
Anytime-Constrained Equilibria in Polynomial Time

Jeremy McMahan 1

Abstract
We extend anytime constraints to the Markov
game setting and the corresponding solution con-
cept of anytime-constrained equilibrium (ACE).
Then, we present a comprehensive theory of
anytime-constrained equilibria that includes (1)
a computational characterization of feasible poli-
cies, (2) a fixed-parameter tractable algorithm for
computing ACE, and (3) a polynomial-time algo-
rithm for approximately computing ACE. Since
computing a feasible policy is NP-hard even
for two-player zero-sum games, our approxima-
tion guarantees are the best possible so long as
P ̸= NP . We also develop the first theory of effi-
cient computation for action-constrained Markov
games, which may be of independent interest.

1. Introduction
Although multi-agent reinforcement learning (MARL) has
made many breakthroughs in game-playing, the literature
has long since advocated the importance of constraints in
real-world applications (Gu et al., 2023b). Despite their im-
portance, the literature on constrained MARL is far behind
the state-of-the-art in the single-agent setting. Most recently,
almost-sure (Castellano et al., 2022) and anytime (McMahan
and Zhu, 2024; McMahan, 2024) constraints have emerged
in the single-agent setting to capture real-world scenarios,
such as medical applications (Coronato et al., 2020; Paragli-
ola et al., 2018; Kolesar, 1970), disaster relief scenarios (Fan
et al., 2021; Wu et al., 2019; Tsai et al., 2019), and re-
source management (Mao et al., 2016; Li et al., 2018; Peng
and Shen, 2021; Bhatia et al., 2021). However, many of
these motivating applications are actually multi-agent prob-
lems. Most obviously, anytime-compliant autonomous vehi-
cles (McMahan and Zhu, 2024; Shalev-Shwartz et al., 2016;
Wu et al., 2019) must interact with other vehicles, which is
a key aspect of MARL (Chu et al., 2020; Dinneweth et al.,
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2022; Wiering, 2000). Despite their relevance, anytime con-
straints have yet to be studied in the multi-agent setting,
which we remedy in this work.

Formally, we consider a constrained Markov game (cMG)
G with a budget vector B. A joint policy π satisfies an
anytime constraint if every player i’s accumulated cost is at
most Bi at all times: Pπ

G[∀h ∈ [H],
∑h

t=1 ci,t ≤ Bi] = 1.
Given such a constraint, the natural solution concept is the
anytime-constrained equilibrium (ACE). At a high level, an
ACE is a feasible joint policy π for which no player can
gain a higher value from any feasible deviation. Our main
question is as follows:

For what class of cMGs can ACE be computed
(approximately) in polynomial time?

Already in the single-agent setting, McMahan and Zhu
(2024) showed computing optimal anytime-constrained
policies is NP-hard. The situation for games is even
worse: we show that even for simple two-player zero-sum
anytime-constrained MGs, computing a feasible policy is
NP-hard. Furthermore, as shown in (McMahan and Zhu,
2024), expectation-constrained policies can arbitrarily vio-
late anytime constraints, implying that standard expectation-
constrained approaches fail. Moreover, even for expectation-
constrained MGs, efficient algorithms are unknown outside
of regret settings (Chen et al., 2022; Ding et al., 2023),
which have different constraint requirements. Lastly, typi-
cal distributed learning and self-play approaches fail since
the feasibility of a player’s action generally depends on the
choices of others.

Past Work. The only known efficient algorithms for any-
time constraints also fail to generalize to the multi-agent
setting. The approach designed in (McMahan, 2024) only
applies to one constraint. On the other hand, the approach
from (McMahan and Zhu, 2024) requires state augmenta-
tion and state-dependent action spaces. Although simple in
the single-agent setting, the coupled nature of the players’
constraints induces state-dependent action spaces that do
not form product spaces. Consequently, each stage game be-
comes a non-normal-form game for which efficient solvers
are unknown. Moreover, their approach utilizes a relaxed
augmented-state space that relies on −∞ to identify infea-
sible states. However, the non-uniqueness of equilibria in

1



Anytime-Constrained Equilibria in Polynomial Time

games could allow −∞ solutions, which should indicate
infeasibility, even when a feasible equilibrium exists.

Our Contributions. We present a comprehensive theory
of anytime-constrained MGs, which includes (1) a com-
putational characterization of feasible policies, (2) a fixed-
parameter tractable (FPT) (Downey and Fellows, 2012) al-
gorithm for computing subgame-perfect ACE, and (3) a
polynomial time algorithm for computing approximately
feasible subgame-perfect ACE. Notably, our FPT algorithm
runs in polynomial time so long as the supported costs
require small precision. Similarly, our approximation al-
gorithm runs in polynomial time so long as the maximum
supported cost is bounded by a polynomial factor of the
budget. Given our hardness results, our algorithmic guar-
antees are the best possible in the worst case. Along the
way, we develop efficient algorithms for constrained games,
culminating in a theory of action-constrained MGs, which
may be of independent interest.

Each of our main results utilizes a different algorithmic
technique. For (1), we view a policy’s set of feasibly re-
alizable histories as a directed graph and then construct
an AND/OR tree whose TRUE subtree is the union of all
feasible policy graphs. For (2), we show that the subgame-
perfect ACE of a cMG corresponds to the Markov-perfect
equilibria of an action-constrained MG. Then, we design
efficient algorithms for solving action-constrained games by
solving a sequence of linear programs (LP). For (3), we use
a combination of cost truncation and rounding to derive an
approximate game whose solutions are approximately feasi-
ble equilibria for the original cMG. Then, we show that the
approximate game’s subgame-perfect ACE is computable
in polynomial time.

1.1. Related Work

Constrained MARL. Ever since constrained equilibria
were introduced (Altman and Shwartz, 2000), most works
have focused on learning in the regret setting (Altman and
Shwartz, 2000; Chen et al., 2022; Gattami et al., 2021; Ding
et al., 2023; Jordan et al., 2024). Outside of these works, the
literature has focused on single-agent-constrained Markov
Decision Processes (cMDP). It is known that cMDPs can
be solved in polynomial time using linear programming
(Altman, 1999), and many interesting planning and learn-
ing algorithms have been developed for them (Paternain
et al., 2019; Vaswani et al., 2022; Borkar, 2005; Hasanzade-
Zonuzy et al., 2021). Many learning algorithms can even
avoid violation during the learning process under certain as-
sumptions (Wei et al., 2022; Bai et al., 2023). Furthermore,
Brantley et al. (2020) developed no-regret algorithms for
cMDPs and extended their algorithms to the setting with a
constraint on the cost accumulated over all episodes, which
is called a knapsack constraint (Brantley et al., 2020; Che-

ung, 2019).

Safe MARL. Most works implement safety using some
constraints (Garcı́a et al., 2015), and several multi-agent
works exist down this line (Shalev-Shwartz et al., 2016;
Gu et al., 2023a; Elsayed-Aly et al., 2021). The single
agent setting has mainly focused on no-violation learning
for cMDPs (Chow et al., 2018; Bossens and Bishop, 2022;
Gu et al., 2023b) and solving CCMDPs (Wang et al., 2023;
Gu et al., 2023b), which capture the probability of enter-
ing unsafe states. Performing learning while avoiding dan-
gerous states has also been studied (Roderick et al., 2021;
Thomas et al., 2021; Zhao et al., 2023) under non-trivial
assumptions.

2. Equilibria
Constrained Markov Games. A (tabular, finite-horizon)
n-player Constrained Markov Game (cMG) is a tuple
G = (S,A, P,R,C,H), where (i) S is the finite set of
states, (ii) A = A1 × · · ·An is the finite set of joint
actions, (iii) Ph(s, a) ∈ ∆(S) is the transition distribu-
tion, (iv) Rh(s, a) ∈ ∆(Rn) is the reward distribution,
(v) Ch(s, a) ∈ ∆(Rn) is the cost distribution, and (vi)
H is the finite time horizon. To simplify notation, we
let rh(s, a)

def
= E[Rh(s, a)] denote the expected reward,

S
def
= |S| denote the number of states, A def

= |A| denote
the number of joint actions, [H]

def
= {1, . . . ,H}, and |G| be

the total description size of the cMG.

Interaction Protocol. The agents interact with G using
a joint policy π = {πh}Hh=1. In the fullest generality, πh :
Hh → ∆(A) is a mapping from the observed history at
time h (including costs) to a distribution of actions. Often,
researchers study Markovian policies, which take the form
πh : S → ∆(A), and product policies, which take the form
π = {πi}ni=1, where each πi is an independent policy for
player i.

