
and real-world control applications.

2 RELATED WORK

Although model-free RL algorithms have gained popularity due to their impressive performance,
their inherent lack of sample efficiency limits their applicability to a broader range of real-world
problems (Sutton et al., 1999; Williams & Peng, 1989; Barto et al., 1983; Schulman et al., 2015;
2017). To address this limitation, several approaches have been proposed, including the integration
of analytical gradients with lower variance into the policy learning process (Suh et al., 2022; Xu
et al., 2022; Son et al., 2024). In contrast, MBRL methods mitigates this issue at a fundamental
level by training a dynamics model that simulates the real environment, allowing agents to predict

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

future states as well as outcomes of their actions (Deisenroth et al., 2013). Since prediction is not
constrained by real-world sampling, MBRL methods are inherently more sample-efficient. These
methods differ primarily in (1) how they define the world model M, and (2) how they leverage
M for training or planning. Historically, Gaussian processes (GP)(Deisenroth & Rasmussen, 2011;
Parmas et al., 2018) have been widely used, though recently neural networks are preferred over
them(Ha & Schmidhuber, 2018; Hafner et al., 2019; 2020; 2023; Hansen et al., 2022; 2024) due
to their superior representational power. Among these, the Dreamer model and its variants (Hafner
et al., 2019; 2020; 2023) train agents directly using the learned model, whereas Model Predictive
Control (MPC)-based methods (Hansen et al., 2022; 2024) rely on planning algorithms to determine
actions. One closely related work, Multi Time Scale World Models (MTS3) (Shaj et al., 2023),
explicitly considers the temporal gaps as the motivation in learning task dynamics. MTS3, denoted
as M, is trained to capture state transitions over different prediction horizons H . However, their
approach differs from ours significantly: while they account for multiple temporal resolutions, the
model is still trained using a single fixed time step size ∆t, and MTS3, at least at the current stage,
can handle only a limited number of time scales (in the paper, MTS2 learn fast and slow dynamics at
2 timescales: ∆t and H∆t). In contrast, our method incorporates a continuous-valued ∆t directly
into the model, allowing it to predict state transitions across a range of temporal gaps in just one
prediction step. This enables our model to predict transitions over large temporal gaps (e.g.: ∆t =
30ms) that would typically require 12-20 smaller prediction steps in models trained using a fixed,
small ∆t. Our approach builds upon the state-of-the-art world model TD-MPC2 framework (Hansen
et al., 2024) but differs in that our world model is explicitly conditioned on the time step size ∆t and
is trained on a mixture of time step sizes, unlike most prior approaches, which assume a fixed time
step size.

3 BACKGROUND AND MOTIVATIONS

3.1 MODEL BASED REINFORCEMENT LEARNING

We define the control problem as a Markov decision process (MDP), defined by a tuple
(S,A, P, r, γ), where S is a set of states, A is a set of actions, P : S × A × S → R is the
ground truth (stochastic) state transition model, r : S × A → R is the ground truth reward model,
and γ is the discount factor. Note that we describe P and r as the ground truth model, as we will
learn and use the state transition and reward model within our world model later, which is described
in Section 4.1. The goal of RL is to find a policy that maximizes the expected sum of discounted
reward along a state-action trajectory τ = {s0, a0, ..., sH−1, aH−1, sH}, where H is the trajectory
length. Formally, we need to obtain a policy or planner π that maximize:

η(π) = Es0,a0,...∼π

[∞∑
t=0

γtr(st, at)

]
. (1)

In the context of MBRL, for each task, we train a world dynamic model, which includes the state
transition function dϕ : S × A → S and reward function rϕ : S × A → R. The trained world
model can be employed in several ways to derive the policy, such as using a planner like TD-MPC2.
We present our model formulation and training pipeline used to train the time-aware world model in
Section 4.1.2.

3.2 THEORETICAL MOTIVATIONS

Before introducing our model, we provide theoretical motivations to explain the sample efficiency
of using a mixture of time step sizes during the training process of the time-aware world model.

3.2.1 MULTI-SCALE DYNMICAL SYSTEMS

In many control problems, the environment dynamics can be decomposed into multiple sub-
dynamical systems (or subsystems), each of which can evolve at different temporal scales (Weinan,
2011). In other words, such subsystems can be characterized by different functions with different
highest frequencies. Formally, consider a general dynamic system: ẋ = f(x, u, t), where x, u, t are

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the state, control input, and time, respectively. Using the Euler method, the next state x′ is:

x′ = x+ f(x, u, t) ·∆t (2)

where ∆t is the time step size. Based on the concept of multi-scale dynamical systems, the above
state transition can be re-written as:

x′ = x+
∑
i

fi(x, u, t) ·∆t (3)

where fi(x, u, t) represents the dynamic of each sub-system i. Each sub-system fi(·) may evolve at
different temporal scales, thus each of them can have its own highest frequency fmax

i .

