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Abstract
Zero-shot quantization aims to learn a quantized
model from a pre-trained full-precision model
with no access to original real training data.
The common idea in zero-shot quantization ap-
proaches is to generate synthetic data for quan-
tizing the full-precision model. While it is well-
known that deep neural networks with low sharp-
ness have better generalization ability, none of
the previous zero-shot quantization works con-
siders the sharpness of the quantized model as a
criterion for generating training data. This paper
introduces a novel methodology that takes into
account quantized model sharpness in synthetic
data generation to enhance generalization. Specif-
ically, we first demonstrate that sharpness mini-
mization can be attained by maximizing gradient
matching between the reconstruction loss gradi-
ents computed on synthetic and real validation
data, under certain assumptions. We then circum-
vent the problem of the gradient matching without
real validation set by approximating it with the
gradient matching between each generated sample
and its neighbors. Experimental evaluations on
CIFAR-100 and ImageNet datasets demonstrate
the superiority of the proposed method over the
state-of-the-art techniques in low-bit quantization
settings.

1. Introduction
Due to the impressive performance of deep learning models
in various fields and applications, there has been great at-
tention to incorporating deep learning models into resource-
constrained devices, such as mobiles. As a result, optimizing
the storage and computational expense of state-of-the-art
deep neural networks (DNNs) has become increasingly im-
portant. Among various network compression techniques
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such as pruning (Molchanov et al., 2019; He et al., 2017),
knowledge distillation (Hinton et al., 2014; Romero et al.,
2015; Zhao et al., 2022; Pham et al., 2024), and quanti-
zation (Courbariaux et al., 2015; Rastegari et al., 2016),
network quantization is considered one of the most effective
methods. It aims to acquire smaller models with parame-
ters represented in much smaller bit-width (e.g., 1, 2, or 4
bits), yet still achieving competitive performance compared
to full-precision (i.e., 32 bits) models (Chen et al., 2021;
Dong et al., 2019; Yang & Jin, 2020; Pham et al., 2023; Wei
et al., 2022; Nagel et al., 2020; Courbariaux et al., 2015).

Network quantization approaches can be generally divided
into two groups: quantization-aware training (QAT) (Krish-
namoorthi, 2018; Esser et al., 2020; Nagel et al., 2021) and
post-training quantization (PTQ) (Nahshan et al., 2019; Ban-
ner et al., 2018; Li et al., 2021; Nagel et al., 2020). While
QAT approaches have shown outstanding performance com-
parable to full-precision models, they often require access to
a large amount of real training data and a significant amount
of training time. On the other hand, post-training quanti-
zation (PTQ) approaches only require a small amount of
original data and focus on distilling knowledge from a full
precision model to a quantized one.

As an attempt to combat a more challenging scenario where
there is no access to any part of the original data (e.g.,
due to privacy), zero-shot quantization (ZSQ) setting that
does not require any original data has been proposed. The
common idea in ZSQ (Choi et al., 2021; Jeon et al., 2023;
Li et al., 2023) is to generate a set of synthetic data as
a calibration set for the quantization process, by taking
advantage of information from a full-precision model. Most
of the prominent ZSQ works utilize the batch normalization
(BN) statistics information in BN layers of the full-precision
model, i.e., they try to generate synthetic samples such that
the feature distribution of generated samples matches the
BN statistics (Choi et al., 2021; Cai et al., 2020). Some
other methods pay attention to the boundary information
of the full-precision model and try to generate data that are
near the decision boundary of the full-precision model (Choi
et al., 2021; Li et al., 2023; Qian et al., 2023a). Although
different criteria have been investigated when generating
synthetic samples in ZSQ (Choi et al., 2021; Jeon et al.,
2023; Li et al., 2023; Qian et al., 2023a), none of them
considers connections between the generated data and the
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model’s sharpness, despite that it has been shown reducing
the model’s sharpness can improve its generalization (Foret
et al., 2021; Du et al., 2022; Liu et al., 2022).

To this end, in this paper, we propose a novel method for
ZSQ that takes into account the impacts of the generated
data on the sharpness of the quantized model during the
generation process. Specifically, we aim to generate a set
of training images such that using these generated images
for learning the quantized model will not only result in a
good knowledge transfer from the full-precision model but
also minimize the sharpness of the quantized model when
evaluating on a validation set of real images. However, the
real validation set is not available in the context of ZSQ.
To overcome this challenge, we rigorously show that un-
der some assumptions, the sharpness minimization can be
achieved by maximizing the matching between the gradients
of the reconstruction loss evaluated on the generated data
and real validation data, respectively. We then circumvent
the problem of the gradient matching without real validation
set by approximating it with the gradient matching between
each generated sample and its neighbors, which can be done
through an SAM-like optimization. The contributions of
this work can be summarized:

❶ To our knowledge, this paper is the first one that rigor-
ously leverages the Sharpness-Aware Minimization (SAM)
as a criterion for generating the training data in the ZSQ
problem.
❷ We link the model sharpness with the gradient matching,
i.e., maximization of the matching of the gradients of the
reconstruction loss w.r.t. model parameters on the generated
and validation data leads to sharpness reduction.
❸ We propose a novel approach to approximate gradient
matching without the need for a real validation set.
❹ Experimental results demonstrate that our novel
Sharpness-Aware Data Generation (SADAG) method out-
performs the state-of-the-art ZSQ methods under low-bit
quantization settings.