The agents start at an initial state s1 ∈ S with observed
history τ1 = (s1). For any h ∈ [H], the agents choose
a joint action ah ∼ πh(τh). Then, the agents receive
immediate reward vector rh ∼ Rh(s, a) and cost vector
ch ∼ Ch(s, a). Lastly, G transitions to state sh+1 ∼
Ph(sh, ah) and the agents update their observed history
to τh+1 = (τh, ah, ch, sh+1). This process is repeated for
H steps; the interaction ends once sH+1 is reached.

Anytime Constraints. Suppose the agents have a budget
vector B ∈ Rn. We say a joint policy π satisfies anytime
constraints if,

Pπ
G

[
∀h ∈ [H],

h∑
t=1

ct ≤ B

]
= 1. (ANY)
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Here, Pπ
G denotes the probability law over histories induced

from the interaction of π with G, and all vector operations
are performed component-wise. If G only has anytime
constraints, which will be the case in this work, we call G
an anytime-constrained Markov game (acMG). We refer to
any policy π satisfying (ANY) as feasible for G, and let ΠG

denote the set of all feasible policies for G.
Remark 2.1 (Extensions). Our results can also handle mul-
tiple constraints per agent, infinite discounting, and the
weaker class of almost sure constraints. We defer the details
to the appendix.

Solution Concepts. Solutions to games traditionally take
the form of equilibrium. In the MARL realm, the most pop-
ular notions include the Nash equilibrium (NE), correlated
equilibrium (CE), and course-correlated equilibrium (CCE).
Given constraints, the key difference is a focus on feasible
policies. Infeasible policies lead to disastrous outcomes for
an agent. Thus, not only should a constrained equilibrium
be feasible, but agents should only consider deviating if
doing so would be feasible.

Definition 2.2 (Anytime-Constrained Equilibria). We call
a joint policy π an anytime-constrained equilibrium (ACE)
for an acMG G if (1) π ∈ ΠG and (2) for all players i ∈ [n]
and potential deviation policies π′

i, either,

(π′
i, π−i) ̸∈ ΠG OR V π

i ≥ V
π′
i,π−i

i . (ACE)

Here, V π
i

def
= Eπ

G

[∑H
t=1 ri,t

]
denotes i’s value from inter-

acting with G under π, and Eπ
G denotes the expectation

defined by the law Pπ
G. Lastly, we call π an anytime-

constrained Nash equilibrium (ACNE) for G if π is ad-
ditionally a product policy.

Remark 2.3 (Correlated Equilibrium). Our definition of
ACE in Definition 2.2 technically corresponds to anytime-
constrained course-correlated equilibria (ACCCE), which
we simplify to ACE for exposition purposes. Our results
apply equally well to anytime-constrained correlated equi-
libria (ACCE). We delay the definition and discussion of
ACCE to the appendix. In the main text, we signal when
results specialize to each equilibria type by writing ACE
(NE/CE/CCE).

Stage Games. It is often useful to consider refinements of
equilibrium notions that are more structured and robust. The
classical refinement for sequential games is the subgame-
perfect equilibrium (SPE). An SPE policy is required to
behave optimally under any history, also called subgames,
even if those subgames are not realizable. That way, players
could still recover if any deviated from the policy’s sugges-
tion. In the constrained setting, we only consider feasible
subgames, i.e., subgames that are realizable by some fea-
sible policy. This means the players could still adapt and

finish the game whenever a player takes an unsupported but
feasible action.

Formally, we let Hπ
h

def
= {τh ∈ Hh | Pπ

G[τh] > 0} denote
the subset of partial histories at time h that are realizable
by a policy π, and let Fh

def
=

⋃
π∈ΠG

Hπ
h denote the set of

partial histories at time h realizable by some feasible policy.
For any feasible subgame τh ∈ Fh, we let,

ΠG(τh)
def
=

{
π | Pπ

G

[
∀h ∈ [H],

h∑
t=1

ct ≤ B | τh

]
= 1

}
,

(SUB)
denote the set of feasible policies for the subgame τh.
To capture our earlier intuition, we require an anytime-
constrained SPE to be a policy that is feasible for any feasi-
ble subgame, and that beats any feasible deviation for that
subgame.

Definition 2.4 (Anytime-Constrained Subgame-Perfect
Equilibria). We call a joint policy π an anytime-constrained
subgame-perfect equilibrium (ACSPE) for an acMG G if for
all times h ∈ [H + 1], and all feasibly-realizable histories
τh ∈ Fh, π satisfies (1) π ∈ ΠG(τh) and (2) for all players
i ∈ [n], and potential deviation policies π′

i, either,

(π′
i, π−i) ̸∈ ΠG(τh) OR V π

i,h(τh) ≥ V
π′
i,π−i

i,h (τh).
(ACSPE)

Here, V π
i,h(τh)

def
= Eπ

G

[∑H
t=h ri,t | τh

]
denotes i’s value

from time h onward conditioned under history τh. Lastly,
we call π an anytime-constrained subgame-perfect Nash
equilibrium (ACSPNE) for G if π is additionally a product
policy.

Next, we show that ACSPE exists whenever a feasible policy
exists. Here, we require the cost distributions to have finite
support. We relax this assumption for our approximation
algorithms later in Section 6.

Assumption 2.5 (Finite Cost Support). Throughout Sec-
tion 2 - Section 5, we assume each Ch(s, a) has finite sup-
port.

Proposition 2.6 (Existence). For any acMG G, the follow-
ing are equivalent,

1. G admits an ACE (CE/CCE),

2. G admits an ACSPE (CE/CCE), and

3. G admits a feasible policy.

The equivalence also holds for ACNE so long as G admits a
feasible product policy.

Although Proposition 2.6 implies equilibria exist under very
minimal assumptions, they are generally hard to compute.
As shown in (McMahan and Zhu, 2024), feasible policies
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are generally not Markovian nor product policies. Moreover,
just determining whether there exists a feasible policy is NP-
hard even for the simplest of acMGs.

Proposition 2.7 (Hardness). Determining if a feasible pol-
icy exists for an acMG is NP-hard even for the restricted
class of two-player zero-sum acMGs for which S = 1,
A = 2, and cost functions are deterministic mappings to
non-negative integers.

3. Feasibility
Before we can fully understand ACE, we must first un-
derstand feasible policies. This section derives characteri-
zations of feasibly realizable histories under anytime con-
straints. This leads us to design an algorithm that determines
if a feasible policy exists, while also producing the set of
all feasibly realizable cumulative costs and actions. These
sets will be critical to our later equilibria computation in
Section 4.

First, observe that for a policy π to be feasible, all his-
tories realizable under π must obey the budget. If τh =
(s1, a1, c1, . . . , sh) ∈ Hh is any partial history, we let
c̄h

def
=

∑h−1
t=1 ct denote the vector of cumulative costs in-

duced by the history. Given this notation, we see that
π ∈ ΠG if and only if for all h ∈ [H + 1] and all τh ∈ Hπ

h ,
it holds that c̄h ≤ B.

History Translation. Consequently, we only need to con-
sider the (state, cost)-pairs induced by a history to deter-
mine feasibility. In particular, we can focus on τ̄h

def
=

((s1, 0), a1, (s2, c1), a2, . . . , (sh, c̄h)), which denotes τh
written in (state, cost)-form. Observe that for any τh, the
translation of τh to (state, cost)-form is well-defined and
unique. Specifically, given τ̄h, we can infer any immediate
cost ck uniquely by ck = c̄k+1 − c̄k, and given τh, we can
infer c̄k uniquely by c̄k =

∑k−1
t=1 ct. Given this equivalence,

we focus on characterizing the following sets.

Definition 3.1 (Feasible Sets). We define the set of state,
cumulative cost pairs realizable by a feasible policy at time
h by,

FSh
def
=

⋃
π∈ΠG

⋃
τh∈Hπ

h

{(sh, c̄h)} . (1)

We define the set of actions taken by some feasible policy
at a pair (s, c̄) ∈ FSh by,

FAh(s, c̄)
def
=

⋃
π∈ΠG

⋃
τh+1∈Hπ

h+1,

(sh,c̄h)=(s,c̄)

{ah} . (2)

Realizability Graphs. Now, imagine that the game ter-
minates prematurely should (1) the agents ever choose an
action that could immediately violate the budget or (2) reach

a point where all available actions lead to immediate viola-
tion. Under this interpretation, it is easy to see that a policy
is feasible if and only if it always reaches time H + 1 under
any realization. We can utilize this intuition constructively
through the idea of realizability graphs.

