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ABSTRACT

Image Quality Assessment (IQA) and Image Aesthetic Assessment (IAA) aim to
simulate human subjective perception of image visual quality and aesthetic ap-
peal. Despite distinct learning objectives, they have underlying interconnected-
ness due to consistent human assessment perception. Existing unified methods
typically combine datasets of two tasks for regression training directly, which
fail to learn mutually beneficial representations shared by both tasks explicitly.
To confront this challenge, we propose Unified vision-language pre-training of
Quality and Aesthetics (UniQA), to extract useful and common representations
from two tasks, thereby benefiting them simultaneously. Unfortunately, the lack
of text in the IQA datasets and the textual noise in the IAA datasets pose se-
vere challenges for multimodal pre-training. To address this, we (1) utilize mul-
timodal large language models (MLLMs) to generate high-quality text descrip-
tions; (2) use the generated text for IAA as metadata to purify noisy IAA data.
To effectively adapt the pre-trained UniQA to downstream tasks, we further pro-
pose a lightweight adapter that utilizes versatile cues to fully exploit the extensive
knowledge of the pre-trained model. Extensive experiments show that our ap-
proach achieves state-of-the-art performance on both IQA and IAA tasks, while
also demonstrating exceptional few-label image assessment capabilities.

1 INTRODUCTION

Image Quality Assessment (IQA)1 and Image Aesthetic Assessment (IAA) aim to measure the per-
ceived quality and beauty of an image. They find broad applications in many scenarios, such as
guiding individuals in image photography and editing, and serving as tools for image dehazing
model (Zhao et al., 2021). Consequently, huge efforts (Su et al., 2020; Ke et al., 2021; He et al.,
2022) have been devoted to establishing effective IQA and IAA models.

IQA and IAA concentrate on distinct aspects of image assessment, with IQA primarily focusing
on the distortion level of the image, while IAA is oriented towards evaluating the aesthetic appeal
of the image. Despite their differences, IQA and IAA have underlying commonality: simulating
human subjective perceptions of images. Specifically, in human subjective evaluation of images,
quality and aesthetics exhibit a mutual influence, such that high-quality images are more likely to
possess a higher aesthetic appeal compared to their low-quality counterparts. Thus, the learning
process for both tasks not only acquires features unique to themselves but also involves the learning
of task-agnostic common representations. This commonality sparks an idea:

Can we develop a foundational model with robust visual assessment perceptions consistent
with human to benefit both IQA and IAA tasks?

Although previous works (e.g., MUSIQ (Ke et al., 2021)) can be applied to IQA and IAA tasks indis-
criminately, they cannot exploit beneficial representations from another task. Wu et al. (2023b) and
Zhang et al. (2023a) also find the similarities of two tasks and attempt to tackle them with unified
architecture and training. However, they typically unify datasets of two tasks for regression train-
ing directly, which cannot explicitly learn the task-shared representations, restricting the extraction
of mutual benefits. In this paper, we propose the Unified pre-training of Quality and Aesthetics

1The IQA in this work refers to the no-reference image quality assessment.
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Figure 1: The overview of our method. We leverage MLLMs to generate quality- and aesthetics-
related descriptions (Step 1) and utilize the generated data to refine authentic noisy data (Step 2).
We conduct unified pre-training to obtain UniQA (Step 3), which can be flexibly applied to both
IQA and IAA tasks with a lightweight adapter (Step 4).

(UniQA) to extract mutually beneficial and effective representations for both tasks. Then, the pre-
trained UniQA can be flexibly applied to IQA and IAA datasets.

To achieve unified pre-training, a straightforward solution involves consolidating all IQA and IAA
datasets and then training the model to regress towards the mean opinion scores (MOS) annotated
by humans. However, existing datasets show variations in perceptual scales due to differences in
subjective testing methodologies (Zhang et al., 2021a). As a result, this training strategy makes the
model develop a score bias toward larger scale datasets. Moreover, it may not effectively capture the
unique characteristics of IQA and IAA, as the MOS labels cannot be explicitly interpreted. To this
end, we propose to use text descriptions as a bridge to integrate the two tasks, leveraging the rich
and fine-grained semantics inherent in text to provide more auxiliary information.

However, existing IQA datasets typically have images only and lack text descriptions. While current
IAA datasets (Ghosal et al., 2019) include text data provided by humans, they often contain con-
siderable textual noise irrelevant for aesthetic assessment. Therefore, a top priority is determining
how to acquire high-quality image-text data for both IQA and IAA tasks. Recently, multimodal
large language models (MLLMs) (Liu et al., 2023b; Zhu et al., 2023; Lin et al., 2023; Bai et al.,
2023) have demonstrated outstanding capabilities in image understanding, which can generate rea-
sonable responses based on images and user instructions. Inspired by this, we propose utilizing
MLLMs with tailored prompts to generate quality- and aesthetics-related descriptions for the IQA
and IAA datasets, respectively (Step 1 of Figure 1). As observed in Figure 2, this approach provides
a comprehensive and precise depiction of image quality and aesthetics. Furthermore, we utilize
these generated high-quality aesthetics-related descriptions as metadata to refine the raw aesthetic
caption dataset (Step 2 of Figure 1). Finally, we unify the generated and refined image-text datasets
to conduct vision-language contrast pre-training (Step 3 of Figure 1). This results in the pre-trained
UniQA with a powerful multimodal image assessment perception.

After pre-training on image-text pairs, we propose a lightweight adapter, namely the Multi-Cue In-
tegration Adapter, to fine-tune the specific dataset of two tasks (Step 4 of Figure 1). This adapter
uses versatile cues related to image assessment to prompt the pre-trained UniQA, adeptly extracting
useful knowledge and comprehensively assessing the image. With much fewer tunable parameters
compared to previous IQA and IAA models, our model outperforms them on both tasks. More sur-
prisingly, benefiting from the powerful representations learned by pre-training, our method achieves
impressive results on few-label IQA, e.g., achieving the SRCC values of 0.828 (vs. 0.760 on CLIVE
of GRepQ (Srinath et al., 2024)) and 0.844 (vs. 0.812 on KonIQ of GRepQ).

Our contributions can be summarized as follows:

• With the assistance of MLLMs, we construct a high-quality image-text dataset about image
quality and aesthetics. Through pre-training on this dataset, we develop UniQA, which
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effectively learns a general perception of image assessment, promoting the effective and
efficient learning of both IQA and IAA tasks.

• We propose a novel Multi-Cue Integration Adapter, which integrates various assessment-
related cues to fully exploit the extensive knowledge of the pre-trained model with minimal
additional parameters.

• Extensive experiments show that our method achieves SOTA performance across multi-
ple IQA and IAA datasets. Benefiting from the rich representations learned through pre-
training, UniQA also demonstrates exceptional few-label image assessment capabilities.

2 RELATED WORK

Image Quality Assessment. The rapid development of deep learning has sparked significant in-
terest in their application for IQA. Many researchers utilize CNN to solve the IQA problem with
various effective techniques, including multi-level feature aggregation (Li et al., 2018), adaptive
quality prediction (Su et al., 2020), and patch-to-picture learning (Ying et al., 2020), order learn-
ing (Shin et al., 2024) and unsupervised learning (Saha et al., 2023). Recently, transformer-based
IQA methods (Ke et al., 2021; Zhu et al., 2021; Qin et al., 2023; Xu et al., 2024; Yu et al., 2024)
show promising results in the IQA field, which can compensate for the non-local representation
ability of CNN. Despite these impressive breakthroughs, these methods often transfer models pre-
trained on classification datasets, such as ImageNet (Deng et al., 2009), to IQA tasks, which may be
suboptimal (Li et al., 2023d). Q-Align (Wu et al., 2023b) attempts to jointly perform IQA and IAA
tasks, but it uses a language model with a huge number of parameters and does not explicitly extract
features of the two tasks through pre-training. Our method can learn more effective representations
through joint pre-training on quality-aesthetics image-text data, providing benefits for IQA tasks.

Image Aesthetic Assessment. With the advent of deep learning, IAA methods have evolved from
hand-crafted feature extraction (Datta et al., 2006; Ke et al., 2006; Nishiyama et al., 2011; Sun
et al., 2009) to end-to-end feature learning, marking significant advancements in the IAA domain.
Various techniques have been developed to boost IAA task, including local and global feature inte-
gration (Lu et al., 2015; Hou et al., 2020; Shi et al., 2024; Huang et al., 2024a; He et al., 2023b),
graph network (She et al., 2021; Duan et al., 2022) and theme-aware learning (Li et al., 2023c; He
et al., 2022). Recently, there has been an emergence of multimodal IAA methods (Zhang et al.,
2020; Zhou et al., 2016; Zhang et al., 2021b; Nie et al., 2023; Huang et al., 2024b) that incorporate
text as auxiliary supervision. However, these methods necessitate the use of text during inference,
limiting their flexible application since text is often not easily available. Our method overcomes this
limitation by conducting vision-language pre-training firstly to learn effective representation. The
pre-trained model can be flexibly applied to the IAA field using only images.

