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ABSTRACT

Preserving identity while precisely manipulating attributes is a central challenge
in face editing for both images and videos. Existing methods often introduce vi-
sual artifacts or fail to maintain temporal consistency. We present FlowGuide,
a unified framework that achieves fine-grained control over face editing in diffu-
sion models. Our approach is founded on the local linearity of the UNet bottle-
neck’s latent space, which allows us to treat semantic attributes as corresponding
to specific linear subspaces, providing a mathematically sound basis for disen-
tanglement. FlowGuide first identifies a set of orthogonal basis vectors that span
these semantic subspaces for both the original content and the target edit, a rep-
resentation that efficiently captures the most salient features of each. We then
introduce a novel guidance mechanism that quantifies the geometric alignment
between these bases to dynamically steer the denoising trajectory at each step.
This approach offers superior control by ensuring edits are confined to the desired
attribute’s semantic axis while preserving orthogonal components related to iden-
tity. Extensive experiments demonstrate that FlowGuide achieves state-of-the-art
performance, producing high-quality edits with superior identity preservation and
temporal coherence.

1 INTRODUCTION

Face attribute editing has emerged as an essential task in computer vision, with applications ranging
from film production to virtual reality, social media content, and digital avatars (Zhan et al., 2023;
Kim et al., 2023; Yao et al., 2021; Zhang et al., 2018a; Zhu et al., 2020). This task encompasses
both face image editing (FIE) and face video editing (FVE), each presenting unique challenges.
FIE demands precise attribute manipulation while preserving identity and avoiding unintended ar-
tifacts (Shen et al., 2020; Wang et al., 2022). FVE inherits these challenges but adds the critical
requirement of temporal consistency across frames (Wang et al., 2024; Ceylan et al., 2023). Current
methods often struggle to satisfy all these constraints simultaneously. To address this, we propose a
unified, pixel-level solution for both FIE and FVE that enhances editing precision while maintaining
identity and temporal coherence.

Early approaches to face editing predominantly relied on GAN-based methods (Tzaban et al., 2022;
Patashnik et al., 2021; Karras et al., 2019; Shen et al., 2020), which utilize pre-trained StyleGAN
models and GAN inversion techniques (Karras et al., 2020; Xia et al., 2022). These methods map
input images or video frames into a latent space where edits can be applied. However, the quality of
edits heavily depends on the accuracy of GAN inversion, which often struggles to faithfully recon-
struct the original input, leading to identity loss and editing artifacts (Preechakul et al., 2022). For
video editing, GAN-based methods face additional challenges in maintaining temporal coherence,
often resulting in flickering or inconsistent edits across frames.

Recent advances in diffusion models have shown superior performance in face editing tasks (Batifol
et al., 2025; Kim et al., 2023; Preechakul et al., 2022; Zhang et al., 2023; Croitoru et al., 2023).
These methods perform editing as a conditional generation process, where target attributes are pro-
gressively introduced during the denoising steps. While diffusion models offer better reconstruction
quality and more stable generation compared to GANs, they still lack precise control over the editing
process (Zhao et al., 2024; Yu et al., 2023). Without proper constraints, introducing target attributes
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can inadvertently affect other facial features, identity, or background elements—a problem that be-
comes particularly pronounced in video editing where such errors accumulate across frames.

To address these limitations, we propose FlowGuide, a unified framework that achieves precise face
editing by introducing a novel guidance mechanism operating within the diffusion model’s latent
space. Our approach is founded on the local linearity of the UNet bottleneck’s latent space (Park
et al., 2023; Kwon et al., 2022), which allows us to treat semantic attributes as corresponding to
specific linear subspaces. To disentangle identity from attributes, our Latent Basis Extraction (LBE)
module first identifies a set of orthogonal basis vectors that span these key semantic directions for
both original and edited content. The core of our method is an Implicit Basis Guidance (IBG) mech-
anism that quantifies the semantic change by measuring the geometric alignment between these two
sets of basis vectors. This alignment score informs a corrective update to the predicted noise at each
denoising step, effectively steering the generation trajectory along the desired attribute’s semantic
axis while preserving components orthogonal to it, which correspond to identity and other preserved
features. This ensures precise, localized edits for images and naturally extends to temporally coher-
ent modifications for videos.

We summarize the contributions of our proposed method as follows:

• We propose FlowGuide, a unified framework for face image and video editing that intro-
duces a novel guidance mechanism to achieve precise attribute control in diffusion models.

• We treat semantic attributes as linear subspaces within the UNet bottleneck’s latent space,
designing a Latent Basis Extraction (LBE) module to identify orthogonal basis vectors that
span these subspaces to isolate the identity from the attributes in the latent space.

• We introduce an Implicit Basis Guidance (IBG) mechanism that computes the geometric
alignment between these bases to dynamically steer the denoising trajectory, which con-
fines edits to the target attribute’s semantic axis while preserving the identity.

• Extensive experiments demonstrate that FlowGuide achieves state-of-the-art editing qual-
ity, with superior identity preservation, attribute modification, and temporal coherence.

2 RELATED WORK

2.1 INVERSION-BASED IMAGE EDITING

Inversion-based editing in diffusion models began with deterministic methods like DDIM in-
version (Song et al., 2020). To improve identity preservation, subsequent optimization-based
approaches like Null-text Inversion (NTI) (Mokady et al., 2023) and Prompt Tuning Inversion
(PTI) (Roich et al., 2022) fine-tuned text embeddings, though at a significant computational cost. To
address this inefficiency, a variety of optimization-free methods were developed. Negative Prompt
Inversion (NPI) (Miyake et al., 2023) and ProxNPI (Han et al., 2024) bypass direct optimization of
embeddings, while others like PnP Inversion (Ju et al., 2023) and Noise Map Guidance (NMG) (Cho
et al., 2024) use guidance or directly incorporate reconstruction differences into the editing update.

More recent works have explored alternative strategies beyond direct deterministic inversion. For
instance, Edit Friendly (EF) (Huberman et al., 2024) and its successor LEDITS++ (Brack et al.,
2024) employ random inversion to achieve good reconstruction without requiring attention map
adjustments. Concurrently, methods like h-Edit (Nguyen et al., 2025) have introduced hierarchical
frameworks for more granular semantic control. Despite this progress, most training-free methods
remain limited to text-guided editing and struggle to achieve precise control over attributes without
affecting non-target regions. Our work addresses this by introducing a guidance mechanism that
operates on the fundamental geometric structure of the latent space, enabling more precise and
disentangled control.

2.2 FACE VIDEO EDITING

Face video editing (FVE) aims to modify facial attributes in videos while preserving identity and
temporal consistency. Early FVE methods often relied on GANs, particularly StyleGAN (Karras
et al., 2019). Approaches like StyleCLIP (Patashnik et al., 2021) and Stitch it in Time (STIT) (Tz-
aban et al., 2022) perform GAN inversion to project video frames into StyleGAN’s latent space for
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editing. However, these methods are often limited by the quality of GAN inversion Patashnik et al.
(2021); Shen et al. (2020), which can lead to identity loss and artifacts, and they struggle to maintain
temporal coherence across frames Preechakul et al. (2022).

Recent works have further advanced diffusion-based video editing through various ap-
proaches Geyer et al. (2023); Yang et al. (2023); Qi et al. (2023); Ouyang et al. (2024); Kara et al.
(2024); Anand et al. (2025); Li et al. (2025). RAVE (Kara et al., 2024) introduces randomized noise
shuffling for fast and consistent editing but focuses primarily on semantic scene editing rather than
fine-grained facial control. IP-FaceDiff (Anand et al., 2025) specifically targets identity preserva-
tion in facial videos, while Qffusion (Li et al., 2025) employs quadrant-grid attention learning for
controllable portrait editing. V-LASIK (Shalev-Arkushin et al., 2024) addresses the specific chal-
lenge of consistent glasses removal using synthetic data. Other notable advances include (Liao
& Deng, 2023) extends ControlNet to video generation with cross-frame attention, and (Lu et al.,
2024) performs high-fidelity video editing via multi-source diffusion. While effective, diffusion-
based approaches often lack fine-grained control, leading to unintended modifications of non-target
attributes. Our work addresses this limitation by introducing a mechanism for precise, guided con-
trol within the diffusion framework, ensuring that edits are confined to the desired attributes while
preserving identity and temporal stability.