3.2.2 NYQUIST-SHANNON SAMPLING THEOREM

The Nyquist-Shannon sampling theorem states that a signal must be sampled at a rate at least twice
the highest frequency present to avoid losing information (i.e., to prevent aliasing): fsample >
2fmax (Shannon, 1949), where fsample and fmax are the observation rate and the highest frequency
of the environment dynamics in MBRL context, respectively. If the observation rate is too low such
that fsample < 2fmax, we lose important dynamics details caused by the large temporal gap ∆t.
This loss causes high-frequency components to be folded back into lower frequencies, resulting in
inaccurate dynamics learned by the world model (Zeng et al., 2024). Although higher fsample al-
lows for more accurate reconstruction of the environment dynamics, if fsample is excessively high,
oversampling introduces redundant data, increasing sample complexity and reducing learning effi-
ciency. Therefore, finding the right observation rate fsample is crucial to balance modeling accuracy
and sample efficiency.

3.2.3 SIMULTANEOUSLY TRAINING ON MULTIPLE TEMPORAL RESOLUTIONS

Motivated by the need to more effectively sample the observations according to task dynamics of dif-
ferent sub-systems running at different frequencies while preserving the model accuracy, we propose
to simultaneously train the world model on multiple temporal resolutions by varying the observation
rates fsample (by varying ∆t) during the training process. Specifically, as shown in Equation 3, the
underlying task dynamics can consist of several sub-systems fi(·) operating on different maximum
frequencies fmax

i . According to the Nyquist-Shannon sampling theorem, each sub-system can be
most efficiently learned with a different fsample. As a result, by randomly varying fsample during
the training process, we avoid under-sampling high-frequency components and over-sampling low-
frequency components, thereby training sub-systems fi(·) efficiently. As a result, our time-aware
world model can learn the underlying task dynamics at different temporal resolutions without re-
quiring additional data, as shown in Section 5. In the next section, we present our time-aware model
and training framework in detail.

4 METHODOLOGY

Encoder Models

Figure 1: Overall framework of our world model.
An encoder h encodes the given observation st
into a latent vector zt, which is then fed into var-
ious models with action at and time step size ∆t
to estimate values for action planning.

In this section, we present our time-aware
model formulation and training pipeline de-
signed to effectively learn a world model that
can perform well across various observation
rates. Our work focuses on developing a novel
time-aware training method that can be seam-
lessly integrated into any existing world model
architecture, enhancing the model’s robustness
to observation rate variations during inference.
We adopt TD-MPC2 (Hansen et al., 2024) as
the baseline, adapting its architecture to train
time-aware world models for different control
tasks. First, we provide a high-level overview of the baseline TD-MPC2 and its key architectural
components for the sake of completeness. The overall framework is shown in Figure 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 MODEL ARCHITECTURE

4.1.1 STANDARD WORLD MODEL

TD-MPC2 is an MBRL algorithm that learns to capture the underlying task dynamics in the latent
space, or “implicit world model”. Specifically, unlike other reconstruction-based world model
architectures such as World Model (Ha & Schmidhuber, 2018) and DreamerV3 (Hafner et al.,
2023), TD-MPC2 does not include a decoder module that maps latent space back to raw observation
space. The primary motivation for the exclusion of the decoder module is that it is computationally
inefficient to recover the latent space to high-dimensional raw observation space, which can have
many elements irrelevant to the control tasks. Once the latent dynamics are learned, TD-MPC2
can roll out different latent predictions for local trajectory optimization with planning algorithms as
in MPC (Hansen et al., 2022; 2024). The baseline TD-MPC2 model consists of five key components:

Encoder model: zt = h(st) Encode raw observations to latent vectors
Latent dynamic model: ẑt+1 = D(zt, at) Latent forward dynamics / transition
Reward model: r̂t = R(zt, at) Predict immediate reward of state-action pair
Terminal value model: q̂t = Q(zt, at) Predict state-action value pair
Policy prior: ât = p(zt) Output optimal action at from current latent state

where st is the raw observation in the current time step, zt is the latent encoding of the raw
observation, ẑt+1 is the predicted next latent state, r̂t is the predicted immediate reward, q̂t is
the estimated q-value of current state-action pair, and ât is the action sampled from the policy
for current state. At inference time, the Model Predictive Path Integral (MPPI) planner, a Model
Predictive Control (MPC) algorithm, is used for planning and action generation. All five component
models of TD-MPC2 are represented by multilayer perceptrons (MLPs).

