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Abstract

Adapting generative foundation models to optimize rewards of interest (e.g.,
binding affinity) while satisfying constraints (e.g., molecular synthesizability)
is of fundamental importance to render them applicable in real-world discovery
campaigns such as molecular design. While recent works have introduced scalable
methods for reward-guided fine-tuning of diffusion and flow models, it remains
an open problem how to algorithmically trade off property maximization and
constraint satisfaction in a reliable and predictable manner. Towards tackling this
challenging problem, we first present a rigorous formulation for constrained gen-
erative optimization. Then, we introduce Constrained Flow Optimization (CFO),
an augmented Lagrangian method that renders it possible to arbitrarily control the
aforementioned trade-off between reward maximization and constraint satisfaction.
We provide convergence guarantees for the proposed scheme. Ultimately, we
present an experimental evaluation on both synthetic, yet illustrative, settings, and a
molecular design task optimizing molecular properties while constraining energy.

1 Introduction
Recent advances in generative modeling, particularly the advent of diffusion [15, 28, 27] and flow
models [20], have led to state-of-the-art performances in several biological tasks, including generating
protein structures [36], drug-like molecules [11], and DNA sequences [29], among others. These
foundation models excel at capturing complex data distributions and generating realistic samples.
However, approximately sampling from the data distribution is insufficient for most real-world
discovery applications, where one typically wishes to generate candidates maximizing task-specific
properties, or rewards, such as binding affinity or druglikeness in drug discovery. Recent works have
introduced scalable fine-tuning methods that adapt a pre-trained flow or diffusion model to maximize
a given reward under KL-regularization from the pre-trained model, using formulations from control
theory or reinforcement learning [10, 33, 30]. However, shifting model density toward high-reward
regions can make regularization insufficient to enforce validity constraints [32]. In chemistry and
biology, such constraints may include the physical validity of docking poses [5], or the toxicity and
synthesizability of drug candidates [12, 23]. Motivated by this, we ask the following question:

How can we fine-tune a pre-trained flow or diffusion model to controllably trade-off reward
optimization and satisfiability of known constraints?

Our approach. In this work, we answer this question by first formalizing the problem of constrained
generative optimization, extending current fine-tuning formulations to the constrained case (Sec. 3).
Next, we introduce Constrained Flow Optimization (CFO), a fine-tuning method based on the
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(a) Constrained generative optimization. Red: high-cost area. (b) Adaptation to a low-cost area.

Figure 1: (a) Pre-trained and fine-tuned policies yield ppre
1 and p∗1 for reward r (increasing downwards);

red indicates high cost. (b) ppre
1 adapts to p∗1 to maximize r while constrained to the low-cost area.

augmented Lagrangian (AL) scheme [3], which sequentially adapts the model to balance reward
maximization with constraint satisfaction, thereby enabling controllable and reliable sample
generation (Sec. 4). The proposed principled algorithm enables the transfer of classic constrained
optimization guarantees from the AL method to generative model finetuning (Sec. 5). Finally, we
demonstrate the effectiveness of CFO on both synthetic settings and a molecular design task, where
it generates molecules with large dipole moments [22] while satisfying energetic constraints (Sec. 6).

Our contributions. To sum up, we present the following contributions:
• We present the constrained generative optimization via fine-tuning problem for flow models (Sec. 3).
• We introduce Constrained Flow Optimization (CFO), an augmented Lagrangian-based fine-tuning

method for flow and diffusion models (Sec. 4).
• We provide constrained optimization guarantees for CFO based on the AL scheme (Sec. 5).
• We evaluate CFO’s ability to controllably trade-off reward maximization and constraint satisfaction

in both synthetic settings and a molecular design task (Sec. 6).

2 Background and Notation
Generative Flow Models. Flow models aim to approximately sample from a data distribution pdata,
by transforming samples from an initial distribution pinit into samples from pdata [7, 20]. A flow is a
map ψ : [0, 1]×Rd→Rd denoted by ψt(x), and it is be defined by a velocity field u : [0, 1]×Rd→Rd,
via the flow ODE: d

dtψt(x0) = ut(ψt(x0)) with ψ0(x0) = x0, (1)
A generative flow model is a continuous-time process {Xt}0≤t≤1 induced by a flow ψ via X0 ∼ pinit

as Xt = ψt(X0), t ∈ [0, 1], such that X1 = ψ1(X0) ∼ pdata. A flow model induces a probability
path of marginal densities p = {pt}0≤t≤1 such that at time t: Xt = ψt(X0) ∼ pt.