3 METHODOLOGY

3.1 PRELIMINARIES: DIFFUSION-BASED EDITING

Let X0 represent an input frame. Our method supports processing multiple frames simultaneously;
for simplicity, we use X0 to denote the input in the following sections. Our dual-path framework,
and diffusion-based editing in general, operates by first inverting X0 into a noisy latent represen-
tation, which is then denoised. Each frame is processed independently through this pipeline. We
denote variables associated with the identity-preserving reconstruction path with a superscript r
and variables for the editing path with a superscript c.

The inversion process is a deterministic DDIM-based procedure that progressively adds noise to
create the starting latent for the reconstruction path, Xr

T . The transition from a less noisy latent
Xr

t−1 to a more noisy latent Xr
t under the original condition cedit is modeled as:

q(Xr
t |Xr

t−1, cedit) = N (Xr
t ;µθ(X

r
t−1, t, cedit), σ

2
t I) (1)

where the mean is a function of the predicted noise ϵr(Xr
t−1, t, cedit)): µθ(X

r
t−1, t, cedit) =

1/
√
αt(X

r
t−1 − 1− αt/

√
1− ᾱtϵ

r(Xr
t−1, t, cedit)), αt is the noise schedule coefficient.

The denoising process generates the edited image by iteratively removing noise, guided by a target
condition Cc. The editing path starts from the same noisy latent as the reconstruction path, Xc

T =
Xr

T . The denoising step for the editing path is defined as:
pθ(X

c
t−1|Xc

t , Cc) = N (Xc
t−1;µθ(X

c
t , t, Cc),Σθ(X

c
t , t, Cc)) (2)

where the mean µθ is a function of the noise ϵc(Xc
t , t, Cc) predicted under the target condition.

To improve consistency, the edit-friendly guidance (Huberman et al., 2024) can be introduced into
the denoising process, which explicitly links the reconstruction and editing paths. The intuition is
to ground the editing process in the reconstruction process to prevent it from deviating too far. The
edit-friendly guidance is defined as:

Xc
t−1 = Xr

t−1 − µθ(X
r
t , t, cedit) + µθ(X

c
t , t, Cc) (3)

While this technique enforces a strong structural prior from the reconstruction path, it often proves
to be too restrictive. The guidance is not adaptive; it does not dynamically measure how much the
edit should differ from the original. Consequently, such methods often lack the fine-grained con-
trol needed to robustly preserve identity while making significant, targeted attribute changes. This
fundamental limitation motivates our work, which introduces a more advanced, adaptive guidance
mechanism to enhance editing accuracy.

3.2 OVERVIEW OF FLOWGUIDE

Our method operates through two parallel processes: reconstruction and editing to achieve pre-
cise attribute manipulation while preserving identity, as illustrated in Figure 1. Both processes
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invert the input frames to noisy latents but use different conditions during the denoising phase. The
reconstruction process uses the original conditions (corg, Cr) to establish an identity-preserving ref-
erence path. Concurrently, the editing process uses the target conditions (cedit, Cc) to introduce the
desired attribute modifications.

Figure 1: The framework of proposed FlowGuide. (a) The reconstruction process shows how
original frames are inverted to noisy latents Xr

T with original condition corg, then denoised back
with condition Cr, establishing the baseline for identity preservation. (b) The editing process of
our method: first invert latent representations to Xc

T with editing condition cedit, during denoising
with target condition Cc, we extract latent basis vectors from the UNet bottleneck layer, and apply
implicit basis guidance to ensure edits are confined to target attributes.

During each step of the parallel denoising, our Latent Basis Extraction (LBE) module (Section 3.3) is
applied to the UNet bottleneck of both paths. This yields two sets of basis vectors: Vr for the original
content and Vc for the edited content. Our key contribution, the Implicit Basis Guidance (IBG)
mechanism (Section 3.4), then computes the similarity between Vr and Vc to quantify semantic
change. This similarity dynamically steers the denoising direction of the editing path, ensuring
modifications are confined to target attributes while preserving all other characteristics from the
reconstruction baseline.

This dual-process framework naturally extends to both single images and video sequences, where
temporal consistency emerges from the coherent application of basis guidance across frames. De-
tailed inversion procedures for image and video modalities are provided in Appendix E.2 and F.1,
respectively.

3.3 LATENT BASIS EXTRACTION

Building on the dual-process framework described above, the noisy representations Xr
T and Xc

T are
fed into a pre-trained UNet F to predict the noise of each frame. Within this architecture, we use Fe

and Fd to denote the encoder and decoder components of the UNet, respectively. Since the process
of extracting the latent basis is the same for both paths (though the resulting bases V r and V c differ),
we use Xc

T as an example for simplicity. To streamline the presentation, we let X represent Xc
t , H

denote the latent variable, and C represent Cc at time step t.

The latent variable H in the bottleneck layer of the U-Net has been shown to exhibit a locally linear
structure (Kwon et al., 2022), which makes it suitable for using the Euclidean metric to measure
changes in H (Kim et al., 2023). In the denoising process, the transformation from the input repre-
sentations to the latent space can be expressed as Fe : X , C → H, where Fe maps the input X and
the editing conditions C to the latent variable H. However, since X contains a lot of information
unrelated to the specific editing direction, the variability it introduces into H might not align with
the desired editing directions. To overcome this issue, we focus primarily on how C (the editing
condition) influences H, effectively isolating the impact of the target attribute from other unrelated
aspects of X . This approach enables us to better control the editing process by only adjusting the
components of H that are relevant to the intended changes, ensuring more precise and consistent
video edits.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: The illustration of extracting
the latent basis.

Since the video editing process incorporates the addi-
tional condition C into the denoising steps, C directly in-
fluences key features in the latent space TH, where T(.)
denotes the vector space. Therefore, our goal is to iden-
tify the local latent vectors V = {v1, . . . , vn} ∈ TC that
exhibit significant variability within the tangent space of
the latent variable H, denoted as TH. By focusing on
these local latent vectors, we can effectively capture the
key aspects of the editing direction that drive changes in
the latent space, ensuring that the manipulation of the
video aligns with the intended attribute modifications while preserving other important details such
as identity and background. We provide a detailed analysis of the impact of the latent basis on the
editing process in Appendix C.

The linear relationship between C and H can be expressed as a linear map: TC → TH. This linear
transformation is described by the Jacobian matrix JC , which captures how a vector v ∈ TC is
mapped to a vector u ∈ TH through the relation u = JCv. Given the local linearity of H in the latent
space, the pullback of H allows us to assign a meaningful geometric structure to C, enabling more
precise control over the editing process by understanding how changes in C affect the latent space
H, the norm of v can be measured:

||v||2pb =< u, u >H= v⊤J⊤
C JCv (4)

where < u, u >H= u⊤u is the dot product of u defined in the Euclidean space with the local
linearity of H.

