

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PIXEL-PERFECT PUPPETRY: PRECISION-GUIDED EN- HANCEMENT FOR FACE IMAGE AND VIDEO EDITING

Anonymous authors

Paper under double-blind review

ABSTRACT

Preserving identity while precisely manipulating attributes is a central challenge in face editing for both images and videos. Existing methods often introduce visual artifacts or fail to maintain temporal consistency. We present **FlowGuide**, a unified framework that achieves fine-grained control over face editing in diffusion models. Our approach is founded on the local linearity of the UNet bottleneck’s latent space, which allows us to treat semantic attributes as corresponding to specific linear subspaces, providing a mathematically sound basis for disentanglement. FlowGuide first identifies a set of orthogonal basis vectors that span these semantic subspaces for both the original content and the target edit, a representation that efficiently captures the most salient features of each. We then introduce a novel guidance mechanism that quantifies the geometric alignment between these bases to dynamically steer the denoising trajectory at each step. This approach offers superior control by ensuring edits are confined to the desired attribute’s semantic axis while preserving orthogonal components related to identity. Extensive experiments demonstrate that FlowGuide achieves state-of-the-art performance, producing high-quality edits with superior identity preservation and temporal coherence.

1 INTRODUCTION

Face attribute editing has emerged as an essential task in computer vision, with applications ranging from film production to virtual reality, social media content, and digital avatars (Zhan et al., 2023; Kim et al., 2023; Yao et al., 2021; Zhang et al., 2018a; Zhu et al., 2020). This task encompasses both face image editing (FIE) and face video editing (FVE), each presenting unique challenges. FIE demands precise attribute manipulation while preserving identity and avoiding unintended artifacts (Shen et al., 2020; Wang et al., 2022). FVE inherits these challenges but adds the critical requirement of temporal consistency across frames (Wang et al., 2024; Ceylan et al., 2023). Current methods often struggle to satisfy all these constraints simultaneously. To address this, we propose a unified, pixel-level solution for both FIE and FVE that enhances editing precision while maintaining identity and temporal coherence.

Early approaches to face editing predominantly relied on GAN-based methods (Tzaban et al., 2022; Patashnik et al., 2021; Karras et al., 2019; Shen et al., 2020), which utilize pre-trained StyleGAN models and GAN inversion techniques (Karras et al., 2020; Xia et al., 2022). These methods map input images or video frames into a latent space where edits can be applied. However, the quality of edits heavily depends on the accuracy of GAN inversion, which often struggles to faithfully reconstruct the original input, leading to identity loss and editing artifacts (Preechakul et al., 2022). For video editing, GAN-based methods face additional challenges in maintaining temporal coherence, often resulting in flickering or inconsistent edits across frames.

Recent advances in diffusion models have shown superior performance in face editing tasks (Batifol et al., 2025; Kim et al., 2023; Preechakul et al., 2022; Zhang et al., 2023; Croitoru et al., 2023). These methods perform editing as a conditional generation process, where target attributes are progressively introduced during the denoising steps. While diffusion models offer better reconstruction quality and more stable generation compared to GANs, they still lack precise control over the editing process (Zhao et al., 2024; Yu et al., 2023). Without proper constraints, introducing target attributes

054 can inadvertently affect other facial features, identity, or background elements—a problem that be-
 055 comes particularly pronounced in video editing where such errors accumulate across frames.
 056

057 To address these limitations, we propose **FlowGuide**, a unified framework that achieves precise face
 058 editing by introducing a novel guidance mechanism operating within the diffusion model’s latent
 059 space. Our approach is founded on the local linearity of the UNet bottleneck’s latent space (Park
 060 et al., 2023; Kwon et al., 2022), which allows us to treat semantic attributes as corresponding to
 061 specific linear subspaces. To disentangle identity from attributes, our *Latent Basis Extraction (LBE)*
 062 module first identifies a set of orthogonal basis vectors that span these key semantic directions for
 063 both original and edited content. The core of our method is an *Implicit Basis Guidance (IBG)* mech-
 064 anism that quantifies the semantic change by measuring the geometric alignment between these two
 065 sets of basis vectors. This alignment score informs a corrective update to the predicted noise at each
 066 denoising step, effectively steering the generation trajectory along the desired attribute’s semantic
 067 axis while preserving components orthogonal to it, which correspond to identity and other preserved
 068 features. This ensures precise, localized edits for images and naturally extends to temporally coher-
 069 ent modifications for videos.

070 We summarize the contributions of our proposed method as follows:

- 071 • We propose FlowGuide, a unified framework for face image and video editing that intro-
 072 duces a novel guidance mechanism to achieve precise attribute control in diffusion models.
- 073 • We treat semantic attributes as linear subspaces within the UNet bottleneck’s latent space,
 074 designing a Latent Basis Extraction (LBE) module to identify orthogonal basis vectors that
 075 span these subspaces to isolate the identity from the attributes in the latent space.
- 076 • We introduce an Implicit Basis Guidance (IBG) mechanism that computes the geometric
 077 alignment between these bases to dynamically steer the denoising trajectory, which con-
 078 fines edits to the target attribute’s semantic axis while preserving the identity.
- 079 • Extensive experiments demonstrate that FlowGuide achieves state-of-the-art editing qual-
 080 ity, with superior identity preservation, attribute modification, and temporal coherence.

082 2 RELATED WORK

084 2.1 INVERSION-BASED IMAGE EDITING

086 Inversion-based editing in diffusion models began with deterministic methods like DDIM in-
 087 version (Song et al., 2020). To improve identity preservation, subsequent optimization-based
 088 approaches like Null-text Inversion (NTI) (Mokady et al., 2023) and Prompt Tuning Inversion
 089 (PTI) (Roich et al., 2022) fine-tuned text embeddings, though at a significant computational cost. To
 090 address this inefficiency, a variety of optimization-free methods were developed. Negative Prompt
 091 Inversion (NPI) (Miyake et al., 2023) and ProxNPI (Han et al., 2024) bypass direct optimization of
 092 embeddings, while others like PnP Inversion (Ju et al., 2023) and Noise Map Guidance (NMG) (Cho
 093 et al., 2024) use guidance or directly incorporate reconstruction differences into the editing update.

094 More recent works have explored alternative strategies beyond direct deterministic inversion. For
 095 instance, Edit Friendly (EF) (Huberman et al., 2024) and its successor LEDITS++ (Brack et al.,
 096 2024) employ random inversion to achieve good reconstruction without requiring attention map
 097 adjustments. Concurrently, methods like h-Edit (Nguyen et al., 2025) have introduced hierarchical
 098 frameworks for more granular semantic control. Despite this progress, most training-free methods
 099 remain limited to text-guided editing and struggle to achieve precise control over attributes without
 100 affecting non-target regions. Our work addresses this by introducing a guidance mechanism that
 101 operates on the fundamental geometric structure of the latent space, enabling more precise and
 102 disentangled control.

103 2.2 FACE VIDEO EDITING

105 Face video editing (FVE) aims to modify facial attributes in videos while preserving identity and
 106 temporal consistency. Early FVE methods often relied on GANs, particularly StyleGAN (Karras
 107 et al., 2019). Approaches like StyleCLIP (Patashnik et al., 2021) and Stitch it in Time (STIT) (Tz-
 108 aban et al., 2022) perform GAN inversion to project video frames into StyleGAN’s latent space for

108 editing. However, these methods are often limited by the quality of GAN inversion Patashnik et al.
 109 (2021); Shen et al. (2020), which can lead to identity loss and artifacts, and they struggle to maintain
 110 temporal coherence across frames Preechakul et al. (2022).

111 Recent works have further advanced diffusion-based video editing through various ap-
 112 proaches Geyer et al. (2023); Yang et al. (2023); Qi et al. (2023); Ouyang et al. (2024); Kara et al.
 113 (2024); Anand et al. (2025); Li et al. (2025). RAVE (Kara et al., 2024) introduces randomized noise
 114 shuffling for fast and consistent editing but focuses primarily on semantic scene editing rather than
 115 fine-grained facial control. IP-FaceDiff (Anand et al., 2025) specifically targets identity preserva-
 116 tion in facial videos, while Qffusion (Li et al., 2025) employs quadrant-grid attention learning for
 117 controllable portrait editing. V-LASIK (Shalev-Arkushin et al., 2024) addresses the specific chal-
 118 lenge of consistent glasses removal using synthetic data. Other notable advances include (Liao
 119 & Deng, 2023) extends ControlNet to video generation with cross-frame attention, and (Lu et al.,
 120 2024) performs high-fidelity video editing via multi-source diffusion. While effective, diffusion-
 121 based approaches often lack fine-grained control, leading to unintended modifications of non-target
 122 attributes. Our work addresses this limitation by introducing a mechanism for precise, guided con-
 123 trol within the diffusion framework, ensuring that edits are confined to the desired attributes while
 124 preserving identity and temporal stability.

125 3 METHODOLOGY

126 3.1 PRELIMINARIES: DIFFUSION-BASED EDITING

127 Let X_0 represent an input frame. Our method supports processing multiple frames simultaneously;
 128 for simplicity, we use X_0 to denote the input in the following sections. Our dual-path framework,
 129 and diffusion-based editing in general, operates by first inverting X_0 into a noisy latent represen-
 130 tation, which is then denoised. Each frame is processed independently through this pipeline. We
 131 denote variables associated with the identity-preserving **reconstruction path** with a superscript r
 132 and variables for the **editing path** with a superscript c .

133 The **inversion process** is a deterministic DDIM-based procedure that progressively adds noise to
 134 create the starting latent for the reconstruction path, X_T^r . The transition from a less noisy latent
 135 X_{t-1}^r to a more noisy latent X_t^r under the original condition c_{edit} is modeled as:

$$q(X_t^r | X_{t-1}^r, c_{edit}) = \mathcal{N}(X_t^r; \mu_\theta(X_{t-1}^r, t, c_{edit}), \sigma_t^2 \mathbf{I}) \quad (1)$$

136 where the mean is a function of the predicted noise $\epsilon^r(X_{t-1}^r, t, c_{edit})$: $\mu_\theta(X_{t-1}^r, t, c_{edit}) =$
 137 $1/\sqrt{\alpha_t}(X_{t-1}^r - \alpha_t/\sqrt{1-\bar{\alpha}_t}\epsilon^r(X_{t-1}^r, t, c_{edit}))$, α_t is the noise schedule coefficient.

138 The **denoising process** generates the edited image by iteratively removing noise, guided by a target
 139 condition \mathcal{C}^c . The editing path starts from the same noisy latent as the reconstruction path, $X_T^c =$
 140 X_T^r . The denoising step for the editing path is defined as:

$$p_\theta(X_{t-1}^c | X_t^c, \mathcal{C}^c) = \mathcal{N}(X_{t-1}^c; \mu_\theta(X_t^c, t, \mathcal{C}^c), \Sigma_\theta(X_t^c, t, \mathcal{C}^c)) \quad (2)$$

141 where the mean μ_θ is a function of the noise $\epsilon^c(X_t^c, t, \mathcal{C}^c)$ predicted under the target condition.

142 To improve consistency, the **edit-friendly guidance** (Huberman et al., 2024) can be introduced into
 143 the denoising process, which explicitly links the reconstruction and editing paths. The intuition is
 144 to ground the editing process in the reconstruction process to prevent it from deviating too far. The
 145 edit-friendly guidance is defined as:

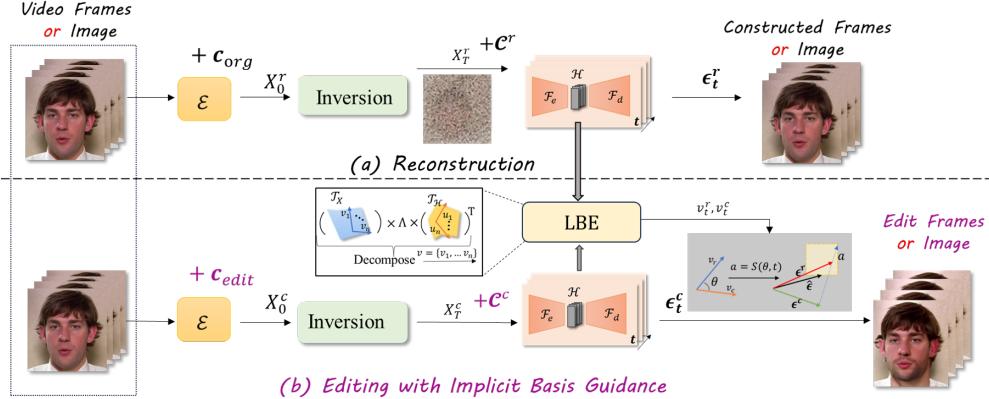
$$X_{t-1}^c = X_{t-1}^r - \mu_\theta(X_t^r, t, c_{edit}) + \mu_\theta(X_t^c, t, \mathcal{C}^c) \quad (3)$$

146 While this technique enforces a strong structural prior from the reconstruction path, it often proves
 147 to be too restrictive. The guidance is not adaptive; it does not dynamically measure how much the
 148 edit should differ from the original. Consequently, such methods often lack the fine-grained con-
 149 trol needed to robustly preserve identity while making significant, targeted attribute changes. This
 150 fundamental limitation motivates our work, which introduces a more advanced, adaptive guidance
 151 mechanism to enhance editing accuracy.