For a given policy π, we define its realizability graphRπ def
=

(Vπ, Eπ) to be the directed acyclic multi-graph satisfying (i)
Vπ is the set of (time, state, cost)-triples feasibly-realizable
under π, and (ii) Eπ is the set of all feasible one-step (time,
state, cost)-evolutions under π. We also label each edge
by the action responsible for that evolution. Then, any π-
realizable feasible history τh corresponds to the labeled
path P = ((1, s1, c̄1), a1, . . . , (h, sh, c̄h)) in Rπ. Thus, π
is feasible if and only if all sink nodes in Rπ are distance
H from the source node (1, s1, 0).

Algorithmic Approach. Overall, we can determine if
ΠG ̸= ∅ by proving the existence of a realizability graph
whose sinks are all distance H from the source. Further-
more, we can compute all feasibly realizable histories by
computing the union of all feasible policy realizability
graphs. We accomplish this by constructing a single graph
containing all feasible realizability graphs and then pruning
it to match the union.

Our graph is generated by iteratively taking feasible actions.
If no sequence of feasible actions ever reaches time H + 1,
then naturally no feasible policy exists. However, we must
also ensure all branches generated from an action reach time
H + 1 to satisfy the anytime constraints. We deal with this
difficulty by making each action an AND node. On the other
hand, for a (time, state, cost)-triple to be feasible, there need
only be a single action that ensures time H + 1 is reached.
Thus, we make each triple an OR node. We will later show
that a TRUE subgraph corresponds to our desired solution.

Definition 3.2 (Feasibility Tree). We iteratively define an
AND/OR tree T (Martelli and Montanari, 1973). We define
the root node to be (1, s1, 0). For any time h ∈ [H], and
node (h, s, c̄) ∈ VT , we call a ∈ A a feasible action if
no realization under a leads to immediate violation, i.e.
Prc∼Ch(s,a)[c̄ + c ≤ B] = 1. For any feasible action

a, we create a new AND node u
def
= (h, s, c̄, a) and edge

(h, s, c̄) → (h, s, c̄, a). For every s ∈ Supp(Ph(s, a)) and
c ∈ Supp(Ch(s, a)), we also create a new OR node w

def
=

(h+ 1, s′, c̄+ c) and edge (h, s, c̄, a)→ (h+ 1, s′, c̄+ c).
We label any leaf node of the form (H + 1, s, c̄) as TRUE
and any leaf node of the form (h, s, c̄) for h < H + 1 as
FALSE.

Since any feasible policy can only take feasible actions by
definition, any feasibly realizable history appears in (state,
cost)-form as a path in T . Moreover, conditionally feasible
histories appear as superpaths in T .
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Algorithm 1 Feasibility
Require: G

1: T ← Definition 3.2(G)
2: AOSOLVE(T )
3: if (1, s1, 0) is FALSE then
4: return “Infeasible”
5: end if
6: for h← 1 to H do
7: RSh ← ∅ andRAh(·)← ∅
8: for TRUE (h, s, c̄) ∈ VT do
9: RSh ← RSh ∪ {(s, c̄)}

10: for TRUE (h, s, c̄, a) ∈ E+T (v) do
11: RAh(s, c̄)← RAh(s, c̄) ∪ {a}
12: end for
13: end for
14: end for
15: return ({RSh}h, {RAh(s̄)}h,s̄)

Lemma 3.3. For any time h ∈ [H + 1], and
any feasibly-realizable history τh ∈ Fh, there ex-
ists a unique path Pτh ⊆ T satisfying Pτh =
((1, s1, c̄1), (1, s1, c̄1, a1), . . . , (h, sh, c̄h)). Moreover, if τk
is any suphistory of τh realizable by some π ∈ ΠG(τh),
then Pτh ⊆ Pτk .

Thus, if any feasible history exists, then there exists at least
one length H path in T . However, always taking actions
that are feasible at the current time is a greedy strategy that
may not guarantee reaching time H + 1. Consequently, T
contains many infeasible paths as well. On the bright side,
we can show that any infeasible path must contain a FALSE
node.

Lemma 3.4. If P =
((1, s1, 0), (1, s1, 0, a1), . . . , (h, sh, c̄h)) ⊆ T is any path
ending at a FALSE node, then τh = (s1, a1, c1, . . . , sh) is
not realized by any feasible policy. Moreover, if τk is any
feasible subhistory of τh, then τh is not realizable by any
π ∈ ΠG(τk).

Pruning. Overall, we see the subtree of TRUE nodes of T
is exactly the union of all feasible policy realizability graphs.
Computing the TRUE nodes for an AND/OR tree can be
done in linear time using standard tree recursion (Martelli
and Montanari, 1973). Suppose that AOSOLVE is any such
AND/OR tree solver. Then, we can compute the FS and
FA sets by implicitly pruning the FALSE nodes from T .
The full procedure is described in Algorithm 1.

Proposition 3.5. For any acMG G, Algorithm 1(G)
outputs “Infeasible” if ΠB

G = ∅ and otherwise
outputs ({FSh}h, {FAh(s̄)}h,s̄). Moreover, Algo-

rithm 1(G) runs in time O((HSADG)
2), where DG

def
=

|
⋃

h

⋃
τh∈Hh

{c̄h | c̄h ≤ B} |.

4. Reduction
As hinted in the previous section, we can convert the anytime
constraint on full histories into a per-time constraint on
the available actions. Specifically, if the agents track their
cumulative costs, they can identify actions that satisfy the
constraint long term. These actions exactly correspond to
those in FAh(s, c̄).

Then, the agents can convert their anytime-constrained MG
G into a traditional Markov game G with non-stationary
state space FSh and non-stationary, state-dependent action
space FAh(s, c̄). Importantly, FAh(s, c̄) may induce non-
normal-form subgames because the exclusion of infeasible
joint actions can cause FAh(s, c̄) not to take the form of a
product space such as Ā1 × · · · × Ān. Consequently, G is
an action-constrained Markov game.

Definition 4.1. We define an action-constrained Markov
game G

def
= (S̄, Ā, P̄ , R̄,H) where,

1. S̄h
def
= FSh,

2. Āh(s, c̄)
def
= FAh(s, c̄),

3. P̄h((s
′, c̄ + c) | (s, c̄), a) def

= Ch(c | s, a)Ph(s
′ | s, a)

and,

4. R̄h((s, c̄), a)
def
= Rh(s, a) whenever a ∈ Āh(s, c̄) and

R̄h(−∞ | (s, c̄), a) = 1 otherwise.

In addition, we define G’s initial state to be s̄1
def
= (s1, 0).

For typical MGs, the standard solution concept is the
Markov-perfect equilibrium. For action-constrained MGs,
we use the same solution concept, but add the condition
that the policy must only support actions in the constrained
action sets.

Definition 4.2 (Markov-Perfect Equilibria). For an action-
constrained MG G, we say a Markovian policy π is all-
subgame-feasible or simply feasible in this work if πh(s̄) ∈
∆(Āh(s̄)) for all times h ∈ [H] and all states s̄ ∈ S̄. We
let ΠG denote the set of all feasible policies for G. Then,
a Markov-perfect equilibrium (MPE) for Ḡ is a Markovian
joint policy π satisfying (1) π ∈ ΠG, and (2) for all players
i ∈ [n], all times h ∈ [H], all partial histories τ̄h ∈ H̄h, and
all potential deviation policies π′

i, either,

(π′
i, π−i) ̸∈ ΠG OR V̄ π

i,h(s̄h) ≥ V̄
π′
i,π−i

i,h (τ̄h).
(MPE)

Here, V̄ π
i,h(s̄)

def
= Eπ

G

[∑H
t=h ri,t | s̄h = s̄

]
denotes i’s ex-

pected value in G under π from time h onward conditioned
on starting at state s̄. Lastly, we call π a Markov-perfect
Nash equilibrium (MPNE) for G if π is additionally a prod-
uct policy.
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Algorithm 2 Reduction
Require: (G)

1: x← Algorithm 1(G)
2: if x = “Infeasible” then
3: return “Infeasible”
4: end if
5: Construct G← Definition 4.1(G)
6: π ← MGSOLVE(G)
7: return π

Augmented Policies. Any Markovian policy π for G can
be viewed as a history-dependent policy for G represented
in a compact form. In particular, by definition of P̄ , we
see that the c̄ part of G’s state space always corresponds to
the current cumulative cost vector. Thus, π is equivalent
to the history-dependent policy π′ formed by π′

h(τh)
def
=

πh(sh, c̄h), and can be used directly in G just by feeding in
the pair (sh, c̄h) to π to generate the next joint action.