Continuous-time Reinforcement Learning (ctRL). We present finite-horizon ctRL [35, 31, 38]
as a specific case of stochastic optimal control. Let X :=Rd×[0, 1] be a state space and A an action
space, with the transition dynamics governed by: d

dtψt(x) = at(ψt(x)) and denote by π(Xt, t) ∈ A
the policy, which is as mapping form a state (x, t) ∈ X to an action a ∈ A such that at = π(Xt, t).
Denote with pπt the marginal density at time t induced by policy π. Thus, a pre-trained flow model
with velocity field upre can be interpreted as an action process apre

t := upre(Xt, t), where apre
t is

determined by a policy via apre
t = πpre(Xt, t) [8]. Therefore, we can express the flow ODE induced

by a pre-trained flow model by replacing ut with apre in Eq. 1, and denote the pre-trained model
by its policy πpre, which induces a marginal density ppre

1 := pπ
pre

1 approximating pdata.

3 Constrained Generative Optimization via Flow Fine-Tuning
We aim to fine-tune a pre-trained diffusion model πpre to obtain a new model π∗, inducing a process:

d
dtψt(x) = afine

t (ψt(x)), with afine
t = π∗(xt, t) (2)

The fine-tuned model should induce a distribution p∗1 := pπ
∗

1 that maximizes the expected value of
a target property, while retaining prior information from the pre-trained model πpre and respecting
arbitrary constraints. The problem is illustrated in Fig. 1 and formalized as follows:

Constrained Generative Optimization via Flow Fine-Tuning
argmax

π
Ex∼pπ

1
[r(x)]− αDKL(p

π
1 ||p

pre
1 )

s.t. Ex∼pπ
1
[c(x)] ≤ B

(3)
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Algorithm 1 Constrained Flow Optimization
1: Init: Set initial Lagrange multiplier λ1 = 0 and V0 = −∞
2: for k = 1, 2, . . . ,K do
3: Step 1: Update fine-tuning AL objective:

fk(x) := r(x)− ρk
2

[
max

(
0, c(x)−B − λk

ρk

)]2

(4)

4: Step 2: Compute πk via fine-tuning:
πk ← FINETUNINGSOLVER(fk, πpre) (5)

5: Step 3: Update Lagrange multiplier:

λ̄k+1 ← min
{
0, λk − ρk

(
Ex∼p

πk
1

[c(x)]−B
)}

λk+1 = max{λ̄k+1, λmin}. (6)

6: Step 4: Set Vk=min
{
Ex∼p

πk
1

[c(x)]−B, −λk/ρk
}

and update ρk+1=

{
ρk, ifVk ≤ τVk−1,

ηρk, otherwise,
7: end for
8: Return: πK

Where r and c : Rd→R are respectively scalar reward and constraint functions, α∈R determines
the KL-regularization strength, and B∈R controls the permissible degree of constraint violation.

Crucially, the constrained generative optimization via fine-tuning problem in Eq. 3 allows constructing
a flow model that maximizes reward r while limiting constraint violation to any value B. The reward-
constraint trade-off is critical in settings such as Fig. 1b, where the reward-maximizing region lies
outside the valid data points, a typical case when learned reward functions act as property predictors
[32]. In such cases, naive optimization may lead to high-reward but constraint-violating samples.

In the next section, we propose an algorithm that can tackle the constrained generative optimization
problem in Eq. 3 by leveraging as a subroutine any unconstrained fine-tuning method [e.g., 10, 33].

4 Constrained Flow Optimization (CFO)
We present Constrained Flow Optimization (CFO) (Alg. 1), an algorithm that tackles the constrained
generative optimization problem in Eq. 3 by reducing it to a sequence of unconstrained fine-tuning
subproblems. In each iteration, the algorithm constructs an Augmented Lagrangian (AL) objective
based on the current policy, fine-tunes the model to optimize this auxiliary objective, and updates
the AL parameters. This renders it possible to tackle the constrained problem in Eq. 3 as a sequence
of unconstrained subproblems, which can be solved via established methods [e.g., 10, 33].

CFO requires as inputs a pre-trained model πpre, the number of iterationsK, a minimal Lagrange multi-
plier λmin < 0, an initial penalty parameter ρ1>0, a growth rate η≥1, and a contraction value 0<τ <
1. At each iteration, CFO performs four main steps. First, it computes the Augmented Lagrangian ob-
jective fk according to the classic augmented Lagrangian scheme for constrained optimization [25, 13]
(Step 1). Then, it computes policy πk by solving a classic KL-regularized fine-tuning problem:

argmax
π

Ex∼pπ
1
[fk(x)]− αDKL(p

π
1 ||p

pre
1 ) (7)

where the Augmented Lagrangian objective fk is the one computed at the previous step (Step 2). This
can be achieved by leveraging established fine-tuning schemes such as Adjoint Matching (AM) [10]
(Apx. B). Next, CFO computes a proposal λ̄k+1 for the Lagrange multiplier via a sample-based esti-
mate of the expected infeasibility of policy πk, and the new Lagrange multiplier is set with a railguard
(Step 3). Lastly, CFO tests whether the penalty parameter ρ should increase or not by checking the
progress toward satisfying the constraint (Step 4). Ultimately, CFO returns the fine-tuned model πK .