152 3.2 OVERVIEW OF FLOWGUIDE

153 Our method operates through two parallel processes: reconstruction and editing to achieve pre-
 154 cise attribute manipulation while preserving identity, as illustrated in Figure 1. Both processes

162 invert the input frames to noisy latents but use different conditions during the denoising phase. The
 163 reconstruction process uses the original conditions (c_{org}, \mathcal{C}^r) to establish an identity-preserving ref-
 164 erence path. Concurrently, the editing process uses the target conditions (c_{edit}, \mathcal{C}^c) to introduce the
 165 desired attribute modifications.



181 **Figure 1: The framework of proposed FlowGuide.** (a) The reconstruction process shows how
 182 original frames are inverted to noisy latents X_T^r with original condition c_{org} , then denoised back
 183 with condition \mathcal{C}^r , establishing the baseline for identity preservation. (b) The editing process of
 184 our method: first invert latent representations to X_T^c with editing condition c_{edit} , during denoising
 185 with target condition \mathcal{C}^c , we extract latent basis vectors from the UNet bottleneck layer, and apply
 186 implicit basis guidance to ensure edits are confined to target attributes.

187 During each step of the parallel denoising, our Latent Basis Extraction (LBE) module (Section 3.3) is
 188 applied to the UNet bottleneck of both paths. This yields two sets of basis vectors: \mathcal{V}^r for the original
 189 content and \mathcal{V}^c for the edited content. Our key contribution, the Implicit Basis Guidance (IBG)
 190 mechanism (Section 3.4), then computes the similarity between \mathcal{V}^r and \mathcal{V}^c to quantify semantic
 191 change. This similarity dynamically steers the denoising direction of the editing path, ensuring
 192 modifications are confined to target attributes while preserving all other characteristics from the
 193 reconstruction baseline.

194 This dual-process framework naturally extends to both single images and video sequences, where
 195 temporal consistency emerges from the coherent application of basis guidance across frames. De-
 196 tailed inversion procedures for image and video modalities are provided in Appendix E.2 and F.1,
 197 respectively.

198 3.3 LATENT BASIS EXTRACTION

200 Building on the dual-process framework described above, the noisy representations X_T^r and X_T^c are
 201 fed into a pre-trained UNet \mathcal{F} to predict the noise of each frame. Within this architecture, we use \mathcal{F}_e
 202 and \mathcal{F}_d to denote the encoder and decoder components of the UNet, respectively. **Since the process**
 203 **of extracting the latent basis is the same for both paths (though the resulting bases \mathcal{V}^r and \mathcal{V}^c differ),**
 204 **we use X_T^c as an example for simplicity.** To streamline the presentation, we let \mathcal{X} represent X_t^c , \mathcal{H}
 205 denote the latent variable, and \mathcal{C} represent \mathcal{C}^c at time step t .

206 The latent variable \mathcal{H} in the bottleneck layer of the U-Net has been shown to exhibit a locally linear
 207 structure (Kwon et al., 2022), which makes it suitable for using the Euclidean metric to measure
 208 changes in \mathcal{H} (Kim et al., 2023). In the denoising process, the transformation from the input repre-
 209 sentations to the latent space can be expressed as $\mathcal{F}_e : \mathcal{X}, \mathcal{C} \rightarrow \mathcal{H}$, where \mathcal{F}_e maps the input \mathcal{X} and
 210 the editing conditions \mathcal{C} to the latent variable \mathcal{H} . However, since \mathcal{X} contains a lot of information
 211 unrelated to the specific editing direction, the variability it introduces into \mathcal{H} might not align with
 212 the desired editing directions. To overcome this issue, we focus primarily on how \mathcal{C} (the editing
 213 condition) influences \mathcal{H} , effectively isolating the impact of the target attribute from other unrelated
 214 aspects of \mathcal{X} . This approach enables us to better control the editing process by only adjusting the
 215 components of \mathcal{H} that are relevant to the intended changes, ensuring more precise and consistent
 video edits.

216 Since the video editing process incorporates the additional condition \mathcal{C} into the denoising steps, \mathcal{C} directly influences key features in the latent space $\mathcal{T}_{\mathcal{H}}$, where $\mathcal{T}_{(.)}$ denotes the vector space. Therefore, our goal is to identify the local latent vectors $\mathcal{V} = \{v_1, \dots, v_n\} \in \mathcal{T}_{\mathcal{C}}$ that exhibit significant variability within the tangent space of the latent variable \mathcal{H} , denoted as $\mathcal{T}_{\mathcal{H}}$. By focusing on these local latent vectors, we can effectively capture the key aspects of the editing direction that drive changes in the latent space, ensuring that the manipulation of the video aligns with the intended attribute modifications while preserving other important details such as identity and background. We provide a detailed analysis of the impact of the latent basis on the editing process in Appendix C.

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
206

270 To ensure that the magnitude of deviation between ϵ^c and ϵ^r is proportional to the similarity a , we
 271 use the similarity value to determine which regions should be edited. Specifically, when the latent
 272 bases are very similar (high a), only small regions should differ between the two paths; when the
 273 bases are dissimilar (low a), larger regions can be modified. To achieve this, we employ a dynamic
 274 threshold rather than a fixed one. We select the $1 - a$ quantiles from the matrix $|\epsilon^c - \epsilon^r|$ and denote
 275 the cutoff value as λ . This allows us to construct a binary mask and compute the final guided noise:

$$\mathcal{M} = |\epsilon^c - \epsilon^r| < \lambda, \hat{\epsilon} = \epsilon^c + \mathcal{M} \odot (\epsilon^r - \epsilon^c) \quad (6)$$

278 where $\hat{\epsilon}$ is the final noise prediction used in the denoising step, blending the editing noise ϵ^c with the
 279 reconstruction noise ϵ^r according to the mask \mathcal{M} . This method enables us to focus edits on regions
 280 with significant latent basis differences, effectively filtering out less relevant information to ensure
 281 the target attributes are modified while maintaining the integrity of non-target features.

283 4 EXPERIMENT

285 4.1 FACE IMAGE EDITING

287 4.1.1 EXPERIMENT SETTING

289 **Dataset.** To evaluate the performance of face image editing, we select 500 images from the CelebA
 290 dataset Liu et al. (2015). We employ GPT-4o to generate comprehensive editing prompts encom-
 291 passing five distinct editing tasks: “Add Sunglasses”, “Add Makeup”, “Age Progression”, “Hair
 292 Color Modification”, and “Add Smile”. The detailed construction methodology for editing prompts
 293 is provided in the Appendix E.3. Furthermore, to assess the generalizability of our approach beyond
 294 facial editing, we conduct additional evaluations on the PIE-Bench dataset Ju et al. (2023) to mea-
 295 sure general-purpose editing capabilities, the results on PIE Benchmark can refer to Appendix E.5.

296 **Baseline.** We compare our proposed method against state-of-the-art image editing approaches, in-
 297 cluding h-Edit Nguyen et al. (2025), NP Miyake et al. (2025), NMG Cho et al. (2024), EF Huberman
 298 et al. (2024), and PnP Inv Ju et al. (2023). To ensure fair and consistent evaluation across all meth-
 299 ods, we employ p2p control to enhance reconstruction performance for each baseline.

300 **Metric.** For evaluation, we follow the evaluation setting in Nguyen et al. (2025), three main aspects
 301 are considered: 1) edited image quality, 2) editing effectiveness, 3) consistency between the original
 302 image and the edited image. To evaluate the edited image quality, we compute PSNR, LPIPS, and
 303 SSIM on non-edited regions. To measure the editing effectiveness, both standard CLIP similarity
 304 between the edited image and text and directional CLIP similarity between the edited image and text
 305 are used. To evaluate the consistency between the original image and the edited image, we compute
 306 DINO feature distance and the MSE distance between the original image and the edited image.

308 4.1.2 QUANTITATIVE RESULTS

309 Quantitative results are presented in Table 1, comparing our method against five state-of-the-art
 310 baselines. We evaluate three variants of our model: one using cosine similarity (our primary pro-
 311 posal), and two others using Spearman and Pearson correlation for guidance. Both the cosine and
 312 Spearman variants demonstrate a superior trade-off between editing effectiveness (CLIP similarity)
 313 and identity preservation, significantly outperforming the Pearson variant, which produces overly
 314 aggressive edits that degrade identity. This outcome confirms our theoretical analysis (Section 3):
 315 angular and rank-based similarity metrics (Cosine, Spearman) better capture the geometric relation-
 316 ships in the latent space, providing more precise guidance than Pearson correlation, which is limited
 317 to linear relationships.

318 Across all methods, an inherent trade-off exists between editing strength and consistency. As il-
 319 lustrated in Figure 3, our cosine and Spearman-based FlowGuide variants achieve a more favorable
 320 balance than strong baselines like h-Edit, attaining higher quality and identity scores while remain-
 321 ing competitive on edit alignment. While the Spearman variant achieves the highest scores in quality
 322 and consistency, the cosine variant provides a slightly better balance with edit strength, making it our
 323 recommended approach. Both demonstrate that our geometrically-grounded guidance mechanism
 enables more controlled and robust editing.

Table 1: The text-guided face image editing performance of different editing methods.

Method	Edited Image Quality			Edited Performance		Consistency	
	PSNR (\uparrow)	LPIPS (\downarrow)	SSIM (\uparrow)	CLIP Sim (\uparrow)	Local CLIP (\uparrow)	DINO Dist (\downarrow)	MSE Dist (\downarrow)
EF Huberman et al. (2024)	20.012	0.2028	0.7184	20.714	0.1225	0.0349	0.0109
PnP Inv Ju et al. (2023)	20.370	0.1343	0.7967	20.530	0.1296	0.0271	0.0106
NMG Cho et al. (2024)	14.679	0.3437	0.5673	21.666	0.1348	0.0831	0.0360
NP Miyake et al. (2025)	11.929	0.4747	0.4031	20.918	0.1409	0.1257	0.0665
<i>h</i> -Edit Nguyen et al. (2025)	22.078	0.1034	0.8341	19.707	0.1546	0.0193	0.0078
FlowGuide (Pearson)	16.988	0.2223	0.6988	22.157	0.1451	0.0539	0.0224
FlowGuide (Spearman)	24.129	0.0882	0.8642	17.831	0.1437	0.0161	0.0055
FlowGuide (Cosine)	<u>23.160</u>	<u>0.0965</u>	<u>0.8448</u>	19.391	<u>0.1479</u>	<u>0.0166</u>	<u>0.0060</u>

4.1.3 QUALITATIVE RESULTS

We visualize the face image editing results comparing our proposed method with baseline methods in Figure 3. Our method achieves superior editing quality and maintains better consistency between the original and edited images, though with slightly lower CLIP similarity between the edited image and text prompt. These visualization results align with the quantitative findings in Table 1, confirming that our method achieves more precise and consistent editing, thereby demonstrating the superiority of our proposed approach in face image editing. We provide additional visualizations of our method’s face image editing capabilities in Appendix E.4 (Figure 8).

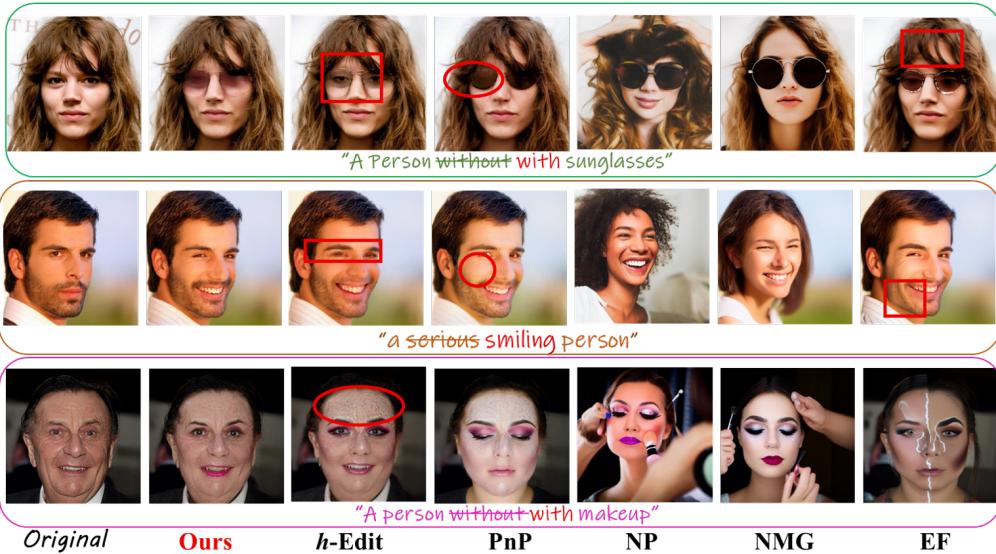


Figure 3: The comparison of the edited face image between our method and the baseline methods.