Moreover, if π is feasible for G, we see that since
Āh(s, c̄) = FAh(s, c̄) by definition, it must be the case
that π is feasible for G by Proposition 3.5. Although less
obvious, we also show that any MPE for G is an ACE for
G.

Lemma 4.3 (Equilibria). Any MPE (NE/CE/CCE) for G is
an ACSPE (NE/CE/CCE) for G.

Then, we can compute an ACSPE for G or determine that
none exists by attempting to find an MPE for G. We sum-
marize the full reduction in Algorithm 2.

Theorem 4.4 (Reduction). For any acMG G, if MGSOLVE
can compute a feasible MPE (NE/CE/CCE) for any feasi-
ble action-constrained Markov game, then Algorithm 2(G)
correctly outputs “Infeasible” if ΠG = ∅ and outputs an
ACSPE (NE/CE/CCE) π, otherwise. Moreover, if MG-
SOLVE runs in time O(poly(|G|)), then Algorithm 2(G)
runs in time O(poly(|G|, DG)), and any output policy can
be stored with O(HSADG) space.

5. Computation
In the last section, we showed how to reduce our
anytime-constrained game problem to an action-constrained
game problem. However, efficient algorithms for action-
constrained games are currently unknown. In this section,
we remedy this knowledge gap by designing efficient algo-
rithms for computing MPE of an action-constrained MG.
Moreover, we show that feeding our action-constrained
method into our reduction yields a polynomial time algo-
rithm for computing ACE so long as the cost precision is
logarithmic.

We take a backward induction approach similar to other
planning algorithms for Markov games. Unlike traditional

MGs, here, we must iteratively solve action-constrained
matrix stage games. Then, we can combine the constructed
policies for each stage to solve the full game. We prove the
correctness of this algorithm by deriving a novel theory of
equilibria in action-constrained Markov games.

Matrix Games. The key bottleneck to this backward in-
duction approach is solving the action-constrained matrix
games. Formally, let (A, X, u) denote an action-constrained
matrix game, where (i) A is the joint action space, (ii)
X ⊆ A is the set of feasible actions, and (iii) u is the
utility function. We tackle this problem by devising a varia-
tion of the standard CE/CCE LP. Importantly, we modify the
constraint

∑
a∈A σ(a) = 1, which ensures the total proba-

bility mass of all joint actions equals one, into the constraint∑
a∈X σ(a) = 1, which ensures the support of the joint

strategy is contained in the valid joint action space. We also
define the utility of any infeasible action to be −∞ so that
infeasible deviations will be appropriately ignored by the
LP. The full definition of the LP, which has no objective
function, is,∑

a∈X

σ(a) (ui(a)− ui(a
′
i, a−i)) ≥ 0, ∀i, a′i ∈ Ai∑

a∈X

σ(a) = 1,

σ(a) ≥ 0 ∀a ∈ X
(CLP)

Lemma 5.1. If (A, X, u) is any action-constrained matrix
game and σ is any solution to (CLP)(A, X, u), then for
any player i ∈ [n], and deviation σ′

i ∈ ∆(Ai) for which

σ′ def
= (σ′

i, σ−i) ∈ ∆(X), we have that Ea∼σ[ui(a)] ≥
Ea∼σ′ [ui(a)]. Moreover, if X ̸= ∅, then there exists a
solution to (CLP)(A, X, u).

Markov Games. To use (CLP) in our backward induction,
it will be useful to represent stage games with the Q matrix.
Formally, for any given partial policy π, any time h ∈ [H],
and any state s̄ ∈ S̄, we define the stage game to be the
matrix game Q̄h(s) whose utility for any player i ∈ [n]
under joint action ā ∈ Ā is defined by,

Q̄π
i,h(s̄, ā)

def
=

{
rh(s̄, ā) +

∑
s̄′ P̄h(s̄

′ | s̄, ā)V̄ π
i,h+1(s̄

′)

−∞ if ā ̸∈ Āh(s̄)
.

(Q)
Then, given some LP feasibility algorithm LPSOLVE, we
use these ideas to solve action-constrained MGs in Algo-
rithm 3.

Theorem 5.2 (Constrained Solver). For any feasible action-
constrained MG G, if LPSOLVE is a polynomial-time linear-
program feasibility solver, then Algorithm 3(G) correctly
outputs a feasible MPE (CE/CCE) in polynomial time.

6
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Algorithm 3 Constrained Solver

Require: G
1: V π

i,H+1(s̄)← 0 for all i ∈ [n] and s̄ ∈ S̄H+1

2: for h = H down to 1 do
3: for s̄ ∈ S̄h do
4: Q̄π

i,h(s̄, ā)← (Q) for each i ∈ [n] and ā ∈ Ā
5: π ← LPSOLVE((CLP)(A = Ā, X = Āh(s̄), u =

Q̄π
h(s̄)))

6: V π
i,h(s̄)←

∑
ā πh(ā | s̄)Qπ

i,h(s̄, ā)
7: end for
8: end for
9: return π

Reduction Analysis. Given our efficient action-
constrained game solver, we can now finish analyzing the
running time of our reduction. Since Theorem 5.2 implies
that Algorithm 3 runs in time poly(|G|), Theorem 4.4
implies that Algorithm 2 with MGSOLVE = Algorithm 3
runs in time poly(|G|, DG). The main issue is that DG

can be exponentially large in the worst case. However, we
can show that DG ≤ poly(|G|)2O(dn), where d denotes
the cost precision, which is the number of significant bits
needed to represent any supported cost. By definition, our
method is FPT (Downey and Fellows, 2012) in the cost
precision.

Theorem 5.3 (FPT). Equipped with any polynomial-time
LP solver and MGSOLVE = Algorithm 3, Algorithm 2 is a
fixed-parameter tractable algorithm for computing ACSPE
(CE/CCE) in the cost-precision d. Consequently, if d =
O(log(|G|)) while n is held constant or d = O(1) while n
is arbitrary, then Algorithm 2 runs in polynomial time and
any output policy can be stored in polynomial space.

Remark 5.4 (Learning). Our methods immediately apply to
the learning setting through model-based approaches. More-
over, any new learning algorithm for action-constrained
MGs can immediately solve G and thus compute ACE for
G.

6. Approximation
In the previous section, we showed our method runs in
polynomial time whenever the cost precision is small. How-
ever, in cases where the cost precision is large or, even
worse infinite, the computation may require exponential
time due to the NP-hard nature of finding a feasible solution,
Proposition 2.7. To combat this issue, we slightly relax the
feasibility condition. This allows us to compute equilibrium
policies that only violate the budget by a given ϵ > 0 at the
cost of an additional poly(1/ϵ) factor in running time.

In this section, we allow any infinite support cost distri-
butions that are bounded above. We also require that dis-
tribution is a product distribution to enable comparisons

between supported costs. Technically, we also need the
CDF of the distribution to be efficiently computable for use
in computation.
Assumption 6.1 (Bounded). We assume that each
cmax def

= suph,s,a supSupp(Ch(s, a)) < ∞, and that each
Ch(s, a) = {Ci,h(s, a)}i is a product distribution.

Moreover, if Hcmax
i ≤ B, observe that every policy is feasi-

ble for player i, which just leads to a standard unconstrained
problem for that player. A similar phenomenon happens
if cmax

i ≤ 0. Thus, we assume WLOG that Hcmax > B
and cmax > 0. We can then define our relaxed feasibility
notions as follows.
Definition 6.2 (Approximate Feasibility). For any ϵ > 0, a
joint policy π is ϵ-additive feasible for G if,

Pπ
G

[
∀h ∈ [H],

h∑
t=1

ct ≤ B + ϵ

]
= 1, (3)

and ϵ-relative feasible for G if,

Pπ
G

[
∀h ∈ [H],

h∑
t=1

ct ≤ B(1 + ϵσB)

]
= 1, (4)

where σB is the sign of B1. We then define an ϵ-
additive/relative approximate ACE to satisfy the usual con-
ditions of Definition 2.2 but with the feasibility condition
(1) relaxed to an ϵ-additive/relative feasibility condition.