2. Related work
2.1. Uniform quantisation

Uniform quantization is the most popular quantization tech-
nique for quantizing DNNs, due to its simplicity. The integer
weight of a uniformly quantized model can be determined
by the quantizer Qb as:

ŵ = Qb(w; s) = s× clip
(⌊w

s

⌉
, n, p

)
, (1)

where s represents the scaling factor, ⌊.⌉ denotes the
rounding-to-nearest function, and clip() represents the clip-
ping function. For instance, to represent a quantized model
with unsigned b bits, we can have n = 0, p = 2b−1, while

s = max(w)−min(w)
2b−1

. The recent state-of-the-art post train-
ing quantization (PTQ) approaches (Wei et al., 2022; Jeon
et al., 2023) have adopted adaptive rounding (Nagel et al.,
2020) to improve the performance of uniform quantization
further:

ŵ = s× clip
(⌊w

s

⌋
+ h(v), n, p

)
(2)

where h(v) ∈ [0, 1] is a learnable function that converges to-
wards either 0 or 1. In this work, we also adopt the adaptive
rounding (Nagel et al., 2020) for weight quantization.

2.2. Zero shot quantization and data generation

To address the lack of calibration data, Zero-shot quanti-
zation (ZSQ) approaches often aim to exploit information
from full-precision models and generate synthetic data that
matches that information. The most intuitive method for
synthesizing the data is to utilize the cross-entropy (CE)
loss between the prediction of the full-precision model and
the synthetic label. However, ZeroQ (Cai et al., 2020), one
of the early ZSQ works, argues that the distribution mis-
match between synthetic data and real data may lead to a
significant gap in performance. Their core idea to tackle
this problem is to reconstruct synthetic data based on batch
normalization (BN) statistics from the BN layers of the full-
precision model, which has led to significant performance
improvement. Since then, built upon this idea, more and
more data generation methods for ZSQ have been proposed
to incorporate other factors. For instance, KMDFQ (Xu
et al., 2023) and GDFQ (Xu et al., 2020) assert that Ze-
roQ (Cai et al., 2020) disregards the class and distribution
attributes inherent in the real dataset. To align the distribu-
tion characteristics of between the synthetic and real data,
they propose to minimize both the BN loss and the cross-
entropy loss of synthetic noise, sampled from predefined
distributions. Genie (Jeon et al., 2023) directly constructs
samples by optimizing according to BN statistics stored
in full-precision models, where both the generator and its
inputs initialized from a Gaussian distribution are learned
simultaneously. Qimera (Choi et al., 2021) and HAST (Li
et al., 2023) both propose to generate boundary-supporting
samples that they argue would be important for the quanti-
zation process, but with fairly different approaches. While
HAST tries to reward samples based on their uncertainty
from CE loss, Qimera tries to acquire samples lying within
the separating boundary between classes by mixing up class
embeddings. Other prominent works include DSG (Qin
et al., 2021) and AdaDFQ (Qian et al., 2023a). DSG (Qin
et al., 2021) points out the lack of diversity in generated data
due to BN statistics optimization. To improve the diversity,
they add a margin threshold when minimizing BN statis-
tics mismatch. AdaDFQ (Qian et al., 2023a) proposes to
combine both boundary and sample diversity optimization.
Unfortunately, while different criteria have been proposed
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in previous works for the data generation process, most
of them did not investigate how those criteria link to the
model’s generalization in a rigorous way. In this paper, we
propose a novel method for ZSQ in which the sharpness
of the quantized model is directly taken into account when
synthesizing the data.

2.3. Sharpness aware minimization

Sharpness aware minimization (SAM) (Foret et al., 2021) is
an approach proposed to improve the model’s generalization.
By minimizing the loss value and the loss sharpness during
training, SAM can guide the model to a flat local optimum,
showing promising results. Departing from this idea, var-
ious variants of SAM have been proposed to address the
shortcomings of this approach. In (Liu et al., 2022), the au-
thors propose LookSAM as an attempt to improve efficiency
while still retaining the benefits of the SAM algorithm. They
claimed that their method is the first to successfully scale
up the batch size when training Vision Transformers with
SAM. Another SAM variant is Efficient SAM (Du et al.,
2022), which attempts to reduce the computational cost of
the original SAM. In each iteration of the training, Efficient
SAM optimizes the model’s sharpness on a set of weights
that are stochastically selected. In addition, the sharpness
loss is only evaluated on a subset of data that is sensitive
to the model’s sharpness. One of the problems with SAM
is the gradient conflicts between the perturbed loss and
the model’s sharpness. Recently, GSAM (Zhuang et al.,
2022) and SAGM (Wang et al., 2023) have been proposed
to address this gradient conflict problem by modifying the
gradient from SAM and removing conflict components.