4.2 FACE VIDEO EDITING

4.2.1 EXPERIMENT SETTING

Dataset. We evaluate the performance of our proposed FlowGuide on real-world videos sampled from the HDTF dataset (Zhang et al., 2021) and the VoxCeleb dataset (Nagrani et al., 2017). Specifically, we randomly select 20 videos from each dataset, ensuring diversity across gender, age, and skin tones. Each video consists of hundreds of frames, from which we randomly sample 32 consecutive frames for each evaluation. The selected frames are aligned and cropped following the approach in (Tzaban et al., 2022; Kim et al., 2023), and subsequently resized to a resolution of 256×256 .

Baseline. We compare our method extensively with several previous state-of-the-art baselines. We choose diffusion-based editing method DVA (Kim et al., 2023) and transformer-based method Latent-trans (Yao et al., 2021). For GAN-based methods, we choose STIT (Tzaban et al., 2022), TCSVE Xu et al. (2022), PTI (Roich et al., 2022) and StyleCLIP (Patashnik et al., 2021). Some of the baseline methods are designed for image editing, we adapt them into the video editing paradigm (the details can refer to Appendix F.2). It is important to note that, for a fair comparison of the reconstruction abilities of different editing methods, the original videos are used solely as input.

378
 379 **Metric.** For comprehensive evaluation of our proposed FlowGuide and the baseline methods, we
 380 utilize a range of evaluation metrics. For the evaluation of reconstruction performance, we use
 381 SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018b), MSE and FID. For time consistency eval-
 382 uation of manipulated videos, we apply TL-ID and TG-ID (Tzaban et al., 2022). For evaluating
 383 video editing performance, we use the Identity Preservation Rate (IPR), Target Attribute Change
 384 Rate (TACR) (Yao et al., 2021), and CLIP score.

409
 410 Figure 4: Comparison of editing performance of our FlowGuide to the previous video editing
 411 methods for editing direction ‘Libstick’.

412 4.2.2 QUANTITATIVE RESULTS

413 To thoroughly evaluate the editing capabilities of our proposed FlowGuide compared to baseline
 414 methods, we choose two general editing directions (“Smiling”, “Mustache”). We compute and re-
 415 port the average values of key evaluation metrics, such as Identity Preservation Rate (IPR), Target
 416 Attribute Change Rate (TACR), and CLIP score, for both our method and the baseline approaches.
 417 The results, summarized in Table 2, illustrate how effectively each method handles these editing
 418 tasks, offering insights into their relative performance across different editing scenarios. The recon-
 419 struction ability of different methods are presented in Appendix F.3.

420 Table 2: The editing ability of our FlowGuide and baselines on HDTF and VoxCeleb datasets. The
 421 reported values are the mean of two editing directions (“Smile”, “Mustache”).

423 Method	424 HDTF					425 VoxCeleb				
	426 IPR (\uparrow)	TACR (\downarrow)	CLIP-Score (\uparrow)	TL-ID (\uparrow)	TG-ID (\uparrow)	427 IPR (\uparrow)	TACR (\downarrow)	CLIP-Score (\uparrow)	TL-ID (\uparrow)	TG-ID (\uparrow)
StyleCLIP	0.8013	0.0329	0.7676	0.9997	0.9995	0.7051	0.0337	0.7670	0.9998	0.9993
STT	0.8214	0.0341	0.7501	0.9866	0.9490	0.8131	0.0339	0.7383	0.9997	0.9994
PTI	0.7540	0.0327	0.7646	0.8238	0.8122	0.7140	0.0336	0.7627	0.7986	0.8047
TCSVE	0.9413	0.0342	0.7566	0.9864	0.9770	0.8723	0.0029	0.7218	0.9813	0.9077
Latent-trans	0.7515	0.0348	0.7450	0.9978	1.0000	0.7070	0.0335	0.7393	0.9999	1.0000
DVA	0.9244	0.0318	0.7685	1.0000	0.9977	0.8910	0.0341	0.7661	0.9999	0.9969
RAVE	0.7005	0.0338	0.7295	0.8621	0.7731	0.6812	0.0341	0.7301	0.8598	0.7684
FlowGuide	0.9667	0.0338	0.7777	1.0001	1.0000	0.9033	0.0335	0.7607	1.0000	1.0000

431 As shown in Table 2, our proposed FlowGuide achieves the highest Identity Preservation Rate (IPR),
 432 highlighting its effectiveness in maintaining identity information during editing process. Notably,

RAVE shows significantly lower performance compared to face-specific methods. This performance gap highlights a fundamental challenge: general video editing methods are designed for semantic scene editing and large-scale motion manipulation, where spatial consistency requirements are relatively relaxed. In contrast, face video editing demands extremely precise pixel-level consistency to the input video and fine-grained control over subtle facial attributes while maintaining identity. The human visual system is highly sensitive to facial inconsistencies, making it particularly challenging to apply general video editing approaches to face manipulation tasks. Additionally, our method demonstrates comparable temporal consistency to the baseline methods, further validating its robustness in preserving video quality.

4.2.3 QUALITATIVE RESULTS

Qualitative comparisons are presented in Figure 4, with additional results in Appendix F.9. The visualizations demonstrate our method’s ability to perform precise, localized edits. As shown, FlowGuide effectively modifies the target attribute while preserving the subject’s identity, non-target facial features, and the background. This high degree of control ensures the character’s identity remains intact and the scene’s original context is undisturbed.

To further showcase the robustness and generalizability of our method, we provide results for multiple, distinct edits on a single video in Appendices F.7. These examples highlight our model’s ability to handle challenging, dynamic scenarios with intricate backgrounds, substantial head movements where many state-of-the-art methods falter. Our approach consistently retains the stylistic elements of the original video, producing exceptionally natural edits that blend seamlessly with the original content. This ability to maintain coherence across diverse and challenging edits underscores the effectiveness of our guidance mechanism. We further report the computation efficiency of our method and the baseline methods in Appendix F.6.

4.3 ABLATION STUDY

We conduct an ablation study of the video editing tasks to analyze the contributions of our two core components: Latent Basis Extraction (LBE) and Implicit Basis Guidance (IBG), with results presented in Table 3 and Figure 5. First, we evaluate the importance of LBE by removing the module and computing similarity directly on the raw latent variables. This prevents the model from isolating attribute-specific features; the resulting guidance is too diffuse to apply the desired edit (low Target Attribute Change Rate), demonstrating that LBE is crucial for identifying the correct semantic directions for modification. A detailed analysis of the impact of the latent basis on the editing process is provided in Appendix C.

Next, we remove the IBG module while retaining LBE to assess its distinct role. Without IBG, the model correctly identifies what to change but lacks spatial control, applying edits indiscriminately across the entire frame. This leads to significant identity degradation (low IPR) and uncontrolled attribute changes, highlighting IBG’s critical role in providing the spatial guidance necessary for localized edits. When both components are removed, the model’s performance collapses entirely, producing distorted and ineffective results. These findings confirm that

Table 3: The ablation results of our FlowGuide on HDTF dataset with two editing directions (“Smile” and “Mustache”).

Method	IPR (\uparrow)	TACR (\downarrow)	CLIP-Score (\uparrow)	TL-ID (\uparrow)	TG-ID (\uparrow)
w/o LBE	0.9831	0.0331	0.7437	0.9925	0.9775
w/o IBG	0.9370	0.0337	0.7773	0.9770	0.8854
w/o both	0.8790	0.0309	0.7540	0.9590	0.8557
FlowGuide	0.9510	0.0329	0.7563	0.9986	0.9929

Table 3: The ablation results of our FlowGuide on HDTF dataset with two editing directions (“Smile” and “Mustache”).

Figure 5: The ablation results of FlowGuide when apply editing direction: “smile”.

486 LBE and IBG are integral and complementary: LBE provides the semantic *what* to change, while
 487 IBG provides the spatial *where* to apply it.
 488

489 5 EVALUATION FOR LATENT BASIS

490
 491 Figure 7 shows the similarity values $a = S_C(V^r, V^c)$ between latent bases at different denoising
 492 timesteps for two editing directions ("Beard" and "Big Lip"). We observe that similarity is higher at
 493 larger timesteps and decreases as denoising progresses. This behavior validates several key proper-
 494 ties of our method:
 495

496 **Linearity across timesteps.** The smooth, continuous
 497 decrease in similarity suggests that the local linearity
 498 assumption holds consistently throughout the denoising
 499 process. Sharp discontinuities would indicate breakdown
 500 of linearity, but the gradual transition demonstrates stable
 501 geometric structure in the latent space. At early timesteps
 502 (high noise), the latent bases V^r and V^c are more similar
 503 because noise dominates the latent space, making the lin-
 504 ear approximation particularly valid. As denoising pro-
 505 gresses, the bases diverge smoothly, indicating that the
 506 linear region accommodates the growing semantic differ-
 507 ences between reconstruction and editing paths.

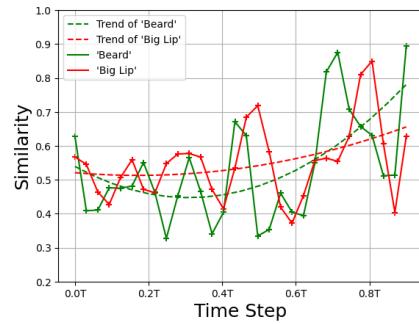
508 **Adaptive guidance mechanism.** The varying similarity
 509 across timesteps demonstrates why our adaptive thresh-
 510 old mechanism (using $1 - a$ quantiles) is crucial. At early
 511 stages where similarity is high ($a \approx 0.8-0.9$), our method
 512 applies minimal editing, preserving the coarse structure.
 513 At later stages where similarity drops ($a \approx 0.4-0.5$),
 514 larger editing regions are permitted, allowing fine-grained attribute manipulation. This adaptive
 515 behavior provides robustness even if the linearity assumption weakens at certain timesteps.

516 6 CONCLUSION

517 In this work, we introduced FlowGuide, a unified framework for high-fidelity face editing in both
 518 images and videos. We addressed the key challenge of disentangling identity from editable at-
 519 tributes by leveraging the geometric properties of the diffusion model's latent space. Our approach
 520 treats semantic attributes as linear subspaces and uses a novel guidance mechanism, consisting of
 521 Latent Basis Extraction (LBE) and Implicit Basis Guidance (IBG), to steer the generation process.
 522 By operating on the geometric alignment of these subspaces, our method confines edits to target
 523 attributes while preserving identity and temporal coherence. Extensive experiments demonstrate
 524 that FlowGuide achieves state-of-the-art performance, striking a superior balance between edit fi-
 525 delity and attribute modification. Our work opens a promising direction for more controllable and
 526 geometrically-grounded manipulation in generative models.

527 7 LIMITATION DISCUSSION

528 While our method achieves state-of-the-art performance, several limitations remain. First, operating
 529 in the diffusion model's latent space can lead to over-smoothing in high-motion scenarios and un-
 530 realistic blending when adding hard-edge accessories like sunglasses. This represents a fundamental
 531 trade-off, we achieve superior identity preservation but at the cost of some visual artifacts. Second,
 532 perfect attribute disentanglement remains elusive; correlated features in training data (e.g., smiling
 533 affecting skin texture) lead to minor unintended changes in approximately 10-15% of edits. Finally,
 534 our method inherits the limitations of the underlying diffusion model, restricting edits to what the la-
 535 tent space can represent and requiring fine-tuning for optimal performance on new domains. Future
 536 work could explore hybrid approaches combining our latent manipulation with explicit geometric
 537 modeling to address these challenges.
 538



539 Figure 6: The similarity between the la-
 540 tent basis of the original video and the
 541 manipulated video evolves as the de-
 542 noising progresses.

540 8 ETHICS STATEMENT
541

542 The research presented in this paper focuses on face image and video editing. We acknowledge
543 the potential for misuse of such technology, including the creation of convincing deepfakes for
544 malicious purposes, such as spreading misinformation or creating non-consensual content. Our goal
545 is to advance the field of computer vision for positive applications, such as in the film industry for
546 special effects, for creative content generation, or for personal use in photo and video enhancement.
547 We condemn the use of our work for any unethical purposes. We encourage the research community
548 to continue developing methods for detecting manipulated media to counteract potential negative
549 uses.

