
Functional Wasserstein Variational Policy Optimization

Junyu Xuan1 Mengjing Wu1 Zihe Liu1 Jie Lu1

1Australian Artificial Intelligence Institute, University of Technology Sydney, Ultimo NSW 2007, Australia,

Abstract

Variational policy optimization has become in-
creasingly attractive to the reinforcement learning
community because of its strong capability in un-
certainty modeling and environment generalization.
However, almost all existing studies in this area
rely on Kullback–Leibler (KL) divergence which
is unfortunately ill-defined in several situations. In
addition, the policy is parameterized and optimized
in weight space, which may not only bring addi-
tional unnecessary bias but also make the policy
learning harder due to the complicatedly depen-
dent weight posterior. In the paper, we design a
novel functional Wasserstein variational policy op-
timization (FWVPO) based on the Wasserstein dis-
tance between function distributions. Specifically,
we firstly parameterize policy as a Bayesian neural
network but from a function-space view rather than
a weight-space view and then propose FWVPO to
optimize and explore the functional policy poste-
rior. We prove that our FWVPO is a valid varia-
tional Bayesian objective and also guarantees the
monotonic expected reward improvement under
certain conditions. Experimental results on multi-
ple reinforcement learning tasks demonstrate the
efficiency of our new algorithm in terms of both
cumulative rewards and uncertainty modeling ca-
pability.

1 INTRODUCTION

Reinforcement learning aims to optimize a policy that could
yield high cumulative rewards when interacting with a given
environment. One straightforward solution is to parameter-
ize the policy, represent the cumulative reward as a function
of the policy, and maximize the cumulative reward by opti-
mizing the policy. Such a solution is named policy optimiza-

tion1 [Schulman et al., 2015, 2017, Huang et al., 2021] or
policy gradient [Williams, 1992, Li et al., 2021, Castellini
et al., 2021]. Popular algorithms include trust region policy
optimization (TRPO) [Schulman et al., 2015], proximal pol-
icy optimization (PPO) [Schulman et al., 2017], Bregman
gradient policy optimization [Huang et al., 2021], and so
on. Almost all of these works parameterize the policy as a
determinate deep neural network in which capability in un-
certainty modeling and environment generalizing is limited
[Furmston and Barber, 2010].

One way to improve the ability of uncertainty modeling and
environment generalizing is to parameterize the policy as
a probabilistic model [Furmston and Barber, 2010, Levine,
2018, Xu, 2018]. Among all possible probabilistic models,
Bayesian neural networks (BNNs) [Blundell et al., 2015,
Foong et al., 2020], which assign probabilistic distributions
on all weights of the neural networks are one of the most
popular options because they absorb the advantages of deep
neural networks on the powerful function approximation.
The underlying reason for this parameterization is that it
can transform the reinforcement learning as a probabilistic
inference problem and then various approximate probabilis-
tic inference algorithms can be used to provide additional
flexibility and representation power [Levine, 2018, Zhang
et al., 2020, 2018] and effective reasoning about uncertainty
[Fellows et al., 2019, Liu et al., 2017]. Hence, variational in-
ference [Blei et al., 2017] has been broadly used to improve
the policy optimization (named variational policy optimiza-
tion), where a Kullback–Leibler (KL) divergence is added to
constrain the posterior distribution of the policy. One repre-
sentative work is the maximum entropy policy optimization
(MEPO) [Levine, 2018, Liu et al., 2017].

Unfortunately, there is no such thing as a free lunch. Intro-
ducing BNN and variational inference to policy optimization
also brings additional difficulties, like i) the widely used

1We only consider the gradient-based policy optimization so
we interchange the terms optimization and policy gradient for in
the remainder of this paper.

mailto:<Junyu.Xuan@uts.edu.au>?Subject=Your UAI 2024 paper

Gaussian priors for network parameters are not always ap-
plicable due to their possible pathological features, such as
prior samples tend to be horizontally linear for deep nets
[Duvenaud et al., 2014, Tran et al., 2020]; ii) the effects
of the given priors on posterior inference for weights and
further on the resulting distributions over model outputs in
function space are unclear and hard to control owing to the
complex architecture and nonlinear nature of BNNs [Ma
and Hernández-Lobato, 2021, Wild et al., 2022]. Both these
difficulties source from the independent distributed prior
and strong and complicatedly dependent posterior of policy
network weights.

In this paper, instead of parameterizing policy in weight
space, we propose a functional variational policy optimiza-
tion algorithm, where a policy is given a functional prior and
its posterior is optimized in function space [Rasmussen and
Williams, 2006]. Although there are some recent ingenuous
works on functional variational inference for BNNs [Sun
et al., 2019, Wang et al., 2018, Ma and Hernández-Lobato,
2021], they are all based on KL divergence which has nat-
ural relationship with data log likelihood (the variational
objective is a lower bound of data log-likelihood) but is
either infinite or ill-defined in several situations [Gray, 2011,
Burt et al., 2020], like non-overlapping supports. Moreover,
the KL divergence is known vulnerable to collapse to local
mode [Neumann et al., 2011] and hence sensitive to the
initialization (please see Section 3 for more discussions).
Therefore, when the existing functional variational inference
with KL divergence is directly used as the surrogate objec-
tive function for policy optimization, it could be harmful to
the monotonic improvement of each step and may lead to
instability. Our basic idea in a nutshell is to use Wasserstein
distance [Arjovsky et al., 2017, Ambrogioni et al., 2018]
between policy posterior and prior as the constraint and use
functional Wasserstein variational inference as the surro-
gate objective function for policy optimization. Our main
contributions are summarised as follows,

• We propose a new functional Wasserstein variational
inference based on 1-Wasserstein distance rather than
KL divergence, where the new objective is proven to
be a valid and tighter (compared with KL) variational
Bayesian objective.

• We derive a functional Wasserstein variational policy
optimization (FWVPO), prove the monotonic improve-
ment guarantee and demonstrate the improvement com-
pared with KL divergence.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Reinforcement learning can be formalized by Markov de-
cision processes (MDP). A MDP is defined by a tuple

{S, ν,A, R, P}, where S is the state space, ν is the starting
distribution of states, A is the action space, R(r|s, a) is the
reward function R : S × A → R, and P (st+1|st, a) is the
state transition probability. A policy π(a|s; θ) is a distribu-
tion over actions given a state, with θ as the parameter set.
When a deep neural network is used to model πθ, θ contains
the weights of the network. With discount factor γ ∈ (0, 1),
the expected discounted reward under πθ is defined as

η(πθ) = Es0,a0,...

[∞∑
t=0

γtR(st, at)

]
(1)

where s0 ∼ ν, a0 ∼ π(s0), s1 ∼ P (s0, a0), The defi-
nitions of standard concepts, including state-action value
functionQπ(s, a), state value function Vπ(s), and the advan-
tage functionAπ(s, a), follow the ones in TRPO [Schulman
et al., 2015] and are given in the Supplementary.

2.2 POLICY OPTIMIZATION

The aim of policy optimization algorithms [Williams, 1992]
is to maximize the expected discounted reward in (1) by
optimizing the policy parameters. One problem of the stan-
dard policy gradient is the possible collapse due to a large
update step. TRPO [Schulman et al., 2015] nicely avoids
this kind of collapse through a KL divergence between the
old and new policies that are given to restricting the update,
and a ratio to compensate the difference between trajectory
collecting (old) policy πθold and current policy πθ by

max
θ

JTRPO(θ)− αKL [πθold‖πθ] (2)

where α is a hyperparameter and JTRPO(θ) =

Es0,a0,...
[
π(a|s;θ)
π(a|s;θold)

Aπθold
(s, a)

]
. PPO [Schulman

et al., 2017] further extends TRPO by introduc-
ing a clipped surrogate that maximizes the cost
function while ensuring the deviation from the
previous policy is relatively small JPPO(θ) =

Es0,a0,...
[

min(π(a|s;θ)
π(a|s;θold)

Aπθold
(s, a), clip

(π(a|s;θ)
π(a|s;θold)

,

1 − ε, 1 + ε
)
Aπθold

(s, a))
]

where ε is a hyperparameter.
Variational policy optimization (like MEPO) [Levine,
2018, Liu et al., 2017] is to introduce a policy prior
distribution p0(θ) and the target is to optimize the
approximated policy posterior distribution q(θ) by
maxq Eq(θ) [J(θ)] − αKL[q(θ)‖p0(θ)], where α is hy-
perparameter and J(θ) can be any surrogate term, like
JTRPO(θ) or JPPO(θ), and the optimal posterior can be
directly deduced as q∗(θ) ∝ exp (J(θ)) p0(θ).