The vectors V = {v1, . . . , vn} ∈ TC that maximize ||v||2pb can be derived through the singular value
decomposition (SVD) of the Jacobian matrix JC = UΛV⊤, as illustrated in Figure 2. Here, V =
{v1, . . . , vn} represents the right singular vectors of JC , U = {u1, . . . , un} ∈ TH represents the left
singular vectors, and Λ is a diagonal matrix of singular values, it has JCvi = Λiui. The extracted
latent basis vectors V = {v1, . . . , vn} correspond to directions in the latent space that are highly
responsive to the conditions encoded in C, offering key insights into how the video editing process
responds to specific attributes. Henceforth, we obtain the latent basis responses corresponding to
the conditions Cr and Cc, denoted as Vr = {vr1, ..., vrn} and Vc = {vc1, ..., vcn}, respectively. Having
extracted these basis vectors, the next critical step is to use them to guide the denoising process by
our Implicit Basis Guidance, as detailed in the following section.

3.4 IMPLICIT BASIS GUIDANCE

To quantify the degree of alignment between the original and manipulated conditions, we measure
the similarity between the latent basis vectors Vr and Vc. This similarity provides a means to assess
the extent of changes introduced during the editing process. Among various similarity metrics (Pear-
son correlation, Spearman correlation, etc.), we adopt cosine similarity to measure the relationship
between Vr and Vc:

ΦC(Vr,Vc) = cos−1(ϕ)/π, cos(ϕ) =
1

n

n∑
i=1

vri v
c
i

||vri ||||vci ||
(5)

The choice of cosine similarity is motivated by its ability to capture directional relationships between
latent basis vectors while remaining robust to magnitude variations, which is particularly important
for measuring semantic changes in the latent space. We empirically validate this choice by com-
paring cosine similarity with Pearson correlation and Spearman correlation in Table 1, with detailed
comparative analysis provided in Section 4.1.2.

The latent basis associated with different conditions is extracted as described in Section 3.3, and the
similarity between Vr and Vc can be utilized to provide more precise guidance for video manipula-
tion. We denote the computed similarity as ξ = ΦC(Vr,Vc), refer to Equation 5. This similarity ξ
serves as a key factor in adjusting the manipulation process, ensuring that only the target attributes
are modified while preserving other important characteristics like identity and background. Given
that the similarity ξ = ΦC(Vr,Vc) measures the impact of the conditions on the model, we propose
using this similarity as guidance to regulate the denoising process.
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To ensure that the magnitude of deviation between ϵc and ϵr is proportional to the similarity a, we
use the similarity value to determine which regions should be edited. Specifically, when the latent
bases are very similar (high a), only small regions should differ between the two paths; when the
bases are dissimilar (low a), larger regions can be modified. To achieve this, we employ a dynamic
threshold rather than a fixed one. We select the 1− a quantiles from the matrix |ϵc − ϵr| and denote
the cutoff value as λ. This allows us to construct a binary mask and compute the final guided noise:

M = |ϵc − ϵr| < λ, ϵ̂ = ϵc +M⊙ (ϵr − ϵc) (6)

where ϵ̂ is the final noise prediction used in the denoising step, blending the editing noise ϵc with the
reconstruction noise ϵr according to the mask M. This method enables us to focus edits on regions
with significant latent basis differences, effectively filtering out less relevant information to ensure
the target attributes are modified while maintaining the integrity of non-target features.

4 EXPERIMENT

4.1 FACE IMAGE EDITING

4.1.1 EXPERIMENT SETTING

Dataset. To evaluate the performance of face image editing, we select 500 images from the CelebA
dataset Liu et al. (2015). We employ GPT-4o to generate comprehensive editing prompts encom-
passing five distinct editing tasks: “Add Sunglasses”, “Add Makeup”, “Age Progression”, “Hair
Color Modification”, and “Add Smile”. The detailed construction methodology for editing prompts
is provided in the Appendix E.3. Furthermore, to assess the generalizability of our approach beyond
facial editing, we conduct additional evaluations on the PIE-Bench dataset Ju et al. (2023) to mea-
sure general-purpose editing capabilities, the results on PIE Benchmark can refer to Appendix E.5.

Baseline. We compare our proposed method against state-of-the-art image editing approaches, in-
cluding h-Edit Nguyen et al. (2025), NP Miyake et al. (2025), NMG Cho et al. (2024), EF Huberman
et al. (2024), and PnP Inv Ju et al. (2023). To ensure fair and consistent evaluation across all meth-
ods, we employ p2p control to enhance reconstruction performance for each baseline.

Metric. For evaluation, we follow the evaluation setting in Nguyen et al. (2025), three main aspects
are considered: 1) edited image quality, 2) editing effectiveness, 3) consistency between the original
image and the edited image. To evaluate the edited image quality, we compute PSNR, LPIPS, and
SSIM on non-edited regions. To measure the editing effectiveness, both standard CLIP similarity
between the edited image and text and directional CLIP similarity between the edited image and text
are used. To evaluate the consistency between the original image and the edited image, we compute
DINO feature distance and the MSE distance between the original image and the edited image.

4.1.2 QUANTITATIVE RESULTS

Quantitative results are presented in Table 1, comparing our method against five state-of-the-art
baselines. We evaluate three variants of our model: one using cosine similarity (our primary pro-
posal), and two others using Spearman and Pearson correlation for guidance. Both the cosine and
Spearman variants demonstrate a superior trade-off between editing effectiveness (CLIP similarity)
and identity preservation, significantly outperforming the Pearson variant, which produces overly
aggressive edits that degrade identity. This outcome confirms our theoretical analysis (Section 3):
angular and rank-based similarity metrics (Cosine, Spearman) better capture the geometric relation-
ships in the latent space, providing more precise guidance than Pearson correlation, which is limited
to linear relationships.

Across all methods, an inherent trade-off exists between editing strength and consistency. As il-
lustrated in Figure 3, our cosine and Spearman-based FlowGuide variants achieve a more favorable
balance than strong baselines like h-Edit, attaining higher quality and identity scores while remain-
ing competitive on edit alignment. While the Spearman variant achieves the highest scores in quality
and consistency, the cosine variant provides a slightly better balance with edit strength, making it our
recommended approach. Both demonstrate that our geometrically-grounded guidance mechanism
enables more controlled and robust editing.
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Table 1: The text-guided face image editing performance of different editing methods.

Edited Image Quality Edited Performance Consistency

Method PSNR (↑) LPIPS (↓) SSIM (↑) CLIP Sim (↑) Local CLIP (↑) DINO Dist (↓) MSE Dist (↓)

EF Huberman et al. (2024) 20.012 0.2028 0.7184 20.714 0.1225 0.0349 0.0109
PnP Inv Ju et al. (2023) 20.370 0.1343 0.7967 20.530 0.1296 0.0271 0.0106
NMG Cho et al. (2024) 14.679 0.3437 0.5673 21.666 0.1348 0.0831 0.0360
NP Miyake et al. (2025) 11.929 0.4747 0.4031 20.918 0.1409 0.1257 0.0665

h-Edit Nguyen et al. (2025) 22.078 0.1034 0.8341 19.707 0.1546 0.0193 0.0078

FlowGuide (Pearson) 16.988 0.2223 0.6988 22.157 0.1451 0.0539 0.0224
FlowGuide (Spearman) 24.129 0.0882 0.8642 17.831 0.1437 0.0161 0.0055

FlowGuide (Cosine) 23.160 0.0965 0.8448 19.391 0.1479 0.0166 0.0060

4.1.3 QUALITATIVE RESULTS

We visualize the face image editing results comparing our proposed method with baseline methods
in Figure 3. Our method achieves superior editing quality and maintains better consistency between
the original and edited images, though with slightly lower CLIP similarity between the edited image
and text prompt. These visualization results align with the quantitative findings in Table 1, con-
firming that our method achieves more precise and consistent editing, thereby demonstrating the
superiority of our proposed approach in face image editing. We provide additional visualizations of
our method’s face image editing capabilities in Appendix E.4 (Figure 8).

Figure 3: The comparison of the edited face image between our method and the baseline methods.