Rounding. The key idea of our approximations is to have
players round down any cost vector they receive to the near-
est multiple of some ℓ > 0. Doing so allows the players
to track far fewer cumulative costs than originally. In ad-
dition, we can effectively truncate the lower regime of the
distribution using the fact that if player i ever receives an
immediate cost smaller than Bi −Hcmax

i , then it may take
any action whatsoever going forward without violating its
budget. Thus, the player can treat any smaller cost as if
it were Bi −Hcmax

i . This process of rounding costs then
induces a new cMG with finite support cost distributions.
Definition 6.3 (Approximate Game). For any ℓ > 0, we de-
fine ⌊c⌋ℓ

def
=

⌊
c
ℓ

⌋
ℓ to be the largest multiple of ℓ that lower

bounds c. For any player i ∈ [n], let ĉi,1 ≤ · · · ≤ ĉi,m
denote the elements of the finite set of player i’s rounded
costs {⌊ci⌋ℓ | ci ∈ [Bi − Hcmax

i , cmax
i ]} in order, and

let ĉi,0
def
= −∞. We discretize the potentially infinite sup-

port distribution Ci,h(s, a) into a finite support distribution
Ĉi,h(s, a) by defining for each k ∈ [m],

Ĉi,h(ĉi,k | s, a)
def
= Pr

c∼Ci,h(s,a)
[c ∈ [ĉi,k−1, ĉi,k]]. (5)

1When the costs and budgets are negative, negating the con-
straint yields

∑H
t=1 ct ≥ |B| (1 − ϵ), which is the traditional

notion of relative approximation for covering objectives.
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Algorithm 4 Approximation
Require: (G)

1: Construct Ĝ← Definition 6.3(G)
2: Let MGSOLVE = Algorithm 3
3: return Algorithm 2(Ĝ)

We then define the approximate acMG Ĝ
def
=

(S,A, P,R, Ĉ,H) to be our original game G but
with a different cost distribution.

Since outside of extreme cases, we always round costs down,
the players always maintain an underestimate of their true
cumulative cost. Consequently, the players may be incurring
more costs than expected. However, we can show that the
true cost accumulated is not much larger than the surrogate
cost.

Lemma 6.4. Any feasible policy for Ĝ is an Hℓ-additive
feasible policy for G.

On the flip side, the fact that players are willing to spend
more than before means they have more actions available
to them at each stage. Consequently, they can always find
strategies that achieve the same value or even higher than
any truly feasible policy for the game. It is then easy to see
that solutions to Ĝ satisfy condition (2) in Definition 2.2, so
form approximate ACE for G.

Lemma 6.5. Any ACSPE (NE/CE/CCE) for Ĝ are Hℓ-
additive approximate ACSPE (NE/CE/CCE) for G. More-
over, if ΠG ̸= ∅ then ΠĜ ̸= ∅.

Consequently, we can compute approximate equilibria for
G by solving Ĝ. The full algorithm is described in Algo-
rithm 4. Since every approximate cost is an integer multiple
of ℓ, every approximate cumulative cost will also be an
integer multiple of ℓ. In fact, for each i ∈ [n], every ap-
proximate cumulative cost’s multiple must reside in the
set

{
H

⌊
Bi−Hcmax

i

ℓ

⌋
, . . . ,H

⌊
cmax
i

ℓ

⌋}
. Depending on the

choice of ℓ, the players may need to track far fewer cumula-
tive costs to behave optimally.

Theorem 6.6 (Approximation). For any acMG G and ℓ > 0,
Algorithm 4(G) correctly outputs “Infeasible” if no Hℓ-
additive feasible policies for G exist and outputs an Hℓ-
additive approximate ACSPE (CE/CCE) π, otherwise. More-
over, Algorithm 4 runs in time O(poly(|G|, ∥cmax−B∥n

∞
ℓn )).

Corollary 6.7 (Additive). For any ϵ > 0, if we define ℓ
def
=

ϵ/H , then Algorithm 4 correctly outputs “Infeasible” or an
ϵ-additive approximate ACSPE (CE/CCE) for any acMG.
Moreover, if ∥cmax −B∥∞ ≤ poly(|G|), Algorithm 4 runs
in time O(poly(|G|, 1

ϵn )).

Corollary 6.8 (Relative). For any ϵ > 0, if we define ℓ
def
=

ϵ|B|/H , then Algorithm 4 correctly outputs “Infeasible” or

an ϵ-relative approximate ACSPE (CE/CCE) for any acMG.
Moreover, if cmax ≤ poly(|G|)|B|, Algorithm 4 runs in
time O(poly(|G|, 1

ϵn )).

Remark 6.9 (Cost Bound). We can efficiently compute
approximately feasible solutions so long as cmax ≤
poly(|G|) |B|. This condition is very natural. When the
supported costs all have the same sign, any feasible policy
induces costs with cmax ≤ |B| anyway. Importantly, this
restriction is not an artifact of our approach; some bound
on cmax is necessary for efficient computation as proved in
(McMahan and Zhu, 2024).

7. Conclusion
In this work, we introduced anytime-constraints for Markov
games and studied the corresponding solution concept of
anytime-constrained equilibria. Although finding a feasible
policy is NP-hard for simple games, we showed efficient
computation is possible so long as the cost precision is con-
stant. The main ingredients to our approach were a graph
algorithm to derive all feasibly realizable histories and an ef-
ficient algorithm for solving action-constrained MGs. Lastly,
we presented approximation algorithms for computing ap-
proximately feasible anytime-constrained equilibria running
in polynomial time so long as the cost distribution’s supre-
mum is no larger than a polynomial factor of the budget.
Given the hardness results, our approximation guarantees
are best possible under worst-case analysis.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
E. Altman. Constrained Markov Decision Processes. Chap-

man and Hall/CRC, 1999. doi: 10.1201/9781315140223.

E. Altman and A. Shwartz. Constrained markov games:
Nash equilibria. In J. A. Filar, V. Gaitsgory, and
K. Mizukami, editors, Advances in Dynamic Games
and Applications, pages 213–221, Boston, MA, 2000.
Birkhäuser Boston. ISBN 978-1-4612-1336-9.

Q. Bai, A. Singh Bedi, and V. Aggarwal. Achieving zero
constraint violation for constrained reinforcement learn-
ing via conservative natural policy gradient primal-dual
algorithm. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 37(6):6737–6744, 6 2023. doi: 10.1609/
aaai.v37i6.25826. URL https://ojs.aaai.org/
index.php/AAAI/article/view/25826.

8

https://ojs.aaai.org/index.php/AAAI/article/view/25826
https://ojs.aaai.org/index.php/AAAI/article/view/25826


Anytime-Constrained Equilibria in Polynomial Time

A. Bhatia, P. Varakantham, and A. Kumar. Resource
constrained deep reinforcement learning. Proceedings
of the International Conference on Automated Plan-
ning and Scheduling, 29(1):610–620, 5 2021. doi:
10.1609/icaps.v29i1.3528. URL https://ojs.aaai.
org/index.php/ICAPS/article/view/3528.

V. Borkar. An actor-critic algorithm for constrained
markov decision processes. Systems & Con-
trol Letters, 54(3):207–213, 2005. ISSN 0167-
6911. doi: https://doi.org/10.1016/j.sysconle.2004.08.
007. URL https://www.sciencedirect.com/
science/article/pii/S0167691104001276.

D. M. Bossens and N. Bishop. Explicit explore, exploit, or
escape (e4): Near-optimal safety-constrained reinforce-
ment learning in polynomial time. Mach. Learn., 112
(3):817–858, 6 2022. ISSN 0885-6125. doi: 10.1007/
s10994-022-06201-z. URL https://doi.org/10.
1007/s10994-022-06201-z.

K. Brantley, M. Dudı́k, T. Lykouris, S. Miry-
oosefi, M. Simchowitz, A. Slivkins, and W. Sun.
Constrained episodic reinforcement learning
in concave-convex and knapsack settings. In
NeurIPS, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
bc6d753857fe3dd4275dff707dedf329-Abstract.
html.

A. Castellano, H. Min, E. Mallada, and J. A. Bazerque. Re-
inforcement learning with almost sure constraints. In
R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg,
M. Schwager, and M. Kochenderfer, editors, Proceed-
ings of The 4th Annual Learning for Dynamics and
Control Conference, volume 168 of Proceedings of Ma-
chine Learning Research, pages 559–570. PMLR, 6
2022. URL https://proceedings.mlr.press/
v168/castellano22a.html.