2.3 BAYESIAN NEURAL NETWORKS

A Bayesian neural network (BNN) [Blundell et al., 2015,
Foong et al., 2020] is a neural network whose weights are

given (normally independent) prior distributions. Given a
dataset D = {xi, yi} where xi ∈ Rd and yi ∈ R, a sim-
ple one-hidden-layer example is given as y(x) = θ(0) +
θ(1)σ

(
θ(2) + θ(3)x

)
, where σ is a nonlinear activation func-

tion, and θ = {θ(0), θ(1), θ(2), θ(3)} are neural network
weights with prior distribution p0(θ), such as i.i.d. Gaus-
sian distributions. There are various approximate inference
methods to optimize their complex posterior distributions,
such as variational inference (VI) [Blundell et al., 2015] and
Hamiltonian Monte Carlo [Cobb and Jalaian, 2021]. Here,
we briefly introduce the mean-field VI for BNN, which
proposes some simple (like Gaussian) independent varia-
tional distributions q(θ;ϑ) with θ ∼ Gaussian(µ̄, ρ̄), where
ϑ = {µ̄, ρ̄} is also named as the variational parameter,
which is trained to closely approximate the true posterior
distribution. For data D, the loss function is

max
ϑ

Eq(θ;ϑ)

[∑
i

log p(yi|xi; θ)

]
− αKL [q(θ;ϑ)‖p0(θ)]

(3)
where p(yi|xi; θ) is the data likelihood and could be a cate-
gorical distribution for classification task or Gaussian dis-
tribution for regression; the first is also known as expected
log-likelihood, which variance could be further reduced by
local reparameterization trick [Kingma et al., 2015].

3 FUNCTIONAL WASSERSTEIN
VARIATIONAL POLICY
OPTIMIZATION

The policy is traditionally parameterized by a deterministic
deep neural network in which the final layer outputs parame-
ters of an (action) distribution$(a|s; θ). Although an action
distribution is learned, such a design has limited capability
to capture the uncertainty of this distribution because of the
deterministic structure of the neural network. To resolve
such an issue, BNN was used to replace the deterministic
deep neural network [Levine, 2018, Liu et al., 2017], i.e.,
π(a|s) = Ep(θ;ϑ) [$(a|s; θ)]. However, BNN is only used
in weight space by the existing works, which greatly reduces
the ability in function flexibility (due to space limitation,
more details about the difference between weight-space and
function-space can be found in [Rasmussen and Williams,
2006]). Hence, we use BNN as the policy representation
but work in the function space rather than the weight space,
i.e., π(a|s) = Ep(f) [$(a|f(s))] = Ep(θf ;ϑf)

[
$(a|s; θf)

]
,

where p(f) is a functional distribution induced by a pa-
rameterized BNN with p(θf ;ϑf). In a nutshell, p(f) can
be simply understood as a BNN whose weights are with a
distribution parameterized by ϑf . More details about the dif-
ferences between deterministic policy, policy parameterized
by BNN in weight space, and policy parameterized by BNN
in function space are given in the Supplementary.

Inspired by the existing functional BNNs [Sun et al., 2019,

Wang et al., 2018, Ma and Hernández-Lobato, 2021], we
have the following initial functional variational policy opti-
mization (FVPO),

max
q

Eq(f) [J(f)]− αKL [q(f)‖p0(f)] (4)

where f is a policy function (mapping from state to
action); p0(f) is a functional prior, such as Gaussian
process [Rasmussen and Williams, 2006]; similar with
q(θ;ϑ) in (3), q(f) is an approximated functional pos-
terior induced by a parameterized BNN with q(θf ;ϑf);
and J(f) is the surrogate term and can be evaluated
as Eq(f) [J(f)] = Eq(θf ;ϑf)

[
J(θf)

]
and J(θf) can be

JTRPO(θf) or JPPO(θf).

The first term of FVPO is ordinary so we are more inter-
ested in the second functional KL divergence term. Be-
fore investigating this functional KL divergence, let us first
look at the merits of this functional policy optimization: 1)
the optimal function posterior can be directly deduced as
q∗(f) ∝ exp (J(f)) p0(f), but it is unfortunate that we nor-
mally do not have an explicit function probability density
form to express such posterior easily; and 2) optimizing
KL divergence between function distributions is hard but
doable because there is a link with its marginal KL diver-
gence on measurement set [Sun et al., 2019, Gray, 2011]
as demonstrated by Theorem 1 in [Sun et al., 2019] that is
KL[P‖Q] = supn∈N ,X∈Xn KL[PX‖QX] where P and Q
are two stochastic processes defined on space X and PX
and QX are their marginals on X respectively.

Although FVPO is a great initial effort to transform to func-
tion space variational inference, unfortunately, this func-
tional KL divergence may be an ill-defined objective func-
tion sometimes.

Definition 1 (Functional KL divergence [Gray, 2011]). Sup-
pose we have two measures P and Q for (Ω,Σ) and that P
is absolutely continuous with respect toQ. Then there exists
a Radon-Nikodyn derivative dP/dQ and the KL-divergence
between them is KL[P‖Q] =

∫
Ω

log {dP/dQ} dP.

According to the above definition, KL[P‖Q] = ∞ if P
is not absolutely continuous with respect to Q. Besides,
Burt et al. [2020] also found that KL[P‖Q] = ∞ if the
network architectures of prior and approximated posterior
are different or prior is a non-degenerate Gaussian process.

To resolve this issue, we propose to use Wasserstein distance
to replace KL divergence, and then we have the follow-
ing functional Wasserstein variational policy optimization
(FWVPO),

max
q

Eq(f) [J(f)]− (W[q(f)‖p0(f)])
2

(5)

20 10 0 10 20 3020

10

0

10

20

30

40

1.0
2.2
4.6
10.0
21.5
46.4
100.0
215.4
464.2
1000.0

(a) Initialization

20 10 0 10 20 3020

10

0

10

20

30

40

1.0
2.2
4.6
10.0
21.5
46.4
100.0
215.4
464.2
1000.0

(b) Initialization

20 10 0 10 20 3020

10

0

10

20

30

40

1.0
2.2
4.6
10.0
21.5
46.4
100.0
215.4
464.2
1000.0

(c) Wasserstein distance

20 10 0 10 20 3020

10

0

10

20

30

40

1.0
2.2
4.6
10.0
21.5
46.4
100.0
215.4
464.2
1000.0

(d) Wasserstein distance

20 10 0 10 20 3020

10

0

10

20

30

40

1.0
2.2
4.6
10.0
21.5
46.4
100.0
215.4
464.2
1000.0

(e) KL divergence

20 10 0 10 20 3020

10

0

10

20

30

40

1.0
2.2
4.6
10.0
21.5
46.4
100.0
215.4
464.2
1000.0

(f) KL divergence

Figure 1: Approximation results from different loss. The
background contour field is a Gaussian mixture with three
components. A single-mode Gaussian distribution is opti-
mized to approximate this mixture distribution using loss
defined by three metrics. The initial position of this Gaus-
sian distribution is given in (a) and the approximation results
are plotted with contour (red) lines. The detailed setting is
given in the Supplementary.

whereW denotes 1-Wasserstein distance2

W[q(f)‖p0(f)] = inf
p(f,f ′)

∫
c(f, f ′)p(f, f ′)dfdf ′ (6)

and p(f, f ′) is any joint distribution with f ∼ q(f) and
f ′ ∼ p0(f) as marginals and c is a cost function (metric). It
is worth highlighting that (5) is a kind of generalized varia-
tional inference (or more general Rule of Three) [Knoblauch
et al., 2019] rather than a standard Bayesian inference objec-
tive because the loss function term Eq(f) [J(f)] is not a con-
ditional distribution and Wasserstein distance is used instead
of KL divergence. It is a well-defined distance measure in
terms of being positive, symmetric and well-behaved in the
situations [Ambrogioni et al., 2018, Arras et al., 2019] where
KL may be infinite or unbounded due to Radon-Nikodyn
derivative [Matthews et al., 2016]. Note that different from

2We only use 1-Wasserstein distance throughout this paper, so
W for the remainder of the paper denotes 1-Wasserstein distance
without further notice.