4.2 FACE VIDEO EDITING

4.2.1 EXPERIMENT SETTING

Dataset. We evaluate the performance of our proposed FlowGuide on real-world videos sampled
from the HDTF dataset (Zhang et al., 2021) and the VoxCeleb dataset (Nagrani et al., 2017). Specif-
ically, we randomly select 20 videos from each dataset, ensuring diversity across gender, age, and
skin tones. Each video consists of hundreds of frames, from which we randomly sample 32 consecu-
tive frames for each evaluation. The selected frames are aligned and cropped following the approach
in (Tzaban et al., 2022; Kim et al., 2023), and subsequently resized to a resolution of 256 × 256.

Baseline. We compare our method extensively with several previous state-of-the-art baselines.
We choose diffusion-based editing method DVA (Kim et al., 2023) and transformer-based method
Latent-trans (Yao et al., 2021). For GAN-based methods, we choose STIT (Tzaban et al., 2022),
TCSVE Xu et al. (2022), PTI (Roich et al., 2022) and StyleCLIP (Patashnik et al., 2021). Some of
the baseline methods are designed for image editing, we adapt them into the video editing paradigm
(the details can refer to Appendix F.2). It is important to note that, for a fair comparison of the
reconstruction abilities of different editing methods, the original videos are used solely as input.
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Metric. For comprehensive evaluation of our proposed FlowGuide and the baseline methods, we
utilize a range of evaluation metrics. For the evaluation of reconstruction performance, we use
SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018b), MSE and FID. For time consistency eval-
uation of manipulated videos, we apply TL-ID and TG-ID (Tzaban et al., 2022). For evaluating
video editing performance, we use the Identity Preservation Rate (IPR), Target Attribute Change
Rate (TACR) (Yao et al., 2021), and CLIP score.
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Figure 4: Comparison of editing performance of our FlowGuide to the previous video editing
methods for editing direction ‘Libstick’.

4.2.2 QUANTITATIVE RESULTS

To thoroughly evaluate the editing capabilities of our proposed FlowGuide compared to baseline
methods, we choose two general editing directions (“Smiling”, “Mustache”). We compute and re-
port the average values of key evaluation metrics, such as Identity Preservation Rate (IPR), Target
Attribute Change Rate (TACR), and CLIP score, for both our method and the baseline approaches.
The results, summarized in Table 2, illustrate how effectively each method handles these editing
tasks, offering insights into their relative performance across different editing scenarios. The recon-
struction ability of different methods are presented in Appendix F.3.
Table 2: The editing ability of our FlowGuide and baselines on HDTF and VoxCeleb datasets. The
reported values are the mean of two editing directions (“Smile”, “Mustache”).

Method HDTF VoxCeleb
IPR (↑) TACR (↓) CLIP-Score (↑) TL-ID (↑) TG-ID (↑) IPR (↑) TACR (↓) CLIP-Score (↑) TL-ID (↑) TG-ID (↑)

StyleCLIP 0.8013 0.0329 0.7676 0.9997 0.9995 0.7051 0.0337 0.7670 0.9998 0.9993
STIT 0.8214 0.0341 0.7501 0.9866 0.9490 0.8131 0.0339 0.7383 0.9997 0.9994
PTI 0.7540 0.0327 0.7646 0.8238 0.8122 0.7140 0.0336 0.7627 0.7986 0.8047

TCSVE 0.9413 0.0342 0.7566 0.9864 0.9770 0.8723 0.0029 0.7218 0.9813 0.9077

Latent-trans 0.7515 0.0348 0.7450 0.9978 1.0000 0.7070 0.0335 0.7393 0.9999 1.0000
DVA 0.9244 0.0318 0.7685 1.0000 0.9977 0.8910 0.0341 0.7661 0.9999 0.9969

RAVE 0.7005 0.0338 0.7295 0.8621 0.7731 0.6812 0.0341 0.7301 0.8598 0.7684

FlowGuide 0.9667 0.0338 0.7777 1.0001 1.0000 0.9033 0.0335 0.7607 1.0000 1.0000

As shown in Table 2, our proposed FlowGuide achieves the highest Identity Preservation Rate (IPR),
highlighting its effectiveness in maintaining identity information during editing process. Notably,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

RAVE shows significantly lower performance compared to face-specific methods. This performance
gap highlights a fundamental challenge: general video editing methods are designed for semantic
scene editing and large-scale motion manipulation, where spatial consistency requirements are rel-
atively relaxed. In contrast, face video editing demands extremely precise pixel-level consistency
to the input video and fine-grained control over subtle facial attributes while maintaining identity.
The human visual system is highly sensitive to facial inconsistencies, making it particularly chal-
lenging to apply general video editing approaches to face manipulation tasks. Additionally, our
method demonstrates comparable temporal consistency to the baseline methods, further validating
its robustness in preserving video quality.

4.2.3 QUALITATIVE RESULTS

Qualitative comparisons are presented in Figure 4, with additional results in Appendix F.9. The
visualizations demonstrate our method’s ability to perform precise, localized edits. As shown,
FlowGuide effectively modifies the target attribute while preserving the subject’s identity, non-target
facial features, and the background. This high degree of control ensures the character’s identity re-
mains intact and the scene’s original context is undisturbed.

Table 3: The ablation results of our FlowGuide
on HDTF dataset with two editing directions
(“Smile” and “Mustache”).

Method IPR (↑) TACR (↓) CLIP-Score (↑) TL-ID (↑) TG-ID (↑)

w/o LBE 0.9831 0.0331 0.7437 0.9925 0.9775
w/o IBG 0.9370 0.0337 0.7773 0.9770 0.8854
w/o both 0.8790 0.0309 0.7540 0.9590 0.8557

FlowGuide 0.9510 0.0329 0.7563 0.9986 0.9929

To further showcase the robustness and gener-
alizability of our method, we provide results
for multiple, distinct edits on a single video in
Appendices F.7. These examples highlight our
model’s ability to handle challenging, dynamic
scenarios with intricate backgrounds, substan-
tial head movements where many state-of-the-
art methods falter. Our approach consistently
retains the stylistic elements of the original
video, producing exceptionally natural edits that blend seamlessly with the original content. This
ability to maintain coherence across diverse and challenging edits underscores the effectiveness of
our guidance mechanism. We further report the computation efficiency of our method and the base-
line methods in Appendix F.6.

4.3 ABLATION STUDY

Figure 5: The ablation results of FlowGuide when
apply editing direction:“smile”.

We conduct an ablation study of the video edit-
ing tasks to analyze the contributions of our
two core components: Latent Basis Extraction
(LBE) and Implicit Basis Guidance (IBG), with
results presented in Table 3 and Figure 5. First,
we evaluate the importance of LBE by remov-
ing the module and computing similarity di-
rectly on the raw latent variables. This pre-
vents the model from isolating attribute-specific
features; the resulting guidance is too diffuse
to apply the desired edit (low Target Attribute
Change Rate), demonstrating that LBE is cru-
cial for identifying the correct semantic direc-
tions for modification. A detailed analysis of
the impact of the latent basis on the editing pro-
cess is provided in Appendix C.

Next, we remove the IBG module while re-
taining LBE to assess its distinct role. With-
out IBG, the model correctly identifies what to
change but lacks spatial control, applying edits
indiscriminately across the entire frame. This
leads to significant identity degradation (low
IPR) and uncontrolled attribute changes, highlighting IBG’s critical role in providing the spatial
guidance necessary for localized edits. When both components are removed, the model’s perfor-
mance collapses entirely, producing distorted and ineffective results. These findings confirm that

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

LBE and IBG are integral and complementary: LBE provides the semantic what to change, while
IBG provides the spatial where to apply it.