To train TD-MPC2, a sample buffer B records trajectories of {(st, at, ot+1, rt)0:H} from the task
environment after each training episode, where H is the episode length. At the end of each training
episode, model parameters are updated using data randomly sampled from B. The encoder model h,
dynamic model D, reward model R, and terminal value model Q are trained simultaneously through
self-supervised consistency loss, supervised reward loss, and supervised temporal-difference ter-
minal value loss, which is described in detail in Hansen et al. (2024). The agent then continues
interacting with the task environment and collects additional data for B to train the model.

4.1.2 TIME-AWARE WORLD MODEL

One notable limitation of TD-MPC2 and other state-of-the-art world models is that they ignore the
effects of observation rate ∆t on the accuracy and performance of the world model at inference
time. To incorporate time awareness into the model, we propose to condition all components of the
world model on ∆t, which can be described as follows:

Encoder model: zt = h(st) · Not conditioned on ∆t
Latent dynamic model: ẑt+1 = zt + d(zt, at,∆t) · τ(∆t) · State transition

where where τ(x) = max(0, log(x) + 5) via time-stepping
Reward model: r̂t = R(zt, at,∆t) · Conditioned on ∆t
Terminal value model: q̂t = Q(zt, at,∆t) · Conditioned on ∆t
Policy prior: ât = p(zt,∆t) · Conditioned on ∆t

Our proposed time-aware model formulation is architectural-agnostic and can be straightforwardly
adapted into any state-of-the-art world model. Since the observation encoder only encodes raw
observation to latent space, it does not model the underlying dynamics and thus is not conditioned
on ∆t. For all other models that depend on the underlying dynamics, we condition them on the time
step size by explicitly using ∆t as part of the model input.

While the baseline latent dynamic model D directly maps current state-action pair (zt, at) to
the next latent state zt+1 in an end-to-end manner, we reformulate the dynamic model following
the Euler integration method: ẑt+1 = D(zt, at,∆t) = zt + d(zt, at,∆t) · τ(∆t), where d(·)
is represented by an MLP. The motivation for using the Euler method is to naturally enforce an
intrinsic condition of a dynamical system: zt+1|∆t=0 = zt ∀zt, at. Specifically, using our latent
dynamic model formulation, ẑt+1|∆t=0 = zt + d(zt, at, 0) · τ(0) ⇒ ẑt+1|∆t=0 = zt ∀zt, at.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Time-Aware World Model Training

1: Initialize task environment E , time-aware world modelMT

2: Set experience buffer B ← ∅
3: repeat
4: for each episode do
5: Set ∆t ∼ Log-Uniform(0.001, 0.05) ▷ The default ∆t is 0.0025
6: Set step← 0
7: while step < Horizon H do
8: at ← TDMPC2.act(st,∆t)
9: Execute at in environment E , get back (st+1, rt) after ∆t seconds

10: Add transition (st, at, st+1, rt,∆t) to buffer B
11: Update world modelMT using {(st, at, rt, st+1,∆t)1:B} ∼ B
12: step← step+ 1
13: end while
14: end for
15: until reach N training steps
16: return MT

Therefore, instead of directly learning transition function D : (zt, at) → zt+1, we learn the
latent state derivative function d (or gradient), which is also conditioned on ∆t for higher-order
derivatives, and then integrate by one step using the Euler method.

State Transition. Instead of integrating each time step by ∆t, our dynamic model integrates
the dynamics by τ(∆t) = max(0, log(∆t) + 5). The reason is that ∆t can span a wide range, with
minimum (e.g: ∆t = 10−3 s) and maximum values (e.g: ∆t = 0.5× 10−1 s) differing by orders of
magnitude. This wide variation introduced significant numerical challenges for the learning process,
as the latent vectors numerically change minimally between time steps, requiring the dynamic
model d(zt, at,∆t) to scale appropriately across different ∆t. In fact, emperically the model would
fail to converge in some tasks when integration with ∆t used. To address this issue, we assume that
the latent state space can be learned to evolve with respect to the logarithm of the time step, τ(∆t),
which squashes the values of ∆t into smaller range, resolving the numerical issue and facilitating
efficient model learning. In our experiments, instead of using the Euler method, with the same
motivation, we adopt the 4th-order Runge-Kutta (RK4) integration method for our dynamic model.
By using RK4, we impose additional learning constraints on the consistency between intermediate
latent states, which encourages the model to learn the dynamics across different temporal rates.

4.2 TRAINING PIPELINE USING A MIXTURE OF TIME RESOLUTIONS

Algorithm 1 summarizes our framework, which trains a time-aware world model by varying the
observation rate during the training process, encouraging the model to learn underlying dynamics
at different temporal resolutions. A world model learns the spatial-temporal representation of the
environment by sampling observations of these multiple dynamical systems within the environment,
at some particular instances in time and space. According to the Nyquist-Shannon sampling theo-
rem, we must sample the “signal” or the information that represents the given World Model at no
less than 1/2f , where f represents the highest frequency of the information in a band-limited sig-
nal. However, since there is no systematic methodology to determine the highest frequency of each
dynamical system in the environment, we sample observations from the environment at different
temporal rates to more effectively learn the underlying dynamics.