Vision-Language Models. Vision-Language Models (VLMs) (Radford et al., 2021; Jia et al.,
2021; Yao et al., 2021; Yu et al., 2022; Sun et al., 2023) introduce the contrastive learning strat-
egy to acquire image-text correspondences from large-scale image-text pairs. VLMs have exhibited
promising results across multiple tasks, including IQA (Wang et al., 2023; Zhang et al., 2023b) and
IAA (Hentschel et al., 2022; Sheng et al., 2023). Recently, the Multimodal Large Language Models
(MLLMs) have garnered increasing research interest, exhibiting remarkable prowess in compre-
hending image content and reasoning through complex instructions (Liu et al., 2023b; Zhu et al.,
2023; Li et al., 2023a; Ye et al., 2023; Bai et al., 2023). Most existing MLLMs achieve this by
integrating image features with LLM tokens, subsequently fine-tuning the LLM via multimodal in-
struction tuning. During inference, MLLMs can reason with given images and user instructions,
generating text responses by leveraging world knowledge learned during pre-training.

3 UNIQA: MLLMS-ASSISTED UNIFIED PRE-TRAINING

In this section, we first present some preliminaries of related models (Section 3.1). We then describe
the process of constructing a unified image-text dataset about quality and aesthetics, with the assis-
tance of MLLMs (Section 3.2 and 3.3). We use this dataset to pre-train the vision-language model
(Section 3.4) to construct our UniQA.
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Quality-related captioning
MOS of image: 7.36 à Text level: good
Prompt: What you are given is a good quality image. Evaluate image quality based on factors such as 
sharpness, color balance, and noise level.
Output: The image is of a living room with a fireplace, a couch, a chair, and a coffee table. The room is 
well-lit, and the fireplace adds warmth to the space. The image is of high quality, with good resolution, 
minimal noise, and appropriate brightness levels. 

MOS of image: 4.86 à Text level: fair 
Prompt: What you get is an image of fair aesthetics. Evaluate image aesthetics based on factors such as 
content, color, lighting, and composition. 
Output: The image presents a medium aesthetic quality, with a focus on the snow-covered highway and 
the mountain range in the background. The overall composition of the image is balanced, with highways 
and mountains as the main subjects, and the cars and trees providing additional interest and context. 

Aesthetics-related captioning

Figure 2: Generated quality- and aesthetics-related captions via MLLMs. The red text refers to
MOS-based text guidance. The orange text highlights the quality- and aesthetics-related text.

3.1 PRELIMINARIES

Vision-language pre-training aims to achieve comprehensive cross-modality understanding by train-
ing on web-scale image-text datasets. Benefiting from this large-scale pre-training, CLIP (Radford
et al., 2021), a prominent VLM, has demonstrated great promise to assist a broad scope of vision
tasks. Specifically, CLIP comprises an image encoder f and a text encoder g, both jointly trained to
establish a shared latent space for image and text through contrastive learning.

Given a batch of N paired images and texts {xi
I , x

i
T }Ni=1, CLIP extracts image features I =

{f(xi
I)}Ni=1 and text features T = {g(xi

T )}Ni=1 with corresponding encoders. During pre-training,
CLIP seeks to maximize the cosine similarity of paired image and text features, while minimizing
the similarity of unmatched pairs. The contrastive learning objective can be formulated as:

Limage = −EIi∼I

[
log

exp(I⊤i Ti/τ)∑N
j=1 exp(I

⊤
i Tj/τ)

]

Ltext = −ETi∼T

[
log

exp(T⊤
i Ii/τ)∑N

j=1 exp(T
⊤
i Ij/τ)

] (1)

where the Ii and Ti are the i-th features in the batch, and τ is the temperature parameter. The final
contrastive learning loss can be obtained by taking the average: L = (Limage + Ltext)/2. With this
training strategy, CLIP can generate aligned features in latent space for paired image-text samples.

3.2 QUALITY- AND AESTHETICS-RELATED CAPTIONING

In order to achieve vision-language pre-training in the field of image assessment, we need to generate
text for IQA and IAA datasets since IQA datasets lack text and IAA datasets contain noisy text.
Recently, MLLMs have shown advanced performance, so we can use them to generate high-quality
textual data for images. Previous studies (Wu et al., 2023a; Huang et al., 2024c) have highlighted that
it is challenging for MLLMs to directly and accurately perceive the quality and aesthetics of input
images, often resulting in positively skewed expressions and strong hallucinations (see examples
in Appendix D). Thus, to obtain correct and detailed descriptions about quality and aesthetics, as
shown in Figure 2, we design MOS-guided task-specific prompts to instruct MLLMs:

Yt ∼ MT (xI , Pt|G). (2)

where MT denotes the used MLLM, G is the MOS-based text guidance, Pt is the task-specific
prompt, Yt represents the generate caption. To obtain G, we divide images into 5 levels based on
MOS, i.e., {bad, poor, fair, good, perfect} (Ghadiyaram & Bovik, 2015; Sheikh et al.,
2006; Zhang et al., 2023b). If an image’s MOS ranks in the top 20% of the score range, its level is
assigned to perfect. This approach harmonizes IQA and IAA datasets with different MOS scales,
alleviating the MOS biases of different datasets (Zhang et al., 2021a). Additionally, Pt is customized
for IQA (PIQA) and IAA (PIAA) tasks, respectively. As shown in Figure 2, PIQA involves sharp-
ness, color balance, and noise level (Chandler, 2013), while PIAA includes content, color, lighting,
and composition (Deng et al., 2017). With these designs, MT is guided towards image assessment

4
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Figure 3: (a) Data purification process: we pre-train CLIP using generated aesthetic captions data
YIAA and then use the pre-trained CLIPaes to purify data. (b) The proposed adapter: we employ
progressive prompts, {bad, poor, fair, good, perfect} with “image”, to prompt the frozen
UniQA and a lightweight trainable module to adjust visual features.

and we can obtain generated caption datasets YIQA and YIAA for IQA and IAA tasks, respectively.
For simplicity and cost-effectiveness, we use open-source LLaVa (Liu et al., 2023a) as the captioner.
We also experiment with the effects of different MLLMs on model performance (Table 6).

3.3 DATA PURIFICATION STRATEGY

In addition to the generated aesthetic captions YIAA, there are also IAA datasets with captions
commented by humans (Ghosal et al., 2019), which directly reflect human aesthetic feelings. In-
corporating comments from various people can offer a more comprehensive description of image
aesthetics. However, while enhancing text diversity, it may introduce noise to the data, as individu-
als may provide comments unrelated to image aesthetics. To address this issue, we propose a novel
data purification strategy to refine raw captions in the original dataset. This process is illustrated in
Figure 3(a).

Specifically, we introduce Aesthetics-relevance and Informativeness Rank (AIR) to measure the
quality of text corresponding to an image. The AIR consists of Aesthetics-relevance Rank (AR) and
Informativeness Rank (IR). To obtain AR, we first pre-train a CLIP model with generated aesthetic
data YIAA to get an aesthetics-aware CLIP model, denoted as CLIPaes. Then, we employ it to
measure the aesthetics relevance score (sA) for an image-text pair. Given an image with n captions,
AR can be defined as:

AR = Rank(s1A · · · snA), siA = CLIPaes(xI , x
i
T ), (3)

where siA represents the aesthetics relevance score between the i-th caption xi
T and its corresponding

image xI . Note that AR consists of long integers that represent the rank of a caption after sorting
by sA. To obtain IR, we simply utilize the sentence length as informativeness score (sI ) to measure
the informativeness of text. Accordingly, for an image with n textual captions, IR can be expressed
as:

IR = Rank(s1I , · · · , snI ), siI = Length(xi
T ), (4)

where Length(·) is able to output the length of an input sentence. As a result, AIR between an
image and n captions is:

AIR = Rank((AR1 + IR1), · · · , (ARn + IRn)). (5)
We select captions with Top-K ranking AIR to construct a high-quality aesthetic caption dataset,
denoted as Y +

IAA. This strategy ensures the preservation of text that is both related to aesthetic
perception and rich in information, thereby enhancing the quality and richness of the raw dataset.

3.4 UNIFIED VISION-LANGUAGE PRE-TRAINING

So far, we have gotten a high-quality image-text dataset about quality and aesthetics, Y = YIQA ∪
YIAA ∪ Y +

IAA. Based on it, we pre-train CLIP using Equation 1 to obtain our UniQA. In this way,
the model learns general perceptions of image quality and aesthetics, which can provide potent
assessment priors and thus can be effectively applied to both IQA and IAA tasks.
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4 ADAPTING VISION-LANGUAGE MODEL FOR IQA AND IAA

The pre-trained UniQA contains extensive perception information, which can facilitate downstream
assessment tasks in a zero-shot or supervised manner. In this section, we further propose a metic-
ulously designed adapter (Section 4.1) and prompt ensemble strategy (Section 4.2) to enhance the
model’s performance.

4.1 MULTI-CUE INTEGRATION ADAPTER

During pre-training, the model aligns image and assessment-related captions, empowering it with
strong comprehension of image quality and aesthetics. With this foundation model, we can slightly
adjust the visual features, efficiently adapting it to score-based image assessment tasks. To this
end, we introduce a lightweight adapter, namely the Multi-Cue Integration Adapter, to adapt visual
features and inject rich cues for fine-tuning downstream tasks. The adapter consists of two key
processes: visual feature adaptation and multi-cue integration prediction.