5 EVALUATION FOR LATENT BASIS

Figure 7 shows the similarity values a = SC(V
r, V c) between latent bases at different denoising

timesteps for two editing directions (”Beard” and ”Big Lip”). We observe that similarity is higher at
larger timesteps and decreases as denoising progresses. This behavior validates several key proper-
ties of our method:

Figure 6: The similarity between the la-
tent basis of the original video and the
manipulated video evolves as the de-
noising progresses.

Linearity across timesteps. The smooth, continuous
decrease in similarity suggests that the local linearity
assumption holds consistently throughout the denoising
process. Sharp discontinuities would indicate breakdown
of linearity, but the gradual transition demonstrates stable
geometric structure in the latent space. At early timesteps
(high noise), the latent bases V r and V c are more similar
because noise dominates the latent space, making the lin-
ear approximation particularly valid. As denoising pro-
gresses, the bases diverge smoothly, indicating that the
linear region accommodates the growing semantic differ-
ences between reconstruction and editing paths.

Adaptive guidance mechanism. The varying similarity
across timesteps demonstrates why our adaptive thresh-
old mechanism (using 1−a quantiles) is crucial. At early
stages where similarity is high (a ≈ 0.8-0.9), our method
applies minimal editing, preserving the coarse structure.
At later stages where similarity drops (a ≈ 0.4-0.5),
larger editing regions are permitted, allowing fine-grained attribute manipulation. This adaptive
behavior provides robustness even if the linearity assumption weakens at certain timesteps.

6 CONCLUSION

In this work, we introduced FlowGuide, a unified framework for high-fidelity face editing in both
images and videos. We addressed the key challenge of disentangling identity from editable at-
tributes by leveraging the geometric properties of the diffusion model’s latent space. Our approach
treats semantic attributes as linear subspaces and uses a novel guidance mechanism, consisting of
Latent Basis Extraction (LBE) and Implicit Basis Guidance (IBG), to steer the generation process.
By operating on the geometric alignment of these subspaces, our method confines edits to target
attributes while preserving identity and temporal coherence. Extensive experiments demonstrate
that FlowGuide achieves state-of-the-art performance, striking a superior balance between edit fi-
delity and attribute modification. Our work opens a promising direction for more controllable and
geometrically-grounded manipulation in generative models.

7 LIMITATION DISCUSSION

While our method achieves state-of-the-art performance, several limitations remain. First, operating
in the diffusion model’s latent space can lead to over-smoothing in high-motion scenarios and unre-
alistic blending when adding hard-edge accessories like sunglasses. This represents a fundamental
trade-off, we achieve superior identity preservation but at the cost of some visual artifacts. Second,
perfect attribute disentanglement remains elusive; correlated features in training data (e.g., smiling
affecting skin texture) lead to minor unintended changes in approximately 10-15% of edits. Finally,
our method inherits the limitations of the underlying diffusion model, restricting edits to what the la-
tent space can represent and requiring fine-tuning for optimal performance on new domains. Future
work could explore hybrid approaches combining our latent manipulation with explicit geometric
modeling to address these challenges.
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8 ETHICS STATEMENT

The research presented in this paper focuses on face image and video editing. We acknowledge
the potential for misuse of such technology, including the creation of convincing deepfakes for
malicious purposes, such as spreading misinformation or creating non-consensual content. Our goal
is to advance the field of computer vision for positive applications, such as in the film industry for
special effects, for creative content generation, or for personal use in photo and video enhancement.
We condemn the use of our work for any unethical purposes. We encourage the research community
to continue developing methods for detecting manipulated media to counteract potential negative
uses.

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we commit to making our code and pre-trained models
publicly available upon publication of this work. The code will be released under an open-source
license in a public repository. The datasets used for training and evaluation are publicly available and
are cited in the main paper. Detailed instructions for setting up the environment, as well as scripts
for training and evaluation, will be provided. The key hyperparameters and architectural details are
described in the appendix. Our experiments were conducted on specific hardware using standard
deep learning libraries, and these details will also be provided in our code repository.
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The source code and more showcases of our paper can be found at:
https://anonymous.4open.science/r/face edit-15E1

A USE OF LLMS

We used LLMs for tasks such as improving grammar, refining phrasing, and ensuring consistency
in language. The core ideas, experimental design, and interpretation of results are solely the work
of the authors. All final content was reviewed and edited by the authors to ensure its accuracy and
originality.

B RELATED WORK

B.1 LATENT SPACE ANALYSIS

The study of latent spaces has gained significant attention in recent years. In the field of Generative
Adversarial Networks (GANs), researchers have proposed various methods to manipulate the latent
space to achieve the desired effect in the generated images (Ramesh et al., 2018; Patashnik et al.,
2021; Abdal et al., 2021; Shen & Zhou, 2021; Härkönen et al., 2020). More recently, several studies
have examined the geometrical properties of latent space in GANs and utilized these findings for
image manipulations (Choi et al., 2021; Zhu et al., 2021). Some studies have applied Riemannian
geometry to analyze the latent spaces of deep generative models (Arvanitidis et al., 2017; 2020;
Chen et al., 2018; Lee & Park, 2023; Lee et al., 2022; Shao et al., 2018). (Shao et al., 2018)
proposed a pullback metric on the latent space from image space Euclidean metric to analyze the
latent space’s geometry. This method has been widely used in VAEs and GANs because it only
requires a differentiable map from latent space to image space. And (Park et al., 2023) extend it into
diffuison models (DMs) to investigate the geometry of latent space of DMs to facilitate the image
editing. However, it is challenging for the pullback metric to accurately capture the geometry of
the latent space from the image space, as the image space contains excessive information, making it
difficult to identify the correct directions for editing.

C EVALUATION FOR LATENT BASIS

By calculating the similarity between the latent basis of the original video and the manipulated video
under a specific editing direction, we can quantify the degree of change introduced during editing.
This similarity metric serves as a guide for the editing process, enabling more precise adjustments
and ultimately improving the overall quality of the edits. In Figure 7, we present the change in
similarity values at different denoising time steps for two editing directions: ”Beard” and ”Big Lip.”

Figure 7: The similarity between the la-
tent basis of the original video and the
manipulated video evolves as the de-
noising progresses.

As observed, the similarity is higher at larger time steps
and lower at smaller time steps. At larger time steps, in-
creased noise in the latent space causes the original and
edited videos to share similar latent bases. Conversely, at
smaller time steps, reduced noise allows the latent basis
to better capture encoding features, creating greater dis-
tinction between original and edited content.

Furthermore, this observation aligns with the understand-
ing that the model initially focuses on low-frequency sig-
nals during the early stages of the generative process,
where the similarities between the original and edited
videos are more pronounced. Over time, the model pro-
gressively shifts its attention to high-frequency signals,
which highlight the introduced target attribute and the dif-
ferences between the two videos. This result reinforces
the common view of the coarse-to-fine behavior exhibited
by diffusion models throughout the generative process (Kim et al., 2023).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: The editing sample visualization of our methods with different editing instructions.

D DEEPFAKE DETECTION ANALYSIS

To assess the detectability of videos edited by our method and baseline approaches, we conduct ex-
periments using the state-of-the-art deepfake detection model from FaceForensics++ Rossler et al.
(2019). Understanding the detectability of edited content is important for responsible AI develop-
ment and helps identify potential misuse scenarios.

Table 4: Deepfake detection rates using FaceForensics++ detector on both image and video editing
methods. Higher detection rates indicate easier identification of manipulated content. Lower rates
suggest more natural-looking edits.