However, it is still unclear whether CFO is guaranteed to solve the constrained generative optimization
problem (Eq. 3). Next, we affirm this by analyzing the convergence properties of the AL scheme [3].

5 Constrained Generative Optimization Guarantees
We first introduce the following realistic assumption, which captures the approximate nature of
typical fine-tuning schemes, along the lines of recent works [e.g., 8], and is standard in AL schemes.
Assumption 5.1 (Solver). For all k ∈ N, the FINETUNINGSOLVER returns πk such that:

Lρk
(πk, λk) ≥ Lρk

(π, λk)− εk ∀π (8)
where Lρk

(πk, λk)=Ex∼pπ
1
[fk(x)]−αDKL(p

π
1 ||p

pre
1 ) and the sequence {εk} ⊆ R+ is bounded.
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Figure 2: (a-d) Constrained generation (r = 0) via CFO for different constraint violations B. (e-f)
Constrained generative optimization via CFO. (g-h) Energy-constrained dipole moment maximization.

With this condition in place, we present two main results that establish the convergence behavior
of CFO. The proofs are in Apx. G. Theorem 5.2 states that CFO finds a policy that minimizes
infeasibility, i.e.: ⟨G(π)⟩+=

〈
Ex∼pπ

1
[c(x)]−B

〉
+
≥0, with ⟨·⟩+ := max{0, ·}.

Theorem 5.2 (Feasibility of CFO). Let {πk} be a sequence generated by Alg. 1 under Assumption
5.1 with limit π̄. Then, we have ⟨G(π̄)⟩+ ≤ ⟨G(π)⟩+, for all π, where G(π) = Ex∼pπ

1
[c(x)]−B.

By requiring a stronger condition on FINETUNINGSOLVER, namely that εk → 0, CFO not only ensures
constrained generation but also optimal reward maximization, as stated in the following.
Theorem 5.3 (Optimality of CFO). Let {πk} be a sequence generated by Alg. 1 under Assumption
5.1 with limit π̄ and limk→∞ εk = 0. Suppose that ⟨G(π̄)⟩+ = 0, then π̄ is a global maximizer.

6 Experiments
We validate the ability of CFO to solve the constrained generative optimization problem (Eq. 3)
via two experiments: (1) a synthetic, yet illustrative, setting that enables visual interpretability, and
(2) a molecular design task demonstrating CFO’s relevance to real-world high-dimensional problems.
While our current molecular design experiments focus on simplified constraints (e.g., energy), the
framework is general and can incorporate more realistic conditions, such as ensuring candidates
are synthesizable [12] or non-toxic [24]. Further experimental details are provided in Apx. D-E.

(1) Illustrative Settings. We consider two cases. First, we consider a pre-trained model density
ppre
1 corresponding to a simple Gaussian (Fig. 2a), and evaluate the constrained generation capability

of CFO, i.e., reward r = 0, and using a constraint c that assigns positive costs outside the red triangle
(Fig. 2a). CFO can successfully steer the pre-trained model to fulfill the constraint for varying bounds
B ∈ {0.0, 1.0}, as shown in Fig. 2b and 2c, respectively, where we report the fine-tuned density
pπ1 . Next, we consider the problem of reward maximization under constraints, where ppre

1 is a mixture
of two non-overlapping Gaussians (Fig. 2e), and the constraints c and reward r are illustrated via the
color gradients in Fig. 2e and 2f, respectively. As shown in Fig. 2f, CFO can move the prior density
within valid regions according to c, which is positive outside the red triangles, while maximizing
the reward function. Numerical results for both experiments are reported in Tab. 2d.

(2) Molecular Design. To demonstrate the practical relevance of CFO in high-dimensional settings,
we apply CFO to a molecular design. Specifically, we adapt FlowMol [11], a flow model pre-trained
on GEOM Drugs [1], and maximize the dipole moment [22] as reward while ensuring constraint
fulfillment. As constraints, we impose an upper bound on the total xTB energy (i.e., −80 Ha), to be
used as a proxy for chemical stability. Both functions are computed via GNN-based predictors trained
on GFN2-xTB [2]. In Fig. 2g-2h, we show the performance of CFO. The optimal policy π∗ computed
by CFO (K=6, N=10) increases the dipole moment from 6.55 Debye of the pre-trained model to
8.33 Debye. Simultaneously, π∗ shifts the flow model density to generate predominantly low-energy
samples, effectively achieving an expected energy of −82.28 Ha, thus satisfying the upper bound B
of −80 Ha. For reference, running Adjoint Matching (N=60) [10] purely for reward maximization,
without enforcing the constraint, achieves a similar reward of 8.30 Debye, yet results in an expected
constraint of −78.31 Ha, thus not fulfilling the constraint. Further details can be found in Apx. E.
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A Related Works and Conclusion