[Ambrogioni et al., 2018] where the Wasserstein distance
is defined on parameter distributions, the distance in (5) is
defined on the function distributions; different from [Wild
et al., 2022] where the 2-Wasserstein distance is used to de-
fine a functional variational inference, (5) does not simplify
the BNN posterior to be a Gaussian process (parameterized
by a neural network mean function) which is adopted in
[Wild et al., 2022] and limits the uncertainty representation
capability.

As also argued in [Neumann et al., 2011] and shown in
Figure 1, KL divergence could concentrate at a mode of the
target distribution when it is a multi-modal or non-concave
target policy distribution. However, we argue that KL diver-
gence may collapse at a local mode so is sensitive to the
initialization, but the Wasserstein distance could jump out
of the local mode to find a better/higher one as shown in
Figure 1. This is desirable to RL because we hope to search
for the best policy during the update rather than collapsing
in the local optimum.

To facilitate the optimization, we use its dual form accord-
ing to the Kantorovich-Rubinstein duality [Villani, 2009,
Arjovsky et al., 2017],

W[q(f)‖p0(f)] = max
‖φ‖L≤1

Eq(f) [φ(f)]− Ep0(f) [φ(f)]

(7)
where ‖φ‖L≤1 denotes that φ is constrained to 1-Lipschitz
function. This duality can nicely separate two marginal
distributions and the evaluation can be achieved through
sampling-based methods. A similar idea is also used for
prior matching [Tran et al., 2022] but we use it for the pos-
terior variational inference here. There are various ways
[Tanielian and Biau, 2021, Gulrajani et al., 2017] to ap-
proximate a 1-Lipschitz function as a deep neural network
to facilitate the (sub)optimal function searching. Here, we
use a gradient norm regularizer to ensure φ is a 1-Lipschitz
function [Tran et al., 2022, Gulrajani et al., 2017] and then
search the space to find the one to maximize (7).

Note that any variational Bayesian methods [Fox and
Roberts, 2012] need to derive a lower bound for the marginal
data likelihood (also known as evidence) as the model train-
ing objective function. One natural and important question
is: Will (5) still be a valid variational objective? In short,
can we use "variational" here? We answer this question with
the following result.

Theorem 1. Let p0(f) be a function prior (like the Gaus-
sian process) and parameterize the policy as π(a|s) =
Ef∼q(f) [$(·|f, s)] where q(f) is a function distribution
induced by BNN weight distributions. Given a measurement
set S, if− log p0(fS) is a Lipschitz function and probability
measure p0 absolutely continuous w.r.t. q,

log p(D) ≥ LW ≥ LKL

where

LW =Eq(f) [J(f)]− ρ

2

(
W[q(fS)‖p0(fS)]

)2
,

s.t., H(q)−H(p0)− 1

2ρ
≥ 0; ρ > 0

(8)

and

LKL = Eq(f) [J(f)]−KL[q(fS)‖p0(fS)].

and p(D|f) ∝ exp(J(D, f)), log p(D) =

log
(∫

f
p(D|f)df

)
.

Proof. Please see the Supplementary.

Theorem 1 confirms that (5) is a lower bound for the
marginal data likelihood so it is a valid variational objective
and a tighter bound compared with KL divergence.

The other question is: Can (5) still hold the monotonic im-
provement guarantee like TRPO and is there any improve-
ment compared with KL divergence? We answer this ques-
tion with the following result.

Theorem 2. Let an old policy (before a training step) is
parameterized by a BNN with function prior p(f), i.e.,
π(a|s) = Ef∼p(f)

[
$(a|s; θf)

]
, a new policy is parame-

terized by a BNN with function prior p̃(f), i.e., π̃(a|s) =
Ef∼p̃(f)

[
$(a|s; θf)

]
, $(a|s; θ) defines an action distribu-

tion by a (deterministic) neural network parameterized by θ,
and Lπ(π̃) is the expected reward of π̃ evaluated on the tra-
jectory generated by π. if 0 < ||π̃||1 <∞, 0 < ||π||1 <∞,
then the following bound holds

η(π̃) ≥ Lπ(π̃)− 1

1− γ
(W [p̃(f)‖p(f)])

2 (9)

where Wmax [p̃(f)‖p(f)] = maxsW [p̃(f)‖p(f)] and the
equality holds when p̃(f) = p(f). Moreover,

ηW ≥ ηKL (10)

where ηKL = Lπ(π̃)− 1
1−γKL [p̃(f)‖p(f)].

Proof. We provide the proof in the Supplementary, where
we use the relationship between total variation divergence,
KL divergence and Wasserstein distance.

Theorem 2 states that the optimization of the right-hand side
(RHS) of (9) can guarantee the monotonic improvement
of the expected reward. The RHS of Theorem 2 just corre-
sponds to the objective function in (5). The only difference
is that the distance is between the prior and posterior in (5)
but is between two consecutive posteriors in (9). We can un-
derstand (5) as the initial constraint with no other previous
knowledge and (9) as the continual constraint using updated

knowledge about the posterior, or we can also understand
(5) as the global constraint and (9) is the local constraint.

Another point we need to highlight is that we hope to pre-
serve the stochastic process properties (i.e., marginalization
consistency according to Kolmogorov Extension Theorem
[Øksendal, 2003]) of q(f) during the optimization because
the marginalization consistency could greatly improve the
generalization ability of the learned policy. However, the
approximation of using function samples and finite measure-
ment sets may damage such properties. To further ensure
the marginalization consistency of q(f), we then propose
to minimize the distance between the marginal qj(f(Y))
of a joint distribution q(f(Y, U)) using samples (Y, U) and
qm(f(Y)) only using samples Y by

WY [qm(f(Y)), qj(f(Y))] =

max
‖φ‖L≤1

∣∣∣∣∣∣ 1

Nj

∑
i=1:Nj

φ(fj,i(Y))− 1

Nm

∑
i=1:Nm

φ(fm,i(Y))

∣∣∣∣∣∣
(11)

where fj,i and fm,i are both function samples from q(f)
but with no overlap and we use subscripts to distinguish
them. Since we have the samples of the joint distribution
q(f(Y,U)), it is easy to obtain its marginal on Y by just
throwing U away. Ideally, all possible Y would be better
evaluated using the above formula, but the combinatorial
number is too large, so we only (uniformly) randomly sam-
ple several sets instead.

To sum up, we integrate the three terms gradually proposed
above to obtain our final FWVPO,

max
q

Eq(f) [J(f)]− α1 (W [qold(f)‖q(f)])
2

− α2 (W[q(f)‖p0(f)])
2

− α3WY [qm(f(Y)), qj(f(Y))]

s.t. H(q)−H(p0)− 1

2ρ
≥ 0

(12)

where {α > 0} and ρ > 0 are hyperparameters. The first
regularizer corresponds to the monotonic improvement prop-
erty from (9); the second regularizer corresponds to the prior
constraint from (8); the last is to enhance marginalization
consistency from (11). It is interesting to see that the prior
can be considered as a global and static constraint while the
qold can be considered as a local and dynamic constraint.
In practice, we use a finite measurement set S ∈ Sk to
evaluate the above objective functions (12) according to
(7): Eq(f) [φ(f(S))]− Ep0(f) [φ(f(S))] where k is size of
the measurement set. For each training step, we first add a
batch of training episodes in local on-policy memory buffer
to the measurement set and randomly select a set from a
global pool that stores all visited states. The core part is
summarised in Algorithm 1 (see Supplementary).

4 RELATED WORK

Policy optimization algorithms can be roughly grouped ac-
cording to gradient and model usage: gradient-based meth-
ods [Williams, 1992, Li et al., 2021, Castellini et al., 2021]
and gradient-free methods [Szita and Lörincz, 2006]; model-
based and model-free methods. The focus of this paper is
on model-free gradient-based policy optimization only. In-
spired by the conservative policy iteration [Kakade and
Langford, 2002], the TRPO [Schulman et al., 2015] and
PPO [Schulman et al., 2017] were proposed to general-
ize the idea to general stochastic policies and obtained the
state-of-the-art performance. Following these studies, sev-
eral ingenious ideas were proposed, such as a new clipping
function to improve the performance stability [Wang et al.,
2020], an additional estimate of the expected return given
a policy parameter using Gaussian process to encourage
exploration [Rao et al., 2020], convergence analysis of pol-
icy optimization algorithms using mirror descent iteration
and momentum techniques [Huang et al., 2021], and so on.
Variational policy optimization is an interesting branch that
borrows the approximate Bayesian inference techniques to
improve the uncertainty modeling and generalization ca-
pability. One popular approximate Bayesian inference is
variational inference, such as MEPO [Levine, 2018, Liu
et al., 2017], which naturally transformed the probabilistic
inference as an optimization problem with an additional KL
divergence between approximate posterior and prior. Since
the KL divergence is not symmetric, its reversed version
[Neumann et al., 2011] was also used to force the policy
to be ‘cost-averse’ rather than ‘reward-attracted’ but lost
the original lower bound property. Apart from variational
inference [Blei et al., 2017], particle filtering was also used
to develop the Stein variational policy gradient [Liu et al.,
2017] to directly minimize the KL divergence between the
optimal posterior distribution and prior through a series of
iterative transformed approximate distributions. Another
similar idea [Xu, 2018] used amortized variational infer-
ence to resolve KL divergence through a general invertible
transformation.