As shown in Algorithm 1, at the beginning of each episode, we log-uniformly sample ∆t from an
interval and then set the observation rate of that episode as 1/∆t. Log-uniform sampling facilitates
sampling observation at higher frequencies (or smaller ∆t) early in the training, which helps stabi-
lize the learning process. If the model is trained with dominantly low observation rates early in the
training, it can fail to capture important properties of dynamics and thus harm the learning process.
In fact, Figure 4 shows that when the baseline is trained on only a low observation rate (∆t ≥ 0.01s,
or 10ms), the models fail on all tasks for all observation rates. Therefore, mixing different time

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Visualizations of the Meta-World control tasks. From left to right, top row: Assembly,
Basketball, Box Close, Faucet Open, Hammer; bottom row: Handle Pull, Lever Pull, Pick Out Of
Hole, Sweep Into. The default time step size of all environments is ∆t = 0.0025s.

step sizes during the training process not only enhances the model’s performance across different
observation rates but also helps it to converge efficiently.

5 EXPERIMENTS

We designed our experiments to address three main questions: (1) Using the same planner, does
the time-aware world model perform comparably to the baseline model for the default observation
rate (∆t) without experiencing performance degradation under lower observation rate? (2) For
which observation rate (at which ∆t) does the time-aware world model outperform or underperform
compared to the baseline? (3) Does the time-aware world model require more training samples than
the baseline to train?

Training Environments. To evaluate the performance and learning efficiency of our proposed time-
aware world model, we conducted our experiments on several control tasks within the Meta-World
simulation environments, which have a default time step size of ∆t = 0.0025s (2.5ms). (Yu et al.,
2021). We adaptively adjusted the observation rate, or the time step ∆t between observations, during
the training process to train the time-aware model. All other settings of the environments are kept
as default. We used 9 diverse tasks with different goals and motion characteristics: (1) Assembly,
(2) Basketball, (3) Box Close, (4) Faucet Open, (5) Hammer, (6) Handle Pull, (7) Lever Pull, (8)
Pick Out Of Hole, and (9) Sweep Into. The task visualizations are depicted in Figure 2. Following
Hansen et al. (2024), we use the success rate (%) as the primary metric to measure the performance
of the time-aware and baseline models on Meta-World control tasks.

Training Setup. Since our time-aware model architecture is based on TD-MPC2 architecture, we
kept the same TD-MPC2’s default training hyperparameters, including model size, learning rate,
horizon, etc., to train our model. As shown in Algorithm 1, we used a mixture of different obser-
vation rates during the training process by randomly varying the time step size ∆t. Since there is
currently no systematic methodology to extract the highest frequency of each control task dynamics,
we cannot systematically determine the lowest possible observation rate for the agent to complete
the task. Therefore, we empirically set the upper bound of ∆t to be 0.05s (or 50ms), which is 20×
the default time step. We can set the lower bound of ∆t to be any reasonably small value, which
is 0.0001s in our experiments. All of our time-aware models are trained with 1.5M training steps,
fewer than 2M training steps of the baseline models. Each model completed training in 40-45 hours
using a single NVIDIA RTX4000 GPU, 16GB RAM, and 32 CPU cores.

Performance comparisons across different ∆t / observation rates. To evaluate the performance
of the time-aware world model on different inference-time observation rates, for each control task,
we test the trained models in task environments with different ∆t settings. From Figure 3, we
observe that our time-aware model outperforms the baseline (trained on fixed default ∆t = 2.5ms)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Task Success Rate under varying observation/action rates. Average Episode Success
Rate as a function of evaluation time steps (unit: millisecond). The dashed lines represent the de-
fault time step sizes (∆t = 2.5ms). Our time-aware model outperforms the baseline (trained on
fixed default ∆t) on most evaluation time steps across all tasks while requiring less training steps
(ours trained with 1.5M steps in RED vs baseline trained with 2M steps in BLUE) with same hy-
perparameters. For fair evaluation, we also adjusted the evaluations for the baselines by repeatedly
applying the baselines ∆teval/∆ttrain times every time step, which is shown in PURPLE curves.
The mean and 95% confidence intervals are plotted over 3 seeds, each with 10 evaluation episodes.

on most evaluation time steps across all tasks, while ours requiring less training steps trained with
1.5M steps vs baseline trained with 2M steps – using the same hyperparameters. Therefore, our
model can effectively learn both underlying fast and slow dynamics efficiency without increasing
sample complexity.