Image Editing Methods
Method Type Detection Rate (%) Naturalness
Ours Diffusion 78.0 Most Natural
h-edit Nguyen et al. (2025) Diffusion 79.5 High
PnP Ju et al. (2023) Diffusion 81.0 Moderate
EF Huberman et al. (2024) Diffusion 82.1 Low

Video Editing Methods
Method Type Detection Rate (%) Naturalness
Ours Diffusion 72.5 Most Natural
STIT Tzaban et al. (2022) GAN 85.5 High
DVA Kim et al. (2023) Diffusion 91.5 Moderate
Latent-trans Yao et al. (2021) Transformer 99.5 Low

As shown in Table 4, our method consistently achieves the lowest detection rates in both image and
video editing tasks. For image editing, our method achieves a detection rate of 78.0%, outperforming
h-edit (79.5%), PnP (81.0%), and EF (82.1%). For video editing, our method achieves 72.5%,
significantly lower than baseline methods (85.5%-99.5%).
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These results suggest that our edited content produces more natural-looking results that are harder
to detect as manipulated media. We hypothesize that this is due to: (1) our method’s superior
preservation of temporal consistency in videos and natural facial dynamics throughout the sequence,
and (2) better semantic coherence in edited regions that maintains the statistical distribution of real
content. The lower detection rates in video editing (72.5%) compared to image editing (78.0%)
demonstrate that our temporal modeling provides additional naturalness that is harder for detectors
to identify.

E FACE IMAGE EDITING EXPERIMENT

Figure 9: The editing results of different method on the task “change object” (the first row and the
second row) and “add object” (the third row).

E.1 EXPERIMENT SETTING

Implementation Details: For all face image editing experiments, we use the pre-trained Stable
Diffusion v1.4 as our base model. We employ DDIM inversion for the encoding process, with both
the inversion and denoising sampling steps set to 50.

A key aspect of our method is the use of distinct conditions for the inversion and denoising stages.
For the initial DDIM inversion, both the reconstruction and editing paths use the same condition,
corg = cedit, which corresponds to the source prompt (e.g., ”a person with long hair”) as defined in
Appendix E.3. This ensures that both processes start from an identical noisy latent, XT .

During the denoising phase, the conditions diverge to enable guided editing. The reconstruction
path uses the original condition Cr (derived from the source prompt), while the editing path uses
the target condition Cc (derived from the target prompt, e.g., ”a person with short hair”). This setup
allows our guidance mechanism to measure and control the semantic changes between the two paths.
All experiments were conducted on a single NVIDIA RTX 4090 GPU.

Implementation of Baseline Methods: We use the following baseline methods for face image
editing tasks, and all the baseline methods are implemented using the same base model and inversion
process, the hyper-parameters are set to the same as the original paper:

• h-Edit (Nguyen et al., 2025): A hierarchical editing framework that decomposes the edit-
ing process into multiple semantic levels for more granular control over different attributes.
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Figure 10: The editing results of different method on the task “change attribute content” (the first
row), “change attribute pose” (the second row) and “change style” (the third row).

Figure 11: The editing results of different method on the task “change attribute color” (the first
row), “change attribute material” (the second row) and “change background” (the third row).

• PnP Inversion (Ju et al., 2023): A plug-and-play method that avoids costly optimization
by injecting features from the original input directly into the denoising process to guide the
generation.

• Noise Map Guidance (NMG) (Cho et al., 2024): Leverages the structure of noise maps
from the inversion process to guide the denoising steps, aiming to better preserve fine de-
tails and image structure.

• Negative Prompt Inversion (NPI) (Miyake et al., 2023): An efficient optimization-free
method that uses the original text prompt embedding to approximate the null-text embed-
ding, speeding up the inversion process.
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Figure 12: The editing results of our method on PIE benchmark.

• Edit Friendly (EF) (Huberman et al., 2024): A technique that employs random inversion
rather than deterministic inversion, achieving high-quality reconstruction without needing
attention map modifications.

E.2 INVERSION PROCESS FOR IMAGE EDITING

We use the DDIM inversion process to invert the original image into the latent space for face image
editing tasks. DDIM inversion is a deterministic process designed to find a noise latent XT that,
when used as the starting point for the standard DDIM denoising process, reconstructs the original
input image X0 with high fidelity. This allows for the manipulation of real images by first inverting
them into the latent space and then denoising them with a modified text prompt or condition.

The inversion process is iterative, progressively adding noise to the input image X0 over T timesteps.
Starting with X0 (the clean image), for each step t from 1 to T , we calculate the next latent Xt based
on the previous latent Xt−1. The core of the process relies on using the pre-trained noise prediction
network ϵθ to estimate the noise that would have been present at step t − 1, and then using this
estimate to project forward to step t.

The update rule for each step of the DDIM inversion is as follows:

Xt =

√
ᾱt

ᾱt−1
Xt−1 +

(
√
1− ᾱt −

√
ᾱt(1− ᾱt−1)

ᾱt−1

)
· ϵθ(Xt−1, t− 1, corg) (7)

where:

• Xt−1 is the latent from the previous step (with X0 being the initial image).

• ᾱt =
∏t

i=1 αi is the cumulative product of the noise schedule coefficients αi = 1− βi.

• ϵθ(Xt−1, t − 1, corg) is the noise predicted by the UNet model for the latent Xt−1 at
timestep t− 1, under the original condition corg .

By iteratively applying this equation from t = 1 to T , we obtain a trajectory of latents
{X1, X2, . . . , XT }. The final latent, Xr

T , serves as the encoded representation of the original image.
For editing, this latent is then used as the starting point for the denoising process, but guided by a
new target condition cedit to generate the manipulated image.
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E.3 CONSTRUCTING FACE IMAGE EDITING PROMPTS

To systematically evaluate the performance of our face image editing framework, we constructed
a standardized set of editing prompts. Each prompt is designed to test a specific, common facial
attribute modification. The construction process for each data point follows a consistent structure,
including a source prompt that describes the original image and a target prompt that describes the
desired edited outcome.

For each editing task, we define the following components:

• Source Prompt: A brief textual description of the initial state of the attribute in the source
image (e.g., ”a person without sunglasses,” ”a person with long hair”). This prompt is used
to generate the original condition, corg.

• Target Prompt: A corresponding textual description of the desired state of the attribute
after editing (e.g., ”a person with sunglasses,” ”a person with short hair”). This prompt is
used to generate the target condition, cedit.

• Editing Instruction: A clear, human-readable instruction that specifies the transformation
to be performed (e.g., ”Add sunglasses to the person’s face,” ”Change the hair length from
long to short”).

We curated a diverse set of common face editing tasks to ensure comprehensive evaluation. The
primary editing axes we considered include:

• Accessories: Adding or removing items like sunglasses.

• Hairstyle: Modifying hair length or color (e.g., long to short, dark to blonde).

• Age: Changing the perceived age of the person (e.g., young to elderly).

• Makeup: Applying or removing makeup.

• Expression: Altering facial expressions (e.g., serious to smiling).

This structured approach to prompt construction allows for consistent and reproducible experiments,
ensuring that all baseline methods are evaluated under the same conditions and that the performance
of our model can be fairly assessed across a range of common and important face editing scenarios.

E.4 ADDITIONAL VISUALIZATION OF FACE IMAGE EDITING

We provide additional visualization of face image editing results in Figure 8. It can be seen that our
method can successfully edit the face image, and the editing results are natural and realistic.

E.5 PIE BENCHMARK RESULTS

E.5.1 MAIN RESULTS

The quantitative results on the PIE benchmark, summarized in Table 5, highlight the efficacy of
our proposed method. A key observation across the baselines is the inherent trade-off between
edit conformance and fidelity to the original image. For instance, methods such as PnP Inversion
demonstrate strong performance in consistency metrics (DINO Dist, MSE Dist), indicating minimal
deviation from the source image, but this comes at the cost of lower alignment with the target prompt
(CLIP Sim). Conversely, methods like EF and NMG achieve high CLIP similarity by making more
aggressive edits, which compromises image quality (PSNR, LPIPS) and consistency.