Z. Chen, S. Ma, and Y. Zhou. Finding correlated equi-
librium of constrained markov game: A primal-dual
approach. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, vol-
ume 35, pages 25560–25572. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
a3f8f584febcc88ed8cdeb30b096db34-Paper-Conference.
pdf.

W. C. Cheung. Regret minimization for reinforcement learn-
ing with vectorial feedback and complex objectives. In
Advances in Neural Information Processing Systems, vol-
ume 32, 2019. URL https://proceedings.
neurips.cc/paper/2019/file/

a02ffd91ece5e7efeb46db8f10a74059-Paper.
pdf.

Y. Chow, O. Nachum, E. Duenez-Guzman, and
M. Ghavamzadeh. A lyapunov-based approach to
safe reinforcement learning. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
4fe5149039b52765bde64beb9f674940-Paper.
pdf.
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A. Proofs for Section 2
A.1. Proof of Proposition 2.6

Proof. If ΠG = ∅, then by definition no ACE or ACSPE can exist since they must be feasible. On the other hand, if
ΠG ̸= ∅, then Algorithm 2 yields an ACSPE as shown by Proposition 3.5. Thus, an ACSPE exists and so an ACE also
exists.

A.2. Proof of Proposition 2.7

Proof. The proof of Theorem 2 in (McMahan and Zhu, 2024) shows computing a feasible anytime-constrained policy is
NP-hard for 2 constraints. Since this fact is independent of the reward structures, the result applies to two-player zero-sum
cMGs by treating one player as a dummy with no influence on the transitions.

B. Proofs for Section 3
We introduce a few helpful observations here.

Observation 1 (Decomposability). For any policy π, time h ∈ [H] and π-realizable partial history τh+1 ∈ Hπ
h+1, we have

that τh+1 = (τh, ah, ch, sh+1) where,

1. ah ∈ Supp(πh(τh)),

2. ch ∈ Supp(Ch(sh, ah)),

3. sh+1 ∈ Supp(Ph(sh, ah)), and

4. Pπ[τh] > 0.

Proof. By the Markov property (Equation (2.1.11) from (Puterman, 1994)), we can decompose τh+1 = (τh, ah, ch, sh+1)
so that,

Pπ [τh+1] = Pπ[τh]πh(ah | τh)Ch(ch | sh, ah)Ph(sh+1 | sh, ah). (6)

Since Pπ [τh+1] > 0 by assumption, it must be the case that each quantity on the RHS is also positive. In particular, we see
that (i) ah ∈ Supp(πh(τh)), (ii) ch ∈ Supp(Ch(sh, ah)), (iii) sh+1 ∈ Supp(Ph(sh, ah)), and (iv) Pπ[τh] > 0.

Observation 2. For any feasible policy π ∈ ΠG, time h ∈ [H], and π-realizable history τh ∈ Hπ
h , it must be that

Supp(πh(τh)) ⊆ {a ∈ A | Prc∼Ch(s,a)[c̄h + c ≤ B] = 1}. The same claim holds for the set ΠG(τh) as well.

Proof. Fix any such π, h, and τh. Let s def
= sh and c̄

def
= c̄h. Suppose for the sake of contradiction that there exists some

a ∈ Supp(πh(τh)) satisfying Prc∼Ch(s,a)[c̄+ c > B] > 0. Then, we would have that,

Pπ[∃k ∈ [H],

k∑
t=1

ct > B] ≥ Pπ[

h∑
t=1

ct > B]

≥ Pπ[

h∑
t=1

ct > B | τh]Pπ[τh]

= Pπ[c̄+ ch > B | τh]Pπ[τh]

≥ Pπ[τh]πh(a | τh) Pr
c∼Ch(s,a)

[c̄+ c > B]

> 0.

The penultimate line used the Markov property, and the final line used the fact that each quantity occurs with non-zero
probability by assumption. Thus, we see the existence of such an action leads to contradiction.

B.1. Proof of Lemma 3.3

Proof. For the first claim, we proceed by induction on h.
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Base Case. For the base case, we consider h = 1. In this case, the only realizable history is τ1 = (s1) with c̄1 = 0. By
definition, we have (1, s1, 0) is the source node. Thus, the claim holds.

Inductive Step. For the inductive step, we consider any h ≥ 1. Since τh+1 ∈ Fh+1 by assumption, there
must exist some π ∈ ΠG that realizes τh+1. Then, Observation 1 implies we can decompose τh+1 into τh+1 =
(τh, ah, ch, sh+1) satisfying conditions (i)-(iv). Since τh is π-realizable according to (iv), the induction hypothesis
implies Pτh = ((1, s1, 0), (1, s1, 0, a1), . . . , (h, sh, c̄h)) is a path in T . Also, Observation 2 implies that ah satisfies
Prc∼Ch(sh,ah)[c̄h + c ≤ B] = 1, so ah is a feasible action for (h, sh, c̄h). By definition of T , we then know that
(h, sh, c̄h, ah) is a node in T that is adjacent to (h, sh, c̄h). Similarly, by (ii) and (iii), we then know that (h+1, sh+1, c̄h+1)
is a node in T and is adjacent to (h, sh, c̄h, ah). Thus, Pτh+1

= (Pτh , (h, sh, c̄h, ah), (h + 1, sh+1, c̄h+1)) is the desired
path in T . This completes the induction.

For the second claim, fix any h and any τh ∈ Fh. We show that for any τk that is π-realizable for some π ∈ ΠG(τh) that
Pτh ⊆ Pτk . We proceed by induction on k.

Base Case. For the base case, we consider k = h. In this case, the only realizable history conditioned on τh is τh itself.
Trivially, we have that Pτh ⊆ Pτh .

Inductive Step. For the inductive step, we consider any k ≥ h. Again, we can decompose τk+1 = (τk, ak, ck, sk+1) by
Observation 1 where ak is a feasible action for (k, sk, c̄k) by Observation 2. By the induction hypothesis, we know that
Pτh ⊆ Pτk . Again, it is easy to see that the path Pτk+1

= (Pτk , (k, sk, c̄k, ak), (k + 1, sk+1, c̄k+1)) is a well-defined path
in T . It is then immediate that Pτh ⊆ Pτk ⊆ Pτk+1

. This completes the induction.

B.2. Proof of Lemma 3.4

Proof. We then proceed by backward induction on the number of nodes in P , h.

Base Case. For the base case, we consider h = H + 1. In this case, P ends in a H + 1 node, which is TRUE by definition
of T . Thus, the claim vacuously holds.

Inductive Step. For the inductive step, we consider any h ≤ H . First suppose that (h, sh, c̄h) is a sink node. Then,
by definition of T , there must be no safe actions for τh. If there were a feasible π ∈ ΠG realizing τh at time h, then
Observation 2 would imply a feasible action does exist, a contradiction. Thus, τh cannot be feasibly realized.

Now, suppose that (h, sh, c̄h) has outgoing edges. Since any triple-node is an OR node, we know all out-neighbors of
(h, sh, c̄h) must be FALSE. In other words, for any action a, there exists at least one super-path P̃ = (P, (h, sh, c̄h, a), (h+
1, sh+1, c̄h+1)) ending in a FALSE node. By the induction hypothesis, we know that the corresponding history τh+1 is not
feasibly realizable. Therefore, any policy π realizing τh+1 must violate the budget by definition. Moreover, by definition of
the edges of T , if π realizes τh and πh(a | τh) > 0, then π realizes τh+1. Consequently, if a policy π realizes τh and a, then
π is not feasible. Since this holds for any possible action a, we have that τh is not feasibly realizable.

The argument for why any feasible subhistory cannot realize τh is nearly identical: if it could realize τh from some policy,
then that policy must be infeasible.

B.3. Proof of Proposition 3.5

Proof. The proof of correctness follows from Lemma 3.3 and Lemma 3.4. Specifically, Lemma 3.3 (along with the fact that
no feasible paths are removed due to Lemma 3.4) implies that RSh ⊇ FSh and RAh(s̄) ⊇ FAh(s̄) for any s̄ since all
feasibly-realizable histories appear in T . Then, Lemma 3.4 implies that any paths containing FALSE nodes are not feasibly
realizable. Consequently,RSh ⊆ FSh andRAh(s̄) ⊆ FAh(s̄) for any s̄.