2.4. Sharpness aware minimization for model
quantization

Although there is limited investigation in model generaliza-
tion, some previous works have attempted to incorporate
SAM into model quantization. One of the early works is
SAQ (Liu et al., 2021), which demonstrates the existence
of a sharper loss landscape in the low-precision model than
in the full-precision model. Their work introduces several
ways to incorporate sharpness aware loss on optimizing
model weights, and proposes an efficient scheme to incor-
porate SAM without incurring significant cost. The recent
work Bit-shrinking (Lin et al., 2023) proposes to gradually
reduce the number of bits from high bit-width to the target
bit-width such that the sharpness of intermediate quantized
models does not go over a threshold.

Another recent work, ZSAQ (Zhu et al., 2023), jointly learns
the quantized model and the generator with an adversarial
learning strategy through a minimax optimization. It is
worth noting that while both ZSAQ (Zhu et al., 2023) and
ours have the same objective, i.e., reducing the sharpness of

the quantized model, when generating data, their generator
does not consider the impact of generated samples on the
sharpness of the model, while ours explicitly considers that.
In other words, we aim to find a set of synthetic data that is
directly beneficial for the model’s sharpness over the hidden
real data distribution. Unlike our approach, ZSAQ (Zhu
et al., 2023) only evaluates the sharpness of the model on
the generated data which may not well generalize to real
data.

3. Method
3.1. Problem definition

Suppose we have a large validation set X(V ), and given a
deep learning model f(.) with its pretrained weight θFP ,
our ultimate goal is the generation of a small synthetic
dataset X(T ), such that using X(T ) for learning the quan-
tized model θQ will result in a good transfer of knowledge
from the full-precision model θFP to the quantized model
θQ on the validation set X(V ). In the context of model quan-
tization, the transfer knowledge process of a model θFP to
a quantized model θQ can be done with the layer-wise re-
construction loss on a calibrated set X as:

LR(θQ, θFP , X) =
1

2

|X|∑
i=1

L∑
l=1

∥f(θFP ,xi, l)− f(θQ,xi, l)∥2 ,

(3)
where L is the number of layers of the model f;
f(θFP ,xi, l) and f(θQ,xi, l) are respectively the lth-layer
outputs of the full-precision and quantized models w.r.t the
input sample xi; |.| denotes the cardinality of a set.

In addition, (ii) in order to enhance the generalization of
the quantized model θQ, we want that θQ locates in a flat
(or not too sharp) region of the above LR loss landscape.
Following (Foret et al., 2021), the flatness of the quantized
network θQ is defined with the sharpness-aware (SAM) loss:

LSAM (θQ, θFP , X
(V )) = LR(θQ + ϵ, θFP , X

(V ))

− LR(θQ, θFP , X
(V ))

s.t: ϵ = arg max
||ϵ||≤ρ

LR(θQ + ϵ, θFP , X
(V )), (4)

where ϵ is a small perpetuation in the neighborhood with
radius ρ to the model’s weight that increases the loss of the
quantized model θQ the most. The closed-form solution for
ϵ is:

ϵ = ρ
▽θQLR(X

(V ))

||▽θQLR(X(V ))||
, (5)

where ▽θQLR(X
(V )) is the short for

∇θQLR(θQ, θFP , X
(V )), which is the derivative of

the reconstruction loss LR between the full-precision model
θFP and the quantized model θQ.
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In summary, we aim to generate a calibration set X(T ) such
that a calibration process using X(T ) to learn the model θQ
can minimize the sum of the two losses in Eqs. (3)&(4).

3.2. Sharpness-aware data generation

Suppose that we already initialize a training set X(T ). Given
the full-precision model θFP , we start by initializing the
quantized model θQ without any data, and then calibrate it
in the training set by minimizing the reconstruction loss in
Eq. (3) (i.e., using X(T ) to update θQ with one-step gradient
descent to get θ∗Q):

θ∗Q = argmin
θQ

LR(θQ, θFP , X
(T )). (6)

Using Eqs. (3)&(4), we can represent the sum of the SAM
loss and the reconstruction loss of the calibrated model θ∗Q:

LTOTAL(θQ, θFP , X
(V ), X(T ))

= LSAM (θ∗Q, θFP , X
(V )) + LR(θ

∗
Q, θFP , X

(V ))

= LR(θ
∗
Q + ϵ, θFP , X

(V ))− LR(θ
∗
Q, θFP , X

(V ))︸ ︷︷ ︸
First term

+ LR(θ
∗
Q, θFP , X

(V ))− LR(θQ, θFP , X
(V ))︸ ︷︷ ︸

Second term

+ LR(θQ, θFP , X
(V ))︸ ︷︷ ︸

Third term

s.t: ϵ = arg max
||ϵ||≤ρ

LR(θ
∗
Q + ϵ, θFP , X

(V )). (7)

The synthetic dataset X(T ) that optimizes the quantized
model’s sharpness and performance can be acquired by
minimizing LTOTAL. It is worth noting that the third term
LR(θQ, θFP , X

(V )) is independent from the training set
X(T ) that we want to generate, so we can ignore this term.