Visual Feature Adaptation. We add a learnable residual module following the pre-trained image
encoder to adjust the visual features so as to adapt to specific assessment datasets. We optimize this
module while keeping the image and text backbones frozen, enabling parameter-efficient tuning.
The structure of the adapter is illustrated in Figure 3(b). Let I denote the image features extracted
from the frozen image encoder, the visual feature adaptation process can be expressed as:

I ′ = Normalize(Adapter(I) + I) (6)
where the Adapter(·) consists of two fully connected layers with a ReLU activation in between,
and I ′ represents the adapted visual features.

Multi-cue Integration Prediction. A straightforward approach to incorporating the CLIP model
into perception assessment is to utilize the “good image” as an anchor and take the cosine sim-
ilarity between the text anchor and a given image as the assessment score. However, this method
shows two shortcomings: (1) using the absolute value of similarity as the perception score may
not be optimal because it only reflects the semantic similarity between images and texts (Wu et al.,
2023a; Wang et al., 2023); (2) a single prompt may not fully leverage the extensive knowledge of the
pre-trained model. Thus, we propose to utilize versatile cues to comprehensively explore the power
of the pre-trained UniQA and convert absolute similarity scores into relative values for weighting.

Specifically, we utilize the prompt template “{level} image” and five text levels (bad, poor, fair,
good, perfect), i.e., “Multi-cue”, to construct prompts. Next, we calculate the cosine similarity
between the normalized text features {Ti}5i=1 of five prompts and adapted visual features I ′, and
then use the Softmax(·) to obtain the related value of five image-text correspondence. These related
values will weight the predefined score levels to get the final assessment score. This process can be
formulated as follows:

q =

5∑
i=1

ci exp(I
′⊤Ti/τ)∑5

j=1 exp(I
′⊤Ti/τ)

, (7)

where {ci}5i=1 are scores of text levels with progressive values that are set to {0.2, 0.4, 0.6, 0.8, 1.0};
τ is the temperature parameter and q is the assessment score of the given image.

4.2 PROMPT ENSEMBLE STRATEGY

We introduce the prompt ensemble strategy, which incorporates more prompt groups to derive the
final assessment score, thereby achieving a more comprehensive understanding of image quality
and aesthetics. For instance, we can use e.g., {extremely blurry, blurry, fair, sharp,
extremely sharp} as another five text levels. Now, the final assessment score qf is the average
of all prompt groups and it can be described as:

qf =

∑m
i=1 qi
m

, (8)

where m denotes the number of prompt groups. This strategy can more fully utilize the multi-modal
understanding capabilities of the pre-trained UniQA and demonstrates non-negligible performance
improvements in zero-shot (Table 4) and few-label supervised learning (Table 5). The details of
ensemble prompts are attached in supplementary material.
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Table 1: Results on IQA datasets. Black and blue numbers in bold represent the best and second
best, respectively. Higher SRCC and PLCC imply better performance.

TID2013 CSIQ KADID CLIVE KonIQ SPAQ

Method SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

WaDIQaM (Bosse et al., 2017) 0.835 0.855 0.852 0.844 0.739 0.752 0.682 0.671 0.804 0.807 0.840 0.845
DBCNN (Zhang et al., 2018) 0.816 0.865 0.946 0.959 0.851 0.856 0.851 0.869 0.875 0.884 0.911 0.915
MetaIQA (Zhu et al., 2020) 0.856 0.868 0.899 0.908 0.762 0.775 0.802 0.835 0.850 0.887 - -
PaQ-2-PiQ (Ying et al., 2020) 0.862 0.856 0.899 0.902 0.840 0.849 0.844 0.842 0.872 0.885 - -
HyperIQA (Su et al., 2020) 0.840 0.858 0.923 0.942 0.852 0.845 0.859 0.882 0.906 0.917 0.911 0.915
TReS (Golestaneh et al., 2022) 0.863 0.883 0.922 0.942 0.859 0.858 0.846 0.877 0.915 0.928 - -
MUSIQ (Ke et al., 2021) 0.773 0.815 0.871 0.893 0.875 0.872 0.702 0.746 0.916 0.928 0.918 0.921
DACNN (Pan et al., 2022) 0.871 0.889 0.943 0.957 0.905 0.905 0.866 0.884 0.901 0.912 0.915 0.921
DEIQT (Qin et al., 2023) 0.892 0.908 0.946 0.963 0.889 0.887 0.875 0.894 0.921 0.934 0.919 0.923
LIQE (Zhang et al., 2023b) - 0.936 0.939 0.930 0.931 0.904 0.911 0.919 0.908 - -
Re-IQA (Saha et al., 2023) 0.804 0.861 0.947 0.960 0.872 0.885 0.840 0.854 0.914 0.923 0.918 0.925
LoDA (Xu et al., 2024) 0.869 0.901 - - 0.931 0.936 0.876 0.899 0.932 0.944 0.925 0.928
Q-Align (Wu et al., 2023b) - - 0.915 0.936 0.869 0.927 0.931 0.921 0.935 0.934 - -

Ours 0.916 0.931 0.963 0.973 0.940 0.943 0.890 0.905 0.933 0.941 0.924 0.928

Table 2: Results on AVA.
Method SRCC PLCC

NIMA 0.612 0.636
MaxViT 0.708 0.745
APM 0.709 -
MUSIQ 0.726 0.738
MLSP 0.756 0.757
TANet 0.758 0.765
MILNet 0.732 0.753
EAT 0.759 0.77
VILA 0.774 0.774
Ours 0.776 0.776

Table 3: Results on AADB
dataset.

Method SRCC PLCC

NIMA 0.708 0.711
MLSP 0.725 0.726
MUSIQ 0.706 0.712
PA-IAA 0.720 0.728
HIAA 0.739 -
TANet 0.738 0.737
Celona et al. 0.757 0.762
TAVAR 0.761 0.763
Ours 0.786 0.787

Table 4: SRCC on the zero-shot setting. ∗ de-
notes using ensemble prompts. The results of
other methods are pre-trained on FLIVE.

Method CLIVE KonIQ AGIQA-3K

DBCNN 0.724 0.716 0.645
PaQ-2-PiQ 0.738 0.755 0.502
HyperIQA 0.735 0.758 0.629
TReS 0.740 0.713 0.646
DEIQT 0.781 0.733 -
CLIP∗ 0.746 0.592 0.646

Ours 0.638 0.667 0.744
Ours∗ 0.790 0.806 0.752

5 EXPERIMENTS

5.1 DATASETS

We employ the IQA dataset FLIVE (Ying et al., 2020) and the IAA dataset AVA (Murray et al.,
2012) for quality- and aesthetics-related captioning, respectively, and AVA-Captions (Ghosal et al.,
2019) to provide authentic aesthetic comments. We evaluate the performance on typical IQA and
IAA datasets, including seven IQA datasets and two IAA datasets.

IQA Dataset. For the IQA task, four synthetic datasets, including LIVE (Sheikh et al., 2006),
CSIQ (Larson & Chandler, 2010), TID2013 (Ponomarenko et al., 2013), KADID (Lin et al., 2019),
and three authentic datasets of CLIVE (Ghadiyaram & Bovik, 2015), KonIQ (Hosu et al., 2020),
SPAQ (Fang et al., 2020), are used for performance evaluation. FLIVE (Ying et al., 2020) is an
authentic IQA dataset that contains 39,810 images. We employ an AIGC-generated IQA dataset,
AGIQA-3K (Li et al., 2023b), to evaluate the generalization capability of our UniQA. Details of the
datasets can be found in appendix.

IAA Dataset. For the IAA task, we conduct experiments on AVA (Murray et al., 2012) and
AADB (Kong et al., 2016) datasets. AVA comprises 250k images, with the test set of 19,928 images.
AADB dataset consists of 10,000 images in total, with 8,500 images for training, 500 images for
validation, and 1,000 images for testing.

AVA-Captions Dataset. AVA-Captions (Ghosal et al., 2019) offer multiple human-annotated com-
ments for each AVA image. To avoid potential data leakage, we strictly follow the official data
split of AVA, results in a pre-training image-text dataset comprising 234,090 images paired with 3.0
million captions.
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CLIVE KonIQ AGIQA-3K

Good image

Bad image Bad image Bad image

Good image Good image
82.5 86.2 81.0 80.9

4.9 17.0 3.4 3.5 23.9 14.3 21.5 17.4

70.3 73.2 63.5 76.8

9.8 6.6 7.7 21.2

70.6 68.4 57.3 69.7

Figure 4: The image retrieval results on three dataset with varied prompts. The number below the
image is its MOS label. Zoom in for a better view.