Control-based fine-tuning of flow and diffusion models. Recent works have tackled fine-tuning of
diffusion and flow models to maximize rewards under KL regularization as an entropy-regularized opti-
mal control problem [e.g., 33, 30, 34, 10]. Such methods have been successfully applied to real-world
domains such as image generation [10], molecular design [34], or protein engineering [34]. These
methods have also been adopted as subroutines to tackle settings beyond reward maximization, such
as manifold exploration [8] or optimization of distributional objectives [26]. CFO extends fine-tuning
methods for reward maximization to leverage known constraint functions and can be straightforwardly
used as a plug-in oracle in more complex settings (e.g.,, exploration and distributional fine-tuning).

Constrained Generative Modeling and Optimization. Most prior work addresses constraint-aware
generative modeling, developing tools for handling linear [14], differentiable [17], and black-box [19]
constraints. Enforcement spans training-time dual/penalty formulations [17] and inference-time
strategies such as reward-weighted denoising for non-differentiable objectives [19] and classifier
or classifier-free guidance for differentiable surrogates [9, 16]. These techniques have been applied
in domains such as molecular design [19] and constrained planning [21]. The closest work to ours
is arguably [17], with the main difference that our setting is for post-training, i.e., at fine-tuning time,
constrained generative optimization rather than a training-time scheme enforcing given constraints.

Augmented Lagrangian and Dual Methods in Constrained Sampling. Augmented Lagrangian
and dual formulations turn equality and inequality constraints into auxiliary updates that run with the
sampler, enabling draws from unnormalized targets while enforcing feasibility either per-sample or
in expectation [18, 4, 6]. In planning and control, it has been shown that employing an augmented
Lagrangian method to steer diffusion rollouts toward time-varying safety sets without requiring
retraining of the base model [37]. Dual schemes similarly maintain physical invariants during
sampling or data assimilation while still retaining sufficient exploration of feasible states [4]. In
addition to constrained generation or sampling, CFO also performs reward-driven optimization under
the augmented formulation.

Conclusion. This work tackles the problem of constrained generative optimization via fine-tuning
pre-trained flow and diffusion models, a relevant and challenging task in discovery applications such
as molecular design and protein structure generation. After proposing a constrained optimization
formulation of the problem, we introduced Constrained Flow Optimization, a method that turns the
constrained objective into a sequence of off-the-shelf fine-tuning steps, and renders it possible to
provide constrained generative optimization guarantees via the classic AL scheme. Empirical results
on both illustrative settings and a molecular design task confirm the ability of CFO to steer models
toward high-reward valid regions.
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B Adjoint Matching [10] implementation of FINETUNINGSOLVER

To ensure completeness, below we provide pseudocode for one concrete realization of a FINETUN-
INGSOLVER as in Eq. 5. We describe exactly the version employed in Sec. 6, which builds on the
Adjoint Matching framework [10], casting linear fine-tuning as a stochastic optimal control problem
and tackling it via regression.

Let upre be the initial, pre-trained vector field, and ufinetuned its fine-tuned counterpart. We also use ᾱ
to refer to the accumulated noise schedule from [15], effectively following the flow models notation
introduced by Adjoint Matching [10, Sec. 5.2]. The full procedure is in Algorithm 2.

Algorithm 2 FINETUNINGSOLVER (Adjoint Matching [10]) based implementation

1: Input: N : number of iterations, upre : pre-trained flow vector field, α regularization coefficient
as in Eq. 3, ∇f : objective function gradient, m batch size, h step size

2: Init: ufinetuned := upre with parameter θ
3: for n = 0, 1, 2, . . . , N − 1 do
4: Sample m trajectories {Xt}0≤t≤1 via a memoryless noise schedule σ(t) [10], e.g.,

sample εt ∼ N (0, I), X0 ∼ N (0, I), then: (9)

Xt+h = Xt + h

(
2ufinetuned

θ (Xt, t)−
ᾱt

αt
Xt

)
+

√
hσ(t)εt (10)

5: Use objective function gradient:

ã1 = − 1

α
∇f(X1)

6: For each trajectory, solve the lean adjoint ODE, see [10, Eq. 38-39], from t = 1 to 0:

ãt−h = ãt + hã⊤t ∇Xt

(
2upre(Xt, t)−

ᾱt

αt
Xt

)
(11)

7: Where Xt and ãt are computed without gradients, i.e., Xt = stopgrad(Xt), ãt =
stopgrad(ãt). For each trajectory, compute the Adjoint Matching objective [10, Eq. 37]:

Lθ =
∑

t∈{0,h,...,1−h}

∥∥∥∥ 2

σ(t)

(
ufinetuned
θ (Xt, t)− upre(Xt, t)

)
+ σ(t)ãt

∥∥∥∥2 (12)

8: Compute the gradient ∇θL(θ) and update θ.
9: end for

10: Output: Fine-tuned flow vector field ufinetuned
θ

For further implementation details, we refer to [10, Appendix G].
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C Computational Overhead
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PRE
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3/2000
15/400
20/300
100/60

Figure 3: Reward and constraint for
different values of (K/N)

While CFO has K outer iterations, typical fine-tuning solvers
[10, 34, 30] require N steps to compute the optimal iterates.
This makes CFO a double loop algorithm. But in practice,
we run CFO under a fixed solver-step budget of M = K ·N
for all experiments, thus keeping the total compute constant.
This leads to a trade-off between the exactness of the inner
solver and the outer dual updates. Increasing K reallocates
budget from a more exact inner solver to more frequent up-
dates of the Lagrange parameters, effectively making the
FINETUNINGSOLVER less precise at every outer step.

To show that CFO can effectively work with an approximate
fine-tuning oracle, we probe the setting shown in Fig. 2e-2f.
Empirically, under a fixed budget of M = 6000, varying K
reveals a clear trade-off between constraint satisfaction and
reward. When using very few dual updates (K = 3), the inner
solver remains highly accurate (N = 2000), resulting in high
reward but also high expected constraint violations (0.40).
Conversely, using K = 100 produces very frequent dual
updates, but makes the inner solver approximate (N = 60),
which almost eliminates the expected constraint violations
(0.10) but substantially decreases the reward (−5.91). An
intermediate configuration (K = 20) achieves a favorable
balance, yielding both low constraint violation (0.12) and high reward (2.47), as shown in Fig. 3.
Thus CFO effectively acts as a fixed-budget allocator, balancing solver precision and update frequency,
where moderately inexact inner solvers allow more dual updates, and thus better constraint satisfaction.
This implies that from a practical standpoint, the computational cost of CFO is comparable to that of
standard fine-tuning schemes such as AM [10].

Importantly, this observation also holds for the molecular design task in Fig. 2g-2h. CFO (K=6,
N=10) and AM (N=60) have comparable computational cost, as both perform 60 gradient steps.
Concretely, CFO. has a total runtime of 37.18 min and compares well to the runtime of AM with
35.35 min. This 5% increase arises from the extra sampling and constraint evaluation performed in
Step 3 of Alg. 1. Thus demonstrating that CFO can operate effectively in high-dimensional domains
even with an approximate oracle.
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D Further Details - Illustrative Examples

The Mixture of Gaussians (Fig. 2e) is generated by

p(x) =
1

2

(
N

(
x |

[
−7
−2

]
,Σ

)
+N

(
x |

[
2
7

]
,Σ

))
, with Σ =

[
3 0
0 3

]
,

We sample 20k points (80/20 train/validation split) and train a MLP with 3 hidden layers, each
with 256 nodes, for the vector field v. The same setting is used for the experiment on the correlated
Gaussian (Fig. 2a), with:

p(x) = N
(
x |

[
0.5
0.5

]
,

[
1 0.5
0.5 1

])

The constraint triangles have the following vertices:

1. MoG:

△I :

([
−10
−4

]
,

[
−5
−4

] [
−5
2

])
and △II :

([
4
−1

]
,

[
10
2

]
,

[
5
4

])

2. Correlated Gaussian:

△ :

([
−1
−0.5

]
,

[
1

−0.5

]
,

[
0
1

])
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(a) 15.7 D / −86.9 Ha (b) 8.0 D / −90.7 Ha

E[r(x)] ↑ E[c(x)] ↓
PRE 6.55± 0.07 −77.86± 0.22

CFO 8.33 ± 0.10 −82.28 ± 0.41

AM 8.30 ± 0.07 −78.31± 0.38

(c) Evaluation

Figure 4: (4a-4a) Drug-like molecules sampled from the fine-tuned model, together with ground-truth
dipole moments (D) and energies (Ha). 4c: Numeric Evaluation of CFO (K = 6, N = 10) and AM
(N = 60) in Fig. 2g-2h on the molecular design task (best are bold, mean and 95% CI (32 seeds)).