Effects of using Mixtures of Time Step Sizes. To demonstrate the effectiveness of training the
world model with multiple temporal resolutions ∆t, we compare our model to baseline models
trained only on various fixed ∆t, which are different from the default ∆t = 2.5ms. Figure 4 shows
that our time-aware model outperforms all the baselines across different control tasks. Most notably,
when trained only on low observation rates (e.g: ∆t ≥ 10ms), the baseline models cannot converge
and fail all the tasks at all observation rates. Therefore, by training the model with a mixture of
time step sizes, our time-aware world model effectively outperforms the baseline trained only on a
single time step size regardless of the fixed ∆t value. These results suggest that a dynamical world
model can consist of many different dynamical systems, each of which can be described as a time-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Task Success Rate under varying observation/action rates. Average Episode Suc-
cess Rate as a function of evaluation time steps (unit: millisecond). Our time-aware model (RED
CURVE) outperforms all the baseline models trained on different fixed time step sizes. When trained
with only low observation rates (∆t ≥ 10ms, or 0.01s), the non-time-aware models fail on all tasks.
The dashed lines represent the default time step sizes (∆t = 2.5ms). The mean and 95% confidence
intervals are plotted over 3 seeds, each with 10 evaluation episodes.

dependent, parameterized function in space. Each of such functions can have a different highest
frequency, thus by varying the observation rate (or varying ∆t), we allow the world model to more
effectively learn such underlying sub-systems.

Convergence Rate on Various Inference Timestep Sizes. To investigate the data efficiency of
the time-aware model, we investigate the episode reward/success rate curves across different tasks
between our time-aware model and the baseline model, which is trained only on a fixed, default
∆t = 2.5ms. We compare the reward curves of time-aware models and baselines under different
evaluation ∆ts across different tasks. From Figure 5, we observe that despite having to adaptively
learn more mappings between state transitions under various time step sizes, our time-aware model
converges at least as fast as the baseline on most tasks when evaluated on ∆tdefault = 2.5ms (the
exact ∆t for which the baseline was specifically trained on, so the best performance of the base-
line is expected at this exact ∆t). When evaluated on inference ∆t different from ∆tdefault, our
time-aware model clearly outperforms the non time-aware baselines by large margins. These re-
sults demonstrate that while having to learn the underlying task dynamics across different temporal
resolutions, our time-aware world model does not require additional training steps or samples to
converge to a sufficiently accurate model that can effectively solve control tasks at different obser-
vation rates.

6 CONCLUSION

In this paper, we introduce a novel time-aware world model that can adaptively learn the task dy-
namics. we show that by explicitly incorporating the time step size ∆t into the world model and
training the model on a mixture of temporal resolutions helps the model to perform robustly un-
der different observation rates on various control tasks without increasing the sample complexity.
Empirical results show that our model outperforms all the baseline models, which are trained only
on a fixed time step size ∆t for different training ∆t values. We hope that the insights and results
presented in this paper offer a new perspective on world model training, thereby contributing to the
community a new, efficient, yet simple training method to train world models.

Limitations and Future Work. One limitation of our work is that we have yet to develop a reliable,
systematic methodology to compute analytically the highest frequency of the underlying task dy-
namics, thus the upper bound for the training time step size ∆tmax is determined empirically. This
limitation requires a search of ∆tmax for a new set of environments (e.g.: autonomous driving) to
minimize the amount of observations required to train a given task. An interesting avenue for future

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Success Rate Curve under different evaluation time step sizes. At each training step,
the models are evaluated on various inference ∆ts. Despite having to learn the dynamics under
varying time step sizes, our time-aware model (in RED) still converges faster when evaluated on
∆tdefault = 2.5ms all tasks compared to the baseline trained only on ∆tdefault = 2.5ms (in
BLUE). On large ∆t’s, the time-aware model significantly outperforms the baseline with the same
number of training steps while the baselines fail to converge. The mean and 95% confidence inter-
vals success rate are plotted over 3 seeds, each with 10 evaluation episodes.

work is to develop an automatic methodology to find the highest frequency the underlying task dy-
namics operates on, thereby ensuring the lowest sampling frequency (or highest ∆tmax) to train the
time-aware world model. Furthermore, we will also adapt our current deterministic dynamic model
into a probabilistic one, which is closer to state transitions in the real world, especially at larger
temporal gaps.

REPRODUCIBILITY STATEMENT

To support open science and ensure reproducibility, we will release the code source on GitHub once
the paper has been accepted. The implementation details and hyperparameters will be listed and will
be set as default in the code source.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics,
(5):834–846, 1983.