3.3. Gradient matching

To simplify the representation, for the rest of the paper, we
use ▽θLR(X) to stand for ▽θLR(X, θ, θFP ), which repre-
sents the gradient of the reconstruction loss between some
model θ with full-precision model θFP over some data X .
Let δθQ = θ∗Q− θQ be the difference in weights of the quan-
tized model θQ before and after calibrated with the training
set X(T ). In practice, we only use a single-step gradient
descent for the model update, so δθQ = −α▽θQLR(X

(T )),
where α is the learning rate.

Using the first order Taylor expansion for LR(θ
∗
Q +

ϵ, θFP , X
(V )) around θ∗Q in the first term and for

L(θ∗Q, θFP , X
(V )) around θQ in the second term of

LTOTAL in (7), we have:

LTOTAL(θQ, θFP , X
(V ), X(T ))

≈ ϵT▽θ∗
Q
LR(X

(V ))− α▽θQLR(X
(T ))T▽θQLR(X

(V )),

(8)
where the second term −α▽θQLR(X

(T ))T▽θQLR(X
(V ))

is the matching of gradients of the reconstruction loss LR

w.r.t. the model θQ when evaluating the synthetic training
set X(T ) and the real validation set X(V ), respectively. Re-
place ϵ with its closed-form solution in Eq. (5), the first term
of LTOTAL(.) in (8) can be represented as:

ρ

 ▽θ∗
Q
LR(X

(V ))∥∥∥▽θ∗
Q
LR(X(V ))

∥∥∥
T

▽θ∗
Q
LR(X

(V ))

= ρ
∥∥∥▽θ∗

Q
LR(X

(V ))
∥∥∥

= ρ
∥∥∥▽θ∗

Q
LR(X

(V ))− ▽θQLR(X
(V )) + ▽θQLR(X

(V ))
∥∥∥

≈ ρ||▽θ∗
Q
LR(X

(V ))− ▽θQLR(X
(V ))︸ ︷︷ ︸

First-order Taylor

+▽θQLR(X
(V ))||

≈ ρ
∥∥∥H(θQ)δθQ + ▽θQLR(X

(V ))
∥∥∥ ,

(9)
where H(θQ) denotes the Hessian matrix over the model
weights using the validation set X(V ). The final row in (9)
is the result of using the first-order Taylor expansion for
▽θ∗

Q
LR(X

(V )) around θQ. From Eq. (9), minimizing the
first term of LTOTAL(.) in (8) is equivalent to minimizing
the magnitude of H(θQ)δθQ + ▽θQLR(X

(V )). It is worth
noting that ▽θQLR(X

(V )) and H(θQ) are independent from
the calibration set X(T ) that we want to generate. The neces-
sity condition for Eq. (9) to be minimized is when H(θQ)δθQ
and ▽θQLR(X

(V )) have opposite directions, which is equiv-
alent to optimize:

arg min
X(T )

cos(H(θQ)δθQ ,▽θQLR(X
(V )))

≡ argmax
X(T )

cos(H(θQ)▽θQLR(X
(T )),▽θQLR(X

(V ))). (10)

Estimating H(θQ) and ▽θQLR(X
(T )) for the whole model

can be very expensive, therefore, we turn to utilize the Hes-
sian matrix H(θQ)

l and the Jacobian vector ▽θQLR(X
(T ))l

of one layer l instead. As many quantization meth-
ods (Zhang et al., 2018; Dong et al., 2019; Qian et al.,
2023a; Li et al., 2021; Jeon et al., 2023) usually keep
the bit-width of the first convolutional layer and the last
fully-connected layer higher than other layers in low-bit
width setting (e.g., in 2/2 setting, they are still kept at 8
bits while other layers are quantized to 2 bits), optimiza-
tion based on the gradient of these two layers is likely to
have more impact to the model’s performance. Therefore,
we choose to use the fully-connected layer for our esti-
mation, as it usually has a far higher number of parame-
ters (more influence) than the first convolutional layer and
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its Jacobian matrix is easy to compute. For instance, for
ResNet-18 architecture, the first convolutional layer has
64 × 7 × 7 × 3 = 9, 408 parameters, while the last fully
connected layer has 512× 1000 = 512, 000 parameters.