550
551 9 REPRODUCIBILITY STATEMENT
552

553 To ensure the reproducibility of our results, we commit to making our code and pre-trained models
554 publicly available upon publication of this work. The code will be released under an open-source
555 license in a public repository. The datasets used for training and evaluation are publicly available and
556 are cited in the main paper. Detailed instructions for setting up the environment, as well as scripts
557 for training and evaluation, will be provided. The key hyperparameters and architectural details are
558 described in the appendix. Our experiments were conducted on specific hardware using standard
559 deep learning libraries, and these details will also be provided in our code repository.

560
561 REFERENCES
562

563 Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Wonka. Styleflow: Attribute-conditioned
564 exploration of stylegan-generated images using conditional continuous normalizing flows. *ACM
565 Transactions on Graphics (ToG)*, 40(3):1–21, 2021.

566 Tharun Anand, Aryan Garg, and Kaushik Mitra. Ip-facediff: Identity-preserving facial video editing
567 with diffusion. In *Proceedings of the Winter Conference on Applications of Computer Vision*, pp.
568 248–258, 2025.

569 Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature
570 of deep generative models. *arXiv preprint arXiv:1710.11379*, 2017.

571 Georgios Arvanitidis, Søren Hauberg, and Bernhard Schölkopf. Geometrically enriched latent
572 spaces. *arXiv preprint arXiv:2008.00565*, 2020.

573 Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dock-
574 horn, Jack English, Zion English, Patrick Esser, Sumith Kulal, et al. Flux. 1 kontext: Flow match-
575 ing for in-context image generation and editing in latent space. *arXiv e-prints*, pp. arXiv–2506,
576 2025.

577 Manuel Brack, Felix Friedrich, Katharia Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian
578 Kersting, and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models.
579 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
580 8861–8870, 2024.

581 Duygu Ceylan, Chun-Hao P Huang, and Niloy J Mitra. Pix2video: Video editing using image
582 diffusion. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
583 23206–23217, 2023.

584 Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick Smagt. Met-
585 rics for deep generative models. In *International Conference on Artificial Intelligence and Statis-
586 tics*, pp. 1540–1550. PMLR, 2018.

587 Hansam Cho, Jonghyun Lee, Seoung Bum Kim, Tae-Hyun Oh, and Yonghyun Jeong. Noise map
588 guidance: Inversion with spatial context for real image editing. *arXiv preprint arXiv:2402.04625*,
589 2024.

594 Jaewoong Choi, Junho Lee, Changyeon Yoon, Jung Ho Park, Geonho Hwang, and Myungjoo Kang.
 595 Do not escape from the manifold: Discovering the local coordinates on the latent space of gans.
 596 *arXiv preprint arXiv:2106.06959*, 2021.

597 Florinel-Alin Croitoru, Vlad Hondu, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
 598 in vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):
 599 10850–10869, 2023.

600 Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Tokenflow: Consistent diffusion features
 601 for consistent video editing. *arXiv preprint arXiv:2307.10373*, 2023.

602 Ligong Han, Song Wen, Qi Chen, Zhixing Zhang, Kunpeng Song, Mengwei Ren, Ruijiang Gao,
 603 Anastasis Stathopoulos, Xiaoxiao He, Yuxiao Chen, et al. Proxedit: Improving tuning-free real
 604 image editing with proximal guidance. In *Proceedings of the IEEE/CVF Winter Conference on*
 605 *Applications of Computer Vision*, pp. 4291–4301, 2024.

606 Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering
 607 interpretable gan controls. *Advances in neural information processing systems*, 33:9841–9850,
 608 2020.

609 Inbar Huberman, Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise
 610 space: Inversion and manipulations. In *Proceedings of the IEEE/CVF Conference on Computer*
 611 *Vision and Pattern Recognition*, pp. 12469–12478, 2024.

612 Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Direct inversion: Boosting
 613 diffusion-based editing with 3 lines of code. *arXiv preprint arXiv:2310.01506*, 2023.

614 Ozgur Kara, Bariscan Kurtkaya, Hidir Yesiltepe, James M Rehg, and Pinar Yanardag. Rave: Ran-
 615 domized noise shuffling for fast and consistent video editing with diffusion models. In *Proceed-
 616 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6507–6516,
 617 2024.

618 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 619 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 620 *recognition*, pp. 4401–4410, 2019.

621 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
 622 ing and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on*
 623 *computer vision and pattern recognition*, pp. 8110–8119, 2020.

624 Gyeongman Kim, Hajin Shim, Hyunsu Kim, Yunjey Choi, Junho Kim, and Eunho Yang. Diffu-
 625 sion video autoencoders: Toward temporally consistent face video editing via disentangled video
 626 encoding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 627 nition*, pp. 6091–6100, 2023.

628 Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent
 629 space. *arXiv preprint arXiv:2210.10960*, 2022.

630 Yonghyeon Lee and Frank C Park. On explicit curvature regularization in deep generative models.
 631 In *Topological, Algebraic and Geometric Learning Workshops 2023*, pp. 505–518. PMLR, 2023.

632 Yonghyeon Lee, Seungyeon Kim, Jinwon Choi, and Frank Park. A statistical manifold frame-
 633 work for point cloud data. In *International Conference on Machine Learning*, pp. 12378–12402.
 634 PMLR, 2022.

635 Maomao Li, Lijian Lin, Yunfei Liu, Ye Zhu, and Yu Li. Qffusion: Controllable portrait video editing
 636 via quadrant-grid attention learning. *arXiv preprint arXiv:2501.06438*, 2025.

637 Zhenyi Liao and Zhijie Deng. Lovecon: Text-driven training-free long video editing with controlnet.
 638 *arXiv preprint arXiv:2310.09711*, 2023.

639 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 640 In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.

648 Tianyi Lu, Xing Zhang, Jiaxi Gu, Renjing Pei, Songcen Xu, Xingjun Ma, Hang Xu, and Zuxuan
 649 Wu. Fuse your latents: Video editing with multi-source latent diffusion models. In *Proceedings*
 650 of the 32nd ACM International Conference on Multimedia, pp. 6745–6754, 2024.

651

652 Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. Negative-prompt inversion: Fast
 653 image inversion for editing with text-guided diffusion models. *arXiv preprint arXiv:2305.16807*,
 654 2023.

655 Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. Negative-prompt inversion: Fast
 656 image inversion for editing with text-guided diffusion models. In 2025 IEEE/CVF Winter Con-
 657 ference on Applications of Computer Vision (WACV), pp. 2063–2072. IEEE, 2025.

658

659 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
 660 editing real images using guided diffusion models. In *Proceedings of the IEEE/CVF Conference*
 661 on Computer Vision and Pattern Recognition, pp. 6038–6047, 2023.

662 Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb: a large-scale speaker identifi-
 663 cation dataset. *arXiv preprint arXiv:1706.08612*, 2017.

664

665 Toan Nguyen, Kien Do, Duc Kieu, and Thin Nguyen. h-edit: Effective and flexible diffusion-based
 666 editing via doob’s h-transform. In *Proceedings of the Computer Vision and Pattern Recognition*
 667 Conference, pp. 28490–28501, 2025.

668

669 Hao Ouyang, Qiuyu Wang, Yuxi Xiao, Qingyan Bai, Juntao Zhang, Kecheng Zheng, Xiaowei Zhou,
 670 Qifeng Chen, and Yujun Shen. Codef: Content deformation fields for temporally consistent
 671 video processing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 672 *Recognition*, pp. 8089–8099, 2024.

673

674 Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding the
 675 latent space of diffusion models through the lens of riemannian geometry. *Advances in Neural*
Information Processing Systems, 36:24129–24142, 2023.

676

677 Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-
 678 driven manipulation of stylegan imagery. In *Proceedings of the IEEE/CVF international confer-
 679 ence on computer vision*, pp. 2085–2094, 2021.

680

681 Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Dif-
 682 fusion autoencoders: Toward a meaningful and decodable representation. In *Proceedings of the*
683 IEEE/CVF conference on computer vision and pattern recognition, pp. 10619–10629, 2022.

684

685 Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, and Qifeng
 686 Chen. Fatezero: Fusing attentions for zero-shot text-based video editing. In *Proceedings of the*
687 IEEE/CVF International Conference on Computer Vision, pp. 15932–15942, 2023.

688

689 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 690 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 691 models from natural language supervision. In *International conference on machine learning*, pp.
 692 8748–8763. PMLR, 2021.

693

694 Aditya Ramesh, Youngduck Choi, and Yann LeCun. A spectral regularizer for unsupervised disen-
 695 tanglement. *arXiv preprint arXiv:1812.01161*, 2018.

696

697 Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. Pivotal tuning for latent-based
 698 editing of real images. *ACM Transactions on graphics (TOG)*, 42(1):1–13, 2022.

699

700 A Rossler, D Cozzolino, L Verdoliva, C Riess, J Thies, and M Faceforensics+ Nießner. Learning to
 701 detect manipulated facial images. inproceedings of the ieee. In *CVF International Conference on*
702 Computer Vision, pp. 1–11, 2019.

703

704 Rotem Shalev-Arkushin, Aharon Azulay, Tavi Halperin, Eitan Richardson, Amit H Bermano, and
 705 Ohad Fried. V-lasik: Consistent glasses-removal from videos using synthetic data. *arXiv preprint*
706 arXiv:2406.14510, 2024.

702 Hang Shao, Abhishek Kumar, and P Thomas Fletcher. The riemannian geometry of deep generative
 703 models. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
 704 Workshops, pp. 315–323, 2018.

705

706 Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. In *Proceedings*
 707 of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1532–1540, 2021.

708

709 Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou. Interfacegan: Interpreting the disentan-
 710 gled face representation learned by gans. *IEEE transactions on pattern analysis and machine*
 711 *intelligence*, 44(4):2004–2018, 2020.

712

713 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 714 preprint *arXiv:2010.02502*, 2020.

715

716 Rotem Tzaban, Ron Mokady, Rinon Gal, Amit Bermano, and Daniel Cohen-Or. Stitch it in time:
 717 Gan-based facial editing of real videos. In *SIGGRAPH Asia 2022 Conference Papers*, pp. 1–9,
 718 2022.

719

720 Guangzhi Wang, Tianyi Chen, Kamran Ghasedi, HsiangTao Wu, Tianyu Ding, Chris Nuesmeyer,
 721 Ilya Zharkov, Mohan Kankanhalli, and Luming Liang. S3editor: A sparse semantic-disentangled
 722 self-training framework for face video editing. *arXiv preprint arXiv:2404.08111*, 2024.

723

724 Tengfei Wang, Yong Zhang, Yanbo Fan, Jue Wang, and Qifeng Chen. High-fidelity gan inversion
 725 for image attribute editing. In *Proceedings of the IEEE/CVF conference on computer vision and*
 726 *pattern recognition*, pp. 11379–11388, 2022.

727

728 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 729 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 730 612, 2004.

731

732 Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan Yang. Gan
 733 inversion: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 45(3):
 734 3121–3138, 2022.

735

736 Yiran Xu, Badour AlBahar, and Jia-Bin Huang. Temporally consistent semantic video editing. In
 737 *European Conference on Computer Vision*, pp. 357–374. Springer, 2022.

738

739 Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change Loy. Rerender a video: Zero-shot text-guided
 740 video-to-video translation. In *SIGGRAPH Asia 2023 Conference Papers*, pp. 1–11, 2023.

741

742 Xu Yao, Alasdair Newson, Yann Gousseau, and Pierre Hellier. A latent transformer for disentangled
 743 face editing in images and videos. In *Proceedings of the IEEE/CVF international conference on*
 744 *computer vision*, pp. 13789–13798, 2021.

745

746 Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
 747 energy-guided conditional diffusion model. In *Proceedings of the IEEE/CVF International Con-*
 748 *ference on Computer Vision*, pp. 23174–23184, 2023.

749

750 Fangneng Zhan, Yingchen Yu, Rongliang Wu, Jiahui Zhang, Shijian Lu, Lingjie Liu, Adam Ko-
 751 rtylewski, Christian Theobalt, and Eric Xing. Multimodal image synthesis and editing: A survey
 752 and taxonomy. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023.

753

754 Gang Zhang, Meina Kan, Shiguang Shan, and Xilin Chen. Generative adversarial network with
 755 spatial attention for face attribute editing. In *Proceedings of the European conference on computer*
 756 *vision (ECCV)*, pp. 417–432, 2018a.

757

758 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 759 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 760 pp. 3836–3847, 2023.

761

762 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 763 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 764 *computer vision and pattern recognition*, pp. 586–595, 2018b.