For the complexity claim, we observe the time taken to construct the tree and perform a bottom-up tree evaluation is linear
in the size of T . Moreover, the final loop to construct the feasible sets also requires touching every node and edge one
time. Thus, the time complexity is dominated by the size of the feasibility tree. The number of nodes in the tree is at most
HSADG since there is at most one tuple per time, state, action, and non-violating cumulative cost. Moreover, there are at
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most a quadratic number of edges. Hence, the number of edges is at most A times the number of nodes, leading to a total
size of O((HSADG)

2).

C. Proofs for Section 4
Policy Evaluation. For any given policy π, player i ∈ [n], time h ∈ [H + 1], and history τh ∈ Hh where s

def
= sh, we can

compute player i’s value from π under a cMG G recursively using the tabular policy evaluation equations (Equation 4.2.6
(Puterman, 1994)). In the cMG setting, these equations take the following form:

V π
i,h(τh) = Ea∼πh(τh)

ri,h(s, a) +∑
c,s′

Ch(c | s, a)Ph(s
′ | s, a)V π

i,h+1(τh, a, c, s
′)

 . (CPE)

For a traditional or action-constrained MG G, the policy evaluation equations take the more familiar form:

V̄ π̄
i,h(τ̄h) = Eā∼π̄h(τh)

[
r̄i,h(s̄, ā) +

∑
s̄′

P̄h(s̄
′ | s̄, ā)V̄ π̄

i,h+1(τ̄h, ā, s̄
′)

]
. (PE)

When π̄ is Markovian, these equations further simplify to,

V̄ π̄
i,h(s̄) = Eā∼π̄h(s̄)

[
r̄i,h(s̄, ā) +

∑
s̄′

P̄h(s̄
′ | s̄, ā)V̄ π̄

i,h+1(s̄
′)

]
. (*PE)

Policy Translations. As mentioned in the appendix, we can immediately treat any feasible Markovian policy π̄ for
G = Definition 4.1(G,B) as a compact history-dependent policy π for G by simply using the transformation πh(τh)

def
=

π̄h(sh, c̄h). Going even further, we can treat history dependent policies for one game as full history dependent policies for
the other. The key observation is that any history τh ∈ Hh has a unique equivalent history τ̄h ∈ H̄h and vice versa.

Specifically, the history τh = (s1, a1, c1, s2, . . . , sh) can be effectively permuted into the history τ̄h =
((s1, 0), a1, (s2, c1), . . . , (sh, c̄h)) and vice versa. Moreover, given τ̄h it is easy to infer any ck since ck = c̄k+1 − c̄k,
and given τh it is easy to infer (sk, c̄k). We call τ̄h the translation of τh to G and denote it by H̄(τh). Importantly, this
conversion allows us to formally discuss a policies value in both games by simply modifying its input history.

Lemma C.1 (Translations). For any feasible policy π ∈ ΠG, time h ∈ [H+1], and partial history τh ∈ Hπ
h , if τ̄h

def
= H̄h(τh)

is the translation of τh to H̄h, then V π
i,h(τh) = V̄ π

i,h(τ̄h). Moreover, if π is Markovian in S̄, then V π
i,h(τh) = V̄ π

i,h(sh, c̄h).

Proof. We proceed by induction on h. We first note by Lemma 3.3 that all realizable histories of π have (state, cumulative-
cost)-pair in FSh and actions in FAh(s̄). Thus, in the argument below we can always assume histories realized by π lead
to a valid history for G.

Base Case. For the base case, we consider h = H + 1. In this case, V π
i,H+1(τH+1) = 0 = V̄ π

i,H+1(τ̄H+1) by definition of
the value function at time H + 1. The second claim also holds since V̄ π

i,H+1(sH+1, c̄H+1) = 0.

Inductive Step. For the inductive step, we consider any h ≤ H . Let s def
= sh and let s̄ def

= (sh, c̄h). We observe by (CPE)
and (PE) that,
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V π
i,h(τh) = Ea∼πh(τh)

ri,h(s, a) +∑
c,s′

Ch(c | s, a)Ph(s
′ | s, a)V π

i,h+1(τh, a, c, s
′)


= Ea∼πh(τh)

ri,h(s, a) +∑
c,s′

Ch(c | s, a)Ph(s
′ | s, a)V̄ π

i,h+1(τ̄h, a, (s
′, c̄h + c))


= Ea∼πh(τh)

[
r̄i,h(s̄, a) +

∑
s̄′

P̄h(s̄
′ | s̄, a)V̄ π

i,h+1(τ̄h, a, s̄
′)

]

= Eā∼πh(τ̄h)

[
r̄i,h(s̄, ā) +

∑
s̄′

P̄h(s̄
′ | s̄, ā)V̄ π

i,h+1(τ̄h, ā, s̄
′)

]
= V̄ π

i,h(τ̄h).

The first line used (CPE). The second line applied the induction hypothesis along with the fact that τh+1 = (τh, a, c, s
′)

translates to τ̄h+1 = (τ̄h, a, (s
′, c̄h + c)) where τ̄h is the translation of τh. The third line used the definition of r̄ and P̄ from

Definition 4.1. The fourth line used the fact that πh(τ̄h) = πh(τh) by definition of the translation. The last line used (PE).

For the second claim, we note if π is Markovian in S̄, then we can replace πh(τ̄h) by πh(s̄) and inductively replace
V̄ π
i,h+1(τ̄h, ā, s̄

′) by V̄ π
i,h+1(s̄

′). These replacements result in the second to last line exactly matching the RHS of (*PE).
Thus, V π

i,h(τh) = V̄ π
i,h(sh, c̄h) in this case.

C.1. Proof of Lemma 4.3

We first make the following observation.

Observation 3. For any policy π, if π ∈ ΠG, then π ∈ ΠG(τh) for any τh ∈ Fh and h ∈ [H].

Proof. This is immediate from Lemma 3.4 as any policy whose support is contained in Āh(s̄) = FAh(s̄) at each stage is
an anytime-feasible policy.

We will also show the following stronger claim.

Claim 1. Suppose that π is any MPE for G, and that π′ def
= (π′

i, π−i) ∈ ΠG is a feasible deviation for player i. Then, for all
times h ∈ [H + 1], and all partial histories τh ∈ Hπ′

h , we have that V π
i,h(τh) ≥ V π′

i,h(τh).

Proof. Observe that,

V π
i,h(τh) = V̄ π

i,h(sh, c̄h) ≥ V̄ π′

i,h(τ̄h) = V π′

i,h(τh).

The first equality used Lemma C.1 for a Markovian policy in S̄ . The inequality used the fact that π is a MPE for G with τ̄h
being the unique translation of τh to an element of H̄h. The final equality again used Lemma C.1.

Proof of Lemma. The lemma then follows as the observation yields condition (1) and the claim yields condition (2) of
ACSPE.

C.2. Proof of Theorem 4.4

Proof. The correctness of the algorithm is immediate from Proposition 3.5 and Lemma 4.3. For the complexity claim, the
time the algorithm takes is O((HSADG)

2) time to construct G and poly(G) time to solve the LP. Since the description
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size of G is also polynomial in HSADG, we then see the running time is bounded by O(poly(|G|, DG)). The number of
G’s states is at most O(HSDG), and for each state up to A joint actions’ probabilities must be stored. Hence, the storage
claim follows.

D. Proofs for Section 5
D.1. Proof of Lemma 5.1

Proof. Let (A, X, u) be any action-constrained matrix game, σ be any solution to (CLP)(A, X, u), i ∈ [n] be any player,
and σ′

i be any deviation strategy satisfying σ′ = (σ′
i, σ−i) ∈ ∆(X). By definition of the constraints, we see that,

Ea∼σ [ui(a)] =
∑
a∈A

σ(a)ui(a)

=
∑
a∈X

σ(a)ui(a)

=
∑

a′
i∈Ai

σ′
i(a

′
i)

∑
a∈X

σ(a)ui(a)

≥
∑

a′
i∈Ai

σ′
i(a

′
i)

∑
a∈X

σ(a)ui(a
′
i, a−i)

=
∑

a′
i∈Ai

σ′
i(a

′
i)

∑
a−i∈A−i

∑
ai∈Ai

σ(ai, a−i)ui(a
′
i, a−i)

=
∑

a′
i∈Ai

∑
a−i∈A−i

σ′
i(a

′
i)σ−i(a−i)ui(a

′
i, a−i)

=
∑
a′∈A

σ′(a′)ui(a
′)

= Ea′∼σ′ [ui(a
′)] .

The second line used the second constraint that ensured Supp(σ) ⊆ X . The fourth line used the first constraint. The sixth
line used the definition of marginals.