E Further Details - Molecular Design

Molecular Design. For the molecular design task, we fine-tune FlowMol [11]. FlowMol models the
molecules as graphs g = (X,A,C,E), where X = {xi}Ni=1 ∈ RN×3 is the atom position matrix,
A = {ai}Ni=1 ∈ RN×na are the atom types, C = {ci}Ni=1 ∈ RN×nc denote the formal charges,
and E = {eij | ∀i, j ∈ [N ]|i ̸= j} ∈ RN2−N×ne the bond order matrix. Where na, nc, and ne
are the number of possible atom types, charges, and bond orders, these are categorical variables
represented by one-hot vectors. We refer to [11] for the sampling of categorical and initial values.
We use Gaussian sampling for the experiments in the main text on GEOM-Drugs.

GNN Details and Generalization. To verify that optimization targets the intended physical objective
rather than exploiting the surrogate, we evaluate the ground-truth xTB values for every molecule
sampled during the execution of CFO and compare their properties to the GNN predictions. For the
energy (used as a constraint), surrogate predictions are essentially indistinguishable from xTB, indi-
cating faithful approximation within the explored region. For the dipole moment (the maximization
target), the surrogate systematically underestimates the true xTB values by 10%, yet the two remain
strongly correlated and move in lockstep throughout the fine-tuning. Consequently, improvements
under the surrogate translate to larger gains under xTB. Overall, these checks indicate that CFO does
not exploit model artifacts and remains within the training distribution.

11



F Parameters

Discussion of the most important Hyperparameter of CFO and FINETUNINGSOLVER:

• Initial penalty ρinit. Larger ρinit penalizes constraint violations more strongly, thus effectively
reducing early exploration inside the base distribution. Smaller ρinit does the opposite.

• Penalty growth rate η ≥ 1. Controls the penalty growth across updates. Larger η accelerates
enforcement and thus can reduce exploration of high-reward regions. Smaller η tightens feasibility
more gradually, allowing for early reward progress, but potentially slower constraint satisfaction.

• Contraction rate τ ∈ (0, 1). Determines when the penalty parameter ρ is updated. Smaller τ
triggers more frequent updates, values near one update conservatively.

• Multiplier lower bound λmin < 0. Safeguards the Lagrange multiplier via clipping. Smaller
λmin permits larger corrective signals of the offset, see Sec. 4. If set to a large negative value, its
influence on the final output is typically small, since λmin is not achieved.

• FINETUNINGSOLVER regularization α. Trade-off between staying close to the base distribution
and reallocating mass. Larger α enforces stronger KL-regularization of the policy. A smaller α
allows greater deviation from the base policy.

• Sampling for constraint estimation (sample count/batch size). Larger samples reduce estimator
variance, stabilizing updates and improving feasibility. If the sample size is too small, this yields
volatile or biased estimates that can steer CFO to off-target solutions.

Table 1: Hyperparameters for CFO and Adjoint Matching

SG(2a) MoG(2e) MD-GEOM(2g-2h)

CFO

Lagrangian Updates K 20 20 6
ρinit 0.5 0.5 1.0
η 1.25 1.25 1.25
τ 0.99 0.99 0.99
λmin -50.0 -50.0 -50.0

Adjoint Matching
(1/α) 1e5 1e5 50
Number of Iterations N 300 300 10
Effective Batch Size 256 256 20
Clip Grad Norm 0.7 0.7 0.4
Learning Rate 5e-6 5e-6 5e-6
Integration Steps 40 40 40

Total Steps 6000 6000 60
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G Proofs

Before we present a proof of the theorems in Sec. 5. We will transform the main problem in Eq. 3 to
a simpler form. First, we recall that the policy π is a vector field. It has been shown before that the
ODE in Eq. 1 and a stochastic differential equation (SDE) of the form

dXt = b(Xt, t)dt+ σ(t)dBt, X0 ∼ p0, (13)
with drift b : Rd × [0, 1] → Rd, diffusion coefficient σ : [0, 1] → R≥0 and Brownian motion Bt

induce the same marginals {pt}. For an exact definition of b and a proof of this statement, we refer to
[10]. Controlling this SDE can be done by adjusting the drift as follows [10]:

dXt = (b(Xt, t) + σ(t)u(Xt, t)) dt+ σ(t)dBt, X0 ∼ p0,

where u : Rd × [0, 1] → Rd is a control vector field, this means the pre-trained model is a controlled
model with u ≡ 0. With these notational changes, we reformulate the optimization problem in Eq. 3
in terms of the controlled diffusion process Xu ∼ pu:

max
u∈U

EXu∼pu [r(X1)]− αDKL(p
u
1 (·)||p

pre
1 (·))

s.t. EXv∼pv [c(X1)] ≤ B
(14)