Apart from KL divergence, there are also studies trying to
use the Wasserstein distance for policy optimization [Ter-
pin et al., 2022]. Such distance has been used to constrain
the distance between before and after transition probabili-
ties [Abdullah et al., 2019] and the before and after return
distributions [Li and Faisal, 2021]. For policy distance reg-
ularization, Wasserstein distance was used to measure the
distance between behavioral policy embeddings which en-
codes global behaviors of policy rather than local action
selection [Pacchiano et al., 2020]. To facilitate the policy
optimization under Wasserstein regularization, one idea was
to link policy optimization with Wasserstein gradient flow,
and then a particle approximation method was proposed
to estimate such Wasserstein gradient flow [Zhang et al.,
2018]; another idea was to use the second-order Taylor ex-

pansion of Wasserstein distance to characterize the local
behavioral structures [Moskovitz et al., 2020]; the latest
idea [Song et al., 2022] was to derive a closed-form of the
policy update based on the Lagrangian of the constrained
optimization. Apart from policy optimization, Wasserstein
distance was also used for other reinforcement learning
tasks, such as reward function learning [Zhang et al., 2019].
Note that although the Wasserstein gradient flow used in
[Zhang et al., 2019] can be considered a kind of functional
optimization/sampling on the probability measure space,
the samples obtained from this reference are still within
parameter space. Extending it to the function space requires
specific designs [Wang et al., 2018]. Most of these works
were in the parameter space rather than the function space
considered in our work.

5 EXPERIMENTS

We designed our experiments to investigate the following
questions: 1) How do different policy parameterizations and
prior-posterior distance choices affect the performance of
the algorithm? 2) what is the advantage of modeling uncer-
tainty using function distribution? Our code3 is released for
reference.

5.1 BASIC SETUP

We used PPO as the base model and its clipped objec-
tive term J(f) for all comparative methods. We then im-
plemented the policy optimization with BNN as the pol-
icy parameterization BNN-PPO and its extensions with
KL divergence BNN-KL-PPO and Wasserstein distance
BNN-W-PPO [Pacchiano et al., 2020, Zhang et al., 2018]
between action distributions, respectively. We also imple-
mented the policy optimization with functional BNN as the
policy parameterization and its extensions with KL diver-
gence fBNN-KL-PPO (FKVPO) and Wasserstein distance
fBNN-W-PPO (FWVPO) between function distributions,
respectively. All algorithms are given the same hyperparam-
eters whose details can be found in the Supplementary.

5.2 EFFECT OF DIFFERENT POLICY
PARAMETERIZATIONS AND
PRIOR-POSTERIOR DISTANCE CHOICES

The learning curves of algorithms on classical gym environ-
ments are shown in Figures 5 and 2, where the x-axis de-
notes time steps and the y-axis denotes the average episode
reward. From Figure 5, we can see that the PPO quickly
converged after a small number of steps but became unstable
along the training after 2e6 steps. The possible reason is
that the PPO fell into a local minimum so its performance

3https://github.com/JunyuXuan/FWVPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e6

0

1000

2000

3000

4000

5000

6000

Re
wa

rd
s

Hopper-v2
PPO
BKPPO
FKVPO
FWVPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e6

100

150

200

250

300

350

400

450

Re
wa

rd
s

Humanoid-v2

PPO
BKPPO
FKVPO
FWVPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e6

0

200

400

600

800

1000

Re
wa

rd
s

Walker2d-v2
PPO
BKPPO
FKVPO
FWVPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e6

0

1000

2000

3000

4000

Re
wa

rd
s

HalfCheetah-v2
PPO
BKPPO
FKVPO
FWVPO

Figure 2: Average episode rewards on four MuJoCo environments.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Re
wa

rd
s

Hopper-v2 (noise)
PPO
FWVPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e6

100

150

200

250

300

350

400

450

500

Re
wa

rd
s

Humanoid-v2 (noise)

PPO
FWVPO

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps 1e6

0

100

200

300

400

500

600

Re
wa

rd
s

Walker2d-v2 (noise)

PPO
FWVPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e6

2000

1500

1000

500

0

500

1000

Re
wa

rd
s

HalfCheetah-v2 (noise)
PPO
FWVPO

Figure 3: Average episode rewards on four MuJoCo environments with noises.

1 2 3 4
Envs

500

750

1000

1250

1500

1750

2000

2250

2500

Av
er

ag
e

ep
iso

de
 re

wa
rd Hopper-v2

PPO
FWVPO

1 2 3 4
Envs

400

450

500

550

600

650

Av
er

ag
e

ep
iso

de
 re

wa
rd Humanoid-v2

PPO
FWVPO

1 2 3 4
Envs

0

200

400

600

800

1000

Av
er

ag
e

ep
iso

de
 re

wa
rd Walker2d-v2

PPO
FWVPO

1 2 3 4
Envs

1500

1000

500

0

500

1000

1500

2000

Av
er

ag
e

ep
iso

de
 re

wa
rd HalfCheetah-v2

PPO
FWVPO

Figure 4: Average episode rewards on four MuJoCo environments under four variations.

0 1 2 3 4 5

Timesteps 1e6

0

100

200

300

400

500

Re
wa

rd
s

CartPole-v1

PPO
BNN-PPO
BNN-KL-PPO
BNN-W-PPO
fBNN-KL-PPO
fBNN-W-PPO

Figure 5: Average episode rewards from different algorithms
on CarPole.

dropped after exploring to new state space. Compared with
PPO, BNN-PPO had a slow convergence rate in Figure 5.
The reason for that is the BNN parameterized policy that
will learn a distribution of the functions rather than a single
function by a deterministic neural network used in PPO,

which apparently needs more samples. In the more complex
MuJoCo environments, the convergence rate is not worse
than PPO as shown in Figure 2. The merits of such distribu-
tion learning will be demonstrated in the following sections.
We observed that BNN-W-PPO was better than both of them
due to the Wasserstein distance as we expected. Two func-
tional BNN-based algorithms achieved better performances
than all parametric BNN-based ones, where fBNN-W-PPO
was slightly better than fBNN-KL-PPO. The reason for that
is that we used grid KL divergence [Ma and Hernández-
Lobato, 2021] between function distributions which was
proven to be bounded.

5.3 ROBUSTNESS TO NOISY OBSERVATIONS

One merit of uncertainty modeling4 is the ability to handle
noises. To verify this, we injected (multivariate Gaussian
distributed) random noises into an environment (the details
of the setup can be found in the Supplementary). The results
of PPO and FWVPO on noisy environments are given in

4There are some works on decomposing aleatoric and epis-
temic uncertainties for specific tasks, but we did not decompose
two kinds of uncertainty and only focused on the general and basic
policy optimization task.

0 1 2 3 4 5

Timesteps 1e6

20

40

60

80

100

120

140

Re
wa

rd
s

CartPole-v1

PPO
FWVPO

(a) CartPole with noises

0 1 2 3 4 5

Timesteps 1e6

500

450

400

350

300

250

200

150

Re
wa

rd
s

Acrobot-v1

PPO
FWVPO

(b) Acrobot with noises

Figure 6: Rewards on two noisy environments

Figures 6 and 3. We can see that the rewards from PPO
dramatically dropped from -100 (reward from no-noise Ac-
robat) to -300 (noisy Acrobot) and 500 (reward from no-
noise CarPole) to 60 (noisy CarPole) as shown in Figure
6b. On MuJoCo environments, we can also observe that
our FWVPO could obtain consistently higher rewards when
facing the same noises as PPO in all four environments as
shown in Figure 3. It not only converged to a higher reward
than PPO but also obtained a faster convergence rate on
Acrobot and a comparable rate on CartPole and MuJoCo.
We need to highlight that, unlike weakly supervised learn-
ing studies [Zhou, 2018], there was no specific component
or strategy designed in FWVPO for noises. Such ability is
totally from the uncertainty modeling ability.