Let A(T ) = f(θQ, X
(T ), L − 1) and A(V ) =

f(θQ, X
(V ), L− 1) denote respectively input for the fully-

connected layer of the training and validation sets with size
N × d where N is the number of samples, and W(L) be the
weight matrix of the fully-connected layer with size d× C
where C is the number of classes. We have:

f(θQ, X
(T ), L) = A(T )W(L)

f(θQ, X
(V ), L) = A(V )W(L). (11)

From Eq. (11), the Jacobian matrix w.r.t the fully connected
layer can be easily estimated as:

▽θQLR(X
(T ))(L) = flatten

(
A(T )T g(T )

)
, (12)

where g
(T )
i = f(θQ,xi, L) − f(θFP ,xi, L). As the fully-

connected layer is just a linear layer, the Hessian matrix
H(θQ)

(L) of this layer has the size dC × dC and can be repre-
sented be:

A(V )TA(V ) 0 . . . 0

0 A(V )TA(V ) . . . 0
...

...
. . .

...
0 0 . . . A(V )TA(V )

 (13)

We can see that the Hessian matrix in (13) has a positive
diagonal, its diagonal elements are periodically overlapped
and most of its off-diagonal elements are 0. Note that this
matrix is independent of the training set X(T ) that we want
to generate. Similar to AdaRound (Nagel et al., 2020), we
assume that H(θQ)

(L) is a diagonal matrix with the same main
diagonal value:

H(θQ)

(L) = cI, (14)

where c is some constant, and I denotes the identity matrix.
Then (10) is equivalent to:

argmax
X(T )

cos(▽θQLR(X
(T )),▽θQLR(X

(V ))). (15)

As (15) and the second term of LTOTAL(.) in Eq. (8) cor-
relate, optimizing (15) will also partly optimize the second
term in Eq. (8).

3.4. Gradient matching without a validation set

From (15), intuitively, we can see that the small set X(T )

that we want to generate for calibration can decrease the
SAM loss of the model over the validation set X(V ) when
the gradient of the model when evaluating on X(T ) matches
with that when evaluating on X(V ). In summary, there is

Algorithm 1 SA zero-shot quantization.
1: Train(θFP ,G,T ,Nw,Ng ,Nq).
2: θFP : The full-precision model.
3: G: The generator.
4: T : Number of images we want to generate.
5: Nw: Number of warm-up iterations.
6: Ng: Number of iterations for data optimization.
7: Nq: Number of iterations for model quantization.
8: Initialize θQ from θFP .
9: Initialize G and Z ∼ N (0, I)

10: Warm up θQ, G, z with BN loss (20) for Nw iterations.
11: for j = 1 to Ng do
12: for i = 1 to T do
13: ϵ

(N )
i = ν

▽zi
D(▽θQ

LR(G(zi)),▽θQ
LR(G(zi)))

∥▽zi
D(▽θQ

LR(G(zi)),▽θQ
LR(G(zi)))∥

14: zi = zi − γ∂ LFINAL

zi

15: G = G − γ∂ LFINAL

G
16: end for
17: end for
18: Get the dataset X(T ) := {x(T )

i |x(T )
i = G(zi)}.

19: for t = 1 to Nq do
20: θQ = θQ − αθ

∂LR(θQ,θFP ,X(T ))
∂θQ

.
21: end for
22: return θQ.

a strong correlation between the minimization of the SAM
loss and the matching of the gradients of the reconstruction
loss LR(.) w.r.t. θQ evaluated on the calibrated set and
the validation set. Unfortunately, this objective is still hard
to optimize because we do not have a large validation set
X(V ). Thus, we propose a novel approach to approximate
(15). Our idea is that if the training set is diverse enough,i.e.,
it spans over the data space, then for each sample x

(T )
i that

we want to generate, we just need to optimize its gradient
to match with the gradients of samples in its neighborhood.
In other word, we want to generate a training set X(T ) such
that samples of X(T ) are diverse and each sample of X(T )

maximizes the gradient matching with its neighbors. To this
end, we introduce an approach similar to SAM. We want
to minimize the difference between the gradients of each
generated sample and a sample in its neighbor with the high-
est gradient dissimilarity. Specifically, given a generated
training set X(T ) := {x(T )

i |x(T )
i = G(zi)}, with G(.) is a

generator and Z := {zi}|X
(T )|

i=1 is the set of embedding vec-
tors to generate X(T ), we want to estimate the perturbation

ϵ(N ) = {ϵ(N )
i }|X

(T )|
i=1 such that x∗(T )

i = G(zi + ϵ
(N )
i ) is

the sample with the least similarity in gradient within the
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neighborhood of the original samples x(T )
i :

ϵ
(N )
i = argmax

ϵ
(N)
i

D(▽θQLR(G(zi)),▽θQLR(G(zi + ϵ
(N )
i )))

s.t: ||ϵ(N )
i || ≤ ν,

(16)
where D(.) is a loss that measures the difference in gradi-
ents, assumed to be the cosine similarity distance. Follow-
ing (Foret et al., 2021), the closed-form solution for ϵ(N )

i

is:

ϵ
(N )
i = ν

▽ziD(▽θQLR(G(zi)),▽θQLR(G(zi)))∥∥▽ziD(▽θQLR(G(zi)),▽θQLR(G(zi)))
∥∥ . (17)