Table 5: SRCC results using few labels for training. ∗ denotes using ensemble prompts.
CLIVE KonIQ LIVE

Method 50 100 200 50 100 200 50 100 200

HyperIQA (Su et al., 2020) 0.648 0.725 0.790 0.615 0.710 0.776 0.892 0.912 0.929
TReS (Golestaneh et al., 2022) 0.670 0.751 0.799 0.713 0.719 0.791 0.901 0.927 0.957
ResNet50 (He et al., 2016) 0.576 0.611 0.636 0.635 0.670 0.707 0.871 0.906 0.922
CLIP (Radford et al., 2021) 0.664 0.721 0.733 0.736 0.770 0.782 0.896 0.923 0.941
CONTRIQUE (Madhusudana et al., 2022) 0.695 0.729 0.761 0.733 0.794 0.821 0.891 0.922 0.943
CLIPIQA (Wang et al., 2023) 0.646 0.611 0.642 0.579 0.620 0.667 0.633 0.724 0.784
Re-IQA (Saha et al., 2023) 0.591 0.621 0.701 0.685 0.723 0.754 0.884 0.894 0.929
DEIQT (Qin et al., 2023) 0.667 0.718 0.812 0.638 0.682 0.754 0.920 0.942 0.955
GRepQ (Srinath et al., 2024) 0.760 0.791 0.822 0.812 0.832 0.855 0.926 0.937 0.953

Ours 0.813 0.836 0.850 0.772 0.842 0.870 0.962 0.956 0.974
Ours∗ 0.828 0.849 0.853 0.844 0.860 0.876 0.963 0.958 0.976

5.2 IMPLEMENTATION DETAILS

We use CLIP-B/16 (Radford et al., 2021) as our VLM for pre-training and LLaVA-1.5-7B (Liu et al.,
2023b;a) as our MLLM for captioning. We pre-train the model using Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 5e-6 and weight decay of 0.2. The model is trained for 5 epochs
with a batch size of 960. We set K = 4 to refine the AVA-Captions dataset. We use MSE loss to
optimize the adapter on downstream tasks and different training settings according to the task and
size of datasets. More training details are provided in the appendix. For each IQA dataset, 80% of
the images are used for training and the remaining 20% for testing. We repeat this process 10 times
to mitigate the performance bias and the medians of SRCC and PLCC are reported. For the IAA
datasets, we follow the standard data splits.

5.3 MAIN RESULTS

Results on IQA task. Table 1 reports the performance of the SOTA IQA methods on six typical IQA
datasets. The results of LIVE (Sheikh et al., 2006) are presented in the supplementary material due
to page limitations. Our method demonstrates a substantial superiority over existing SOTA models
across a diverse range of datasets, fully confirming the effectiveness and excellence of our method
in precisely characterizing image quality.

Results on IAA task. We report the experimental results on the AVA (Murray et al., 2012) and
AADB (Kong et al., 2016) datasets in Table 2 and Table 3, respectively. Given that the pre-trained
model acquired a unified and robust image assessment perception, it can also achieve SOTA results
after fine-tuning on these two datasets. These results validate that our method can be effectively
applied to both IQA and IAA domains.

5.4 GENERALIZATION CAPABILITY VALIDATION

Table 4 evaluate the generalization capability of our model. Unlike previous methods that train on
one dataset and test on others, we directly utilize the pre-trained UniQA and textual prompts for
image quality assessment. This presents a more challenging setting as the model isn’t optimized on
MOS labels. As observed, our method achieves the best performance on these three datasets. No-
tably, our method demonstrates excellent performance on AIGC-generated images AGIQA-3K (Li
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Image

CLIP 
Baseline

Quality
Pre-training

Unified
Pre-training

Aesthetic
Pre-training

Figure 5: Grad-CAM (Selvaraju et al., 2017) visualization of different pre-training for prompt
“blurry image”. Through pre-training, the model focuses more on noisy objects and backgrounds.

et al., 2023b), which are markedly different from images of natural scenes. These results demon-
strate the strong generalization capability of our UniQA. Additionally, the UniQA outperforms the
original CLIP significantly, proving the effectiveness of our quality- and aesthetics-related pre-
training.

Table 6: Ablation on IQA (CLIVE and
KonIQ) and IAA (AVA) datasets with SRCC
metrics.

Ablation type CLIVE KonIQ AVA

Ablation on different pre-training data

YIQA YIAA Y +
IAA

× × × 0.865 0.907 0.748
✓ × × 0.871 0.914 0.755
× ✓ × 0.871 0.917 0.755
✓ ✓ × 0.874 0.918 0.756
× × ✓ 0.875 0.928 0.773
× ✓ ✓ 0.877 0.930 0.774
✓ ✓ ✓ 0.890 0.933 0.776

Ablation on data purification strategy

w/o Strategy 0.876 0.929 0.772
IR Strategy 0.879 0.931 0.774
AR Strategy 0.885 0.930 0.774
AIR Strategy 0.890 0.933 0.776

Ablation on the proposed adapter

Single Prompt 0.705 0.920 0.765
Antonym Prompt 0.875 0.928 0.771

Ours adapter 0.890 0.933 0.776
Ablation on different MLLMs

LLaVA-v1.5-7B 0.871 0.914 0.755
LLaVA-v1.5-13B 0.872 0.914 0.757

Sphinx 0.874 0.916 0.758
QWen-VL 0.870 0.913 0.757

LLaVa-7B+QWen 0.875 0.916 0.758
Sphinx+QWen 0.877 0.918 0.759

We use different text queries to calculate the image-
text similarity and rank them to achieve zero-shot
image retrieval. Figure 4 demonstrates the visual-
ization of the top retrieval results. We notice that the
retrieved results of “good image” exhibit sharp and
aesthetically pleasing images, whereas “bad image”
prompts retrieve blurry, poor lighting and meaning-
less images. These examples provide qualitative ev-
idence of the quality and aesthetic knowledge cap-
tured by the pre-trained model.

5.5 DATA-EFFICIENT LEARNING

The pre-trained model acquires extensive image as-
sessment knowledge, providing robust priors for
downstream tasks. Consequently, our model can de-
liver impressive performance with limited data. To
validate this, we randomly select subsets of 50, 100,
and 200 samples from the training set for training
and evaluate them on the same test data as full-data
supervised learning. We report the median perfor-
mance across 10 times in Table 5. Our method no-
tably outperforms the second-best model GRepQ by
a substantial margin, even though GRepQ is specif-
ically designed for data-efficient learning. These re-
sults thoroughly demonstrate the potent capability of
our method to learn image quality even when only
a few labels are available. Additionally, several in-
sightful observations can be drawn from Table 5.
Firstly, the prompt ensemble strategy markedly enhances model performance in the data-efficient
setting. This is attributed to its ability to more fully leverage the extensive knowledge of the pre-
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trained model. Secondly, the impact of prompt ensemble is slight on synthetic datasets. This is
likely due to the limited image variety within synthetic datasets, making a single prompt sufficient
for such scenarios.

5.6 ABLATION STUDIES

Impact of different pre-training data. Table 6 shows the effect of different pre-training data. We
observe that unified pre-training achieves the optimal performance on both tasks. In addition, we
derive some meaningful observations. (1) Using either the generated YIQA or YIAA improves the
performance of both IQA and IAA tasks, proving the mutual benefit of these two tasks and the effec-
tiveness of MLLMs captioning. (2) Unifying YIQA and YIAA datasets does not lead to significant
improvements. We believe this is because the MLLMs-generated text tends to have similar sentence
structures (Liu et al., 2023c) and perception representation, limiting the diversity provided for multi-
modal learning. (3) Pre-training with refined authentic Y +

IAA shows significant improvement on two
tasks, reflecting that human-annotated comments can provide a more comprehensive and effective
representation for the model.

Figure 5 illustrates the Grad-CAM (Selvaraju et al., 2017) visualization of different pre-training.
We can notice that after quality-related and aesthetic pre-training, the model pays more attention
to blurred subjects and noisy backgrounds. This effect becomes more pronounced with unified pre-
training, underscoring the advantages of such a unified approach. In addition, the unified pre-training
can focus on the areas of quality-related and aesthetic pre-training at the same time. This shows that
unified training can learn common representations of the two tasks.

Effectiveness of data purification strategy. The second part of Table 6 illustrates the ablation study
of the data purification strategy. It can be observed that employing either AR or IR strategy to purify
data can improve the model’s performance of both IQA and IAA tasks. These results validate the
benefit of obtaining aesthetically relevant and semantically rich textual descriptions for the model.
Finally, when combining these two strategies, it achieves the best performance.

Effectiveness of the Multi-Cue Integration Adapter. The third part of Table 6 shows the ablation
study of the proposed adapter. “Single Prompt” denotes using the similarity between the text “good
image” and images as the assessment score directly, while “Antonym Prompt” represents using the
relative weights of texts “good image” and “bad image” to weight the predefined score. It is evident
that the “Single Prompt” is considerably inferior to the “Antonym Prompt”, showing the limitations
of using semantic similarity as score directly. Our method integrates more cues into the “Antonym
Prompt” to comprehensively assess images, thereby achieving optimal performance.

Ablation on different MLLMs. The bottom part of Table 6 presents the ablation study of various
MLLMs. We generate YIQA via different MLLMs for pre-training. It is evident that using different
MLLMs exhibits similar performance, while ensembling different MLLMs can boost performance.
This indicates that MLLMs are capable of generating accurate captions with our text-guided prompt,
and enhancing caption diversity can further improve performance. Considering resource limitations,
we use LLaVa-7B and will integrate more MLLMs in the future.

6 CONCLUSION AND DISCUSSION

This paper introduces UniQA, which leverages unified vision-language pre-training to address qual-
ity and aesthetic assessment problems concurrently. We construct a high-quality image-text dataset
about quality and aesthetics with the assistance of MLLMs. Through large-scale pre-training on
this dataset, UniQA learns shared and effective representations of IQA and IAA tasks, benefiting
both tasks. Additionally, we propose a Multi-Cue Integration Adapter to effectively adapt the pre-
trained UniQA to downstream assessment tasks. Our method achieves state-of-the-art performance
on both IQA and IAA tasks, and demonstrates powerful zero-shot and few-label image assessment
capabilities.