5.4 GENERALIZATION TO ENVIRONMENT
VARIATIONS

The other merit of uncertainty modeling is the ability to
generalize to environmental variations. To verify this, we
will test the pre-trained algorithms on variated environments
without further training. The average results on ten episodes
in CarPole are shown in Figure 7 where the x-axis denoted
the revised 5 environments with different change degrees
compared to the basic CarPole and the larger number means
the larger change; and the y-axis denoted the obtained aver-
age reward for 10 episodes, and the one standard deviation
was also filled there. More results on MuJoCo environments
are given in Figure 4 with four variations. Please see the
Supplementary for detailed explanations of the designed
variants. From Figure 7, we can observe that the rewards
from PPO dramatically dropped from 500 (original envi-
ronment) to around 300 starting from the first variation
which was the smallest change. As increasing the varia-
tion, the performances kept dropping to a very low level
and the standard deviation was surprisingly decreased as
well. The shadow denotes the confidence of the algorithm
on the prediction/performance, so the small shadows around
the 4th and 5th environments denoted PPO failed on them
and did not know its failure. On the contrary, our FWVPO
was still very stable and obtained high rewards in variated
environments. There was only a relatively small decrease
from the 4th environment but a large variance was correctly

Figure 7: Evaluation on environment variations

Figure 8: Contributions from three different terms

given to such decrease, which could support the following
safe decision making. From Figure 4, we can also see that
FWVPO consistently outperformed PPO on all four environ-
ments in terms of all variants. This fragility of PPO strongly
motivates us to move to variational policy optimization.

5.5 ABLATION STUDY

We further studied the contributions from three terms in
(12): distance with prior, distance with old posterior, and
distance between marginal distributions. The ablation results
are shown in Figure 8. At first, we can see that removing
distance with the old posterior or distance between marginal
distributions decreased the performance and the importance
of distance with the old posterior was slightly higher than
the marginal one. We also see that removing distance with
prior did not decrease but slightly improved the performance.
The reason is that we gave a non-informative prior in the ex-
periments for simplicity. However, we could provide more
meaningful prior practice by pretraining a prior using the
randomly collected interactions or some other prior knowl-

edge of the policy or environment. More parameter analysis
can be found in the Supplementary.

6 CONCLUSIONS AND FUTURE
STUDIES

In this paper, we proposed a functional Wasserstein vari-
ational policy optimization (FWVPO) for reinforcement
learning based on 1-Wasserstein distance instead of KL di-
vergence and 2-Wasserstein distance. This new algorithm
was empirically shown to have good capability in uncer-
tainty modeling and generalization ability. We proved that
FWVPO is a valid and tighter variational Bayesian objec-
tive and can also guarantee the monotonic expected reward
improvement under certain conditions. Comparative experi-
ments with several baselines on benchmark reinforcement
learning tasks verified the proposed idea. In the future, we
are going to further evaluate the proposed idea on the model-
based RL where the functional BNNs would be used as
the environment model [Lee et al., 2018] to increase the
uncertainty modelling capability. Another interesting point
is to investigate the possibility of properly expressing the
‘probability density’ for the function distribution.

Acknowledgements

This work is supported by the Australian Research Coun-
cil under the Discovery Early Career Researcher Award
DE200100245 and Laureate Fellowships FL190100149.

References

Mohammed Amin Abdullah, Hang Ren, Haitham Bou Am-
mar, Vladimir Milenkovic, Rui Luo, Mingtian Zhang,
and Jun Wang. Wasserstein robust reinforcement learn-
ing. arXiv preprint arXiv:1907.13196, 2019.

Luca Ambrogioni, Umut Güçlü, Yağmur Güçlütürk, Max
Hinne, Marcel A van Gerven, and Eric Maris. Wasserstein
variational inference. Advances in Neural Information
Processing Systems, 31, 2018.

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks. In Interna-
tional Conference on Machine Learning, pages 214–223,
2017.

Benjamin Arras, Ehsan Azmoodeh, Guillaume Poly, and
Yvik Swan. A bound on the wasserstein-2 distance be-
tween linear combinations of independent random vari-
ables. Stochastic Processes and their Applications, 129
(7):2341–2375, 2019.

Nikhil Barhate. Minimal pytorch implementation of prox-
imal policy optimization. https://github.com/
nikhilbarhate99/PPO-PyTorch, 2021.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Vari-
ational inference: A review for statisticians. Journal of
the American Statistical Association, 112(518):859–877,
2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural network.
In International Conference on Machine Learning, pages
1613–1622, 2015.

David R Burt, Sebastian W Ober, Adrià Garriga-Alonso, and
Mark van der Wilk. Understanding variational inference
in function-space. In Third Symposium on Advances in
Approximate Bayesian Inference, 2020.

Jacopo Castellini, Sam Devlin, Frans A. Oliehoek, and
Rahul Savani. Difference rewards policy gradients. In
Frank Dignum, Alessio Lomuscio, Ulle Endriss, and Ann
Nowé, editors, International Conference on Autonomous
Agents and Multiagent Systems, pages 1475–1477, 2021.

Minwoo Chae and Stephen G. Walker. Wasserstein upper
bounds of the total variation for smooth densities. Statis-
tics Probability Letters, 163:108771, 2020.

Adam D Cobb and Brian Jalaian. Scaling hamiltonian monte
carlo inference for Bayesian neural networks with sym-
metric splitting. In The Conference on Uncertainty in
Artificial Intelligence, pages 675–685, 2021.

D.C Dowson and B.V Landau. The fréchet distance between
multivariate normal distributions. Journal of Multivariate
Analysis, 12(3):450–455, 1982.

David Duvenaud, Oren Rippel, Ryan Adams, and Zoubin
Ghahramani. Avoiding pathologies in very deep networks.
In Artificial Intelligence and Statistics, pages 202–210.
PMLR, 2014.

Matthew Fellows, Anuj Mahajan, Tim GJ Rudner, and Shi-
mon Whiteson. Virel: A variational inference framework
for reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Andrew Foong, David Burt, Yingzhen Li, and Richard
Turner. On the expressiveness of approximate inference
in Bayesian neural networks. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

Charles W Fox and Stephen J Roberts. A tutorial on varia-
tional Bayesian inference. Artificial Intelligence Review,
38(2):85–95, 2012.

Thomas Furmston and David Barber. Variational methods
for reinforcement learning. In International Conference
on Artificial Intelligence and Statistics, pages 241–248,
2010.

Robert M Gray. Entropy and information theory. Springer
Science & Business Media, 2011.

https://github.com/nikhilbarhate99/PPO-PyTorch
https://github.com/nikhilbarhate99/PPO-PyTorch

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training
of wasserstein gans. Advances in Neural Information
Processing Systems, 30, 2017.

Feihu Huang, Shangqian Gao, and Heng Huang. Breg-
man gradient policy optimization. arXiv preprint
arXiv:2106.12112, 2021.

Sham Kakade and John Langford. Approximately optimal
approximate reinforcement learning. In International
Conference on Machine Learning, page 267–274, 2002.

Durk P Kingma, Tim Salimans, and Max Welling. Vari-
ational dropout and the local reparameterization trick.
Advances in Neural Information Processing Systems, 28,
2015.

Jeremias Knoblauch, Jack Jewson, and Theodoros
Damoulas. Generalized variational inference: Three ar-
guments for deriving new posteriors. arXiv preprint
arXiv:1904.02063, 2019.

Gilwoo Lee, Brian Hou, Aditya Mandalika, Jeongseok
Lee, Sanjiban Choudhury, and Siddhartha S Srinivasa.
Bayesian policy optimization for model uncertainty. In
International Conference on Learning Representations,
2018.

Sergey Levine. Reinforcement learning and control as prob-
abilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin
Chen. Softmax policy gradient methods can take ex-
ponential time to converge. In Annual Conference on
Learning Theory, pages 3107–3110, 2021.

Luchen Li and A Aldo Faisal. Bayesian distributional policy
gradients. In The AAAI Conference on Artificial Intelli-
gence, volume 35, pages 8429–8437, 2021.

Yang Liu, Prajit Ramachandran, Qiang Liu, and Jian Peng.
Stein variational policy gradient. In The Conference on
Uncertainty in Artificial Intelligence, 2017.