John Charles Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and
general linear methods. Wiley-Interscience, 1987.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for robotics.
Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

Yanchen Guan, Haicheng Liao, Zhenning Li, Jia Hu, Runze Yuan, Yunjian Li, Guohui Zhang, and
Chengzhong Xu. World models for autonomous driving: An initial survey. IEEE Transactions on
Intelligent Vehicles, 2024.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, robust world models for contin-
uous control. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=Oxh5CstDJU.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in Neural Information Processing Systems, 32, 2019.

Abdul J Jerri. The shannon sampling theorem—its various extensions and applications: A tutorial
review. Proceedings of the IEEE, 65(11):1565–1596, 1977.

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,
Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning for
robot control. In 2019 international conference on robotics and automation (ICRA), pp. 6023–
6029. IEEE, 2019.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Jing Yu Koh, Honglak Lee, Yinfei Yang, Jason Baldridge, and Peter Anderson. Pathdreamer: A
world model for indoor navigation, 2021. URL https://arxiv.org/abs/2105.08756.

11

https://openreview.net/forum?id=Oxh5CstDJU
https://arxiv.org/abs/2105.08756

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael Lutter, Leonard Hasenclever, Arunkumar Byravan, Gabriel Dulac-Arnold, Piotr Trochim,
Nicolas Heess, Josh Merel, and Yuval Tassa. Learning dynamics models for model predictive
agents, 2021. URL https://arxiv.org/abs/2109.14311.

Anh N Nhu, Ngoc-Anh Le, Shihang Li, and Thang DV Truong. Physics-guided reinforcement
learning system for realistic vehicle active suspension control. In 2023 International Conference
on Machine Learning and Applications (ICMLA), pp. 422–429. IEEE, 2023.

Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. Pipps: Flexible model-based
policy search robust to the curse of chaos. In International Conference on Machine Learning, pp.
4065–4074. PMLR, 2018.

Niranjani Prasad, Li-Fang Cheng, Corey Chivers, Michael Draugelis, and Barbara E Engelhardt.
A reinforcement learning approach to weaning of mechanical ventilation in intensive care units.
arXiv preprint arXiv:1704.06300, 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Vaisakh Shaj, Saleh Gholam Zadeh, Ozan Demir, Luiz Ricardo Douat, and Gerhard Neumann. Multi
time scale world models, 2023. URL https://arxiv.org/abs/2310.18534.

C.E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,
jan 1949. doi: 10.1109/jrproc.1949.232969. URL https://doi.org/10.1109/jrproc.
1949.232969.

Sanghyun Son, Laura Zheng, Ryan Sullivan, Yi-Ling Qiao, and Ming Lin. Gradient informed
proximal policy optimization. Advances in Neural Information Processing Systems, 36, 2024.

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In International Conference on Machine Learning, pp. 20668–
20696. PMLR, 2022.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In Machine learning proceedings 1990, pp. 216–224. Elsevier,
1990.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Pierre Thodoroff, Wenyu Li, and Neil D. Lawrence. Benchmarking real-time reinforcement learn-
ing. In Samuel Albanie, João F. Henriques, Luca Bertinetto, Alex Hernández-Garcıa, Hazel
Doughty, and Gül Varol (eds.), NeurIPS 2021 Workshop on Pre-registration in Machine Learn-
ing, volume 181 of Proceedings of Machine Learning Research, pp. 26–41. PMLR, 13 Dec 2022.
URL https://proceedings.mlr.press/v181/thodoroff22a.html.

E Weinan. Principles of multiscale modeling. Cambridge University Press, 2011.

Ronald J Williams and Jing Peng. Reinforcement learning algorithms as function optimizers. In Pro-
ceedings of the International Joint Conference on Neural Networks, Washington DC, volume 2,
pp. 89–95, 1989.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:
World models for physical robot learning. In Karen Liu, Dana Kulic, and Jeff Ichnowski (eds.),
Proceedings of The 6th Conference on Robot Learning, volume 205 of Proceedings of Machine
Learning Research, pp. 2226–2240. PMLR, 14–18 Dec 2023. URL https://proceedings.
mlr.press/v205/wu23c.html.

12

https://arxiv.org/abs/2109.14311
https://arxiv.org/abs/2310.18534
https://doi.org/10.1109/jrproc.1949.232969
https://doi.org/10.1109/jrproc.1949.232969
https://proceedings.mlr.press/v181/thodoroff22a.html
https://proceedings.mlr.press/v205/wu23c.html
https://proceedings.mlr.press/v205/wu23c.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg, and
Miles Macklin. Accelerated policy learning with parallel differentiable simulation. arXiv preprint
arXiv:2204.07137, 2022.

Lei Yang, Zoltan Nagy, Philippe Goffin, and Arno Schlueter. Reinforcement learning for optimal
control of low exergy buildings. Applied Energy, 156:577–586, 2015.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Avnish Narayan, Hayden Shively, Adithya
Bellathur, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and
evaluation for multi-task and meta reinforcement learning, 2021. URL https://arxiv.org/
abs/1910.10897.