Given ϵ(N ), we can estimate the sample that has its gradient
matches with the gradients of its neighborhoods:

zi,G = argmin
zi,G

LGRAD(θQ, θFP , X
(T ))

= argmin
zi,G

D(▽θQLR(G(zi)),▽θQLR(G(zi + ϵ
(N )
i )))

∀i = 1, 2, .., |X(T )|,
(18)

The above gradient matching loss will encourage (15) if
the calibration set X(T ) is diverse enough. Therefore, after
normalizing ▽θQLR(X

(T )) to be unit vectors, we add a
term to encourage the diversity of the calibration set:

LDIV ERSE(θQ, X
(T ))

=
∑

i,j,i ̸=j

max(0, abs(▽θQL(i)
R

T
▽θQL(j)

R )− ζ),

(19)

where abs(.) denotes the absolute function; ▽θQL
(j)
R =

▽θQLR(xj) represents the gradient of the reconstruction
loss w.r.t. θQ for sample xj ; ζ is a small positive threshold.
This loss encourages gradients of samples xi and xj (i ̸= j)
to be orthogonal when ζ is close to 0. Consequently, it
encourages the calibration set to be diverse.

Verification of the gradient matching on real data. To
verify the effectiveness of the gradient matching for the
quantization process, we conduct experiments using the
gradient matching on real images. Given a set of real im-
ages, we compare the performance of the quantized model
calibrated over a randomly extracted subset of data and a
subset of data that minimizes the gradient matching loss
in (15). The results presented in Table 1 show that the
gradient matching loss (15) consistently improves the per-
formance of the quantized model. The improvements are
more significant when the number of samples is small.

Table 1. The comparative performance when quantizing the
ResNet-18 model using the real data randomly selected and the
real data selected by (15).

Num. Images 32 64 128 256
Random 32.67 43.15 49.45 53.64
SADAG (Ours) 35.46 44.05 50.30 54.01

3.5. Final algorithm

Besides the sharpness of the model, we also want the gen-
erated samples to follow the distribution of original data.
Particularly, we encourage X(T ) to have similar BN statis-
tics stored in the BN layers of the full-precision model θFP ,
by introducing the BN loss LBN :

LBN (θFP , X
(T )) =

L∑
j=1

(||µ(s)
j − µj ||2 + ||σ(s)

j − σj ||2),

(20)
where µ

(s)
j and µj are respectively the mean output values

of the synthetic dataset X(T ) from the full-precision model
at the jth layer and the BatchNorm statistic of the full-
precision model from the same layer, while σ

(s)
j and σj are

the corresponding standard deviations. Initially, we need
to warm up the calibrated set X(T ) using a data generation
method. After the warm-up stage, we acquire the final
calibration set X(T ) by minimizing the loss in Eq. (21) over
the warm-up data. Finally, this newly generated training set
will be used to calibrate the current quantized model.

LFINAL(θFP , X
(T )) = LBN (θFP , X

(T ))+

λ1LDIV ERSE(θQ, X
(T )) + λ2LGRAD(θQ, θFP , X

(T )).
(21)

Algorithm 1 gives the overall algorithm of our proposed
method.

4. Experiments
4.1. Experimental setup

Dataset and network architecture. We evaluate our ap-
proach on CIFAR-100 (Krizhevsky et al., 2009) and Ima-
geNet (Russakovsky et al., 2015) datasets, which are com-
monly utilized for zero-shot quantization. Following the
settings in (Qian et al., 2023a; Li et al., 2023; Choi et al.,
2021), we evaluate our proposed method using ResNet-
20 (He et al., 2016) model for CIFAR-100 dataset. For the
ImageNet dataset, we validate our proposed approach using
ResNet-18 (He et al., 2016), ResNet-50 (He et al., 2016),
and MobileNetV2 (Sandler et al., 2018) architectures.