Chao Ma and José Miguel Hernández-Lobato. Functional
variational inference based on stochastic process genera-
tors. Advances in Neural Information Processing Systems,
34, 2021.

Alexander G de G Matthews, James Hensman, Richard
Turner, and Zoubin Ghahramani. On sparse variational
methods and the kullback-leibler divergence between
stochastic processes. In Artificial Intelligence and Statis-
tics, pages 231–239, 2016.

Ted Moskovitz, Michael Arbel, Ferenc Huszar, and Arthur
Gretton. Efficient wasserstein natural gradients for re-
inforcement learning. arXiv preprint arXiv:2010.05380,
2020.

Gerhard Neumann et al. Variational inference for policy
search in changing situations. In International Confer-
ence on Machine Learning, pages 817–824, 2011.

Bernt Øksendal. Stochastic differential equations. In
Stochastic differential equations, pages 65–84. Springer,
2003.

Felix Otto and Cédric Villani. Generalization of an inequal-
ity by talagrand and links with the logarithmic sobolev
inequality. Journal of Functional Analysis, 173(2):361–
400, 2000.

Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang,
Krzysztof Choromanski, Anna Choromanska, and
Michael Jordan. Learning to score behaviors for guided
policy optimization. In International Conference on Ma-
chine Learning, pages 7445–7454, 2020.

Ashish Rao, Bidipta Sarkar, and Tejas Narayanan. Gaus-
sian process policy optimization. arXiv preprint
arXiv:2003.01074, 2020.

Carl Edward Rasmussen and Christopher KI Williams.
Gaussian processes for machine learning, volume 2. MIT
press Cambridge, MA, 2006.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jor-
dan, and Philipp Moritz. Trust region policy optimization.
In International Conference on Machine Learning, pages
1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jiaxin Shi, Shengyang Sun, and Jun Zhu. A spectral ap-
proach to gradient estimation for implicit distributions.
In International Conference on Machine Learning, pages
4651–4660, 2018.

Jun Song, Chaoyue Zhao, and Niao He. Efficient wasserstein
and sinkhorn policy optimization. in Openreview, 2022.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger
Grosse. Functional variational Bayesian neural networks.
In International Conference on Learning Representations,
2019.

István Szita and András Lörincz. Learning tetris using the
noisy cross-entropy method. Neural Computation, 18
(12):2936–2941, 2006.

Michel Talagrand. Transportation cost for gaussian and
other product measures. Geometric & Functional Analy-
sis GAFA, 6(3):587–600, 1996.

Ugo Tanielian and Gerard Biau. Approximating lipschitz
continuous functions with groupsort neural networks. In
International Conference on Artificial Intelligence and
Statistics, pages 442–450, 2021.

Antonio Terpin, Nicolas Lanzetti, Batuhan Yardim, Florian
Dorfler, and Giorgia Ramponi. Trust region policy op-
timization with optimal transport discrepancies: Duality
and algorithm for continuous actions. Advances in Neural
Information Processing Systems, 35:19786–19797, 2022.

Ba-Hien Tran, Dimitrios Milios, Simone Rossi, and Mau-
rizio Filippone. Functional priors for bayesian neural
networks through wasserstein distance minimization to
gaussian processes. In Third Symposium on Advances in
Approximate Bayesian Inference, 2020.

Ba-Hien Tran, Simone Rossi, Dimitrios Milios, and Maur-
izio Filippone. All you need is a good functional prior for
Bayesian deep learning. Journal of Machine Learning
Research, 23:1–56, 2022.

Cédric Villani. Optimal Transport: Old and New, volume
338. Springer, 2009.

Yuhui Wang, Hao He, and Xiaoyang Tan. Truly proximal
policy optimization. In The Conference on Uncertainty
in Artificial Intelligence, pages 113–122, 2020.

Ziyu Wang, Tongzheng Ren, Jun Zhu, and Bo Zhang. Func-
tion space particle optimization for Bayesian neural net-
works. In International Conference on Learning Repre-
sentations, 2018.

Veit David Wild, Robert Hu, and Dino Sejdinovic. Gener-
alized variational inference in function spaces: Gaussian
measures meet bayesian deep learning. Advances in Neu-
ral Information Processing Systems, 35, 2022.

Ronald J Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning, 8(3):229–256, 1992.

Tianbing Xu. Variational inference for policy gradient.
arXiv preprint arXiv:1802.07833, 2018.

Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba
Szepesvari, and Mengdi Wang. Variational policy gradi-
ent method for reinforcement learning with general utili-
ties. Advances in Neural Information Processing Systems,
33, 2020.

Ruiyi Zhang, Changyou Chen, Chunyuan Li, and Lawrence
Carin. Policy optimization as wasserstein gradient flows.
In International Conference on Machine Learning, pages
5737–5746, 2018.

Ruiyi Zhang, Zheng Wen, Changyou Chen, Chen Fang,
Tong Yu, and Lawrence Carin. Scalable thompson sam-
pling via optimal transport. In Kamalika Chaudhuri and
Masashi Sugiyama, editors, Proceedings of the Twenty-
Second International Conference on Artificial Intelli-
gence and Statistics, volume 89 of Proceedings of Ma-
chine Learning Research, pages 87–96, 16–18 Apr 2019.

Zhi-Hua Zhou. A brief introduction to weakly supervised
learning. National Science Review, 5(1):44–53, 2018.

Functional Wasserstein Variational Policy Optimization
(Supplementary Material)

Junyu Xuan1 Mengjing Wu1 Zihe Liu1 Jie Lu1

1Australian Artificial Intelligence Institute, University of Technology Sydney, Ultimo NSW 2007, Australia,

A SETTING FOR FIGURE 1 IN THE PAPER

We first define a Gaussian mixture model (GMM) as our target distribution,

p(x) = 0.1 ∗ N
(
x;

[
0
0

]
,

[
2 0
0 2

])
+ 0.2 ∗ N

(
x;

[
20
20

]
,

[
3 0
0 3

])
+ 0.7 ∗ N

(
x;

[
−10
20

]
,

[
1 0
0 1.5

])
(13)

where three components are included with corresponding weights. The log-likelihood contour field is plotted in Figure 1.
We then use a Gaussian distribution

q(x) = 0.1 ∗ N
(
x;µ,

[
5 0
0 5

])
(14)

to approximate the above-defined GMM distribution, where µ is the mean parameter that needs to be optimized. Finally, we
use KL divergence (KL[q||p]) and Wasserstein distance (W1[q, p]) as the loss function to optimize µ, respectively. The other
hyperparameters are the same for all, like optimizer, steps, and learning rates.

The results are shown in Figure 1, where we set two different initializations (Figures 1a and 1b). We can see that

• KL divergence is sensitive to the initialization. For different initializations, there are two different results (Figures 1e
and 1f) from KL divergence. In contrast, the results from Wasserstein distance (Figures 1c and 1d) are the same under
different initializations.

• KL divergence tends to converge to the local optimal mode, which is consistent with the findings in [Neumann et al.,
2011].

• Wasserstein could jump out of the local optimum and move close to the global optimal mode (which is the up-left
corner one with the darkest color in Figure 1).

B NOTATION TABLE

In Table 1, we list the notations used in the paper and a description of their representation.

C SOME STANDARD CONCEPTS OF REINFORCEMENT LEARNING

The definitions of standard concepts follow the ones in TRPO [Schulman et al., 2015], including the state-action value
function

Qπ(s, a) = Est+1,at+1,...

[∞∑
l=0

γlr(st+l)

]
and state value function

Vπ(s) = Eat,st+1,...

[∞∑
l=0

γlr(st+l)

]

mailto:<Junyu.Xuan@uts.edu.au>?Subject=Your UAI 2024 paper

Table 1: Notation table

Notation Description

p0(f) functional prior distribution
q(f) functional variational posterior distribution
θ policy parameters, e.g., neural network weights for deterministic policy parameterization
ϑ neural network weights’ distribution parameters for BNN policy parameterization
ϑf the neural network weights’ distribution parameters for a BNN that induces a functional

distribution q(f)
S measurement set

and the advantage function

Aπ(s, a) = Qπ(s, a)− Vπ(s).

D MORE DETAILS ABOUT DIFFERENT POLICY PARAMETERIZATIONS

• Policy parameterized by a deterministic neural network. The policy is traditionally parameterized by a deterministic
deep neural network in which the final layer outputs parameters of an (action) distribution

$(a|s; θ) (15)

where θ is neural network weights.