756 Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie Fan. Flow-guided one-shot talking face gen-
757 eration with a high-resolution audio-visual dataset. In *Proceedings of the IEEE/CVF Conference*
758 *on Computer Vision and Pattern Recognition*, pp. 3661–3670, 2021.

759
760 Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe Hao, Lu Yuan, and Kwan-
761 Yee K Wong. Uni-controlnet: All-in-one control to text-to-image diffusion models. *Advances in*
762 *Neural Information Processing Systems*, 36, 2024.

763 Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-domain gan inversion for real image
764 editing. In *European conference on computer vision*, pp. 592–608. Springer, 2020.

765
766 Jiapeng Zhu, Ruili Feng, Yujun Shen, Deli Zhao, Zheng-Jun Zha, Jingren Zhou, and Qifeng Chen.
767 Low-rank subspaces in gans. *Advances in Neural Information Processing Systems*, 34:16648–
768 16658, 2021.

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 The source code and more showcases of our paper can be found at:
 811 https://anonymous.4open.science/r/face_edit-15E1
 812

814 A USE OF LLMs

816 We used LLMs for tasks such as improving grammar, refining phrasing, and ensuring consistency
 817 in language. The core ideas, experimental design, and interpretation of results are solely the work
 818 of the authors. All final content was reviewed and edited by the authors to ensure its accuracy and
 819 originality.

821 B RELATED WORK

824 B.1 LATENT SPACE ANALYSIS

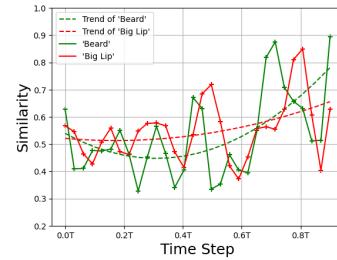
826 The study of latent spaces has gained significant attention in recent years. In the field of Generative
 827 Adversarial Networks (GANs), researchers have proposed various methods to manipulate the latent
 828 space to achieve the desired effect in the generated images (Ramesh et al., 2018; Patashnik et al.,
 829 2021; Abdal et al., 2021; Shen & Zhou, 2021; Härkönen et al., 2020). More recently, several studies
 830 have examined the geometrical properties of latent space in GANs and utilized these findings for
 831 image manipulations (Choi et al., 2021; Zhu et al., 2021). Some studies have applied Riemannian
 832 geometry to analyze the latent spaces of deep generative models (Arvanitidis et al., 2017; 2020;
 833 Chen et al., 2018; Lee & Park, 2023; Lee et al., 2022; Shao et al., 2018). (Shao et al., 2018)
 834 proposed a pullback metric on the latent space from image space Euclidean metric to analyze the
 835 latent space's geometry. This method has been widely used in VAEs and GANs because it only
 836 requires a differentiable map from latent space to image space. And (Park et al., 2023) extend it into
 837 diffusion models (DMs) to investigate the geometry of latent space of DMs to facilitate the image
 838 editing. However, it is challenging for the pullback metric to accurately capture the geometry of
 839 the latent space from the image space, as the image space contains excessive information, making it
 840 difficult to identify the correct directions for editing.

841 C EVALUATION FOR LATENT BASIS

843 By calculating the similarity between the latent basis of the original video and the manipulated video
 844 under a specific editing direction, we can quantify the degree of change introduced during editing.
 845 This similarity metric serves as a guide for the editing process, enabling more precise adjustments
 846 and ultimately improving the overall quality of the edits. In Figure 7, we present the change in
 847 similarity values at different denoising time steps for two editing directions: "Beard" and "Big Lip."

848 As observed, the similarity is higher at larger time steps
 849 and lower at smaller time steps. At larger time steps, in-
 850 creased noise in the latent space causes the original and
 851 edited videos to share similar latent bases. Conversely, at
 852 smaller time steps, reduced noise allows the latent basis
 853 to better capture encoding features, creating greater dis-
 854 tinction between original and edited content.

855 Furthermore, this observation aligns with the under-
 856 standing that the model initially focuses on low-frequency sig-
 857 nals during the early stages of the generative process,
 858 where the similarities between the original and edited
 859 videos are more pronounced. Over time, the model pro-
 860 gressively shifts its attention to high-frequency signals,
 861 which highlight the introduced target attribute and the dif-
 862 ferences between the two videos. This result reinforces
 863 the common view of the coarse-to-fine behavior exhibited
 by diffusion models throughout the generative process (Kim et al., 2023).



864 Figure 7: The similarity between the la-
 865 tent basis of the original video and the
 866 manipulated video evolves as the de-
 867 noising progresses.

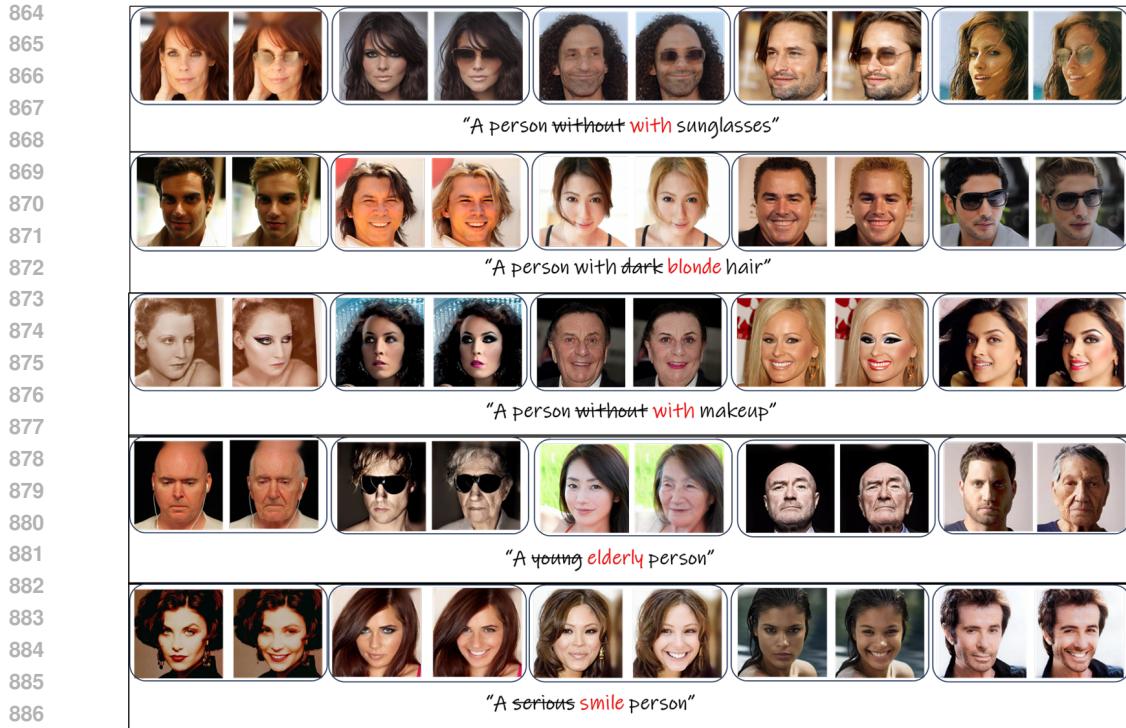


Figure 8: The editing sample visualization of our methods with different editing instructions.

D DEEPFAKE DETECTION ANALYSIS

To assess the detectability of videos edited by our method and baseline approaches, we conduct experiments using the state-of-the-art deepfake detection model from FaceForensics++ Rossler et al. (2019). Understanding the detectability of edited content is important for responsible AI development and helps identify potential misuse scenarios.

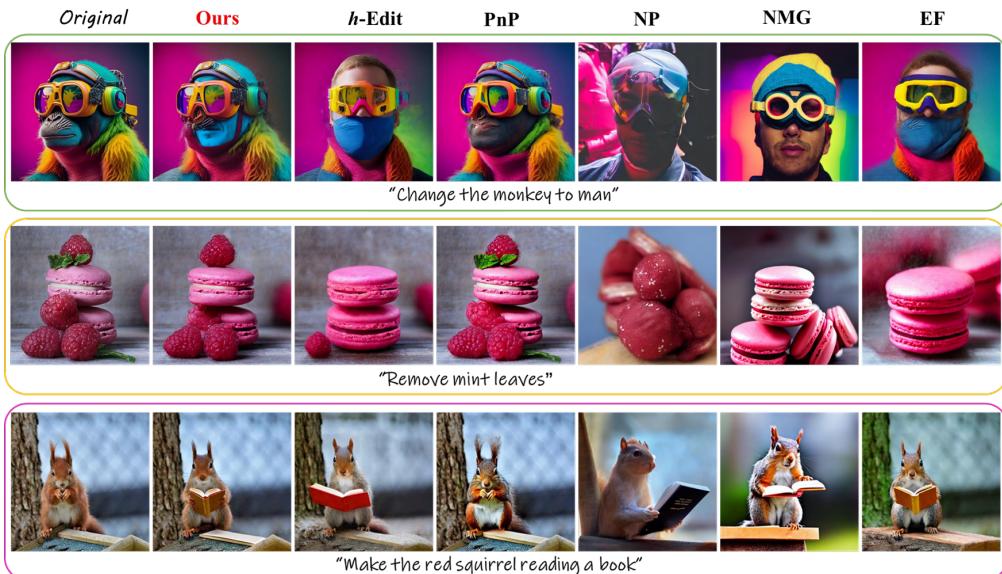
Table 4: Deepfake detection rates using FaceForensics++ detector on both image and video editing methods. Higher detection rates indicate easier identification of manipulated content. Lower rates suggest more natural-looking edits.

Image Editing Methods			
Method	Type	Detection Rate (%)	Naturalness
Ours	Diffusion	78.0	Most Natural
h-edit Nguyen et al. (2025)	Diffusion	79.5	High
PnP Ju et al. (2023)	Diffusion	81.0	Moderate
EF Huberman et al. (2024)	Diffusion	82.1	Low
Video Editing Methods			
Method	Type	Detection Rate (%)	Naturalness
Ours	Diffusion	72.5	Most Natural
STIT Tzaban et al. (2022)	GAN	85.5	High
DVA Kim et al. (2023)	Diffusion	91.5	Moderate
Latent-trans Yao et al. (2021)	Transformer	99.5	Low

As shown in Table 4, our method consistently achieves the lowest detection rates in both image and video editing tasks. For image editing, our method achieves a detection rate of 78.0%, outperforming h-edit (79.5%), PnP (81.0%), and EF (82.1%). For video editing, our method achieves 72.5%, significantly lower than baseline methods (85.5%-99.5%).

918 These results suggest that our edited content produces more natural-looking results that are harder
 919 to detect as manipulated media. We hypothesize that this is due to: (1) our method’s superior
 920 preservation of temporal consistency in videos and natural facial dynamics throughout the sequence,
 921 and (2) better semantic coherence in edited regions that maintains the statistical distribution of real
 922 content. The lower detection rates in video editing (72.5%) compared to image editing (78.0%)
 923 demonstrate that our temporal modeling provides additional naturalness that is harder for detectors
 924 to identify.

926 E FACE IMAGE EDITING EXPERIMENT



949 Figure 9: The editing results of different method on the task “*change object*” (the first row and the
 950 second row) and “*add object*” (the third row).

953 E.1 EXPERIMENT SETTING

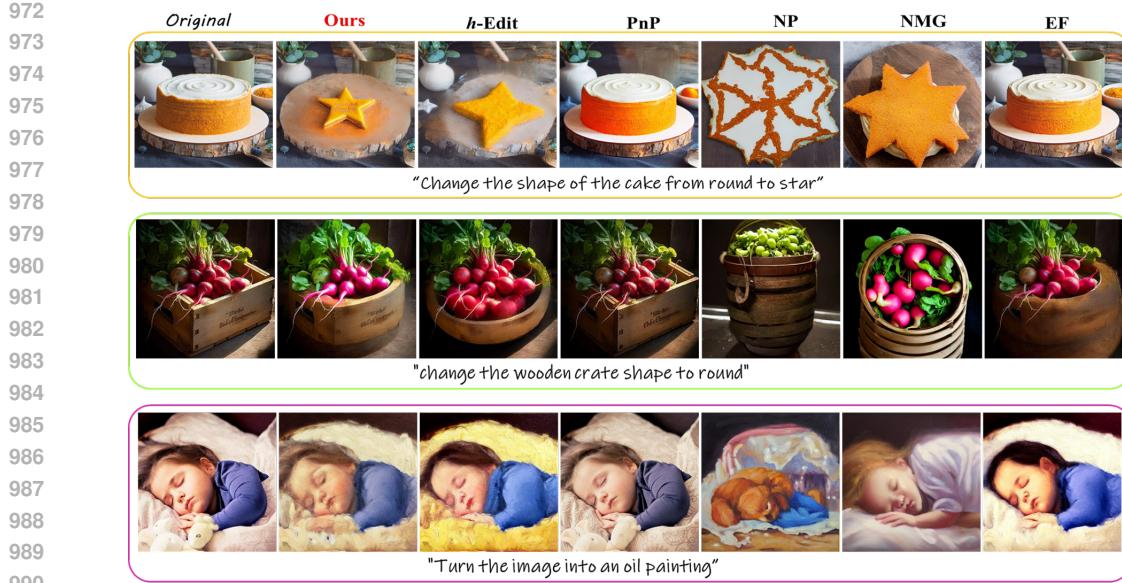
955 **Implementation Details:** For all face image editing experiments, we use the pre-trained Stable
 956 Diffusion v1.4 as our base model. We employ DDIM inversion for the encoding process, with both
 957 the inversion and denoising sampling steps set to 50.