Eq. 14 may seem the same as Eq. 3, but it is in terms of a diffusion process. This way we can calculate
the KL efficiently, see [Eq. 18, 10], by using Girsanov’s theorem, which gives the relationship
between the control process u and the KL-Divergence:

DKL(p
u(X|X0) || ppre(X|X0)) = EXu∼pu

[∫ 1

0

1

2
∥u(Xt, t)∥2 dBt

]
Meaning if both processes have the same initial value X0, the KL divergence between the controlled
and uncontrolled process is equal to the expected value of the squared norm of the control u
[10, 33, 30]. This dependence on the initial value can be dropped when using a specific noise
schedule [10]. Recalling that marginals at time t are pt(x), i.e. Xt ∼ pt(x), then we can equivalently
write the optimization problem as:

max
u∈U

EXu∼pu [r(X1)]− αE
[∫ 1

0

1

2
∥u(Xu

t , t)∥2dt
]

s.t. EXu∼pu [r(X1)] ≤ B

Where the expectation is taken over the controlled process Xu. For numerical optimization, we now
assume that the control u is a parametric model, typically a neural network, with parameters θ. The
resulting optimization problem is then:

max
θ∈Rm

F (θ) := Fr(θ)− αFKL(θ)

= Ex∼p
uθ
1
[r(x)]− αE

[∫ 1

0

1

2
∥uθ(Xt, t)∥2dt

]
s.t. G(θ) := Ex∼p

uθ
1
[c(x)]−B ≤ 0

(15)

For some function F : Rm → R and function G : Rm → R. This is finite-dimensional optimization
over θ.

Next, we present a proof that Alg. 1 can find a parameterized policy πθ, with θ ∈ Rm that minimizes
the infeasibility while maximizing the reward. The proof is mostly the same as in “Practical
Augmented Lagrangian Methods for Constrained Optimization” [3, Chapter 5].

The augmented Lagrangian objective in Eq. 7 becomes:

Lρ(θ, λ) = F (θ)− ρ

2

[
max

(
0, G(θ)− λ

ρ

)]2
(16)

where λ ∈ R≤0 is the Lagrange multiplier, ρ > 0 is a penalty parameter.

With this notation, the assumption on the solver becomes:
Assumption G.1 (Solver). For all k ∈ N, we obtain u such that:

Lρk
(θk, λk) ≥ Lρk

(θ, λk)− εk ∀ θ ∈ Rm (17)
where the sequence {εk} ⊆ R+ is bounded.

This corresponds to Assumption 5.1 from [3]. Assumption G.1 states that the solver can find an
approximate maximizer of the subproblem.
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Next we state and prove the main result for the algorithm. Namely, in the limit, we obtain a minimizer
of the infeasibility measure.

Theorem G.2 (Feasibility of Constrained Flow Optimization). Let {θk} be a sequence generated by
Alg. 1 under the solver Assumption G.1. Let θ̄ be a limit of the sequence {θk}. Then, we have:〈

G(θ̄)
〉
+
≤ ⟨G(θ)⟩+ ∀θ ∈ Rm, (18)

where G(θ) := Ex∼p
uθ
1
[c(x)]−B ≤ 0 and ⟨·⟩+ := max{0, ·}.

Proof. By definition Rm is closed and θk ∈ Rm thus θ̄ ∈ Rm. We consider two cases: {ρk} bounded
and ρk → ∞. First we assume {ρk} is bounded, there exists k0 such that ρk = ρk0

for all k ≥ k0.
Therefore, for all k ≥ k0, the upper bracket in Step 4 of Alg. 1 holds. This implies that |Vk| → 0, so
⟨G(θk)⟩+ → 0. Thus, the limit point is feasible.

Now, assume that ρk → ∞. Let K ⊆ N be such that:
θk → θ̄ for k ∈ K and k → ∞

Assume by contradiction that there exists θ ∈ Rd such that〈
G(θ̄)

〉2
+
> ⟨G(θ)⟩2+

By the continuity of G, the boundedness of {λk}, and the fact that ρk → ∞, there exists c > 0 and
k0 ∈ N such that for all k ∈ K, k ≥ k0:〈

G(θk)−
λk
ρk

〉2

+

>

〈
G(θ)− λk

ρk

〉2

+

+ c

Therefore, for all k ∈ K, k ≥ k0:

F (θk)−
ρk
2

[〈
G(θk)−

λk
ρk

〉2

+

]
< F (θ)− ρk

2

[〈
G(θ)− λk

ρk

〉2

+

]
− ρkc

2
+ F (θk)− F (θ)

Since limk∈K θk = θ̄, the continuity of F , and the boundedness of {εk}, there exists k1 ≥ k0 such
that, for k ∈ K k ≥ k1: ρkc

2
− F (θk) + F (θ) > εk

Therefore,

F (θk)−
ρk
2

[〈
G(θk)−

λk
ρk

〉2

+

]
< F (θ)− ρk

2

[〈
G(θ)− λk

ρk

〉2

+

]
− εk

for k ∈ K, k ≥ k1. This contradicts Assumption G.1.