• Policy parameterized by a BNN in weight space. BNN was used to replace the deterministic deep neural network
[Levine, 2018, Liu et al., 2017],

π(a|s) = Ep(θ|ϑ) [$(a|s; θ)] (16)

where p(θ|ϑ) is the distribution of neural network weights, such as commonly used i.i.d. Gaussian distributions.

• Policy parameterized by a BNN in function space. We use BNN as the policy representation but work in the function
space rather than the weight space,

π(a|s) = Ep(f) [$(a|f(s))] = Ep(θf |ϑf)

[
$(a|s; θf)

]
(17)

where p(f) is a functional distribution induced by a parameterized BNN with p(θf |ϑf). Since it is hard to represent a
function for BNN, it is commonly adopted to use BNN weights to represent a function because there is a mapping
between f and θf and then a mapping between p(f) and p(θf |ϑf). In a nutshell, p(f) can be simply understood
as a BNN whose weights are with a distribution parameterized by ϑf . It is important to note that although the
calculation/evaluation of Ep(f) [$(a|f(s))] and Ep(θf |ϑf)

[
$(a|s; θf)

]
looks like a policy parameterization in weight

space, it is different from weight space parameterization in terms of regularization, such as KL divergence of (7) or
Wasserstein distance of (8) in the paper. Similarly, the evaluation of Eq(f) [J(f)] of (7) and (8) in the paper also uses
the inducing distribution,

Eq(f) [J(f)] = Eq(θf |ϑf)

[
J(θf)

]
(18)

where J(θf) can be JTRPO(θf) or JPPO(θf).

The pseudo-code of the whole procedure is briefly summarised in Algorithm 1.

Algorithm 1 FWVPO

1: Require poolM, and memory buffer B,
2: Initialize a GP prior G0 and a BNN parameterized by ϑ
3: Initialize three Lipschitz functions φϕ′ , φϕ̃, φϕ̂ parameterized by ϕ′, ϕ̃, ϕ̂, respectively
4: for t = 0, 1, . . . do
5: Draw a measurement set S from the poolM
6: Combine S = {B, S}
7: Draw N functions from G0 on S, {f ′i(S)}i=1:N

8: Draw N functions from qold(f) on S, {f̃i(S)}i=1:N

9: Draw N +M functions from qϑ(f) on S, {fi(S)}i=1:Nand {fj(S)}j=1:M

10: Update ϕ′ by

arg max
ϕ′

∣∣∣∣∣ 1

N

∑
i=1:N

φϕ′(fi(S))− 1

N

∑
i=1:N

φϕ′(f
′
i(S))

∣∣∣∣∣ , s.t. ‖φϕ′‖L≤1

11: Update ϕ̃ by

arg max
ϕ̃

∣∣∣∣∣ 1

N

∑
i=1:N

φϕ̃(fi(S))− 1

N

∑
i=1:N

φϕ̃(f̃i(S))

∣∣∣∣∣ , s.t. ‖φϕ̃‖L≤1

12: Update ϕ̂ by

arg max
ϕ̂

∣∣∣∣∣∣ 1

N

∑
i=1:N

φϕ̂(fi(S))− 1

M

∑
j=1:M

φϕ̂(fj(S))

∣∣∣∣∣∣ , s.t. ‖φϕ̂‖L≤1

13: Update ϑ by (11) in the paper
14: end for

E PROOF FOR THEOREM 1 IN THE PAPER

Proof. We prove the first inequality as below.

Eq(fS)

[
J(fS)

]
− ρ

2
W2[q(fS)‖p0(fS)]

=Eq(fS)

[
J(fS)

]
−KL[q(fS)‖p0(fS)] +KL[q(fS)‖p0(fS)]− ρ

2
W2[q(fS)‖p0(fS)]

= log p(D)−KL[q(fS)‖p(fS |D)] +KL[q(fS)‖p0(fS)]− ρ

2
W2[q(fS)‖p0(fS)]

= log p(D)−

(
KL[q(fS)‖p(fS |D)]−KL[q(fS)‖p0(fS)] +

ρ

2

(
max
‖φ‖L≤1

{
Eq(fS)[φ(fS)]− Ep0(fS)[φ(fS)]

})2
)
(19)

Next, we only need to show the second term is positive. If − log p0(fS) is a special φ(fS), we have

KL[q(fS)‖p(f |D)]−KL[q(fS)‖p0(fS)] +
ρ

2

(
max
‖φ‖L≤1

{
Eq(fS)[φ(fS)]− Ep0(fS)[φ(fS)]

})2

≥− Eq(fS)[log p(fS |D)] + Eq(fS)[log p0(fS)] +
ρ

2

(
Eq(fS)[log p0(fS)] + Ep0(fS)[log p0(fS)]

)2
=
ρ

2

(
Eq(fS)[log p0(fS)]− Ep0(fS)[log p0(fS)] +

1

ρ

)2

+ Ep0(fS)[log p0(fS)]− Eq(fS)[log p(fS |D)]− 1

2ρ

≥ρ
2

(
Eq(fS)[log p0(fS)]− Ep0(fS)[log p0(fS)] +

1

ρ

)2

+H(q)−H(p0)− 1

2ρ

≥0

(20)

The second inequality is from the Talagrand inequality (It is from Definition 1 of the paper [Otto and Villani, 2000] which

further sources from Theorem 1.1 of the paper [Talagrand, 1996], and note that when the cost function is not with a square,
the inequality should be Eq (1.2) of [Talagrand, 1996]): the probability measure q satisfies a Talagrand inequality with
constant ρ > 0 if for all probability measure p, absolutely continuous w.r.t. q, with finite moments of order 2,

W1(p, q) ≤

√
2KL[p‖q]

ρ
. (21)

Then, we can easily see that LW ≥ LKL.

F PROOF FOR THEOREM 2 IN THE PAPER

Proof. Following TRPO [Schulman et al., 2015], we define

η(π̃) = η(π) + Eτ∼π̃

[∞∑
t=0

γtAπ(st, at)

]

Lπ(π̃) = η(π) + Eτ∼π

[∞∑
t=0

γtAπ(st, at)

] (22)

and we know that

Theorem 3 (Theorem 2.1 in [Chae and Walker, 2020]).

(TV (π̄, π))
(β+1)/β ≤ c

(
‖π̄‖Hβ1 + ‖π‖Hβ1

)1/β

W(π̄, π)

where c > 0 is a constant, β ∈ N is independent with two distributions, and ‖f‖Hβ1 = ‖f‖1 + ‖∇βf‖1.

According to the above theorem, when the β →∞, we have TV (π̄, π) ≤ cW(π̄, π). Then,

η(πnew) ≥ Lπold(πnew)− 4γε

(1− γ)2
(TV max(πold‖πnew))

2

≥ Lπold(πnew)− 4γε

(1− γ)2
λ(1) (Wmax(πold‖πnew))

2

= Lπold(πnew)− 4γε

(1− γ)2
λ(1)

(
sup
φ

(
Ef∼p̃(f)Ea∼$(a;θf) [φ(a)]− Ef∼p(f)Ea∼$(a;θf) [φ(a)]

))2

(23)

where ε = maxs,a |Aπ(s, a)|, λ(1) = c2 where 1 denotes β = 1; and we ignore the coefficient without loss of generalization
because it can be easily adjusted to match the coefficient. Since φ can be any Lipschitz function, we next assume that
the optimal one to maximize Ef∼p̃(f)Ea∼$(a;θf) [φ(a)]− Ef∼p(f)Ea∼$(a;θf) [φ(a)] is φ∗ and Ea∼$(a;θf) [φ∗(a)] is also
Lipschitz function of f . Then, we have

Lπold(πnew)− 4γε

(1− γ)2
λ(1)

(
sup
φ

(
Ef∼p̃(f)Ea∼$(a;θf) [φ(a)]− Ef∼p(f)Ea∼$(a;θf) [φ(a)]

))2

≥Lπold(πnew)− 4γε

(1− γ)2
λ(1) (Wmax [p̃(f), p(f)])

2

(24)

which proves the Theorem with only a difference in the coefficient of the Wasserstein distance term. We can easily absorb
4γε into φ function definition and then obtain the same results.

Note that both p(f) and p̃(f) do not depend on s, butW depends on it because φ(s) = E$(a|s;θf)[A$(s, a)] depends on
s. The ‘max’ in (24) is not a big problem because we can remove it. The reason is that we assumed all φ(s) are Lipschitz
functions, soW is the supremum of distances defined by all candidate φ(st) for all t. The reason why we kept it here is to
ease the comparison with TRPO.