For the second claim, the fact that X ̸= ∅ implies there exist at least one feasible joint action, and so a feasible σ exists. A
specific σ satisfying the other constraints is then immediate from classical game theory since it corresponds to the constraint
of a normal-form game with possible −∞ entries (which can be replaced by the worst possible utility minus 1).

D.2. Proof of Theorem 5.2

We first make the following observation.

Observation 4. For any feasible action-constrained MG G, suppose that π is output from Algorithm 3(G). Then, π ∈ ΠG.

Proof. Since G is feasible, at any time h ∈ [H] and state s̄ ∈ S̄h, we know that Āh(s̄) ̸= ∅ by definition. Thus, Lemma 5.1
implies that (CLP) always outputs a solution and that solution is supported on Āh(s̄) for any stage game (h, s̄). Since π is
exactly the collection of all such stage solutions, we then see that Supp(πh(s̄)) ⊆ Āh(s̄) for all (h, s̄). Thus, π ∈ ΠG.

The following claim will also prove useful.

Claim 2. For any feasible action-constrained MG G, suppose that π is output from Algorithm 3(G). Then, for all players

i ∈ [n], times h ∈ [H + 1], deviations π′
i satisfying π′ def

= (π′
i, π−i) ∈ ΠG, and histories τ̄h ∈ H̄π′

h , we have that
V̄ π
i,h(s̄h) ≥ V̄ π′

i,h(τ̄h).

Proof. We proceed by induction on h.

Base Case. For the base case, we consider h = H + 1. In this case, V̄ π
i,h(s̄) = 0 = V̄ π′

i,h(s̄) by definition of the value
function of a feasible policy at time H + 1.
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Inductive Step. For the inductive step, we consider any h ≤ H . We observe that,

V̄ π
i,h(s̄) = Eā∼πh(s̄)

[
r̄i,h(s̄, ā) +

∑
s̄′

P̄h(s̄
′ | s̄, ā)V̄ π

i,h+1(s̄
′)

]

≥ Eā∼πh(s̄)

[
r̄i,h(s̄, ā) +

∑
s̄′

P̄h(s̄
′ | s̄, ā)V̄ π′

i,h+1(τ̄h+1)

]
= Eā∼πh(s̄)

[
Q̄π′

i,h(τ̄h, ā)
]

≥ Eā∼π′
h(τ̄h)

[
Q̄π′

i,h(τ̄h, ā)
]

= V̄ π′

i,h(τ̄h).

The first line used (PE). The second line uses the induction hypothesis. The third line used the definition of the Q-function.
The fourth line used Lemma 5.1 and the fact that Supp(πh(τ̄h)

′) ⊆ Āh(s̄h) by assumption that π′ is feasible. The last line
used the relationship between the Q and value functions.

Proof of Theorem. By Observation 4, we know the output policy of our algorithm is feasible, and by Claim 2 we know
the output policy satisfies the stage game solution condition. Thus, it is a MPE for G. The running time follows since we
run a polynomial time LP solver on a polynomial sized matrix game, O(Ā), for a polynomial number of times, O(HS̄).

D.3. Proof of Theorem 5.3

Proof. We follow the same argument as in (McMahan and Zhu, 2024). By ignoring insignificant digits, we can write each
number in the form 2−ib−i + . . . 2−1b−1 + 20b0 + . . .+ 2d−i−1bd−i for some i. By dividing by 2−i, each number is of the
form 20b0 + . . .+ 2d−1bd−1. Notice, the largest possible number that can be represented in this form is

∑d−1
i=0 2i = 2d − 1.

Since at each time h, we potentially add the maximum cost, the largest cumulative cost ever achieved is at most 2dH − 1.
Since that is the largest cost achievable, no more than 2dH can ever be achieved through all H times. Similarly, no cost can
be achieved smaller than −2dH .

Thus, each cumulative cost is in the range [−2dH +1, 2dH − 1] and so at most 2d+1H cumulative costs can ever be created.
By multiplying back the 2−i term, we see at most 2d+1H costs are ever generated by numbers with d bits of precision.
Since this argument holds for each constraint independently, the total number of cumulative cost vectors that could ever be
achieved is (H2d+1)n. Hence, DG ≤ Hn2(d+1)n.

Theorem 5.3 then follows immediately from Theorem 4.4, Theorem 5.2, and the definition of fixed-parameter tractabil-
ity (Downey and Fellows, 2012).

E. Proofs for Section 6
E.1. Proof of Lemma 6.4

For any h we let ĉh+1 := f(τh+1) be a random variable of the history defined inductively by ĉ1 = 0 and ĉk+1 = fk(ĉk, ck)
for all k ≤ h. Here, f is a function that either rounds the immediate cost or truncates to ĉ1. Notice that since f is a
deterministic function, ĉk can be computed from τh+1 for all k ∈ [h+ 1]. Then, a probability distribution over ĉ is induced
by the one over histories.

Proof. The key observation is that for each time h, generally ˆ̄ch ≤ c̄h ≤ ˆ̄ch + (h− 1)ℓ holds. The one exception is when a
very negative cost is received, in which case the agents’ truncation may lead to higher cost in Ĝ. However, in that case, any
action will still be allowed and so overestimated cost does not lead to issues. Formally, we can show

Pπ
G

[
ˆ̄ch ≤ c̄h ≤ ˆ̄ch + (h− 1)ℓ ∨ ˆ̄ch, c̄h ≤ B − (H − h+ 1)cmax

]
= 1. (7)

The proof of this claim follows identically to the proof of Lemma 5 in (McMahan and Zhu, 2024).
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Then, if π is feasible for Ĝ, we see that Pπ
[
∀h ∈ [H], ˆ̄ch ≤ B

]
= 1. Thus,

Pπ [∀h ∈ [H], c̄h ≤ B + (h− 1)ℓ] = 1.

In words, π is Hℓ-feasible for G.

E.2. Proof of Lemma 6.5

Proof. Approximate feasibility of any such π from Lemma 6.4. Moreover, we observe that there are more feasible deviations
(π′

i, π−i) in Ĝ since the cost constraint is easier to satisfy as also shown in the proof of Lemma 6.4. Thus, π must also beat
any feasible deviation for G. Hence, it is an approximate equilibrium.

E.3. Proof of Theorem 6.6

Proof. The correctness of the algorithm follows immediately from Lemma 6.4 and Lemma 6.5. For the complexity claim,
we first note that to construct Ĝ from Ĝ, we must loop over each approximate cost while performing the iteration to create
G. The number of such immediate costs per agent i is the number integer multiples of ℓ we consider, which consists of the
range {

⌊
Bi−Hcmax

i

ℓ

⌋
,
⌊
cmax
i

ℓ

⌋
}. The number of elements of this set is,⌊
cmax
i

ℓ

⌋
−
⌊
Bi −Hcmax

i

ℓ

⌋
+ 1 ≤ cmax

i (H + 1)−Bi

ℓ
+ 2.

Thus, if we consider the worst case player, the bound becomes ∥cmax(H+1)−B∥∞
ℓ + 2. Since this holds indepen-

dently for each player, the total number supported immediate costs in each approximate cost distribution is at most
O(

∥cmax(H+1)−B∥n
∞

ℓn ). Moreover, since each immediate cost is an integer multiple of ℓ, any cumulative cost is in the range

at widest {H
⌊
Bi−Hcmax

i

ℓ

⌋
, H

⌊
cmax
i

ℓ

⌋
}. Overall, we see the time needed to construct G and the size of the state set of G

blow up by a factor of O(
∥cmax(H+1)−B∥n

∞
ℓn ). The running time claims then follow from the previous running time claims.

E.4. Proof of Corollary 6.7

Proof. The proof is immediate from Theorem 6.6 and the definition of ℓ.

E.5. Proof of Corollary 6.8

Proof. The proof is immediate from Theorem 6.6 and the definition of ℓ. Note, here we are using a vector ℓ. It is easy to see
that the proof of Lemma 6.4 easily handles this variation.

F. Extensions
The infinite discounted case, and generalized anytime constraints case follow similarly to in (McMahan and Zhu, 2024). As
for almost sure constraints, we note that we can do the same meta-graph construction, but we start by including all possible
cumulative costs, since we do not know which may eventually lead to success until we have seen the end. All other results
follow similarly.

For ACCE, we observe all of our results follow with the minimal change of considering a strategic modification deviation
ϕ ◦ π instead of the general deviation (π′

i, π−i) we originally considered. Our LP solution is also easily adapted by replacing
the CCE condition with the CE condition.
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