Limitations and future work. MLLMs often generate captions with similar sentence structures
and semantic expressions, restricting their ability to provide diverse and enriched representations
for multimodal learning. Future work will explore other techniques to address this issue, including
integrating various MLLMs for captioning and employing in-context learning methods.
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A MORE DISCUSSION AND DETAILS

A.1 DISCUSSION ABOUT THE AIR

We propose the Aesthetics-relevance and Informativeness Rank (AIR) to select the high-quality texts
corresponding to an image. The AIR can be expressed as follows:

AIR = Rank((AR1 + IR1), · · · , (ARn + IRn)). (9)

where AR and IR denote the Aesthetics-relevance Rank and Informativeness Rank, respectively; n
is the number of comments corresponding to an image. For simplicity, we directly take the summa-
tion of IR and AR to reflect the semantic relevance and richness of the text. In fact, we can introduce
two factors (α and β) to purify the data more flexibly. Now, the modified AIRm can be formulated
as:

AIRm = Rank((αAR1 + βIR1), · · · , (αARn + βIRn)). (10)
For instance, we can use large α for the highly noisy data. With this strategy, we can more flexibly
purify data based on data quality.

Table 7: Details of different IQA datasets.
Dataset Dataset Type Dataset Size Number of distortions

LIVE Sheikh et al. (2006) Synthetic 799 5
CSIQ Larson & Chandler (2010) Synthetic 866 5
TID2013 Ponomarenko et al. (2013) Synthetic 3,000 24
KADID Lin et al. (2019) Synthetic 10,125 25
CLIVE Ghadiyaram & Bovik (2015) Authentic 1,162 -
KonIQ Hosu et al. (2020) Authentic 10,073 -
SPAQ Fang et al. (2020) Authentic 11,000 -
FLIVE Ying et al. (2020) Authentic 39,810 -
AGIQA-3K Li et al. (2023b) Authentic 2,982 -

Table 8: Results on LIVE dataset Sheikh et al. (2006). Black and blue numbers in bold represent
the best and second best, respectively. Higher SRCC and PLCC imply better performance.

LIVE

Method SRCC PLCC

DIIVINE Bosse et al. (2017) 0.892 0.908
BRISQUE Mittal et al. (2012a) 0.929 0.944
ILNIQE Zhang et al. (2015) 0.902 0.906
BIECON Kim & Lee (2016) 0.958 0.961
MEON Ma et al. (2017) 0.951 0.955
WaDIQaM Bosse et al. (2017) 0.960 0.955
DBCNN Zhang et al. (2018) 0.968 0.971
MetaIQA Zhu et al. (2020) 0.960 0.959
PaQ-2-PiQ Ying et al. (2020) 0.959 0.958
HyperIQA Su et al. (2020) 0.962 0.966
TReS Golestaneh et al. (2022) 0.969 0.968
MUSIQ Ke et al. (2021) 0.940 0.911
DACNN Pan et al. (2022) 0.978 0.980
DEIQT Qin et al. (2023) 0.980 0.982
LIQE Zhang et al. (2023b) 0.970 0.951
Re-IQA (Saha et al., 2023) 0.970 0.971
LoDA (Xu et al., 2024) 0.975 0.979

Ours 0.981 0.983

A.2 DETAILS OF DATASETS AND EVALUATION CRITERIA

We list the details of the datasets used in our work in Table 7, including the dataset type, dataset size
and number of distortion types. Since the distortions of authentic datasets are diverse, their number
cannot be counted.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We employ Spearman’s Rank-order Correlation Coefficient (SRCC) and Pearson’s Linear Corre-
lation Coefficient (PLCC) as criteria to measure the performance of IQA and IAA models. They
reflect the prediction monotonicity and prediction accuracy of the model, respectively. Both SRCC
and PLCC range from 0 to 1. Higher values of SRCC and PLCC indicate better performance.

Table 9: Training settings for different datasets.
Dataset Task Epoch Batch size Learning rate

LIVE Sheikh et al. (2006) IQA 50 8 2e-4
CSIQ Larson & Chandler (2010) IQA 50 8 2e-4
TID2013 Ponomarenko et al. (2013) IQA 20 8 2e-4
KADID Lin et al. (2019) IQA 20 8 2e-4
CLIVE Ghadiyaram & Bovik (2015) IQA 50 8 2e-4
KonIQ Hosu et al. (2020) IQA 20 8 2e-4
SPAQ Fang et al. (2020) IQA 20 8 2e-4
AVA Murray et al. (2012) IAA 20 128 5e-4
AADB Kong et al. (2016) IAA 20 8 5e-4

A.3 MORE IMPLEMENTATION DETAILS

For the pre-training, we employ the same training strategy as CLIP Radford et al. (2021) to pre-train
our UniQA. The pre-training is resource-friendly and takes less than an hour at a time. When fine-
tuning the adapter for downstream assessment tasks, we use different training settings according to
the task and size of the dataset. Table 9 shows the detailed training setting for the different datasets.
We follow the typical training strategy to fine-tune each dataset, including random cropping and
random horizontal flipping. Since different datasets have different MOS scales, we scale their range
to [0, 1] through normalization. During inference, we typically crop an input image into 10 image
patches and take their average as the quality score of this image Su et al. (2020); Qin et al. (2023).
We use the resolution of 224 × 224 for training and testing. All experiments are conducted on two
A100 GPUs.

A.4 PROMPT ENSEMBLE

When applying our UniQA to zero-shot and few-label settings, prompt ensemble is a useful strategy
to improve performance. Table 10 shows the prompt groups used in these two settings. Note that
the prompts used in AGIQA-3K are different from other IQA datasets. This is because distortions
in AIGC-generated images and authentic images tend to be different. For example, distortions in
authentic images may come from camera shake. However, distortions in AIGC-generated images
typically come from low-quality content, such as meaningless content and distorted poses. There-
fore, we use “content” to prompt the pre-trained multimodal model for the AGIQA-3K dataset.

B MORE EXPERIMENTAL RESULTS

B.1 COMPARISON RESULTS ON LIVE

Tab .8 shows the comparison results with other methods on LIVE dataset Sheikh et al. (2006).
We can observe that our method also achieves state-of-the-art (SOTA) performance, verifying the
effectiveness of our method.

B.2 MORE GENERALIZATION EXPERIMENTS

In this section, we conduct more experiments to further verify the generalization capability of
UniQA. We evaluate our model on three dataset, including AIGC IQA datatset AIGIQA-20K, the
enhanced colonoscopy image quality assessment dataset (ECIQAD) and the AI-Generated Image
Naturalness (AGIN) dataset.

AIGIQA-20K. AIGIQA-20K Li et al. (2024) is a large-scale AI-generated image quality assessment
dataset. It consists of 20,000 images in total, with 14,000 images for training, 2,000 images for
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Table 10: Text prompts used in zero-shot and few-label learning.
Task Prompt

CLIVE, KonIQ, LIVE

{bad, poor, fair, good, perfect} with image

{extremely blurry, blurry,
fair, sharp, extremely sharp} with image

{extremely noisy, noisy, fair,
noise-free, extremely noise-free} with image

{extremely low-quality, low-quality, fair,
high-quality, extremely high-quality} with image

AGIQA-3K {bad, poor, fair, good, perfect} with image
{bad, poor, fair, good, perfect} with content

Table 11: Results on AIGIQA-20K dataset Li et al. (2024). ∗ indicates that we also unfreeze the
backbone for training with a smaller learning rate of 2e-6.

Method SRCC PLCC

CLIPIQA 0.331 0.483
CLIIQA+Finetune 0.786 0.712
CNNIQA 0.330 0.367
CNNIQA+Finetune 0.597 0.591
Q-Align 0.746 0.742
DBCNN Zhang et al. (2018) 0.471 0.512
DBCNN+Finetune 0.851 0.869

Ours 0.576 0.563
Ours+Finetune 0.830 0.885
Ours+Finetune∗ 0.858 0.901

validation, and 4,000 images for testing. We test our model on the zero-shot and fine-tuning setting.
For fine-tuning, we use a learning rate of 2e-4 for the adapter and train the model for 10 epochs. As
shown in Table 11, we can notice that our model achieves competitive results in both settings. These
results verify the excellent generalization ability of UniQA on AI-generated images.

ECIQAD. ECIQAD (Yue et al., 2023) is an enhanced colonoscopy image quality assessment dataset
containing 2400 images in total. We repeat the experiment 10 times with an 8:2 data split and report
the median results. We train the model for 50 epochs. Other training settings are the same as
AIGIQA-20K. The experimental results are shown in Table 12. Our method achieves SOTA results
on ECIQAD. Since the ECIQAD dataset is quite different from natural images, these results fully
demonstrate the strong generalization and image assessment capabilities of our method.

AGIN. AGIN (Chen et al., 2023) is an AI-Generated Image Naturalness (AGIN) dataset, which
includes 6049 images. We randomly split the training, validation, and testing set into 7:1:2. We
repeat this process 5 times and report the average performance as the final experimental results. We
train the model for 20 epochs. As shown in Table 13, although our approach is not specifically
designed for the AI naturalness problem, our method achieves competitive results compared to spe-
cific designed JOINT (Chen et al., 2023) and other methods. These results further demonstrate the
generalization ability of our model.