Theorem G.2 and its proof correspond to [3, Sec. 5.1]. Theorem G.2 establishes that Alg. 1, under
the iterates given in Assumption G.1, identifies minimizers of the infeasibility, i.e.,

⟨G(θ)⟩+ :=
〈
Ex∼p

uθ
1
[c(x)]−B ≤ 0

〉
+
.

Consequently, if the original optimization problem is feasible, then every limit point of the sequence
produced by the algorithm is also feasible.

Next, we will see that, assuming that εk tends to zero, it is possible to prove that, in the feasible case,
the algorithm asymptotically finds a global maximizer of the problem in Eq. 3.

Theorem G.3 (Optimality of Constrained Flow Optimization). Let {θk} ⊂ Rd be a sequence
generated by Alg. 1 under Assumption G.1 and limk→∞ εk = 0. Let θ̄ ∈ Rm be a limit of the
sequence {θk}. Suppose that ⟨G(θ)⟩+ = 0, then θ̄ is a global maximizer of Eq. 3.

Proof. Let K ⊆ N be such that.
θk → θ̄ for k ∈ K and k → ∞

By assumption, the problem is feasible, thus, by Theorem G.2, we have that θ̄ is feasible. Let θ ∈ Rm

be such that G(θ) ≤ 0. By the definition of the algorithm, we have that

F (θk)−
ρk
2

[〈
G(θk)−

λk
ρk

〉2

+

]
≥ F (θ)− ρk

2

[〈
G(θ)− λk

ρk

〉2

+

]
− εk (19)
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for all k ∈ N, as well as by assumption G(θ) ≤ 0, we have that〈
G(θ)− λk

ρk

〉2

+

≤
(
λk
ρk

)2

. (20)

We again consider the two cases: ρk → ∞ and {ρk} bounded.

In the first case, we assume ρk → ∞. By Eq. 19 and Eq. 20, we have

F (θk) ≥ F (θk)−
ρk
2

[〈
G(θk)−

λk
ρk

〉2

+

]
≥ F (θ)− (λk)

2

2ρk
− εk.

Taking limits for k ∈ K, and using that θk → θ̄, we have that limk∈K(λk)
2/ρk = 0 and limk∈K εk =

0, by the continuity of F and the convergence of θk, we get
F (θ̄) ≥ F (θ).

Since θ is an arbitrary feasible element of Rm, θ̄ is a global optimizer.

For the second case, we assume {ρk} is bounded, there exists k0 ∈ N such that ρk = ρk0 for all
k ≥ k0. Therefore, by Assumption G.1, Eq. 19 holds for all k ≥ k0, and Eq. 20 holds with ρ = ρk0 .
Thus,

F (θk)−
ρk0

2

[〈
G(θk)−

λk
ρk0

〉2

+

]
≥ F (θ)− (λk)

2

2ρk0

− εk.

for all k ≥ k0. Let K1 ⊆ N and λ∗ ∈ R≤0 be such that: limk∈K1
λk = λ∗. By the feasibility of θ̄,

taking limits in the inequality above for k ∈ K1, we get

F (θ̄)− ρk0

2

[〈
G(θ̄)− λ∗

ρk0

〉2

+

]
≥ F (θ)− (λ∗)2

2ρk0

− εk. (21)

Now, if G(θ̄) = 0, since λ∗/ρk0
≥ 0, we have that〈

G(θ̄)− λ∗

ρk0

〉2

+

=

(
λ∗

ρk0

)2

Therefore, by Eq. 21,

F (θ̄)− ρk0

2

[〈
G(θ̄)− λ∗

ρk0

〉2

+

]
≥ F (θ)− (λ∗)2

2ρk0

. (22)

But, by condition in Step 4 for Alg. 1 (definition of Vk, and interaction with ρk), we have
limk→∞ min{G(θk),−λ∗/ρk0

} = 0. Therefore, if G(θ̄) < 0, we necessarily have that λ∗ = 0.
Therefore, Eq. 22 implies that F (θ̄) ≥ F (θ). Since θ is an arbitrary feasible element of Rm, θ̄ is a
global optimizer.

We want to make two remarks about Theorem G.3: the first is that having access to such an solver is
difficult and in practice rarely the case. Secondly, we refer to [3, Sec. 5.2] for a discussion about the
sets K and K1, how they are connected to the convexity of F and G.
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