958 A key aspect of our method is the use of distinct conditions for the inversion and denoising stages.
 959 For the initial DDIM inversion, both the reconstruction and editing paths use the same condition,
 960 $c_{org} = c_{edit}$, which corresponds to the source prompt (e.g., “a person with long hair”) as defined in
 961 Appendix E.3. This ensures that both processes start from an identical noisy latent, X_T .

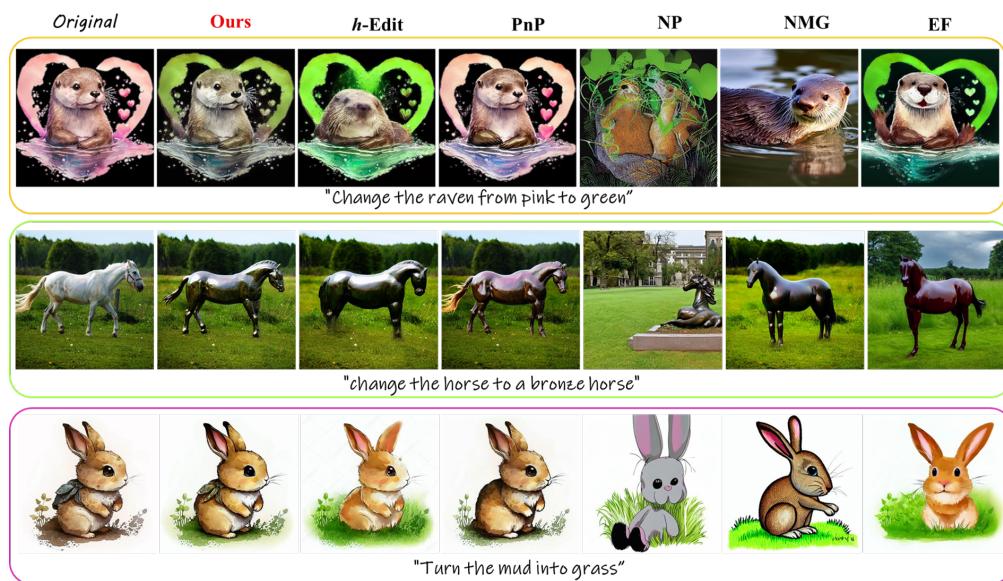
962 During the denoising phase, the conditions diverge to enable guided editing. The reconstruction
 963 path uses the original condition C^r (derived from the source prompt), while the editing path uses
 964 the target condition C^e (derived from the target prompt, e.g., “a person with short hair”). This setup
 965 allows our guidance mechanism to measure and control the semantic changes between the two paths.
 966 All experiments were conducted on a single NVIDIA RTX 4090 GPU.

967 **Implementation of Baseline Methods:** We use the following baseline methods for face image
 968 editing tasks, and all the baseline methods are implemented using the same base model and inversion
 969 process, the hyper-parameters are set to the same as the original paper:

- 971 • **h-Edit (Nguyen et al., 2025):** A hierarchical editing framework that decomposes the editing
 972 process into multiple semantic levels for more granular control over different attributes.



991 Figure 10: The editing results of different method on the task “*change attribute content*” (the first
992 row), “*change attribute pose*” (the second row) and “*change style*” (the third row).



1001 Figure 11: The editing results of different method on the task “*change attribute color*” (the first
1002 row), “*change attribute material*” (the second row) and “*change background*” (the third row).

- 1017 • **PnP Inversion (Ju et al., 2023):** A plug-and-play method that avoids costly optimization
1018 by injecting features from the original input directly into the denoising process to guide the
1019 generation.
- 1020 • **Noise Map Guidance (NMG) (Cho et al., 2024):** Leverages the structure of noise maps
1021 from the inversion process to guide the denoising steps, aiming to better preserve fine de-
1022 tails and image structure.
- 1023 • **Negative Prompt Inversion (NPI) (Miyake et al., 2023):** An efficient optimization-free
1024 method that uses the original text prompt embedding to approximate the null-text embed-
1025 ding, speeding up the inversion process.

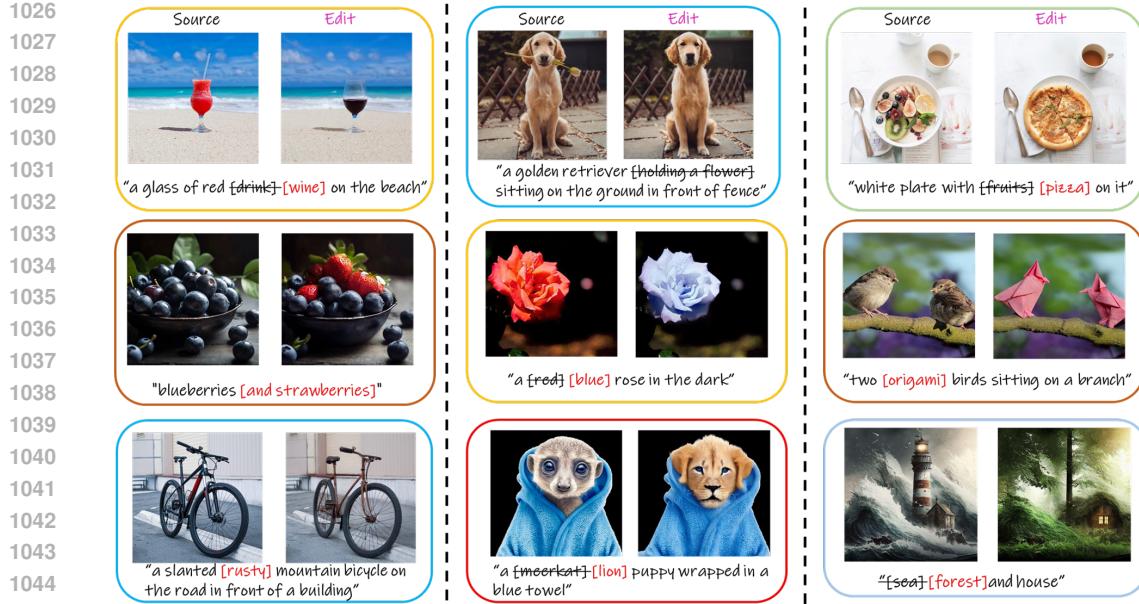


Figure 12: The editing results of our method on PIE benchmark.

- **Edit Friendly (EF) (Huberman et al., 2024):** A technique that employs random inversion rather than deterministic inversion, achieving high-quality reconstruction without needing attention map modifications.

E.2 INVERSION PROCESS FOR IMAGE EDITING

We use the DDIM inversion process to invert the original image into the latent space for face image editing tasks. DDIM inversion is a deterministic process designed to find a noise latent X_T that, when used as the starting point for the standard DDIM denoising process, reconstructs the original input image X_0 with high fidelity. This allows for the manipulation of real images by first inverting them into the latent space and then denoising them with a modified text prompt or condition.

The inversion process is iterative, progressively adding noise to the input image X_0 over T timesteps. Starting with X_0 (the clean image), for each step t from 1 to T , we calculate the next latent X_t based on the previous latent X_{t-1} . The core of the process relies on using the pre-trained noise prediction network ϵ_θ to estimate the noise that would have been present at step $t-1$, and then using this estimate to project forward to step t .

The update rule for each step of the DDIM inversion is as follows:

$$X_t = \sqrt{\frac{\bar{\alpha}_t}{\bar{\alpha}_{t-1}}} X_{t-1} + \left(\sqrt{1 - \bar{\alpha}_t} - \sqrt{\frac{\bar{\alpha}_t(1 - \bar{\alpha}_{t-1})}{\bar{\alpha}_{t-1}}} \right) \cdot \epsilon_\theta(X_{t-1}, t-1, c_{org}) \quad (7)$$

where:

- X_{t-1} is the latent from the previous step (with X_0 being the initial image).
- $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$ is the cumulative product of the noise schedule coefficients $\alpha_i = 1 - \beta_i$.
- $\epsilon_\theta(X_{t-1}, t-1, c_{org})$ is the noise predicted by the UNet model for the latent X_{t-1} at timestep $t-1$, under the original condition c_{org} .

By iteratively applying this equation from $t = 1$ to T , we obtain a trajectory of latents $\{X_1, X_2, \dots, X_T\}$. The final latent, X_T^r , serves as the encoded representation of the original image. For editing, this latent is then used as the starting point for the denoising process, but guided by a new target condition c_{edit} to generate the manipulated image.

1080
1081

E.3 CONSTRUCTING FACE IMAGE EDITING PROMPTS

1082
1083
1084
1085
1086

To systematically evaluate the performance of our face image editing framework, we constructed a standardized set of editing prompts. Each prompt is designed to test a specific, common facial attribute modification. The construction process for each data point follows a consistent structure, including a source prompt that describes the original image and a target prompt that describes the desired edited outcome.

1087
1088

For each editing task, we define the following components:

1089
1090
1091

- **Source Prompt:** A brief textual description of the initial state of the attribute in the source image (e.g., "a person without sunglasses," "a person with long hair"). This prompt is used to generate the original condition, c_{org} .
- **Target Prompt:** A corresponding textual description of the desired state of the attribute after editing (e.g., "a person with sunglasses," "a person with short hair"). This prompt is used to generate the target condition, c_{edit} .
- **Editing Instruction:** A clear, human-readable instruction that specifies the transformation to be performed (e.g., "Add sunglasses to the person's face," "Change the hair length from long to short").

1092
1093
1094

We curated a diverse set of common face editing tasks to ensure comprehensive evaluation. The primary editing axes we considered include:

1101
1102
1103
1104
1105
1106
1107

- **Accessories:** Adding or removing items like sunglasses.
- **Hairstyle:** Modifying hair length or color (e.g., long to short, dark to blonde).
- **Age:** Changing the perceived age of the person (e.g., young to elderly).
- **Makeup:** Applying or removing makeup.
- **Expression:** Altering facial expressions (e.g., serious to smiling).

1108
1109
1110
1111

This structured approach to prompt construction allows for consistent and reproducible experiments, ensuring that all baseline methods are evaluated under the same conditions and that the performance of our model can be fairly assessed across a range of common and important face editing scenarios.

1112
1113

E.4 ADDITIONAL VISUALIZATION OF FACE IMAGE EDITING

1114
1115
1116

We provide additional visualization of face image editing results in Figure 8. It can be seen that our method can successfully edit the face image, and the editing results are natural and realistic.

1117
1118
1119

E.5 PIE BENCHMARK RESULTS

E.5.1 MAIN RESULTS

1120
1121
1122
1123
1124
1125
1126

The quantitative results on the PIE benchmark, summarized in Table 5, highlight the efficacy of our proposed method. A key observation across the baselines is the inherent trade-off between edit conformance and fidelity to the original image. For instance, methods such as PnP Inversion demonstrate strong performance in consistency metrics (DINO Dist, MSE Dist), indicating minimal deviation from the source image, but this comes at the cost of lower alignment with the target prompt (CLIP Sim). Conversely, methods like EF and NMG achieve high CLIP similarity by making more aggressive edits, which compromises image quality (PSNR, LPIPS) and consistency.

1127
1128
1129
1130
1131
1132
1133

In contrast, our FlowGuide strikes a more effective balance across these competing objectives. It achieves the second-best performance on average across all quality and consistency metrics, surpassed only by the highly conservative PnP Inversion, while simultaneously maintaining a competitive CLIP Similarity score. This suggests that our geometrically-grounded guidance mechanism is not merely preserving the original image, but is enabling precise, targeted edits. By confining modifications to the intended semantic regions, our method preserves the overall fidelity and structure of the source image without sacrificing the desired semantic change, thereby achieving a superior position on the fidelity-conformance trade-off curve.