Table 2: Hyperparameters for CartPole and Acrobot

Name Value

max time steps in one episode 500
update policy frequency 2,000 (unless otherwise specified)
number of epochs for policy update 80
number of steps for Lipschitz function maximization 10
clip parameter for PPO 0.2
discount factor γ 0.99
activation function Tanh
learning rate for actor network 0.0003
learning rate for critic network 0.001
learning rate for Lipschitz function 0.01
random seed 12 (unless otherwise specified)

Table 3: Hyperparameters for MuJoCo experiments

Name Value

max time steps in one episode 2048
update policy frequency 5 episodes
number of epochs for policy update 10
number of steps for Lipschitz function maximization 10
clip parameter for PPO 0.2
discount factor γ 0.99
activation function Tanh
learning rate for actor-network 0.0003
learning rate for critic-network 0.0003
learning rate for Lipschitz function 0.01
random seed 12

For the second half of the Theorem (the relationship between KL divergence), we use Talagrand inequality [Otto and Villani,
2000] again: the probability measure q satisfies a Talagrand inequality with constant ρ if for all probability measure p,
absolutely continuous w.r.t. q, with finite moments of order 2,

W1(p, q) ≤

√
2KL[p‖q]

ρ
. (25)

Then, we can easily see that

ηKL =Lπold(πnew)− 4γε

(1− γ)2
KL[πold‖πnew]

≤Lπold(πnew)− 4γε

(1− γ)2

ρ

2
(W[pold(f)‖pnew(f)])

2

=ηW .

(26)

G MORE DETAILS FOR THE EXPERIMENTS IN THE PAPER

G.1 SETUP DETAILS

The evaluation environments were from Gym1. The PPO was used as the base model [Barhate, 2021], including an actor-
network and a critic network. The network architecture for the actor was Linear(input, 64)-Identity(64)-Tanh-Linear(64,

1https://www.gymlibrary.ml/

64)-Identity(64)-Tanh-Linear(64, output) and a Softmax was added for discrete actions; the architecture for the critic network
was Linear(input, 64)-Tanh-Linear(64, 64)-Tanh-Linear(64, 1). All algorithms shared exactly the same critic network.
The basic actor network was also the same but BNN-based algorithms were assigned prior to the network parameters.
The used hyperparameters are given in Table 2. Apart from the basic control environments, we also tested our proposed
algorithm on MuJoCo benchmarks 2, including Hopper and Humanoid. Here, we used two-layer BNN in FWVPO and more
hyperparameters are given in Table 3.

The 2-Wasserstein distance (also known as Fréchet distance [Dowson and Landau, 1982]) between two Gaussian distributions
used by BNN-W-PPO was evaluated as

W2
2 = |µX − µY |2 + tr(ΣX + ΣY − 2(ΣXΣY)1/2)

and the KL divergence between function samples used by fBNN-KL-PPO was evaluated using grid KL in [Ma and
Hernández-Lobato, 2021] where a geometric distribution was firstly used to sample a measure set size and then a number of
observations were uniformly sampled from the buffer and then the spectral stein gradient estimator [Shi et al., 2018] was
used to estimate the KL divergence between marginal distributions on measurement set. FWVPO collected a set of states in
memory before training and used it as the random global measurement set, where the collection was implemented using a
random policy to interact with the environment. The Wasserstein distance optimization is based on the code from [Tran
et al., 2022]3.

G.2 SETUP DETAILS FOR NOISY OBSERVATIONS

To simulate noisy environments in the paper, random noise was added to the observed state and then fed to RL agents for
training at each time step. The values were selected to impact the performance of the base model (PPO) significantly.

• For Acrobot, we used multivariate normal distribution for noise generation:

N

0
0
0
0
0
0

 ,

0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.5 0 0
0 0 0 0 10 0
0 0 0 0 0 15

 .

• For CartPole, we used N

0
0
0
0

 ,

1 0 0 0
0 1 0 0
0 0 0.1 0
0 0 0 1

.

• For Hopper, Walker2d and Humanoid, we used N (0, 0.1 ∗ I), where I is the identify matrix.

• For Halfcheetah, we used N (0, 2 ∗ I), where I is the identify matrix.

G.3 SETUP DETAILS FOR ENVIRONMENT VARIATIONS

• For CartPole4, we revised its some parameters to obtain the changed environments. We firstly changed its transition by
revising its one line of step() from

temp = (force + self.polemass_length * theta_dot**2 * sintheta) / self.total_mass

to

temp = (force + self.polemass_length * theta_dot**4 * sintheta) / self.total_mass

and we also changed the self.gravity = 9.8 to self.gravity = 9.8 + x where x was set as 5, 10, 15, 20, and 25. Such
variates are expected to change the underlying dynamics.

2https://www.gymlibrary.dev/environments/mujoco/index.html
3https://github.com/tranbahien/you-need-a-good-prior
4https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py

0 1 2 3 4 5

Timesteps 1e6

0

500

1000

1500

2000

2500

3000

Re
wa

rd
s

Hopper-v2

M32
M64
M128
M256
M512

(a) Effect of measurement size

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e6

0

500

1000

1500

2000

2500

Re
wa

rd
s

Walker2d-v2
L1
L3
L6
L12
L24
L48

(b) Effect of BNN layer number

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e6

100

150

200

250

300

350

400

450

Re
wa

rd
s

Humanoid-v2

N2
N10
N50
N100
N200

(c) Effect of function sample number

Figure 9: Parameter sensitivity analysis

• For Hopper, we changed its reward calculation by revising its one line of step() from

reward -= 1e-3 * np.square(a).sum()

to

reward -= x * np.square(a).sum()

where x was set as 1e-3, 1e-2, 0.1 and 0;

• For Humanoid, we firstly changed its transition by revising its one line of step() from

lin_vel_cost = 1.25 * (pos_after - pos_before) / self.dt

to

lin_vel_cost = x * (pos_after - pos_before) / self.dt

and also changed

quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum()

to

quad_ctrl_cost = y * np.square(data.ctrl).sum()

where x was set as 3.25, 5.25, 7.25 and 9.25 and y was set as 0.01, 0.001, 0.001 and 0.001.

• For Walker2d, we firstly revised its one line of step() from

alive_bonus = 1.0

to

alive_bonus = x

and also changed

reward -= 1e-3 * np.square(a).sum()

to

reward -= y * np.square(a).sum()

where x was set as 1.0, 2.0, 3.0 and 4.0 and y was set as 1e− 3, 1e− 2, 1e− 1 and 0.05.

• For Halfcheetah, we revised its one line of step() from

reward_ctrl = -0.1 * np.square(action).sum()

to

reward_ctrl = -x * np.square(action).sum()

where x was set as 0.1, 0.15, 0.01, and 0.2.

H PARAMETER SENSITIVITY ANALYSIS

We studied the contributions from three hyperparameters: measurement size, BNN layer number and function sample
number. The effect from measurement size (Line5 of Algorithm 1) is shown in Figure 9a, where we observed that increasing
the number of measurement sizes could generally improve the performance. For example, 256 and 512 were better than 32
and 64, while there is not much difference between 256 and 512. We used 64 as the default for previous experiments. The
effect from the number of BNN layers is shown in Figure 9b, where we observed that more BNN layers would take more
steps to get converged so the performance of one and three layers was better than the other four options within 2e6 steps.
Among one and three layers, the three-layer one was better. We used 3 as default for previous experiments. The effect from
the number of function samples (Lines 7 and 8 of Algorithm 1) is shown in Figure 9c, where we observed that 10 is the best
among all options and we used it as the default for the previous experiments.

	INTRODUCTION
	BACKGROUND
	Reinforcement learning
	Policy optimization
	Bayesian neural networks

	FUNCTIONAL WASSERSTEIN VARIATIONAL POLICY OPTIMIZATION
	RELATED WORK
	EXPERIMENTS
	Basic setup
	Effect of different policy parameterizations and prior-posterior distance choices
	Robustness to noisy observations
	Generalization to environment variations
	Ablation study

	CONCLUSIONS and future studies
	Setting for Figure 1 in the paper
	Notation table
	Some standard concepts of reinforcement learning
	More details about different policy parameterizations
	Proof for Theorem 1 in the paper
	Proof for Theorem 2 in the paper
	More details for the experiments in the paper
	Setup details
	Setup details for noisy observations
	Setup details for environment variations

	Parameter sensitivity analysis