In contrast, our FlowGuide strikes a more effective balance across these competing objectives. It
achieves the second-best performance on average across all quality and consistency metrics, sur-
passed only by the highly conservative PnP Inversion, while simultaneously maintaining a compet-
itive CLIP Similarity score. This suggests that our geometrically-grounded guidance mechanism is
not merely preserving the original image, but is enabling precise, targeted edits. By confining mod-
ifications to the intended semantic regions, our method preserves the overall fidelity and structure
of the source image without sacrificing the desired semantic change, thereby achieving a superior
position on the fidelity-conformance trade-off curve.
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Table 5: The text-guided image editing performance of different editing methods.

Edited Image Quality Edited Performance Consistency

Method PSNR (↑) LPIPS (↓) SSIM (↑) CLIP Sim (↑) Local CLIP (↑) DINO Dist (↓) MSE Dist (↓)

EF Huberman et al. (2024) 17.624 0.1771 0.7306 27.127 0.1520 0.0661 0.0229
NMG Cho et al. (2024) 14.075 0.3189 0.6063 27.053 0.1563 0.1257 0.0492
NP Miyake et al. (2025) 14.510 0.3262 0.6028 24.182 0.1968 0.1266 0.0446

h-Edit Nguyen et al. (2025) 19.657 0.1397 0.7711 26.815 0.1878 0.0536 0.0156

FlowGuide 22.021 0.1006 0.8047 26.422 0.1754 0.0349 0.0091

E.5.2 VISUALIZATION

Comparison Results Visualization: We present the comparison of editing results of different
method on the all eight tasks in PIE benchmark. As shown in Figure 9, Figure 10 and Figure 11,
our method achieves the best performance on all the tasks. In Figure 9, “change object” and “add
object” are included. In Figure 10, “change attribute content”, “change attribute pose” and “change
style” are included. In Figure 11, “change attribute color”, “change attribute material” and “change
background” are included. We can see that our method can successfully edit the object in the image,
and the editing results are more natural and realistic than the baseline methods.

Visualization of Our Method: We provide additional visualization results of our method on PIE
benchmark. As shown in Figure 12, our method can successfully edit the object in the image, and
the editing results are more natural and realistic than the baseline methods.

F FACE VIDEO EDITING EXPERIMENT

F.1 INVERSION FOR VIDEO EDITING

Figure 13: The architecture of en-
coder E , consists of Ec, Ee and Ei.

To encode the conditions related to the target attribute into the
video, we first obtain the embedding for the original frames
using a pre-trained condition generator, denoted as Ec: corg =
Ec(X). Next, we utilize a pre-trained encoder Ee to jointly
encode the video frames and the associated embedding into
conditions (the process of obtaining cedit can refer to Ap-
pendix F.4), which are then used as conditions during the de-
noising process:

Cr = Ee(X, corg), Cc = Ee(X, corg + cedit) (8)

where Cr and Cc are utilized as conditions for the denoising
of the original and manipulated frames, respectively. And the
input representations at time step t = 0 are derived using a
frozen input encoder Ei: Xr

0 = Ei(X, Cr) and Xc
0 = Ei(X, Cc), Xr

0 represents the original input
representation and Xc

0 serves as the conditional input representation for manipulation.

After obtaining the encoded input representations Xr
0 , X

c
0 , the forward diffusion can be applied:

q(Xr
t |Xr

0 ) = N (Xr
t ;
√
αtX

r
0 , (1− αt)ϵ

r
t ), ϵ

r
t = Fθ(X

r
0 , t, Cr) (9)

where Fθ denotes a pre-trained noise estimator, and Xr
t represents the noisy representation at dif-

fusion step t. The parameter αt controls the noise scale at step t. Through this process, Xr
T is

generated by the forward diffusion process. Similarly, the forward diffusion process is applied to
Xc

0 to obtain Xc
T .

F.2 EXPERIMENT SETTINGS

Implementation details. FlowGuide uses a diffusion autoencoder with a UNet as the noise esti-
mator. To enhance the model’s ability to reconstruct the background in face videos, we fine-tune the
pre-trained diffusion autoencoder from (Kim et al., 2023) on the HDTF dataset (the details of fine-
tuning the diffusion autoencoder can refer to Appendix F.5). Note that during the editing process,
the pre-trained diffusion autoencoder model remains frozen. We use the DDIM sampler, setting the
the reverse time step and the inference time step to 50. The batch size for inference is set to 1, and all
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inference is performed on 4 RTX4090 GPUs. For face video editing, we didn’t use the edit friendly
guidance, the consistency is realized solely by our method solely. We report the inference time of
our method and the baseline methods in Appendix F.6.

Implementation of Baselines. We select several state-of-the-art methods for comparison: the
diffusion-based editing method DVA Kim et al. (2023) and the transformer-based method Latent-
trans Yao et al. (2021). For GAN-based methods, we include STIT Tzaban et al. (2022), TCSVE Xu
et al. (2022), PTI Roich et al. (2022), and StyleCLIP Patashnik et al. (2021).

It is important to emphasize that, for a fair evaluation of reconstruction capabilities, all methods
only use the original videos as input. None of the methods have access to the original videos during
the output generation phase, ensuring that the reconstruction quality reflects the true performance of
each editing approach without reliance on the input data.

• DVA Kim et al. (2023): For the implementation of DVA, we use their CLIP-based editing
method, and the editing scale α is set to 0.25 as recommended in their paper, and the input
texts of the CLIP-based editing method are “Face” and “Face with *” for original video and
the target manipulated video, other experiment settings are used the default settings.

• TSCVE Xu et al. (2022) We use the default settings as recommended, and the frames of the
videos are resized to 512. We also use the output frames directly, without blending them
into the original video frames.

• Latent-trans Yao et al. (2021): For the implementation of Latent-trans, we set the scaling
factor α as 1.5 and the other settings are kept as recommended. And we use the output
frames directly, the output frames are not blended with the original input frames.

• STIT Tzaban et al. (2022): We run edits with stitching tuning, and the edit ranges is set to
10101, the parameter β is set to 0.2 and the outer mask dilation is set to 50. Other settings
are kept as recommended. The output frames are used directly as well.

• PTI Roich et al. (2022): We use the default settings as recommended, and the frames of the
videos are resized to 1024. We also use the output frames directly, without blending them
into the original video frames.

• StyleCLIP Patashnik et al. (2021): We train the mappers of input videos with the default
settinfs and use the attributes as the descriptions. Then we use the default settings to edit
the videos and the output frames are used directly.

F.3 RECONSTRUCTION EVALUATION

For video editing tasks, it is essential that the model can accurately reconstruct the original video
from its encoded representation. To achieve this, we fine-tune the pre-trained diffusion autoencoder
to enhance its ability to accurately reconstruct both the background and human face. We evaluate the
reconstruction performance of FlowGuide against all baseline methods on the HDTF and VoxCeleb
datasets, with the results reported in Table 6.

Table 6: The reconstruction performance of our FlowGuide and baselines on HDTF and Voxceleb
datasets. The reported values are the mean of the averaged per-frame measurements for each video.

Method HDTF VoxCeleb
SSIM (↑) LPIPS (↓) MSE (↓) FID (↓) SSIM (↑) LPIPS (↓) MSE (↓) FID (↓)

StyleCLIP 0.6653 0.1984 0.0125 136.52 0.4830 0.3028 0.0183 233.60
STIT 0.5202 0.3978 0.0617 244.60 0.6669 0.2769 0.0513 179.27
PTI 0.6347 0.2476 0.0256 168.12 0.4737 0.3434 0.0337 227.43

Latent-trans 0.7035 0.1571 0.0068 137.70 0.6017 0.2208 0.0076 217.96
DVA 0.9448 0.0584 0.0003 33.531 0.9696 0.0130 0.0006 44.458

FlowGuide 0.9715 0.0108 0.0001 23.432 0.9779 0.0095 0.0004 24.840

Table 6 clearly demonstrates that our method achieves significantly better reconstruction perfor-
mance compared to baseline methods on both the HDTF and VoxCeleb datasets. This highlights
the superior ability of our model to faithfully reconstruct fine details in both the background and
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(a) Origin. (b) Ours. (c) DVA. (d) Latent. (e) PTI. (f) STIT. (g) StyleCLIP.