Quantization setting. Following Genie (Jeon et al., 2023),
we adopt the uniform quantization scheme with adaptive
rounding approach (Nagel et al., 2020), as elaborated in
Section 2.1. In our experiments, the bit-widths of the first
layer and the last layer are fixed at 8 bits, which is similar to
recent SOTA methods for PTQ (Jeon et al., 2023; Li et al.,
2021). Following BRECQ (Li et al., 2021) and Genie (Jeon
et al., 2023), we also set the activation bit-widths of the
second layer and the last layer to 8 bits. The remaining
weight and activation bit-widths of other layers follow the
specifications in the corresponding experimental setups.
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Implementation details. For the initial warm up of the
synthetic dataset, we adopt a generator and a set of embed-
ding vectors with 256 dimensions for each mini-batch of im-
ages that we generate, similar to the Genie model (Jeon et al.,
2023). We use the same quantization setting as BRECQ (Li
et al., 2021). The learning rates of the generator and embed-
ding are initially set at 0.1 and 0.01, respectively. We adopt
the Adam optimizer (Kingma & Ba, 2014) for both genera-
tor and data embedding, but utilize different schedulers for
them, i.e., the ExponentialLR scheduler and ReduceLRon-
Plateau scheduler are used for scheduling the learning rates
of the generator and the embeddings, respectively. Across
all experiments, the batch size for the data generation pro-
cess is set to 128, while in the quantization step, we keep the
batch size at 32. The threshold ζ in Eq. (19) is set to 0 or 0.1.
The radius ν in Eq. (16) for the embedding perturbation is
set to 2. To demonstrate the effectiveness of our method, we
compare our model’s performance with the recent state-of-
the-art models on different low-bit ZSQ settings. Following
previous works (Jeon et al., 2023; Qian et al., 2023a) and
combined with an additional extreme low-bit setting (2/2),
we use a total of 4 different quantization settings, including
2/2, 3/3, 2/4, and 4/4 bit-width for ImageNet experiments.
On the other hand, for CIFAR-100, we report the results of
3/3 and 4/4 bit-width settings. Our model is then compared
with recent prominent zero-shot quantization models, i.e.,
Qimera (Choi et al., 2021), AdaSG (Qian et al., 2023b),
IntraQ (Zhong et al., 2022), AdaDFQ (Qian et al., 2023a)
and Genie (Jeon et al., 2023). Regarding the number of
generated images, we generate a total of 1,024 images for a
fair comparison with Genie (Jeon et al., 2023).

4.2. Comparison with the state of art

Table 2 represents the comparative results of our method
SADAG and other state-of-the-art (SOTA) methods when
evaluated on the CIFAR-100 dataset. The results of (Choi
et al., 2021; Qian et al., 2023b; Zhong et al., 2022; Qian
et al., 2023a) are cited from (Qian et al., 2023a), while for
Genie (Jeon et al., 2023), we use their official released code
and adapt it for the ResNet-20 model. The results confirm
the superior performance of the proposed SADAG over the
state of the art. Comparing to Genie (Jeon et al., 2023),
the current SOTA model in ZSQ, our method improves
over Genie 0.69% and 0.76% for the 3/3 and 4/4 settings,
respectively.

Table 3 presents the comparative results of our method
SADAG and other state-of-the art methods when evaluated
on the ImageNet dataset. It is worth noting that Genie (Jeon
et al., 2023) – the SOTA method for ZSQ does not report
results for the 2/2 and 3/3 settings. We use their official
released code to produce Genie’s results for those settings.
Regarding other results of the competitors, except for the 2/4
setting of Genie with the MobileNetV2 architecture which

Table 2. Comparisons of Top-1 classification accuracy (%) with
the state of the art on CIFAR-100 dataset.

Method Bit-width ResNet-20
(W/A) (FP: 70.33)

Qimera (Choi et al., 2021)

3/3

46.13
AdaSG (Qian et al., 2023b) 52.76
IntraQ (Zhong et al., 2022) -

AdaDFQ (Qian et al., 2023a) 52.74
Genie (Jeon et al., 2023) 65.25

SADAG (Ours) 65.94
Qimera (Choi et al., 2021)

4/4

65.10
AdaSG (Qian et al., 2023b) 66.42
IntraQ (Zhong et al., 2022) 64.98

AdaDFQ (Qian et al., 2023a) 66.81
Genie (Jeon et al., 2023) 68.35

SADAG (Ours) 69.11

we produce it result by using the Genie’s released code1,
they are cited from (Qian et al., 2023a; Jeon et al., 2023).

The results in Table 3 show that our method SADAG consis-
tently outperforms previous approaches, including the cur-
rent best method Genie (Jeon et al., 2023) on all bit-width
settings and all considered model architectures, which con-
firms the effectiveness of the proposed sharpness-aware data
generation approach. The improvements of our method over
Genie are more clear in the 2/2 setting, i.e., the improve-
ments are 0.77%, 0.74%, and 1.08% for the ResNet-18,
ResNet-50, and MobileNetV2, respectively.

4.3. Visualization and ablation studies

4.3.1. VISUALIZATION

In Figure 1, we present several examples of the warm-up
images and the corresponding synthetic images generated
by our proposed method. The images for visualization are
taken from the setting 3/3 with CIFAR-100 dataset with
ResNet-20 model. In each corner of the figure, we show
three different images that respectively represent the images
after the warm-up stage (i.e., warm-up images), the final
synthetic images, and the heat map demonstrating the pixel
value differences between them. Because the BatchNorm
loss converges very fast, the semantics of the images do
not change much after the warm-up stage. However, we
can observe that our method appears to make the images
smoother compared to those in the warm-up stage, i.e., there
is less variability in color in the generated images compared
to the warm-up images.

1While we are able to reproduce other results of Genie, we are
unable to reproduce its result for the 2/4 setting with MobileNetV2.
There is a large gap between the reported number in their paper
and the reproduced result, i.e., 53.38 vs. 51.47.
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Table 3. Comparisons of Top-1 classification accuracy (%) with the state of the art on ImageNet dataset. The result denoted with (*) is
reproduced using the official released code of the corresponding paper.