1134
1135
1136 Table 5: The text-guided image editing performance of different editing methods.
1137
1138
1139
1140
1141

Method	Edited Image Quality			Edited Performance		Consistency	
	PSNR (\uparrow)	LPIPS (\downarrow)	SSIM (\uparrow)	CLIP Sim (\uparrow)	Local CLIP (\uparrow)	DINO Dist (\downarrow)	MSE Dist (\downarrow)
EF Huberman et al. (2024)	17.624	0.1771	0.7306	27.127	0.1520	0.0661	0.0229
NMG Cho et al. (2024)	14.075	0.3189	0.6063	27.053	0.1563	0.1257	0.0492
NP Miyake et al. (2025)	14.510	0.3262	0.6028	24.182	0.1968	0.1266	0.0446
h>Edit Nguyen et al. (2025)	19.657	0.1397	0.7711	26.815	0.1878	0.0536	0.0156
FlowGuide	22.021	0.1006	0.8047	26.422	0.1754	0.0349	0.0091

1142
1143 E.5.2 VISUALIZATION1144
1145 **Comparison Results Visualization:** We present the comparison of editing results of different
1146 method on the all eight tasks in PIE benchmark. As shown in Figure 9, Figure 10 and Figure 11,
1147 our method achieves the best performance on all the tasks. In Figure 9, “change object” and “add
1148 object” are included. In Figure 10, “change attribute content”, “change attribute pose” and “change
1149 style” are included. In Figure 11, “change attribute color”, “change attribute material” and “change
1150 background” are included. We can see that our method can successfully edit the object in the image,
1151 and the editing results are more natural and realistic than the baseline methods.1152
1153 **Visualization of Our Method:** We provide additional visualization results of our method on PIE
1154 benchmark. As shown in Figure 12, our method can successfully edit the object in the image, and
1155 the editing results are more natural and realistic than the baseline methods.

1156 F FACE VIDEO EDITING EXPERIMENT

1157 F.1 INVERSION FOR VIDEO EDITING

1158
1159 To encode the conditions related to the target attribute into the
1160 video, we first obtain the embedding for the original frames
1161 using a pre-trained condition generator, denoted as \mathcal{E}_c : $c_{org} =$
1162 $\mathcal{E}_c(X)$. Next, we utilize a pre-trained encoder \mathcal{E}_e to jointly
1163 encode the video frames and the associated embedding into
1164 conditions (the process of obtaining c_{edit} can refer to Ap-
1165 pendix F.4), which are then used as conditions during the
1166 denoising process:
1167

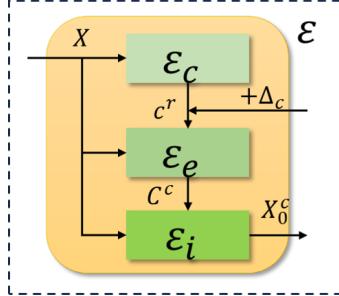
$$\mathcal{C}^r = \mathcal{E}_e(X, c_{org}), \mathcal{C}^c = \mathcal{E}_e(X, c_{org} + c_{edit}) \quad (8)$$

1168
1169 where \mathcal{C}^r and \mathcal{C}^c are utilized as conditions for the denoising
1170 of the original and manipulated frames, respectively. And the
1171 input representations at time step $t = 0$ are derived using a
1172 frozen input encoder \mathcal{E}_i : $X_0^r = \mathcal{E}_i(X, \mathcal{C}^r)$ and $X_0^c = \mathcal{E}_i(X, \mathcal{C}^c)$, X_0^r
1173 represents the original input representation and X_0^c serves as the conditional input representation for manipulation.1174 After obtaining the encoded input representations X_0^r , X_0^c , the forward diffusion can be applied:

$$q(X_t^r | X_0^r) = \mathcal{N}(X_t^r; \sqrt{\alpha_t} X_0^r, (1 - \alpha_t) \epsilon_t^r), \epsilon_t^r = \mathcal{F}_\theta(X_0^r, t, \mathcal{C}^r) \quad (9)$$

1176
1177 where \mathcal{F}_θ denotes a pre-trained noise estimator, and X_t^r represents the noisy representation at
1178 diffusion step t . The parameter α_t controls the noise scale at step t . Through this process, X_T^r is
1179 generated by the forward diffusion process. Similarly, the forward diffusion process is applied to
1180 X_0^c to obtain X_T^c .

1181 F.2 EXPERIMENT SETTINGS

1182
1183 **Implementation details.** FlowGuide uses a diffusion autoencoder with a UNet as the noise esti-
1184 mator. To enhance the model’s ability to reconstruct the background in face videos, we fine-tune the
1185 pre-trained diffusion autoencoder from (Kim et al., 2023) on the HDTF dataset (the details of fine-
1186 tuning the diffusion autoencoder can refer to Appendix F.5). Note that during the editing process,
1187 the pre-trained diffusion autoencoder model remains frozen. We use the DDIM sampler, setting the
1188 the reverse time step and the inference time step to 50. The batch size for inference is set to 1, and all1189
1190 Figure 13: The architecture of en-
1191 coder \mathcal{E} , consists of \mathcal{E}_c , \mathcal{E}_e and \mathcal{E}_i .

1188 inference is performed on 4 RTX4090 GPUs. For face video editing, we didn't use the edit friendly
 1189 guidance, the consistency is realized solely by our method solely. We report the inference time of
 1190 our method and the baseline methods in Appendix F.6.

1191 **Implementation of Baselines.** We select several state-of-the-art methods for comparison: the
 1192 diffusion-based editing method DVA Kim et al. (2023) and the transformer-based method Latent-
 1193 trans Yao et al. (2021). For GAN-based methods, we include STIT Tzaban et al. (2022), TCSVE Xu
 1194 et al. (2022), PTI Roich et al. (2022), and StyleCLIP Patashnik et al. (2021).

1195 It is important to emphasize that, for a fair evaluation of reconstruction capabilities, all methods
 1196 only use the original videos as input. None of the methods have access to the original videos during
 1197 the output generation phase, ensuring that the reconstruction quality reflects the true performance of
 1198 each editing approach without reliance on the input data.

- 1200 • DVA Kim et al. (2023): For the implementation of DVA, we use their CLIP-based editing
 1201 method, and the editing scale α is set to 0.25 as recommended in their paper, and the input
 1202 texts of the CLIP-based editing method are “Face” and “Face with *” for original video and
 1203 the target manipulated video, other experiment settings are used the default settings.
- 1204 • TSCVE Xu et al. (2022) We use the default settings as recommended, and the frames of the
 1205 videos are resized to 512. We also use the output frames directly, without blending them
 1206 into the original video frames.
- 1207 • Latent-trans Yao et al. (2021): For the implementation of Latent-trans, we set the scaling
 1208 factor α as 1.5 and the other settings are kept as recommended. And we use the output
 1209 frames directly, the output frames are not blended with the original input frames.
- 1210 • STIT Tzaban et al. (2022): We run edits with stitching tuning, and the edit ranges is set to
 1211 10101, the parameter β is set to 0.2 and the *outer_mask_dilation* is set to 50. Other settings
 1212 are kept as recommended. The output frames are used directly as well.
- 1213 • PTI Roich et al. (2022): We use the default settings as recommended, and the frames of the
 1214 videos are resized to 1024. We also use the output frames directly, without blending them
 1215 into the original video frames.
- 1216 • StyleCLIP Patashnik et al. (2021): We train the mappers of input videos with the default
 1217 settings and use the attributes as the descriptions. Then we use the default settings to edit
 1218 the videos and the output frames are used directly.

1221 F.3 RECONSTRUCTION EVALUATION

1222 For video editing tasks, it is essential that the model can accurately reconstruct the original video
 1223 from its encoded representation. To achieve this, we fine-tune the pre-trained diffusion autoencoder
 1224 to enhance its ability to accurately reconstruct both the background and human face. We evaluate the
 1225 reconstruction performance of FlowGuide against all baseline methods on the HDTF and VoxCeleb
 1226 datasets, with the results reported in Table 6.

1227 Table 6: The reconstruction performance of our FlowGuide and baselines on HDTF and Voxceleb
 1228 datasets. The reported values are the mean of the averaged per-frame measurements for each video.

1231 Method	1232 HDTF				1233 VoxCeleb			
	1234 SSIM (\uparrow)	1235 LPIPS (\downarrow)	1236 MSE (\downarrow)	1237 FID (\downarrow)	1238 SSIM (\uparrow)	1239 LPIPS (\downarrow)	1240 MSE (\downarrow)	1241 FID (\downarrow)
1233 StyleCLIP	0.6653	0.1984	0.0125	136.52	0.4830	0.3028	0.0183	233.60
1234 STIT	0.5202	0.3978	0.0617	244.60	0.6669	0.2769	0.0513	179.27
1235 PTI	0.6347	0.2476	0.0256	168.12	0.4737	0.3434	0.0337	227.43
1236 Latent-trans	0.7035	0.1571	0.0068	137.70	0.6017	0.2208	0.0076	217.96
1237 DVA	0.9448	0.0584	0.0003	33.531	0.9696	0.0130	0.0006	44.458
1238 FlowGuide	0.9715	0.0108	0.0001	23.432	0.9779	0.0095	0.0004	24.840

1239 Table 6 clearly demonstrates that our method achieves significantly better reconstruction performance
 1240 compared to baseline methods on both the HDTF and VoxCeleb datasets. This highlights
 1241 the superior ability of our model to faithfully reconstruct fine details in both the background and

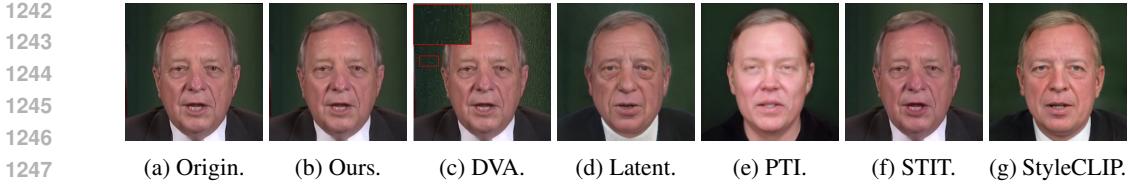


Figure 14: The comparison of the images reconstructed by our FlowGuide and five baseline methods with the original input image.

1251
1252
1253
1254
1255
1256
1257
1258
1259

human face, underscoring its robustness and generalizability. We further provide a visual comparison of the reconstruction performance across different methods in Figure 14. It can be seen from Figure 14 that baseline methods struggle to either preserve the identity of the characters or retain the background features. In contrast, our FlowGuide shows clear superiority in reconstructing the face videos, delivering more accurate restoration of both facial identity and background details. This enhanced reconstruction ability makes FlowGuide particularly effective for tasks where maintaining consistency between the original content and the edited results is crucial, highlighting its robustness in video manipulation.

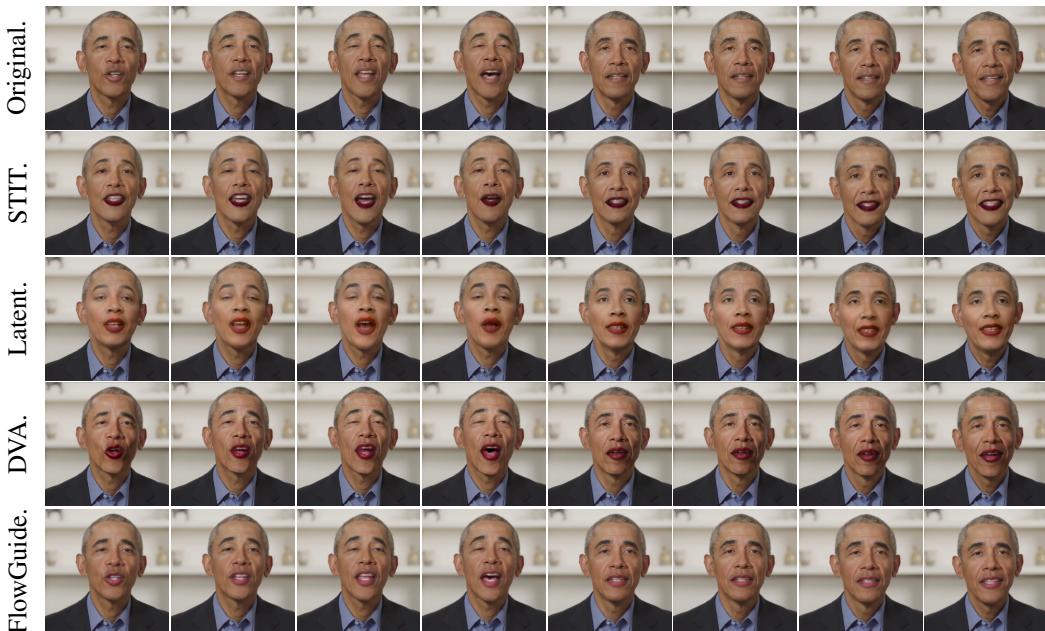


Figure 15: Comparison of editing performance of our FlowGuide to the previous video editing methods for editing direction ‘Libstick’.