Zhexuan Zeng, Zuogong Yue, Alexandre Mauroy, Jorge Gonçalves, and Ye Yuan. A sampling theo-
rem for exact identification of continuous-time nonlinear dynamical systems. IEEE Transactions
on Automatic Control, pp. 1–16, 2024. doi: 10.1109/TAC.2024.3409639.

13

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

A DESCRIPTIONS OF 4TH-ORDER RUNGE-KUTTA INTEGRATION.

In this section, we extend our description of the 4th-order Runge-Kutta (RK4) integration mentioned
in Section 4.1.2. The detailed RK4 integration is as follows:

k1 = d(zt, at,∆t)

ẑ1 = zt + d (zt, at,∆t/2) · τ (∆t/2)

k2 = d (ẑ1, at,∆t)

ẑ2 = zt + d (z1, at,∆t/2) · τ (∆t/2)

k3 = d (ẑ2, at,∆t)

ẑ3 = zt + d (z2, at,∆t) · τ(∆t)

k4 = d (ẑ3, at,∆t)

ẑt+1 = zt +
1

6
(k1 + 2k2 + 2k3 + k4) · τ(∆t)

(4)

Consistent with the notations in Section 4.1.2, zt, at denotes the latent state-action pairs at time t,
d(·) denotes our dynamic model parameterized by a neural network, and ẑi (i ∈ 1, 2, 3) are the
intermediate middle points. The final prediction of next latent state under time step size ∆t is ẑt+1.

Figure 6: Ablation Study on ∆t Sampling Strategy. Average Episode Success Rate as a function
of evaluation time steps (unit: millisecond). The dashed lines represent the default time step sizes
(∆t = 2.5ms). The mean and 95% confidence intervals are plotted over 3 seeds, each with 10 eval-
uation episodes. The baseline models in BLUE are trained with 2M steps. The time-aware models
are trained with 2 different ∆t sampling strategies: log-uniform sampling in RED and uniform sam-
pling in PURPLE.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B ABLATION STUDY OF ∆t SAMPLING STRATEGIES.

In this section, we conduct an ablation study on the impact of ∆t sampling strategy during the
training process on the performance and efficiency of our time-aware model. Specifically, we trained
the same time-aware model architecture under the same range of training ∆t′s but with different
sampling strategies: (1) Log-Uniform(1,50)ms and (2) Uniform(1,50)ms. The performance of time-
aware models trained with different ∆t′s sampling strategies (ours) and the non time-aware models
(baselines) are shown in Figure 6.

Figure 6 indicates that while our time-aware models trained with uniform sampling strategy gener-
ally perform better in most environments and have significantly better performance at low sampling
rate (inference ∆t ≥ 30ms), they have lower success rates at small inference ∆t (∆t ≤ 2.5ms)
on in some environments, such as mw-assembly and mw-lever-pull. Regardless of the ∆t sampling
strategy, the time-aware models have superior performance compared to the non time-aware base-
lines. Therefore, our time-aware model can be efficiently and effectively trained with any reasonable
sampling strategy and is not only limited to log-uniform or uniform sampling. Deriving an optimal
∆t sampling strategy can be an interesting line of future work to achieve the highest performance
on both small and large ∆t values. In the meanwhile, our log-uniform sampling strategy works well
in practice, given our experimental results.

C ADDITIONAL COMPARISONS WITH NON TIME-AWARE BASELINES.

In this section, we extend Figure 5 and include additional results of other environments. Specifically,
the learning curves of our time-aware model and the baseline non-time-aware TDMPC2 models
evaluated on different inference ∆ts are shown in Figure 7.

D COMPARISONS WITH MULTI TIME SCALE WORLD MODEL (MTS3).

As mentioned in Section 2, Multi Time Scale World Model (MTS3) (Shaj et al., 2023) is a closely
related work with similar high-level motivation with our work: to model the world dynamics at
multiple temporal levels. Specifically, MTS3 proposes a probabilistic approach to jointly learn the
world dynamics at two temporal abstractions: task level (slow dynamics/timescale) and state level
(fast dynamics/timescale). These 2 timescales are separately learned by two state space models
(SSMs): SSMfast and SSMslow, where SSMfast learns the dynamics evolving at original small
timestep ∆t of the dynamical systems and SSMfast learn the slow dynamics evolving at H∆t.
Although this approach also explicitly considered different temporal abstraction levels in learning
the world dynamics, there are several critical differences between MTS3 compared to our work:

1. Models vs Training method: Shaj et al. (2023) proposes a model architecture to learn a
world model with several discrete temporal abstraction levels. On the other hand, we pro-
posed a simple yet effective and efficient time-aware training method that can be employed
to train any world model architecture.