B.3 PLCC COMPARISON IN THE DATA-EFFICIENT SETTING

The Pearson’s Linear Correlation Coefficient (PLCC) comparisons for our method against other
IQA methods corresponding to the table in the main paper are provided in Tab .14. We note that our
method outperforms all other methods in terms of PLCC metric.
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Table 12: Results on ECIQAD (Yue et al., 2023). ∗ indicates that we also unfreeze the backbone
for training with a smaller learning rate of 2e-6.

Method SRCC PLCC

BRISQUE (Mittal et al., 2012a) 0.436 0.459
BIQME (Gu et al., 2017) 0.770 0.768
BPRI (Min et al., 2017) 0.152 0.181
FRIQUEE (Ghadiyaram & Bovik, 2017) 0.663 0.656
CIQA (Chen et al., 2021) 0.738 0.735
ECIQ (Ke et al., 2021) 0.839 0.842

Ours 0.873 0.887
Ours∗ 0.918 0.928

Table 13: Results on AGIN (Chen et al., 2023). ∗ indicates that we also unfreeze the backbone for
training with a smaller learning rate of 2e-6.

Methods Technical Rationality Naturalness
SRCC PLCC SRCC PLCC SRCC PLCC

BRISQUE (Mittal et al., 2012a) 0.4867 0.4909 0.3608 0.3684 0.3745 0.4067
NIQE (Mittal et al., 2012b) 0.4235 0.4279 0.3144 0.3211 0.3358 0.3378
DBCNN (Zhang et al., 2018) 0.7623 0.7661 0.6834 0.6838 0.7057 0.7128
HyperIQA (Su et al., 2020) 0.7752 0.7806 0.7196 0.7292 0.7365 0.7509
MUSIQ (Ke et al., 2021) 0.7286 0.7355 0.6974 0.7013 0.7066 0.7103
UNIQUE (Zhang et al., 2021a) 0.7358 0.7434 0.6583 0.6685 0.6772 0.6789
MANIQA (Yang et al., 2022) 0.7763 0.7817 0.7192 0.7217 0.7385 0.7343
PAIAA (Li et al., 2020) 0.4763 0.4833 0.4532 0.4596 0.4483 0.4528
TANet (He et al., 2022) 0.5367 0.5587 0.4731 0.4762 0.4782 0.4535
Del. Transf. (He et al., 2023a) 0.5882 0.6134 0.5037 0.4942 0.4805 0.4961
SAAN (Yi et al., 2023) 0.4299 0.4380 0.4009 0.4160 0.4196 0.4184
JOINT (Chen et al., 2023) 0.8173 0.8235 0.7564 0.7711 0.7986 0.8028
JOINT++ (Chen et al., 2023) 0.8351 0.8429 0.8033 0.8127 0.8264 0.8362

Ours 0.7524 0.8007 0.7728 0.7793 0.7882 0.7979
Ours 0.7785 0.8104 0.7898 0.7952 0.8069 0.8171

B.4 MORE COMPARISON RESULTS ON IQA DATASETS

To demonstrate the superiority of our method more comprehensively, we present more comparison
results on the typical IQA datasets in Table 15.

B.5 MORE RESULTS OF ABLATION STUDY

Table 16 shows the SRCC and PLCC results of the ablation study.

C ANALYSIS OF CONSTRUCTED MULTIMODAL DATASET

In this section, we analyze the constructed multimodal image and text dataset. Our proposed dataset
has 273,897 images, with 1,240,915 captions. Next we conduct a detailed analysis of the dataset:

1. Firstly, we compare the data volume of the IQA and IAA datasets in Figure 6. IQA includes
39,807 images and IAA includes 234,090 images. We generate three captions for each IQA
image and one caption for each IAA image, resulting 119,421 generated IQA captions and
234,090 IAA captions. From the ablation experiment in Table 6, we notice that YIQA and
YIAA have similar performance improvements on the model, although YIAA has more data.
Therefore, this shows that the text generated by MLLM tends to have the same structure
and lacks diversity, limiting the further improvement of model performance.

2. Secondly, we analyze the number of words in the generated text, as shown in Figure 7. We
can see that the number of words in most texts is between 20 and 40. In addition, there are
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Table 14: PLCC performance comparison of our method with other NR-IQA methods trained using
few labels. ∗ denotes using ensemble prompts.

LIVEC KonIQ LIVE

Method 50 100 200 50 100 200 50 100 200

HyperIQA (Su et al., 2020) 0.689 0.755 0.806 0.650 0.758 0.807 0.903 0.922 0.931
TReS (Golestaneh et al., 2022) 0.702 0.776 0.813 0.740 0.748 0.824 0.916 0.948 0.960
ResNet50 (He et al., 2016) 0.580 0.629 0.660 0.661 0.693 0.716 0.872 0.908 0.920
CLIP (Radford et al., 2021) 0.676 0.739 0.758 0.749 0.790 0.802 0.891 0.924 0.942
CONTRIQUE (Madhusudana et al., 2022) 0.693 0.736 0.777 0.743 0.801 0.832 0.892 0.922 0.944
CLIPIQA (Wang et al., 2023) 0.633 0.606 0.639 0.586 0.616 0.681 0.613 0.706 0.752
Re-IQA (Saha et al., 2023) 0.620 0.650 0.701 0.689 0.693 0.757 0.876 0.892 0.931
DEIQT (Qin et al., 2023) 0.695 0.739 0.818 0.670 0.707 0.778 0.916 0.942 0.957
GRepQ (Srinath et al., 2024) 0.772 0.798 0.835 0.793 0.816 0.840 0.929 0.936 0.957

Ours 0.819 0.854 0.866 0.815 0.861 0.890 0.952 0.959 0.970
Ours∗ 0.826 0.847 0.869 0.857 0.883 0.893 0.963 0.962 0.973

Table 15: Results on IQA datasets. Black and blue numbers in bold represent the best and second
best, respectively. Higher SRCC and PLCC imply better performance.

TID2013 CSIQ KADID CLIVE KonIQ SPAQ

Method SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

DIIVINE Bosse et al. (2017) 0.643 0.567 0.804 0.776 0.413 0.435 0.588 0.591 0.546 0.558 0.599 0.600
BRISQUE Mittal et al. (2012a) 0.626 0.571 0.812 0.748 0.528 0.567 0.629 0.629 0.681 0.685 0.809 0.817
ILNIQE Zhang et al. (2015) 0.521 0.648 0.822 0.865 0.534 0.558 0.508 0.508 0.523 0.537 0.712 0.713
BIECON Kim & Lee (2016) 0.717 0.762 0.815 0.823 0.623 0.648 0.613 0.613 0.651 0.654 - -
MEON Ma et al. (2017) 0.808 0.824 0.852 0.864 0.604 0.691 0.697 0.710 0.611 0.628 - -
WaDIQaM Bosse et al. (2017) 0.835 0.855 0.852 0.844 0.739 0.752 0.682 0.671 0.804 0.807 0.840 0.845
DBCNN Zhang et al. (2018) 0.816 0.865 0.946 0.959 0.851 0.856 0.851 0.869 0.875 0.884 0.911 0.915
MetaIQA Zhu et al. (2020) 0.856 0.868 0.899 0.908 0.762 0.775 0.802 0.835 0.850 0.887 - -
PaQ-2-PiQ Ying et al. (2020) 0.862 0.856 0.899 0.902 0.840 0.849 0.844 0.842 0.872 0.885 - -
HyperIQA Su et al. (2020) 0.840 0.858 0.923 0.942 0.852 0.845 0.859 0.882 0.906 0.917 0.911 0.915
TReS Golestaneh et al. (2022) 0.863 0.883 0.922 0.942 0.859 0.858 0.846 0.877 0.915 0.928 - -
MUSIQ Ke et al. (2021) 0.773 0.815 0.871 0.893 0.875 0.872 0.702 0.746 0.916 0.928 0.918 0.921
DACNN (Pan et al., 2022) 0.871 0.889 0.943 0.957 0.905 0.905 0.866 0.884 0.901 0.912 0.915 0.921
DEIQT (Qin et al., 2023) 0.892 0.908 0.946 0.963 0.889 0.887 0.875 0.894 0.921 0.934 0.919 0.923
LIQE (Zhang et al., 2023b) - 0.936 0.939 0.930 0.931 0.904 0.911 0.919 0.908 - -
Re-IQA (Saha et al., 2023) 0.804 0.861 0.947 0.960 0.872 0.885 0.840 0.854 0.914 0.923 0.918 0.925
CIS (Zhong et al.) - - - - - - 0.828 0.847 0.881 0.918 - -
LAR-IQA Avanaki et al. (2024) - - - - 0.941 0.965 - - - -
LoDA (Xu et al., 2024) 0.869 0.901 - - 0.931 0.936 0.876 0.899 0.932 0.944 0.925 0.928
DP-IQA Fu et al. (2024) - - - - - - 0.893 0.913 0.942 0.951 0.923 0.926
Q-Align (Wu et al., 2023b) - - 0.915 0.936 0.869 0.927 0.931 0.921 0.935 0.934 - -

Ours 0.916 0.931 0.963 0.973 0.940 0.943 0.890 0.905 0.933 0.941 0.924 0.928

also many samples with the number of words between 80-120, which are texts generated
by MLLM.