Figure 14: The comparison of the images reconstructed by our FlowGuide and five baseline methods
with the original input image.

human face, underscoring its robustness and generalizability. We further provide a visual compar-
ison of the reconstruction performance across different methods in Figure 14. It can be seen from
Figure 14 that baseline methods struggle to either preserve the identity of the characters or retain
the background features. In contrast, our FlowGuide shows clear superiority in reconstructing the
face videos, delivering more accurate restoration of both facial identity and background details. This
enhanced reconstruction ability makes FlowGuide particularly effective for tasks where maintaining
consistency between the original content and the edited results is crucial, highlighting its robustness
in video manipulation.
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Figure 15: Comparison of editing performance of our FlowGuide to the previous video editing
methods for editing direction ‘Libstick’.

F.4 OBTAIN CONDITION

To edit videos using diffusion-based models, the editing directions must first be mapped into condi-
tions. We achieve this by leveraging the pre-trained CLIP model Radford et al. (2021) to encode the
editing directions. We denote original condition as Cr (see Equation 8), and represent the input with
this original condition as Xr

0 . The forward diffusion process is then applied to Xr
0 over the diffusion

steps T̂ .

Next, the target conditions are initialized as Ĉc = Cr. These target conditions are iteratively updated
until the final conditions are obtained. At each diffusion step t ∈ T̂ , we compute the input X̂c

t using
the equation X̂c

t = Ei(X0
t , Ĉc), ensuring that the editing directions are accurately incorporated into

the denoising process.

The source text for Xr
0 is ”face,” and the target text is ”face with δ,” where δ represents the target

attribute. We use I to denote the source text and Iδ to denote the target text. To quantify the differ-
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ence between the source and target conditions, we utilize the CLIP loss function Lclip from Radford
et al. (2021) to compute the loss. The loss function is formulated as:

L1 =

T̂∑
t=0

Lclip(I,X
r
t , Iδ, X̂

c
t ) (10)

This loss helps guide the model toward generating video frames that align with the target attributes
defined by δ.

Then to keep the consistency of the background information of the reconstructed frames under the
target conditions with the original video frames, another loss function is used:

L2 =
1

T̂

T̂∑
t=0

(Xr
t , X̂

c
t ) (11)

and to control the updated conditions don’t vary too much:

L3 = 1− CrĈc

||Cr||||Ĉc||
(12)

then the optimization object can be obtained as:

L = w1L1 + w2L2 + w3L3 (13)

where w1, w2, w3 are constants. And through minimizing L until convergence, we could get the
trained conditions cedit = Cr − Ĉc.

Settings for Obtaining Conditions

In this paper, we use the pre-trained CLIP model, specifically the ViT-B/32 version. The weights
w1, w2, w3 are set to 5, 1, and 3, respectively, and the forward time step T̂ is set to 5. The learning
rate is set to 0.002, with a batch size of 1 during training. The number of updating steps is fixed at
1000.

F.5 FINETUNE DIFFUSION AUTOENCODER

We finetune the pre-trained diffusion autoencoder from Kim et al. (2023) on the HDTF dataset. The
loss function used for finetuning consists of two components. The first component is the standard
DDIM (Denoising Diffusion Implicit Models) loss function, represented as:

Lddim = Eϵt∼N (0,I)||ϵrt − ϵt||1 (14)

where ϵrt can refer to Equation 9 and ϵt is the true noise, t ∈ T . This loss is minimized to ensure
accurate denoising and reconstruction during the finetuning process.

To enhance the robustness of the model to noise, we sample images given the time step with two
different noise realizations, denoted as ϵ1 and ϵ2, where ϵ1, ϵ2 ∼ N (0, 1). The sampled images are
represented as X̂1

t and X̂2
t .

The loss function for this sampling process can be formulated as follows:

Lreg = Eϵ1,ϵ2∼N (0,1)||X̂1
t − X̂2

t ||1 (15)

This loss encourages the model to accurately predict the noise for both sampled images, thereby
improving its robustness against variations in noise during the denoising process.

The final optimization objective for finetuning the diffusion autoencoder is L = Lddim − Lddim

Settings for Finetuning the Diffusion Autoencoder

We finetune the diffusion model on HDTF dataset. The learning rate is set to 1e-4 and the dropout is
set to 0.1, and we sample from each videos 16 frames during each training step. The batchsize is set
to 16, the total training steps is set to 120000. And we set the seed to 0, the diffusion step T = 1000.
The experiment is performed on 4 RTX4090 GPUs.
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F.6 COMPUTATIONAL EFFICIENCY

o demonstrate the efficiency of our proposed method, we compare the inference time of editing one
frame with the baseline methods. The results are shown in Table 7. Since that the GANs based
methods only need one forward pass to generate the video, we only compare the inference time of
our method and STIT and DVA. It can be seen that our method is more efficient than the baseline
methods.

Table 7: The inference time of our method and the baseline methods.

STIT DVA FlowGuide

Infer Time 12.0 sec 62.4 sec 4.94 sec

F.7 ADDITIONAL RESULTS

Multiple Editing Direction We provide more manipulation results of a single video across multiple
editing directions in Figure 16 and Figure 17. Our approach excels at handling highly intricate back-
ground details and dynamic scenes that include substantial head movements and speech—scenarios
that typically challenge existing state-of-the-art methods. Furthermore, our method adeptly retains
the stylistic elements of the original video, ensuring that the edited output blends seamlessly with
the untouched portions. This results in an exceptionally natural appearance, with virtually no visible
traces of editing. The ability to maintain such coherence across different editing tasks underscores
the robustness and adaptability of our approach.

F.8 CROSS-SUBJECT EDITING

We claim that the obtained condition cedit can be used to edit the video of different subjects. To
verify this claim, we further evaluate the cross-subject editing capabilities of our proposed method.
As shown in Figure 18, we can edit the video of different subjects with the same condition cedit.

F.9 MORE COMPARISON RESULTS

We provide more visualization results of our method and the baseline methods with editing direction
“Mustache” in Figure 19. It can be seen that our method can handle the complex background and
dynamic scene, and the edited output can blend seamlessly with the untouched portions.

F.10 NON PASTE-BACK VISUALIZATION

To evaluate the performance of our method and baselines more thoroughly, we provide the visual-
ization results of our method and the baseline methods in Figure 21 with editing direction “Smile”
without paste-back the editing results to the original video. It can be seen that our method can handle
the complex background and dynamic scene, and the edited output can blend seamlessly with the
untouched portions.
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Figure 16: Manipulation results of our FlowGuide on a single video with different editing directions:
”Beard” and ”Big Lip”, ”Eyeglasses”, ”smile”, ”Young”, ”makeup” and ”wearing Lipstick”.
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Figure 17: Manipulation results of our FlowGuide on a single video with two different editing direc-
tions: ”Beard” and ”Big Lip”, ”Hair Color”, ”smile”, ”Young”, ”makeup” and ”wearing Lipstick”..
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Figure 18: The cross-subject editing results of our method.
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Figure 19: Comparison of editing performance of our FlowGuide to the previous video editing
methods for editing direction ‘Mustache’.
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Figure 20: Comparison of editing performance of our FlowGuide to the previous video editing
methods for editing direction ‘Libstick’.
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Figure 21: Comparison of editing performance of our FlowGuide to the previous video editing
methods for editing direction ‘Smile’.
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