2. Discrete vs continous timescales: The original MTS3 currently only handle only 2
timescales: ∆t and H∆t, where both ∆t and H is fixed in the training process. Al-
though the MTS3 can be adapted to learn multiple timescales, the number of timescales
is limited to a discrete value. Furthermore, the SSMslow (slow dynamic model) does not
directly model state transition under large temporal gap ∆t (or low observation rate) but
rather learns the task latents to guide SSMfast to long-horizon predictions. On the other
hand, our time-aware approach can directly predict the future states st+∆t under large ∆t.

3. Multi-step vs one-step prediction: MTS3 considers the future prediction under large ∆t
as a long-horizon prediction problem. Specifically, to predict st+∆t, MTS3 discretizes
the long temporal gap into several smaller timesteps: ∆t = M∆tfast, where ∆tfast is
the original timestep size SSMfast is trained with and M ∈ N+. MTS3 then iteratively
applies the model M times to predict st+∆t. This timestep discretization approach has 2
critical limitations: (1) MTS3 cannot model state transitions under ∆t that is not divisible
by ∆tfast and (2) multi-step predictions are vulnerable to compounding errors, a well-
known problem in long-horizon modeling. On the other hand, our model can directly

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 7: Success Rate Curve under different evaluation time step sizes. At each training step,
the models are evaluated on various inference ∆ts. Despite having to learn the dynamics under
varying time step sizes, our time-aware model (in RED) still converges faster when evaluated on
∆tdefault = 2.5ms all tasks compared to the baseline trained only on ∆tdefault = 2.5ms (in
BLUE). On large ∆t’s, the time-aware model significantly outperforms the baseline with the same
number of training steps while the baselines fail to converge. The mean and 95% confidence inter-
vals success rate are plotted over 3 seeds, each with 10 evaluation episodes.

predict the next state with a one-step prediction, effectively alleviating the compounding
error problem.

4. Inference efficiency: Another disadvantage of multi-step prediction is inference ineffi-
ciency. In contrast, our time-aware model can efficiently predict long-term future states
without sacrificing computational efficiency by using one-step prediction.

5. Prediction-only vs Control: As acknowledged by Shaj et al. (2023), the original MTS3 is
strictly a prediction model. On the contrary, our time-aware model can be used efficiently
with a planner to solve control problems.

In this section, we conduct empirical comparisons between MTS3 and our proposed time-aware
model on the control problem, extending beyond the prediction-only scope in MTS3. First, MTS3

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

is trained with offline data consisting of 4× 106 (4M transitions) collected from random trajectories
(10%), half-trained policyś trajectories (20%), and trained expert policy trajectories (80%). Since
MTS3 is strictly prediction-focused and is not designed for controls, we carefully combined MTS3
with MPPI planners and our world model’s trained value and reward function. Implementation-wise,
we replaced our dynamic model with MTS3 and kept all other components unchanged, including
the planner (MPPI) and learned value and reward functions. This design ensures a fair comparison
between the models, as any performance gap is attributed solely to the difference between MTS3 and
our dynamic model. We kept the default hyper-parameter settings as in the original MTS3 paper and
codebase. The results are shown in Figure 8. We will release the code source for the implementation
of MTS3-MPPI in this experiment on GitHub when the paper is accepted.

Figure 8: Comparison with MTS3. Average Episode Success Rate as a function of evaluation time
steps (unit: millisecond). The dashed lines represent the default time step sizes (∆t = 2.5ms). The
mean and 95% confidence intervals are plotted over 3 seeds, each with 10 evaluation episodes. The
baseline MTS3 models in DARK BLUE are trained with offline data with 4M transitions. Our time-
aware models, highlighted in RED, are trained with 1.5M training steps.

The MTS3 inference stepping are adjusted such that when evaluated on ∆teval > ∆ttrain, the model
is applied ∆teval/∆ttrain times (∆ttrain is the fast time step between SSMfast’s observations).
Figure 8 shows a rapid performance degradation of MTS3 as the evaluation timestep size increases,
suggesting MTS3 also suffers from compounding error due to long-horizon prediction.

17

	Introduction
	Related Work
	Background and Motivations
	Model Based Reinforcement Learning
	Theoretical Motivations
	Multi-scale Dynmical Systems
	Nyquist-Shannon Sampling Theorem
	Simultaneously training on multiple temporal resolutions

	Methodology
	Model Architecture
	Standard World Model
	Time-Aware World Model

	Training Pipeline Using a Mixture of Time Resolutions

	Experiments
	Conclusion
	Descriptions of 4th-order Runge-Kutta integration.
	Ablation study of t sampling strategies.
	Additional comparisons with non time-aware baselines.
	Comparisons with Multi Time Scale World Model (MTS3).