3. Finally, we construct a word cloud for the text data, as shown in Figure 8. It can be seen
that the most common words in the text dataset are aesthetic and quality-related words,
such as “aesthetics”, “quality”, “composition”, “fair”, etc. This indicates that the text of
the constructed dataset focuses on image assessment.

D DETAILS AND DISCUSSION OF MLLMS CAPTIONING

Details of MLLMs Captioning. We use different numbers of captions for IQA and IAA tasks.
Considering that the IQA data does not have textual descriptions, we generate three captions with
different prompts via MLLMs for the IQA datasets. This method can improve the text diversity
of IQA image-text data. For the IAA dataset, we generate one caption for each image because
IAA datasets have a large amount of authentic text data. Details of the prompts for quality-related
captioning are shown in Figure 9.

Effectiveness of text guidance. We visualize the MLLMs-generated captions with/without text
guidance to evaluate the effectiveness of text guidance. We take the captioning for IQA datasets as
examples. As shown in Figure 13, when the quality of image is high, the MLLMs can output correct
caption (see example 1). However, we can observe that the MLLMs will generate wrong captions
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Table 16: Ablation experiments on two IQA datasets (CLIVE and KonIQ) and one IAA dataset
(AVA). Different ablations are distinguished by different backgrounds for better viewing.

CLIVE KonIQ AVA

Ablation type SRCC PLCC SRCC PLCC SRCC PLCC

Ablation on different pre-training data

YIQA YIAA Y +
IAA

× × × 0.865 0.886 0.907 0.924 0.748 0.747
✓ × × 0.871 0.898 0.914 0.932 0.755 0.755
× ✓ × 0.871 0.895 0.917 0.932 0.755 0.756
✓ ✓ × 0.874 0.892 0.918 0.932 0.756 0.757
× × ✓ 0.875 0.895 0.928 0.937 0.773 0.774
× ✓ ✓ 0.877 0.895 0.930 0.939 0.774 0.774
✓ ✓ ✓ 0.890 0.905 0.933 0.941 0.776 0.776

Ablation on data purification strategy

w/o Strategy 0.876 0.899 0.929 0.940 0.772 0.771
IR Strategy 0.879 0.898 0.931 0.941 0.774 0.774
AR Strategy 0.885 0.901 0.930 0.942 0.774 0.773
AIR Strategy 0.890 0.905 0.933 0.941 0.776 0.776

Ablation on the proposed adapter

Single Prompt 0.705 0.720 0.920 0.931 0.765 0.765
Antonym Prompt 0.875 0.897 0.928 0.938 0.771 0.772

Ours adapter 0.890 0.905 0.933 0.941 0.776 0.776
Ablation on different MLLMs

LLaVA-v1.5-7B 0.871 0.898 0.914 0.932 0.755 0.755
LLaVA-v1.5-13B 0.872 0.897 0.914 0.929 0.757 0.759

Sphinx 0.874 0.902 0.916 0.931 0.758 0.758
QWen-VL 0.870 0.895 0.913 0.930 0.757 0.758

LLaVa-7B+QWen 0.875 0.899 0.916 0.930 0.758 0.757
Sphinx+QWen 0.877 0.908 0.918 0.934 0.759 0.760
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Figure 6: The number of images for the two
tasks in the constructed dataset.
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Figure 7: The length distribution of texts in
the dataset.

when low-quality images are sent to MLLMs and the text guidance is not provided (see example 2-4
of Figure 13). As a result, the text guidance is useful and necessary for MLLMs captioning.

E MORE VISUALIZATION

E.1 MORE EXAMPLES OF ZERO-SHOT RETRIEVAL

We show more examples of zero-shot retrieval in Figure 10, Figure 11 and Figure 12. We explore
the model’s retrieval capabilities in terms of color and light. We can observe that the images of
“Good color” show harmonious and vivid colors while the images of “Bad color” present messy
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Figure 8: Word cloud of the constructed dataset.

MOS of image: 6.71 à Text level: good
Details of quality-related captioning 

Instruction 1: What you are given is a good quality image. Evaluate image quality 
based on factors such as sharpness, color balance, and noise levels.
Output 1: The image is of three hot air balloons flying in the sky. The balloons are 
of different sizes and are positioned at various heights. The sky is clear and blue, 
providing a perfect backdrop for the balloons. The resolution of the image is good, 
allowing for clear visibility of the balloons and their details. Overall, the image 
quality is excellent, capturing the essence of the hot air balloons in flight.

Instruction 2: Giving you a good quality image. Describe the quality of an image based on visual descriptors such 
as resolution, noise, brightness.
Output 2: The image is of good quality, with a resolution that allows for clear visibility of the three hot air balloons 
flying in the sky. The noise level is low, and the brightness of the scene is well-balanced, making it an enjoyable 
view. Overall, the image is high quality and has clear content.

Instruction 3: This is a good quality (sharpness, contrast, distortion) image. Assuming you are a human observer, 
please describe your feelings when you see this image.
Output 2: As a human observer, I would feel a sense of wonder and excitement upon seeing this image. The two
hot air balloons flying in the sky, each with a unique design, create a visually appealing and captivating scene. The 
contrast between the vibrant colors of the balloons and the clear blue sky adds to the overall beauty of the image.

Figure 9: Details of the prompts of quality-related captioning. We generate three captions for each
IQA image using three different prompts.

colors. For the retrieval on light, the images of “Good light” are clear and well-lit and the images
of “Bad light” demonstrate dimly lit environments and poor lighting. These visualization results
further demonstrate the strong capability of our model in understanding concepts related to quality
and aesthetics.

E.2 VISUALIZATION OF DATA PURIFICATION STRATEGY

In Figure 14, we visualize the comments sorted by the proposed strategies. As observed, the
Aesthetics-relevance Rank (AR) can sort the aesthetics-related comments first. Further integrating
the Informativeness Rank (IR), we can obtain aesthetically relevant comments with rich semantics.

E.3 MORE EXAMPLES OF TEXT GENERATED BY MLLMS

In Figure 15, we show more examples of the captions generated by MLLMs. We can observe
that with our prompt design, MLLMs can output correct fine-grained quality- and aesthetics-related
descriptions.
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Good image

Bad image

Good color

Bad color

Good light

Bad light

Figure 10: More image retrieval results with various text as queries on CLIVE Ghadiyaram &
Bovik (2015).

Good image

Bad image

Bad light

Good color

Bad color

Good light

Figure 11: More image retrieval results with various text as queries on KonIQ Hosu et al. (2020).
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Good image

Bad image

Bad light

Good color

Bad color

Good light

Figure 12: More image retrieval results with various text as queries on AGIQA-3K Li et al. (2023b).
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Example 2
Captioning with MOS-based text guidance
MOS of image: 3.91 à Text level: bad
Instruction: What you are given is a bad quality image. Evaluate image quality 
based on factors such as sharpness, color balance, and noise level.
Output: The camera appears to be in focus, but the overall quality of the image is 
poor. The brightness of the image is also low, which further contributes to the poor 
quality. The composition of the image is simple, with the camera being the main 
subject, and there are no other objects or elements in the frame.
Captioning without MOS-based text guidance
Instruction: Evaluate image aesthetics based on factors such as content, color, lighting, and composition. 
Output: The camera appears to be in good condition, with no visible signs of damage or wear. The image 
quality seems to be quite good, as the camera appears to be sharp and well-focused. The color balance 
appears to be accurate, with no noticeable color distortions or over-saturation. Overall, the image quality 
seems to be quite good, with a well-focused, accurate color balance, and minimal noise.

Example 4
Captioning with MOS-based text guidance
MOS of image: 1.01 à Text level: poor
Instruction: What you are given is a poor quality image. Evaluate image quality 
based on factors such as sharpness, color balance, and noise level.
Output: The image is of a concert with a group of people on stage. The resolution 
is low, which makes it difficult to discern the details of the performers and the 
audience. The brightness of the image is also low, making it hard to see the 
performers and the audience clearly. Overall, the image quality is poor due to low 
resolution, high noise, low brightness, and an unbalanced composition.
Captioning without MOS-based text guidance
Instruction: Evaluate image aesthetics based on factors such as content, color, lighting, and composition. 
Output: The image quality appears to be quite good, with a high level of sharpness, color balance, and 
minimal noise. The image is a black and white photo of a band performing on stage, and the band members 
are clearly visible. The lighting in the scene is green, which adds a unique atmosphere to the image. Overall, 
the photo captures the essence of the live performance and the audience's engagement with the band.

Example 1
Captioning with MOS-based text guidance
MOS of image: 8.82 à Text level: perfect
Instruction: What you are given is a excellent quality image. Evaluate image 
quality based on factors such as sharpness, color balance, and noise level.
Output: The image of the silver Canon camera is of high quality. The noise is 
minimal, and the brightness is well-balanced, making it an excellent representation 
of the camera. The composition of the image is well-executed, with the camera 
being the main focus, and the background is clean and uncluttered. Overall, the 
image showcases the camera's features and design effectively.
Captioning without MOS-based text guidance
Instruction: Evaluate image aesthetics based on factors such as content, color, lighting, and composition. 
Output: The image quality of the silver digital camera is quite good. The camera appears to be sharp, with 
clear details visible in the image. The color balance is also well-maintained, with vibrant colors and accurate 
representation of the scene. Overall, the image quality of the camera is impressive, making it suitable for 
capturing high-quality photos and videos.