Method Bit-width (W/A) ResNet-18 ResNet-50 MobileNetV2
Full precision 71.01 76.63 72.20

Genie (Jeon et al., 2023) 2/2 53.74 56.81 11.93
SADAG (Ours) 54.51 57.55 13.01
Genie (Jeon et al., 2023) 2/4 65.10 69.99 51.47∗

SADAG (Ours) 65.25 70.52 51.89
Qimera (Choi et al., 2021)

3/3

1.17 - -
AdaSG (Qian et al., 2023b) 37.04 16.98 26.90
IntraQ (Zhong et al., 2022) - - -
AdaDFQ (Qian et al., 2023a) 38.10 17.63 28.99
Genie (Jeon et al., 2023) 66.89 72.54 55.31
SADAG (Ours) 67.10 72.62 56.02
Qimera (Choi et al., 2021)

4/4

63.84 66.25 61.62
AdaSG (Qian et al., 2023b) 66.50 68.58 65.15
IntraQ (Zhong et al., 2022) 66.47 - 65.10
AdaDFQ (Qian et al., 2023a) 66.53 68.38 65.41
Genie (Jeon et al., 2023) 69.66 75.59 68.38
SADAG (Ours) 69.72 75.7 68.54

Figure 1. The warm-up images and the corresponding images generated by our proposed method SADAG, and the corresponding heat
maps of their differences.

4.3.2. IMPACT OF THE NUMBER OF GENERATED IMAGES

We conduct an ablation study about the model’s perfor-
mance gain with different numbers of generated images,
ranging from 128 to 1024. We use ResNet-18 architec-
ture and the ImageNet dataset for evaluation, with the 2/2
bit-width for this experiment. The results are presented in
Table 4. The results show that increasing the number gener-
ated images improves the model’s performance. However,
the performance gain is smaller when the number of images
increase, e.g., for the proposed method, the performance
gains are 3.71% and 1.94% when increasing the number of
images from 128 to 256, and from 256 to 512, respectively.
In addition, the results show that the proposed method con-
sistently outperforms over Genie (Jeon et al., 2023).

Table 4. Comparative results between our method and Genie (Jeon
et al., 2023) with different numbers of generated images.

Num. Images 128 256 512 1024
Genie 47.17 50.46 52.79 53.74
SADAG (Ours) 47.54 51.25 53.19 54.51

4.3.3. IMPACT OF THE LOSS FACTORS λ1 AND λ2

We conduct an ablation study to assess the impact of the
hyperparameters λ1 and λ2 in Eq. (21). Specifically, we
respectively keep one of the two variables λ1 and λ2 fixed
at 1, while varying the other with five different values
0, 0.5, 1, 2, 5. The experiments are conducted with ResNet-
18 with the 2/2 setting and the number of generated images
is 1024 for each experiment. The results are presented in
Tables 5 and 6. As we can see, the model’s performance
degrades with larger or smaller λ1 and λ2. Therefore, we
simply keep both of them at value 1.
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Table 5. Change in performance w.r.t. λ1 in Eq. (21).

λ1 0 0.5 1 2 5
SADAG 54.14 54.15 54.51 53.99 53.85

Table 6. Change in performance w.r.t. λ2 in Eq. (21).

λ2 0 0.5 1 2 5
SADAG 53.74 54.22 54.51 54.03 53.77

4.3.4. COMPUTATION EXPENSE

Although the second-order objective in Eq. (7) is computa-
tionally intensive, we have successfully reduced the compu-
tational expense by approximating it with another first-order
optimization in Eq. (15). Our proposed method operates at
a speed that is approximately 1.5 times slower than Genie,
which solely utilizes BatchNorm loss for optimization and is
currently one of the fastest zero-shot quantization methods.

5. Conclusion
In this paper, we propose SADAG, a novel approach for data-
free quantization that takes into consideration the sharpness
of the model calibrated on the synthetic dataset. We have
elucidated the relationship between gradient matching be-
tween the training and validation sets and its influence on
the calibrated model’s sharpness on the validation set. Our
findings illustrate that enhancing the state-of-the-art gener-
ative data-free quantization can be accomplished without
significant additional computational overhead or the neces-
sity for any original data; simply by attending to the gradi-
ent of the neighborhood of each generated sample, indirect
sharpness optimization over the hidden validation set is fea-
sible. Extensive experimentation on two benchmark datasets
underscores SADAG’s achievement of state-of-the-art per-
formance. However, there still exist several limitations in
our approach. A noticeable weakness of the framework is
that it requires the relaxation for the Hessian matrix. As
future work, we will tackle this problem by integrating the
model with some techniques to approximate the Hessian
matrix. Another limitation is that our current method only
takes into account the gradient of the final fully-connected
layer instead of the whole model. Although accurate gradi-
ent matching approximation for the whole network is very
computationally expensive, as potential improvement in the
future, we can try to extend the method to match the gradient
of several blocks instead of a single layer.
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