F.4 OBTAIN CONDITION

1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

To edit videos using diffusion-based models, the editing directions must first be mapped into conditions. We achieve this by leveraging the pre-trained CLIP model Radford et al. (2021) to encode the editing directions. We denote original condition as \mathcal{C}^r (see Equation 8), and represent the input with this original condition as X_0^r . The forward diffusion process is then applied to X_0^r over the diffusion steps \hat{T} .

1290
1291
1292
1293
1294
1295

Next, the target conditions are initialized as $\hat{\mathcal{C}}^c = \mathcal{C}^r$. These target conditions are iteratively updated until the final conditions are obtained. At each diffusion step $t \in \hat{T}$, we compute the input \hat{X}_t^c using the equation $\hat{X}_t^c = \mathcal{E}_i(X_t^0, \hat{\mathcal{C}}^c)$, ensuring that the editing directions are accurately incorporated into the denoising process.

The source text for X_0^r is “face,” and the target text is “face with δ ,” where δ represents the target attribute. We use I to denote the source text and I_δ to denote the target text. To quantify the differ-

ence between the source and target conditions, we utilize the CLIP loss function \mathcal{L}_{clip} from Radford et al. (2021) to compute the loss. The loss function is formulated as:

$$\mathcal{L}_1 = \sum_{t=0}^{\hat{T}} \mathcal{L}_{clip}(I, X_t^r, I_\delta, \hat{X}_t^c) \quad (10)$$

This loss helps guide the model toward generating video frames that align with the target attributes defined by δ .

Then to keep the consistency of the background information of the reconstructed frames under the target conditions with the original video frames, another loss function is used:

$$\mathcal{L}_2 = \frac{1}{\hat{T}} \sum_{t=0}^{\hat{T}} (X_t^r, \hat{X}_t^c) \quad (11)$$

and to control the updated conditions don't vary too much:

$$\mathcal{L}_3 = 1 - \frac{\mathcal{C}^r \hat{\mathcal{C}}^c}{\|\mathcal{C}^r\| \|\hat{\mathcal{C}}^c\|} \quad (12)$$

then the optimization object can be obtained as:

$$\mathcal{L} = w_1 \mathcal{L}_1 + w_2 \mathcal{L}_2 + w_3 \mathcal{L}_3 \quad (13)$$

where w_1, w_2, w_3 are constants. And through minimizing \mathcal{L} until convergence, we could get the trained conditions $c_{edit} = \mathcal{C}^r - \hat{\mathcal{C}}^c$.

Settings for Obtaining Conditions

In this paper, we use the pre-trained CLIP model, specifically the ViT-B/32 version. The weights w_1, w_2, w_3 are set to 5, 1, and 3, respectively, and the forward time step \hat{T} is set to 5. The learning rate is set to 0.002, with a batch size of 1 during training. The number of updating steps is fixed at 1000.

F.5 FINETUNE DIFFUSION AUTOENCODER

We finetune the pre-trained diffusion autoencoder from Kim et al. (2023) on the HDTF dataset. The loss function used for finetuning consists of two components. The first component is the standard DDIM (Denoising Diffusion Implicit Models) loss function, represented as:

$$\mathcal{L}_{ddim} = \mathbb{E}_{\epsilon_t \sim \mathcal{N}(0, I)} \|\epsilon_t^r - \epsilon_t\|_1 \quad (14)$$

where ϵ_t^r can refer to Equation 9 and ϵ_t is the true noise, $t \in T$. This loss is minimized to ensure accurate denoising and reconstruction during the finetuning process.

To enhance the robustness of the model to noise, we sample images given the time step with two different noise realizations, denoted as ϵ_1 and ϵ_2 , where $\epsilon_1, \epsilon_2 \sim \mathcal{N}(0, 1)$. The sampled images are represented as \hat{X}_t^1 and \hat{X}_t^2 .

The loss function for this sampling process can be formulated as follows:

$$\mathcal{L}_{reg} = \mathbb{E}_{\epsilon_1, \epsilon_2 \sim \mathcal{N}(0, 1)} \|\hat{X}_t^1 - \hat{X}_t^2\|_1 \quad (15)$$

This loss encourages the model to accurately predict the noise for both sampled images, thereby improving its robustness against variations in noise during the denoising process.

The final optimization objective for finetuning the diffusion autoencoder is $\mathcal{L} = \mathcal{L}_{ddim} - \mathcal{L}_{reg}$

Settings for Finetuning the Diffusion Autoencoder

We finetune the diffusion model on HDTF dataset. The learning rate is set to 1e-4 and the dropout is set to 0.1, and we sample from each videos 16 frames during each training step. The batchsize is set to 16, the total training steps is set to 120000. And we set the seed to 0, the diffusion step $T = 1000$. The experiment is performed on 4 RTX4090 GPUs.

1350
1351

F.6 COMPUTATIONAL EFFICIENCY

1352
1353
1354
1355
1356

o demonstrate the efficiency of our proposed method, we compare the inference time of editing one frame with the baseline methods. The results are shown in Table 7. Since that the GANs based methods only need one forward pass to generate the video, we only compare the inference time of our method and STIT and DVA. It can be seen that our method is more efficient than the baseline methods.

1357
1358

Table 7: The inference time of our method and the baseline methods.

1359
1360
1361
1362

	STIT	DVA	FlowGuide
Infer Time	12.0 sec	62.4 sec	4.94 sec

1363

F.7 ADDITIONAL RESULTS

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373

Multiple Editing Direction We provide more manipulation results of a single video across multiple editing directions in Figure 16 and Figure 17. Our approach excels at handling highly intricate background details and dynamic scenes that include substantial head movements and speech—scenarios that typically challenge existing state-of-the-art methods. Furthermore, our method adeptly retains the stylistic elements of the original video, ensuring that the edited output blends seamlessly with the untouched portions. This results in an exceptionally natural appearance, with virtually no visible traces of editing. The ability to maintain such coherence across different editing tasks underscores the robustness and adaptability of our approach.

1374
1375

F.8 CROSS-SUBJECT EDITING

We claim that the obtained condition c_{edit} can be used to edit the video of different subjects. To verify this claim, we further evaluate the cross-subject editing capabilities of our proposed method. As shown in Figure 18, we can edit the video of different subjects with the same condition c_{edit} .

1379
1380

F.9 MORE COMPARISON RESULTS

1381
1382
1383
1384

We provide more visualization results of our method and the baseline methods with editing direction “Mustache” in Figure 19. It can be seen that our method can handle the complex background and dynamic scene, and the edited output can blend seamlessly with the untouched portions.

1385
1386

F.10 NON PASTE-BACK VISUALIZATION

1387
1388
1389
1390
1391

To evaluate the performance of our method and baselines more thoroughly, we provide the visualization results of our method and the baseline methods in Figure 21 with editing direction “Smile” without paste-back the editing results to the original video. It can be seen that our method can handle the complex background and dynamic scene, and the edited output can blend seamlessly with the untouched portions.

1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 16: Manipulation results of our FlowGuide on a single video with different editing directions: "Beard" and "Big Lip", "Eyeglasses", "smile", "Young", "makeup" and "wearing Lipstick".

1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 17: Manipulation results of our FlowGuide on a single video with two different editing directions: "Beard" and "Big Lip", "Hair Color", "smile", "Young", "makeup" and "wearing Lipstick"..

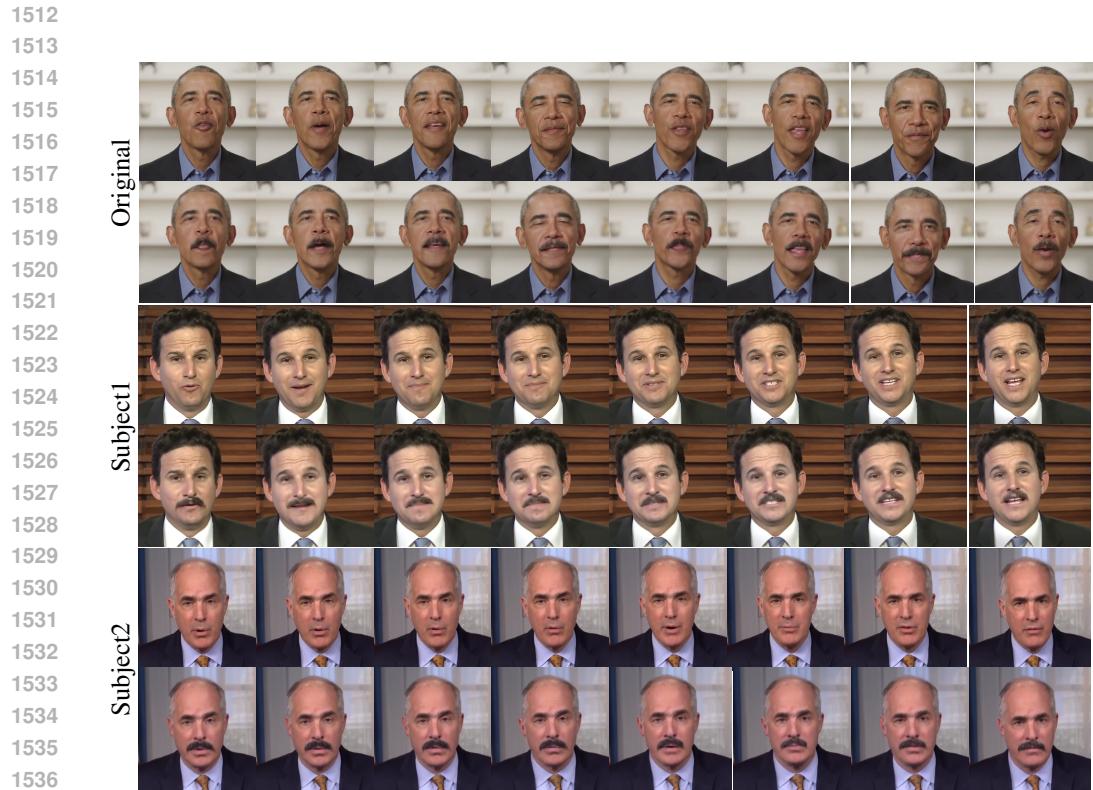


Figure 18: The cross-subject editing results of our method.

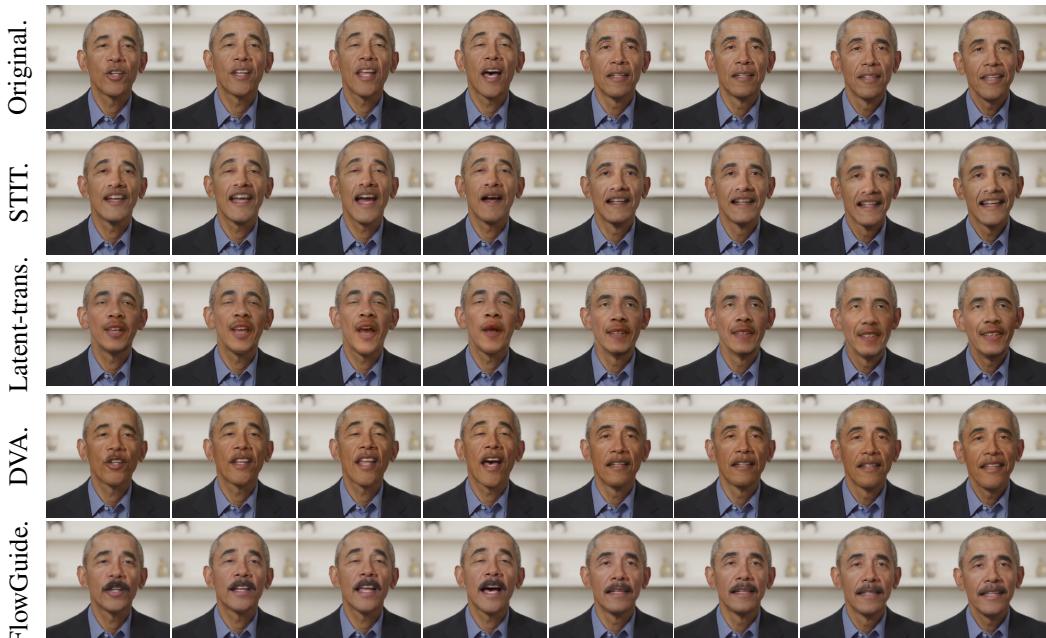


Figure 19: Comparison of editing performance of our FlowGuide to the previous video editing methods for editing direction ‘Mustache’.

Figure 20: Comparison of editing performance of our FlowGuide to the previous video editing methods for editing direction ‘Libstick’.

Figure 21: Comparison of editing performance of our FlowGuide to the previous video editing methods for editing direction ‘Smile’.