Example 3
Captioning with MOS-based text guidance
MOS of image: 3.65 à Text level: bad
Instruction: What you are given is a bad quality image. Evaluate image quality 
based on factors such as sharpness, color balance, and noise level.
Output: The image quality is poor, with a low resolution that makes it difficult to 
discern details. The brightness of the image is also low, making it challenging to 
see the subject clearly. The composition of the image is somewhat interesting, 
featuring a Chinese-style roof structure with a sign on it, but the overall quality of 
the image is not satisfactory.

Captioning without MOS-based text guidance
Instruction: Evaluate image aesthetics based on factors such as content, color, lighting, and composition. 
Output: The image quality appears to be quite good, with a sharp focus on the yellow and white sign. The colors in 
the image are well-balanced, and there is minimal noise, making it a visually appealing scene. The night sky in the 
background adds a sense of depth and contrast to the image, further enhancing its overall quality.

Figure 13: Example of captioning with/without text guidance. The red text refers to MOS-based
text guidance. The orange text highlights the correct quality-related caption. The green text indicates
the incorrect quality-related caption without text guidance.
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1. I really like this photo. I love the 
see-through globe. I like that the 
colours are so close to the ones 
used in the map below. It's a great 
composition.
2. Cool idea. I think the 
constellations should have been the 
focal point, and blur the earth globe a 
little bit. But great idea! 
3. Cool. how did it look with the 
constellations being the focus? 
4. Nice composition, DOF is about 
perfect, good color. Nice job! 
5. I can undesrtand it as a zodiac 
shoot. Perhaps I know so much 
about it. 
6. use a polarizer next time to get rid 
of the reflection... or wait.. I hear they 
don‘t work on plastic. 
7. Thanks for all your coments! 
8. Creative.
9. Not sure this meets the challenge.
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see-through globe. I like that the 
colours are so close to the ones 
used in the map below. It's a great 
composition.
2. Cool idea. I think the 
constellations should have been the 
focal point, and blur the earth globe 
a little bit. But great idea!
3. use a polarizer next time to get rid 
of the reflection... or wait.. I hear 
they don't work on plastic.
4. I can undesrtand it as a zodiac 
shoot. Perhaps I know so much 
about it.
5. Cool. how did it look with the 
constellations being the focus?
6. Nice composition, DOF is about 
perfect, good color. Nice job! 
7. Not sure this meets the challenge. 
8. Thanks for all your coments! 
9. Creative.

1. I really like this photo. I love the 
see-through globe. I like that the 
colours are so close to the ones 
used in the map below. It's a great 
composition.
2. Cool idea. I think the 
constellations should have been the 
focal point, and blur the earth globe a 
little bit. But great idea! 
3. Cool. how did it look with the 
constellations being the focus? 
4. I can undesrtand it as a zodiac 
shoot. Perhaps I know so much 
about it. 
5. use a polarizer next time to get rid 
of the reflection... or wait.. I hear they 
don‘t work on plastic. 
6. Nice composition, DOF is about 
perfect, good color. Nice job! 
7. Thanks for all your coments! 
8. Not sure this meets the challenge. 
9. Creative. 

(1) IR strategy (2) AR strategy (3) AIR strategy

(1) IR strategy (2) AR strategy (3) AIR strategy

The Image

The Image

1. Ok, I have looked at this long and 
hard, even asked my wife and both of 
us could not figure any connection 
with the zodiac. So tell me what it is.. 
huh?
2. I like the sharp detail of the bare 
tree, but the background looks very 
unnatural and the frame seems too 
heavy for the picture.
3. I am still trying to relate to the 
challenge... Not quite sure... But the 
picture itself is beautiful! Nice tones.
4. I'm not sure how this relates to the 
challenge. I don't dislike this shot..in 
fact the colors are very appealing.
5. Nice picture, very artistic and 
postcard like, but I fail to see who 
does it meet the challenge.
6. Which zodiac sign is the tree?  Nice 
picture but I don't see how it fits the 
challenge.
7. Love the dark sepia, but missing 
the Zodiac.
8. Love the composition, color, and 
exposure.
9. What symbol is this for?
10. zodiac?

1. I am still trying to relate to the 
challenge... Not quite sure... But the 
picture itself is beautiful! Nice tones.
2. Love the dark sepia, but missing 
the Zodiac.
3. I like the sharp detail of the bare 
tree, but the background looks very 
unnatural and the frame seems too 
heavy for the picture.
4. Nice picture, very artistic and 
postcard like, but I fail to see who 
does it meet the challenge.
5. Which zodiac sign is the tree?  Nice 
picture but I don't see how it fits the 
challenge.
6. Love the composition, color, and 
exposure.
7. I'm not sure how this relates to the 
challenge. I don't dislike this shot..in 
fact the colors are very appealing.
8. Ok, I have looked at this long and 
hard, even asked my wife and both of 
us could not figure any connection 
with the zodiac. So tell me what it is.. 
huh?
9. zodiac? 
10. What symbol is this for?

1. I am still trying to relate to the 
challenge... Not quite sure... But the 
picture itself is beautiful! Nice tones.
2. I like the sharp detail of the bare 
tree, but the background looks very 
unnatural and the frame seems too 
heavy for the picture.
3. Love the dark sepia, but missing 
the Zodiac.
4. Nice picture, very artistic and 
postcard like, but I fail to see who 
does it meet the challenge.
5. Ok, I have looked at this long and 
hard, even asked my wife and both of 
us could not figure any connection 
with the zodiac. So tell me what it is.. 
huh?
6. I'm not sure how this relates to the 
challenge. I don't dislike this shot..in 
fact the colors are very appealing.
7. Which zodiac sign is the tree?  Nice 
picture but I don't see how it fits the 
challenge.
8. Love the composition, color, and 
exposure.
9. zodiac?
10. What symbol is this for?

Figure 14: The comments sorted using different strategies. With our proposed strategy, we can
obtain aesthetically relevant and informative comments. The order of comments is determined by
the corresponding strategy. Gray sentences indicate being filtered.
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MOS of image: 7.21 à Text level: good
Instruction: Giving you a good quality image. Describe the quality of an image 
based on visual descriptors such as resolution, noise, brightness.
Output: The image is of a green and yellow parrot sitting on a wooden perch. The 
bird appears to be looking at the camera, and its vibrant colors make it stand out 
in the scene. The image is well-lit, with good contrast and resolution, allowing for a 
clear view of the parrot's features.

Quality-related captioning 

MOS of image: 7.80 à Text level: good
Instruction: What you are given is a good quality image. Evaluate image quality 
based on factors such as sharpness, color balance, and noise levels.
Output: The image of the elephant in the grassy field is of good quality. The 
resolution is high, allowing for clear details of the elephant's features, such as its 
tusks and trunk. The noise level is low, resulting in a clean and unobstructed view 
of the elephant. Overall, the image quality is excellent, making it an appealing 
representation of the elephant in its natural habitat.

MOS of image: 2.73 à Text level: bad
Instruction: Giving you a bad quality image. Describe the quality of an image 
based on visual descriptors such as resolution, noise, brightness. 
Output: The image quality is poor, with a low resolution that makes it difficult to 
discern details. The brightness is low, making it hard to see the pumpkin clearly. 
The noise in the image is high, which adds to the overall poor quality.

Aesthetics-related captioning 
MOS of image: 5.09 à Text level: fair
Instruction: What you get is an image of fair aesthetics. Evaluate image 
aesthetics based on factors such as content, color, lighting, and composition.
Output: The image presents a visually appealing scene with a combination of 
content, color, lighting, and composition. The sunset in the background creates a 
warm and serene atmosphere. The combination of these elements results in an 
aesthetically pleasing image that captures the viewer's attention and evokes a 
sense of tranquility.

MOS of image: 3.05 à Text level: bad
Instruction: What you get is an image of bad aesthetics. Evaluate image 
aesthetics based on factors such as content, color, lighting, and composition.
Output: In the image, there is a house with a lit-up Christmas tree in front of it. 
However, the overall aesthetics of the image are not appealing due to a few 
factors. Firstly, the tree is positioned in the foreground, occupying a significant 
portion of the frame, which can make the image feel cramped and cluttered. 
Secondly, the tree's lights are not evenly distributed, with some areas appearing 
brighter than others. This uneven lighting can create an unbalanced and 
unappealing visual effect. 

MOS of image: 8.04 à Text level: perfect
Instruction: What you get is an image of excellent aesthetics. Evaluate image 
aesthetics based on factors such as content, color, lighting, and composition.
Output: The image showcases an aesthetically pleasing scene of a lone tree 
standing in the middle of a grassy field at night. The tree is illuminated by the 
moonlight, creating a serene and peaceful atmosphere. The night sky is filled with 
stars, adding to the beauty and tranquility of the scene. The composition of the 
image, with the tree as the focal point, draws the viewer's attention and invites 
them to appreciate the natural beauty of the landscape. Overall, the image is 
visually appealing due to its content, color, lighting, and composition.

Figure 15: More examples of quality- and aesthetics-related captioning via MLLMs. The red text
refers to MOS-based text guidance. The orange text highlights the quality- and aesthetics-related
text.
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